JP6386351B2 - Calculation method of charge rate of storage battery - Google Patents

Calculation method of charge rate of storage battery Download PDF

Info

Publication number
JP6386351B2
JP6386351B2 JP2014244399A JP2014244399A JP6386351B2 JP 6386351 B2 JP6386351 B2 JP 6386351B2 JP 2014244399 A JP2014244399 A JP 2014244399A JP 2014244399 A JP2014244399 A JP 2014244399A JP 6386351 B2 JP6386351 B2 JP 6386351B2
Authority
JP
Japan
Prior art keywords
storage battery
temperature
charging rate
calculated
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014244399A
Other languages
Japanese (ja)
Other versions
JP2016109455A (en
Inventor
英史 川村
英史 川村
隆雄 静間
隆雄 静間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Captex Co Ltd
Original Assignee
Captex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Captex Co Ltd filed Critical Captex Co Ltd
Priority to JP2014244399A priority Critical patent/JP6386351B2/en
Publication of JP2016109455A publication Critical patent/JP2016109455A/en
Application granted granted Critical
Publication of JP6386351B2 publication Critical patent/JP6386351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、蓄電池の満充電量に対する現在の充電量を示す充電率を算出する方法に関する。   The present invention relates to a method for calculating a charge rate indicating a current charge amount with respect to a full charge amount of a storage battery.

蓄電池において、満充電量に対する現在の充電量を示す充電率(SOC、State Of Charge)は、例えば、開放電圧推定法、電流積算法等によって求められている。
開放電圧推定法においては、充電及び放電を行わない無負荷状態における蓄電池の開放電圧が充電率に応じて変化する特性を利用する。そして、準備時において、開放電圧と充電率との関係をマップとして予め求めておき、制御時においては、開放電圧をマップに照合して、充電率を求めている。
In a storage battery, a charge rate (SOC, State Of Charge) indicating a current charge amount with respect to a full charge amount is obtained by, for example, an open-circuit voltage estimation method, a current integration method, or the like.
In the open-circuit voltage estimation method, a characteristic is used in which the open-circuit voltage of the storage battery in a no-load state in which charging and discharging are not performed changes according to the charging rate. At the time of preparation, the relationship between the open circuit voltage and the charging rate is obtained in advance as a map, and at the time of control, the open circuit voltage is checked against the map to obtain the charging rate.

一方、電流積算法においては、充電又は放電を行う際に蓄電池に流れる電流を電流センサによって測定し、この電流の積算値に基づいて充電率の変化量を求める。また、制御開始時において、充電又は放電の開始時における初期充電率を、測定等を行って求めておき、制御時においては、初期充電率に対して充電率の変化量を加減して、現在の充電率を求めている。   On the other hand, in the current integration method, the current flowing through the storage battery when charging or discharging is measured by a current sensor, and the amount of change in the charging rate is obtained based on the integrated value of this current. In addition, at the start of control, the initial charge rate at the start of charging or discharging is obtained by measurement or the like, and at the time of control, the amount of change in the charge rate is adjusted with respect to the initial charge rate, Seeking the charge rate.

また、例えば、特許文献1のバッテリ充電状態演算方法においては、ある温度におけるバッテリ電流及びバッテリ電圧からバッテリの電流‐電圧特性の一次近似式を求め、この一次近似式の傾き及び切片を用いてバッテリの充電状態(SOC)等を推定することが記載されている。また、バッテリの電流‐電圧特性の一次近似式は、任意の温度ごとにマップとして求めておき、現在使用中のバッテリの充電状態等を、温度変化を考慮して求めることが記載されている。   Further, for example, in the battery charge state calculation method disclosed in Patent Document 1, a first-order approximation expression of the battery current-voltage characteristic is obtained from the battery current and battery voltage at a certain temperature, and the battery is obtained using the slope and intercept of this first-order approximation expression. It is described that the state of charge (SOC) and the like are estimated. Further, it is described that a first-order approximation formula of a battery current-voltage characteristic is obtained as a map for each arbitrary temperature, and a state of charge of the battery currently in use is obtained in consideration of a temperature change.

特開2005−345135号公報JP-A-2005-345135

しかし、開放電圧推定法においては、蓄電池の充電又は放電を開始する前、あるいは蓄電池の充電又は放電が終了した後の充電率しか求められない。一方、電流積算法においては、蓄電池に流れる電流を積算していくために、電流センサに生じた測定誤差を蓄積してしまう。開放電圧推定法と電流積算法とを併用することも考えられるが、蓄電池の温度の変化による影響を受けて、充電率が変化する問題を解決することはできない。
また、引用文献1においては、任意の温度ごとに求める、電流‐電圧特性の一次近似式のマップの量が膨大になる。そのため、膨大な量のマップを制御装置に記憶させる必要が生じる。
However, in the open-circuit voltage estimation method, only the charge rate before the start of charging or discharging of the storage battery or after the end of charging or discharging of the storage battery is obtained. On the other hand, in the current integration method, since the current flowing through the storage battery is integrated, the measurement error generated in the current sensor is accumulated. Although it is conceivable to use the open-circuit voltage estimation method and the current integration method in combination, the problem that the charging rate changes due to the change in the temperature of the storage battery cannot be solved.
Moreover, in the cited document 1, the amount of the map of the primary approximate expression of the current-voltage characteristic obtained for each arbitrary temperature is enormous. Therefore, it is necessary to store a huge amount of maps in the control device.

本発明は、かかる背景に鑑みてなされたもので、制御装置における記憶量を少なくして、精度良く充電率を算出することができる蓄電池の充電率の算出方法を提供しようとして得られたものである。   The present invention has been made in view of such a background, and has been obtained in an attempt to provide a method for calculating a charging rate of a storage battery that can accurately calculate a charging rate by reducing the amount of memory in a control device. is there.

本発明の一態様は、蓄電池の満充電量に対する現在の充電量を示す充電率を算出する方法であって、
上記蓄電池を使用する前の準備段階において、上記蓄電池の充電又は放電を行う負荷状態において、該蓄電池の電流を変化させたときの該蓄電池の電圧の変化を示す関係グラフの傾きとして、該蓄電池の内部抵抗を読み取るとともに、該蓄電池の温度を変化させたときの上記内部抵抗の変化を読み取って、温度と内部抵抗との関係式としての温度−内部抵抗関係式を算出し、
かつ、上記蓄電池の充電及び放電を行わない無負荷状態において、該蓄電池の上記充電率を変化させたときの該蓄電池の開放電圧の変化を示す関係グラフの係数として、該蓄電池の充電率係数を読み取るとともに、該蓄電池の温度を変化させたときの上記充電率係数の変化を読み取って、温度と充電率係数との関係式としての温度−充電率係数関係式を算出し、
かつ、上記蓄電池の充電及び放電を行わない無負荷状態において、上記充電率をほぼゼロにした場合の上記蓄電池のゼロ開放電圧を読み取るとともに、上記蓄電池の温度を変化させたときの上記ゼロ開放電圧の変化を読み取って、温度とゼロ開放電圧との関係式としての温度−ゼロ開放電圧関係式を算出し、
上記蓄電池を使用する制御段階において、上記負荷状態又は上記無負荷状態にある上記蓄電池の電圧、電流及び温度を測定し、
該測定した温度を、上記温度−内部抵抗関係式、上記温度−充電率係数関係式及び温度−ゼロ開放電圧関係式にそれぞれ代入して、測定時点における内部抵抗、充電率係数及びゼロ開放電圧を算出し、
上記測定した電圧及び電流、並びに上記測定時点における内部抵抗、充電率係数及びゼロ開放電圧を用いて、上記充電率としての算出充電率を算出することを特徴とする蓄電池の充電率の算出方法にある。
One aspect of the present invention is a method for calculating a charge rate indicating a current charge amount with respect to a full charge amount of a storage battery,
In the preparatory stage before using the storage battery, in the load state where the storage battery is charged or discharged, the slope of the relational battery showing the change in the storage battery voltage when the current of the storage battery is changed is Read the internal resistance, read the change in the internal resistance when the temperature of the storage battery is changed, calculate a temperature-internal resistance relational expression as a relational expression between the temperature and the internal resistance,
And, in the no-load state where the storage battery is not charged and discharged, the charge rate coefficient of the storage battery is expressed as a coefficient of a relational graph indicating a change in the open voltage of the storage battery when the charge rate of the storage battery is changed. While reading, the change in the charge rate coefficient when the temperature of the storage battery is changed is read to calculate a temperature-charge rate coefficient relational expression as a relational expression between the temperature and the charge rate coefficient,
And in the no-load state in which the storage battery is not charged and discharged, the zero open voltage of the storage battery when the charge rate is almost zero is read and the temperature of the storage battery is changed. The temperature-zero open circuit voltage relational expression as a relational expression between temperature and zero open circuit voltage is calculated,
In the control stage using the storage battery, the voltage, current and temperature of the storage battery in the loaded state or in the no-load state are measured,
The measured temperature is substituted into the temperature-internal resistance relational expression, the temperature-charge rate coefficient relational expression, and the temperature-zero open-circuit voltage relational expression, respectively, and the internal resistance, charging rate coefficient, and zero open-circuit voltage at the time of measurement are calculated. Calculate
Using the measured voltage and current, the internal resistance at the time of measurement, the charge rate coefficient, and the zero open circuit voltage, the calculated charge rate as the charge rate is calculated. is there.

上記蓄電池の充電率の算出方法においては、蓄電池における電圧と電流との第1関係、及び蓄電池における開放電圧と充電率との第2関係が、温度によって変化することを考慮し、第1関係と第2関係とを合わせて充電率を求める際に用いる、温度によって変化する各関数の関係式を算出する。
具体的には、蓄電池を使用する前の準備段階において、蓄電池の温度と蓄電池の内部抵抗との関係を示す温度−内部抵抗関係式、蓄電池の温度と蓄電池の充電率係数との関係を示す温度−充電率係数関係式、及び蓄電池の温度と蓄電池のゼロ開放電圧との関係を示す温度−ゼロ開放電圧関係式を算出する。これらの関係式はいずれも、温度を変数として各関数の値が変化する形で算出されており、各関数である内部抵抗、充電率係数及びゼロ開放電圧の値は、蓄電池の温度を代入すれば直接的に算出することが可能である。
In the calculation method of the charging rate of the storage battery, the first relationship between the voltage and the current in the storage battery and the second relationship between the open voltage and the charging rate in the storage battery change depending on the temperature, A relational expression of each function that varies depending on the temperature, which is used when obtaining the charging rate in combination with the second relation, is calculated.
Specifically, in the preparation stage before using the storage battery, a temperature-internal resistance relational expression indicating the relationship between the temperature of the storage battery and the internal resistance of the storage battery, and a temperature indicating the relationship between the temperature of the storage battery and the charging rate coefficient of the storage battery. -A charge rate coefficient relational expression and a temperature-zero open voltage relational expression showing the relation between the temperature of the storage battery and the zero open voltage of the storage battery are calculated. Each of these relational expressions is calculated in such a way that the value of each function changes with temperature as a variable, and the values of the internal resistance, charging rate coefficient, and zero open circuit voltage that are functions are substituted for the temperature of the storage battery. Can be directly calculated.

そして、蓄電池を使用する制御段階においては、負荷状態又は無負荷状態にある蓄電池の電圧、電流及び温度を測定する。また、測定した温度を、温度−内部抵抗関係式、温度−充電率係数関係式及び温度−ゼロ開放電圧関係式にそれぞれ代入して、測定時点における内部抵抗、充電率係数及びゼロ開放電圧を直接的に算出する。こうして、測定した電圧及び電流、並びに測定時点における内部抵抗、充電率係数及びゼロ開放電圧を用いて、算出充電率を容易に算出することができる。   And in the control stage which uses a storage battery, the voltage, electric current, and temperature of the storage battery in a load state or a no-load state are measured. Moreover, the measured temperature is directly substituted into the temperature-internal resistance relational expression, the temperature-charging rate coefficient relational expression, and the temperature-zero open circuit voltage relational expression, and the internal resistance, charging rate coefficient, and zero open circuit voltage at the time of measurement are directly measured. Calculate automatically. Thus, the calculated charging rate can be easily calculated using the measured voltage and current, the internal resistance at the time of measurement, the charging rate coefficient, and the zero open circuit voltage.

これにより、制御段階において、蓄電池の温度が変化する場合であっても、この温度の変化に対応して充電率を算出することができる。そのため、蓄電池の温度の変化による影響を見込んで充電率を算出することができ、充電率の算出精度を向上させることができる。
また、蓄電池の充電率の算出方法を実行する制御装置においては、上記各関係式を記憶しておけばよく、任意の温度ごとの電圧と電流の関係マップを記憶しておく必要がない。そのため、制御装置における記憶量を少なくすることができる。
Thereby, even if it is a case where the temperature of a storage battery changes in a control stage, a charging rate can be calculated corresponding to this change of temperature. Therefore, the charging rate can be calculated in anticipation of the influence of the change in the temperature of the storage battery, and the calculation accuracy of the charging rate can be improved.
Further, in the control device that executes the method for calculating the charging rate of the storage battery, it is only necessary to store the above relational expressions, and it is not necessary to store a voltage-current relation map for each arbitrary temperature. Therefore, the storage amount in the control device can be reduced.

それ故、上記蓄電池の充電率の算出方法によれば、制御装置における記憶量を少なくして、精度良く充電率を算出することができる。   Therefore, according to the method for calculating the charging rate of the storage battery, the storage rate in the control device can be reduced and the charging rate can be accurately calculated.

実施例1にかかる、蓄電池システムの構成を模式的に示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows typically the structure of the storage battery system concerning Example 1. FIG. 実施例1にかかる、(a)温度−内部抵抗関係式、(b)温度−充電率係数関係式、(c)温度−開放電圧関係式を示すグラフ。The graph which shows Example (a) Temperature-internal resistance relational expression, (b) Temperature-charge-rate coefficient relational expression, (c) Temperature-open-circuit voltage relational expression concerning Example 1. FIG. 実施例1にかかる、(a)電圧と電流の第1関係グラフ、(b)開放電圧と充電率の第2関係グラフを模式的に示す説明図。Explanatory drawing which shows typically (a) 1st relationship graph of voltage and electric current concerning Example 1, and (b) 2nd relationship graph of open circuit voltage and charging rate. 実施例1にかかる、(a)温度及び充電率が変化したときの、電圧と電流の第1関係グラフ、(b)温度が変化したときの、開放電圧と充電率の第2関係グラフを模式的に示す説明図。(A) First relationship graph of voltage and current when temperature and charging rate change, (b) Second relationship graph of open-circuit voltage and charging rate when temperature changes, according to Example 1. Explanatory drawing shown. 実施例1にかかる、蓄電池の充電率の算出方法を示すフローチャート。The flowchart which shows the calculation method of the charging rate of a storage battery concerning Example 1. FIG. 実施例2にかかる、蓄電池システムの構成を模式的に示す説明図。Explanatory drawing which shows typically the structure of the storage battery system concerning Example 2. FIG. 実施例2にかかる、蓄電池の充電率の算出方法を示すフローチャート。7 is a flowchart illustrating a method for calculating a charging rate of a storage battery according to the second embodiment.

上述した蓄電池の充電率の算出方法における好ましい実施の形態について説明する。
上記蓄電池の充電率の算出方法においては、上記制御段階において、上記測定した電圧をV、上記測定した電流をI、上記測定した温度をT、上記測定した温度を上記温度−内部抵抗関係式に代入して得られる内部抵抗をR(T)、上記測定した温度を上記温度−充電率係数関係式に代入して得られる充電率係数をA(T)、上記測定した温度を上記温度−ゼロ開放電圧関係式に代入して得られるゼロ開放電圧をVc(T)としたとき、上記蓄電池の上記算出充電率SOC1を、SOC1=EXP[{V−Vc(T)−R(T)・I}/A(T)]の式に基づいて算出することができる。
これにより、算出充電率を迅速かつ容易に算出することができる。
A preferred embodiment of the above-described method for calculating the charging rate of the storage battery will be described.
In the calculation method of the charging rate of the storage battery, in the control step, the measured voltage is V, the measured current is I, the measured temperature is T, and the measured temperature is the temperature-internal resistance relational expression. The internal resistance obtained by substitution is R (T), the charge rate coefficient obtained by substituting the measured temperature into the temperature-charge rate coefficient relational expression is A (T), and the measured temperature is the temperature minus zero. When the zero open circuit voltage obtained by substituting into the open circuit voltage relational expression is Vc (T), the calculated charging rate SOC1 of the storage battery is represented by SOC1 = EXP [{V−Vc (T) −R (T) · I } / A (T)].
Thereby, the calculated charging rate can be calculated quickly and easily.

また、上記蓄電池の充電率の算出方法は、電流積算法に基づく充電率を補正する方法として用いることができる。
具体的には、この電流積算法に基づく充電率の補正方法は、上記制御段階において、上記負荷状態にある上記蓄電池の電流の変化を逐次測定するとともに、該電流の変化の積算値を算出し、該積算値に基づいて上記充電率としての積算充電率を算出し、かつ、上記負荷状態又は上記無負荷状態にある上記蓄電池の電圧、電流及び温度を逐次測定するとともに、上記算出充電率を逐次算出し、上記積算充電率と上記算出充電率との差が所定の誤差範囲内にあるときには、上記積算充電率を上記蓄電池の上記充電率として用い、一方、上記積算充電率と上記算出充電率との差が所定の誤差範囲を超えたときには、上記算出充電率に基づいて補正した上記積算充電率を上記蓄電池の上記充電率として用いる構成とすることができる。
この場合には、電流積算法に基づく積算充電率を、蓄電池の充電率の算出方法によって算出する算出充電率によって適宜補正することができ、電流積算法に基づく充電率の算出精度を向上させることができる。
Moreover, the calculation method of the charging rate of the storage battery can be used as a method of correcting the charging rate based on the current integration method.
Specifically, the charging rate correction method based on this current integration method sequentially measures the change in current of the storage battery in the load state and calculates the integrated value of the change in current in the control stage. The integrated charge rate as the charge rate is calculated based on the integrated value, and the voltage, current and temperature of the storage battery in the loaded state or the no-load state are sequentially measured, and the calculated charge rate is When the difference between the accumulated charge rate and the calculated charge rate is within a predetermined error range, the accumulated charge rate is used as the charge rate of the storage battery, while the accumulated charge rate and the calculated charge are calculated. When the difference from the rate exceeds a predetermined error range, the integrated charge rate corrected based on the calculated charge rate can be used as the charge rate of the storage battery.
In this case, the integrated charging rate based on the current integration method can be appropriately corrected by the calculated charging rate calculated by the storage battery charging rate calculation method, and the calculation accuracy of the charging rate based on the current integration method can be improved. Can do.

以下に、蓄電池の充電率の算出方法にかかる実施例について、図面を参照して説明する。
(実施例1)
本例の蓄電池2の充電率の算出方法は、蓄電池2の満充電量に対する現在の充電量を示す充電率を算出する方法である。まず、蓄電池2を使用する前の準備段階において、図1、図2(a)〜(c)に示すように、蓄電池2の温度Tと蓄電池2の内部抵抗R(T)との関係を示す温度−内部抵抗関係式X1、蓄電池2の温度Tと蓄電池2の充電率係数A(T)との関係を示す温度−充電率係数関係式X2、及び蓄電池2の温度Tと蓄電池2のゼロ開放電圧Vc(T)との関係を示す温度−開放電圧関係式X3を算出する。
Below, the Example concerning the calculation method of the charging rate of a storage battery is described with reference to drawings.
Example 1
The calculation method of the charging rate of the storage battery 2 in this example is a method of calculating a charging rate indicating the current charging amount with respect to the full charging amount of the storage battery 2. First, in the preparatory stage before using the storage battery 2, the relationship between the temperature T of the storage battery 2 and the internal resistance R (T) of the storage battery 2 is shown, as shown in FIGS. 1 and 2 (a) to (c). Temperature-internal resistance relational expression X1, temperature-charge rate coefficient relational expression X2 indicating the relation between the temperature T of the storage battery 2 and the charge rate coefficient A (T) of the storage battery 2, and the temperature T of the storage battery 2 and the zero release of the storage battery 2 A temperature-open voltage relationship X3 indicating a relationship with the voltage Vc (T) is calculated.

温度−内部抵抗関係式X1の算出においては、図3(a)に示すように、蓄電池2の充電又は放電を行う負荷状態において、蓄電池2の電流Iを変化させたときの蓄電池2の電圧Vの変化を示す第1関係グラフ(関係式)G1の傾きとして、蓄電池2の内部抵抗R(T)を読み取る。また、図4(a)に示すように、蓄電池2の温度Tを変化させたときに、電圧Vと電流Iとの第1関係グラフG1に基づく内部抵抗R(T)がどれだけ変化するかを読み取って、温度−内部抵抗関係式X1を算出する。   In the calculation of the temperature-internal resistance relational expression X1, as shown in FIG. 3A, the voltage V of the storage battery 2 when the current I of the storage battery 2 is changed in a load state where the storage battery 2 is charged or discharged. The internal resistance R (T) of the storage battery 2 is read as the slope of the first relational graph (relational expression) G1 showing the change of the battery. Further, as shown in FIG. 4A, how much the internal resistance R (T) based on the first relation graph G1 between the voltage V and the current I changes when the temperature T of the storage battery 2 is changed. To calculate the temperature-internal resistance relational expression X1.

温度−充電率係数関係式X2においては、図3(b)に示すように、蓄電池2の充電及び放電を行わない無負荷状態において、蓄電池2の充電率SOCを変化させたときの蓄電池2の開放電圧V0の変化を示す第2関係グラフ(関係式)G2の係数として、蓄電池2の充電率係数A(T)を読み取る。また、図4(b)に示すように、蓄電池2の温度Tを変化させたときに、充電率SOCと開放電圧V0との第2関係グラフG2に基づく充電率係数A(T)がどれだけ変化するかを読み取って、温度−充電率係数関係式X2を算出する。   In the temperature-charge rate coefficient relational expression X2, as shown in FIG. 3 (b), the storage battery 2 when the charge rate SOC of the storage battery 2 is changed in a no-load state in which the storage battery 2 is not charged and discharged. The charge rate coefficient A (T) of the storage battery 2 is read as the coefficient of the second relation graph (relational expression) G2 indicating the change in the open circuit voltage V0. Further, as shown in FIG. 4B, when the temperature T of the storage battery 2 is changed, how much the charging rate coefficient A (T) is based on the second relationship graph G2 between the charging rate SOC and the open circuit voltage V0. It is read whether it changes, and temperature-charging rate coefficient relational expression X2 is calculated.

温度−開放電圧関係式X3においては、図3(b)に示すように、蓄電池2の充電及び放電を行わない無負荷状態において、充電率SOCをほぼゼロにした場合の蓄電池2のゼロ開放電圧Vc(T)を読み取る。また、図4(b)に示すように、蓄電池2の温度Tを変化させたときに、ゼロ開放電圧Vc(T)がどれだけ変化するかを読み取って、温度−開放電圧関係式X3を算出する。   In the temperature-open-circuit voltage relational expression X3, as shown in FIG. 3B, the zero open-circuit voltage of the storage battery 2 when the charge rate SOC is substantially zero in the no-load state where the storage battery 2 is not charged and discharged. Read Vc (T). Further, as shown in FIG. 4B, the temperature-open voltage relational expression X3 is calculated by reading how much the zero open voltage Vc (T) changes when the temperature T of the storage battery 2 is changed. To do.

次いで、蓄電池2を使用する制御段階においては、図1、図5に示すように、負荷状態にある蓄電池2の電圧V、電流I及び温度Tを測定する(図5のステップS1)。そして、測定した温度Tを、温度−内部抵抗関係式X1、温度−充電率係数関係式X2及び温度−開放電圧関係式X3にそれぞれ代入して、測定時点における内部抵抗R(T)、充電率係数A(T)及びゼロ開放電圧Vc(T)を算出する(図5のS2)。その後、測定した電圧V及び電流I、並びに測定時点における内部抵抗R(T)、充電率係数A(T)及びゼロ開放電圧Vc(T)を用いて、充電率としての算出充電率SOC1を算出する(図5のS3)。   Next, in the control stage in which the storage battery 2 is used, as shown in FIGS. 1 and 5, the voltage V, current I, and temperature T of the storage battery 2 in a load state are measured (step S1 in FIG. 5). Then, the measured temperature T is substituted into the temperature-internal resistance relational expression X1, the temperature-charging rate coefficient relational expression X2 and the temperature-open voltage relational expression X3, respectively, and the internal resistance R (T) and the charging rate at the time of measurement are measured. The coefficient A (T) and the zero open circuit voltage Vc (T) are calculated (S2 in FIG. 5). Thereafter, the calculated charging rate SOC1 as the charging rate is calculated using the measured voltage V and current I, and the internal resistance R (T), the charging rate coefficient A (T), and the zero open circuit voltage Vc (T) at the time of measurement. (S3 in FIG. 5).

以下に、本例の蓄電池2の充電率の算出方法について、図1〜図5を参照して詳説する。
図1に示すように、本例の蓄電池2の充電率の算出方法は、複数の蓄電池2が直列又は並列に接続されたパック電池の充電及び放電を制御する制御装置3に適用される。制御装置3を構成するコンピュータにおいては、蓄電池2の充電率の算出方法を実行するプログラムが構築されている。制御装置3には、算出充電率SOC1を算出する充電率算出手段41が構築されており、また、温度−内部抵抗関係式X1、温度−充電率係数関係式X2、及び温度−開放電圧関係式X3が記憶されている。
Below, the calculation method of the charging rate of the storage battery 2 of this example is explained in detail with reference to FIGS.
As shown in FIG. 1, the calculation method of the charging rate of the storage battery 2 of this example is applied to the control device 3 that controls charging and discharging of a battery pack in which a plurality of storage batteries 2 are connected in series or in parallel. In the computer constituting the control device 3, a program for executing a method for calculating the charging rate of the storage battery 2 is constructed. The control device 3 is constructed with a charging rate calculation means 41 for calculating the calculated charging rate SOC1, and also includes a temperature-internal resistance relational expression X1, a temperature-charging rate coefficient relational expression X2, and a temperature-open-circuit voltage relational expression. X3 is stored.

蓄電池2の充電率の算出方法を実行する蓄電池システム1は、制御装置3の他に、直列に接続された蓄電池2の両端の電圧Vを測定する電圧センサ31、直列に接続された蓄電池2に流れる電流Iを測定する電流センサ32、複数の蓄電池2に対して共通して設けられた温度センサ33を備えている。また、蓄電池システム1は、蓄電池2の充電率SOC1、電圧V、電流I、温度T等を表示することができるモニタ34を備えている。
なお、並列に接続される複数の蓄電池2がある組電池の場合には、電圧センサ31、電流センサ32及び温度センサ33は、並列に接続される複数の蓄電池2ごとに設けることができる。
In addition to the control device 3, the storage battery system 1 that executes the method for calculating the charging rate of the storage battery 2 includes a voltage sensor 31 that measures the voltage V across the storage battery 2 connected in series, and the storage battery 2 connected in series. A current sensor 32 for measuring the flowing current I and a temperature sensor 33 provided in common for the plurality of storage batteries 2 are provided. The storage battery system 1 also includes a monitor 34 that can display the charge rate SOC1, the voltage V, the current I, the temperature T, and the like of the storage battery 2.
In addition, in the case of the assembled battery with the some storage battery 2 connected in parallel, the voltage sensor 31, the current sensor 32, and the temperature sensor 33 can be provided for every some storage battery 2 connected in parallel.

制御装置3は、充電を行う際には、蓄電池2の電圧Vが所定の上限電圧以上になったときに充電を停止し、放電を行う際には、蓄電池2の電圧Vが所定の下限電圧以下になったときに放電を停止するよう構成されている。そして、複数の電圧センサ31を用いる場合に、各電圧センサ31が示す電圧Vが互いに異なったときには、蓄電池2の電圧Vが所定の上限電圧を超えず、かつ所定の下限電圧よりも小さくならないように、算出充電率SOC1の算出に用いる電圧Vを決定する。すなわち、蓄電池2の充電率の算出方法においては、各蓄電池2の充電を行う際には、複数の電圧センサ31が示す電圧Vのうち最大の電圧Vを用い、各蓄電池2の放電を行う際には、複数の電圧センサ31が示す電圧Vのうち最小の電圧Vを用いることができる。
また、各蓄電池2の充電及び放電を行ういずれの際にも、蓄電池2の充電率の算出方法においては、複数の温度センサ33が示す温度Tのうち最小の温度Tを用いることができる。
When charging, the control device 3 stops charging when the voltage V of the storage battery 2 is equal to or higher than a predetermined upper limit voltage, and when discharging, the voltage V of the storage battery 2 is set to a predetermined lower limit voltage. It is configured to stop discharging when the following occurs. And when using the several voltage sensor 31, when the voltage V which each voltage sensor 31 shows mutually differs, the voltage V of the storage battery 2 does not exceed a predetermined | prescribed upper limit voltage, and it does not become smaller than a predetermined | prescribed lower limit voltage. Then, the voltage V used for calculating the calculated charging rate SOC1 is determined. That is, in the method for calculating the charging rate of the storage battery 2, when charging each storage battery 2, the maximum voltage V among the voltages V indicated by the plurality of voltage sensors 31 is used to discharge each storage battery 2. The minimum voltage V among the voltages V indicated by the plurality of voltage sensors 31 can be used.
Moreover, in any case of charging and discharging each storage battery 2, the minimum temperature T among the temperatures T indicated by the plurality of temperature sensors 33 can be used in the method for calculating the charge rate of the storage battery 2.

本例の制御段階においては、蓄電池2の算出充電率SOC1を、SOC1=EXP[{Vc(T)−R(T)・I}/A(T)]の算出式Yに基づいて算出する。
ここで、Vは測定した電圧を示し、Iは測定した電流を示し、Tは測定した温度を示す。また、R(T)は、測定した温度Tを温度−内部抵抗関係式X1に代入して得られる内部抵抗を示し、A(T)は、測定した温度Tを温度−充電率係数関係式X2に代入して得られる充電率係数を示し、Vc(T)は、測定した温度Tを温度−開放電圧関係式X3に代入して得られるゼロ開放電圧を示す。
In the control stage of this example, the calculated charging rate SOC1 of the storage battery 2 is calculated based on the calculation formula Y of SOC1 = EXP [{Vc (T) −R (T) · I} / A (T)].
Here, V represents the measured voltage, I represents the measured current, and T represents the measured temperature. R (T) represents an internal resistance obtained by substituting the measured temperature T into the temperature-internal resistance relational expression X1, and A (T) represents the measured temperature T as a temperature-charge rate coefficient relational expression X2. Represents the charging rate coefficient obtained by substituting for, and Vc (T) represents the zero open circuit voltage obtained by substituting the measured temperature T into the temperature-open circuit voltage relational expression X3.

この算出充電率SOC1の算出式Yは、次のようにして準備段階において求めたものである。
図3(a)に示すように、蓄電池2の充電又は放電を行う負荷状態においては、蓄電池2の電圧Vは、蓄電池2の内部抵抗R(T)の存在により、蓄電池2に電流Iが流れると電圧降下を生じる。そして、蓄電池2の電圧Vは、蓄電池2の電流Iが大きくなるほど小さくなる関係にある。このとき、電圧Vと電流Iとの第1関係グラフG1は、負の係数を持つ一次関数として、V=R(T)・I+V0(T,SOC)(第1関係式)によって表される。
The calculation formula Y for the calculated charging rate SOC1 is obtained in the preparation stage as follows.
As shown in FIG. 3 (a), in a load state where the storage battery 2 is charged or discharged, the voltage V of the storage battery 2 causes the current I to flow through the storage battery 2 due to the presence of the internal resistance R (T) of the storage battery 2. And voltage drop. The voltage V of the storage battery 2 has a relationship that decreases as the current I of the storage battery 2 increases. At this time, the first relationship graph G1 between the voltage V and the current I is represented by V = R (T) · I + V0 (T, SOC) (first relational expression) as a linear function having a negative coefficient.

ここで、V0(T,SOC)は、充電率SOCがゼロでない場合の蓄電池2の無負荷状態の開放電圧を示す。また、蓄電池2の負荷状態における内部抵抗R(T)は、温度Tによって変化する関数であり、蓄電池2の無負荷状態における開放電圧V0(T,SOC)は、温度T及び充電率SOCによって変化する関数である。R(T)は、電圧Vと電流Iとの第1関係グラフG1の傾きであり、V0(T,SOC)は、この第1関係グラフG1の切片である。   Here, V0 (T, SOC) indicates an open-circuit voltage in a no-load state of the storage battery 2 when the charging rate SOC is not zero. Further, the internal resistance R (T) in the load state of the storage battery 2 is a function that varies with the temperature T, and the open circuit voltage V0 (T, SOC) in the no-load state of the storage battery 2 varies with the temperature T and the charge rate SOC. Function. R (T) is the slope of the first relationship graph G1 between the voltage V and the current I, and V0 (T, SOC) is the intercept of the first relationship graph G1.

また、図3(b)に示すように、蓄電池2の無負荷状態における開放電圧V0は、蓄電池2の充電率SOCと相関関係があり、この第2関係グラフG2は、自然対数の関数として、V0=A(T)・ln(SOC)+Vc(T)(第2関係式)によって表される。
ここで、V0は、V0(T,SOC)と同じものである。また、蓄電池2の無負荷状態における充電率係数A(T)及び蓄電池2の無負荷状態におけるゼロ開放電圧Vc(T)は、温度Tによって変化する関数である。A(T)は、開放電圧V0と充電率SOCとの第2関係グラフG2の係数であり、Vc(T)は、この第2関係グラフG2の定数項である。
Further, as shown in FIG. 3B, the open-circuit voltage V0 in the no-load state of the storage battery 2 has a correlation with the charge rate SOC of the storage battery 2, and the second relationship graph G2 is expressed as a function of the natural logarithm. V0 = A (T) · ln (SOC) + Vc (T) (second relational expression).
Here, V0 is the same as V0 (T, SOC). Further, the charging rate coefficient A (T) in the no-load state of the storage battery 2 and the zero open circuit voltage Vc (T) in the no-load state of the storage battery 2 are functions that vary with the temperature T. A (T) is a coefficient of the second relationship graph G2 between the open circuit voltage V0 and the charging rate SOC, and Vc (T) is a constant term of the second relationship graph G2.

そして、第1関係式におけるV0(T,SOC)に、第2関係式におけるV0を代入し、式を変形して、SOC1=EXP[{Vc(T)−R(T)・I}/A(T)]の算出式Yが求められる。ここで、この算出式Yにおいては、SOCをSOC1とする。
本例の蓄電池2の充電率の算出方法においては、上記算出式Yに、蓄電池2が測定した任意の温度TであるときのV、I、Vc(T)、R(T)、A(T)の各値を代入して、蓄電池2の算出充電率SOC1を求める。
Then, V0 in the second relational expression is substituted for V0 (T, SOC) in the first relational expression, and the expression is modified, so that SOC1 = EXP [{Vc (T) −R (T) · I} / A (T)] is calculated. Here, in this calculation formula Y, SOC is assumed to be SOC1.
In the calculation method of the charging rate of the storage battery 2 of this example, V, I, Vc (T), R (T), A (T) when the storage battery 2 is an arbitrary temperature T measured in the calculation formula Y. ) Is substituted for the calculated charging rate SOC1 of the storage battery 2.

温度−内部抵抗関係式X1は、次のようにして求める。
具体的には、蓄電池2の温度Tが所定の温度であるときに、蓄電池2に加わる負荷の大きさを変化させて、蓄電池2の充電又は放電を行い、蓄電池2に流れる電流Iと、蓄電池2の電圧Vとを測定し、電流Iと電圧Vの第1関係を求める。この第1関係は、回帰分析等を行うことによって一次関数の関係で表され、蓄電池2の温度Tが所定の温度であるときの、一次関数における傾きとしての内部抵抗R(T)が求められる。
The temperature-internal resistance relational expression X1 is obtained as follows.
Specifically, when the temperature T of the storage battery 2 is a predetermined temperature, the magnitude of the load applied to the storage battery 2 is changed to charge or discharge the storage battery 2, and the current I flowing through the storage battery 2 and the storage battery 2 is measured, and a first relationship between the current I and the voltage V is obtained. This first relationship is expressed as a linear function relationship by performing regression analysis or the like, and an internal resistance R (T) as a slope in the linear function when the temperature T of the storage battery 2 is a predetermined temperature is obtained. .

また、図4(a)に示すように、蓄電池2の温度Tを所定の温度から適宜変化させたときについても同様に、蓄電池2に加わる負荷の大きさを変化させて、蓄電池2の充電又は放電を行い、蓄電池2に流れる電流Iと、蓄電池2の電圧Vとを測定し、電流Iと電圧Vの第1関係を求める。そして、蓄電池2の温度Tが種々の温度であるときの内部抵抗R(T)が求められる。こうして、図2(a)に示すように、各温度Tごとの内部抵抗R(T)の値をプロットして、温度−内部抵抗関係式X1が求められる。
ここで、図4(a)においては、蓄電池2が高温の場合における、充電率SOCが20%、50%、80%であるときの第1関係グラフを、G1a(20)、G1a(50)、G1a(80)として示す。また、蓄電池2が低温の場合における、充電率SOCが20%、50%、80%であるときの第1関係グラフを、G1b(20)、G1b(50)、G1b(80)として示す。
Further, as shown in FIG. 4 (a), when the temperature T of the storage battery 2 is appropriately changed from a predetermined temperature, the magnitude of the load applied to the storage battery 2 is similarly changed to charge the storage battery 2 or Discharging is performed, the current I flowing through the storage battery 2 and the voltage V of the storage battery 2 are measured, and the first relationship between the current I and the voltage V is obtained. And internal resistance R (T) when the temperature T of the storage battery 2 is various temperature is calculated | required. Thus, as shown in FIG. 2A, the value of the internal resistance R (T) for each temperature T is plotted to obtain the temperature-internal resistance relational expression X1.
Here, in Fig.4 (a), when the storage battery 2 is high temperature, the 1st relationship graph when charge rate SOC is 20%, 50%, and 80% is G1a (20), G1a (50). , G1a (80). In addition, when the storage battery 2 is at a low temperature, the first relationship graph when the charging rate SOC is 20%, 50%, and 80% is shown as G1b (20), G1b (50), and G1b (80).

温度−充電率係数関係式X2は、次のようにして求める。
具体的には、蓄電池2の温度Tが所定の温度であって、蓄電池2の充電率SOCが所定の充電率であるときに、蓄電池2の無負荷状態の電圧Vである開放電圧V0を測定する。そして、蓄電池2の充電又は放電を行って、蓄電池2の充電率SOCを適宜変化させ、充電率SOCを適宜変化させたときの蓄電池2の開放電圧V0を測定し、充電率SOCと開放電圧V0の第2関係を求める。この第2関係は、回帰分析等を行うことによって自然対数の関数の関係で表され、蓄電池2の温度Tが所定の温度であるときの、自然対数の関数における係数としての充電率係数A(T)が求められる。
The temperature-charge rate coefficient relational expression X2 is obtained as follows.
Specifically, when the temperature T of the storage battery 2 is a predetermined temperature and the charging rate SOC of the storage battery 2 is a predetermined charging rate, an open voltage V0 that is a voltage V in an unloaded state of the storage battery 2 is measured. To do. Then, the storage battery 2 is charged or discharged, the charge rate SOC of the storage battery 2 is changed as appropriate, the open circuit voltage V0 of the storage battery 2 when the charge rate SOC is changed appropriately is measured, and the charge rate SOC and the open circuit voltage V0 are measured. The second relation of is obtained. This second relationship is expressed as a function of a natural logarithm function by performing regression analysis or the like. When the temperature T of the storage battery 2 is a predetermined temperature, the charging rate coefficient A ( T) is required.

また、図4(b)に示すように、蓄電池2の温度Tを所定の温度から適宜変化させたときについても同様に、蓄電池2の充電率SOCを適宜変化させたときの蓄電池2の開放電圧V0を測定し、充電率SOCと開放電圧V0の関係を求める。そして、蓄電池2の温度Tが種々の温度であるときの充電率係数A(T)が求められる。こうして、図2(b)に示すように、各温度Tごとの充電率係数A(T)の値をプロットして、温度−充電率係数関係式X2が求められる。
ここで、図4(b)においては、蓄電池2が高温の場合の第1関係グラフを、G2aとして示し、蓄電池2が低温の場合の第2関係グラフを、G2bとして示す。
Further, as shown in FIG. 4B, when the temperature T of the storage battery 2 is appropriately changed from a predetermined temperature, similarly, the open-circuit voltage of the storage battery 2 when the charge rate SOC of the storage battery 2 is appropriately changed. V0 is measured, and the relationship between the charging rate SOC and the open circuit voltage V0 is obtained. And the charging rate coefficient A (T) when the temperature T of the storage battery 2 is various temperature is calculated | required. Thus, as shown in FIG. 2B, the value of the charging rate coefficient A (T) for each temperature T is plotted to obtain the temperature-charging rate coefficient relational expression X2.
Here, in FIG.4 (b), the 1st relationship graph in case the storage battery 2 is high temperature is shown as G2a, and the 2nd relationship graph in case the storage battery 2 is low temperature is shown as G2b.

温度−開放電圧関係式X3は、次のようにして求める。
具体的には、図3(b)に示すように、蓄電池2の温度Tが所定の温度であって、蓄電池2の充電率SOCがほぼゼロであるときに、蓄電池2の無負荷状態の電圧Vである開放電圧V0をゼロ開放電圧Vc(T)として測定する。そして、蓄電池2の温度Tを適宜変化させ、温度Tを適宜変化させたときの蓄電池2のゼロ開放電圧Vc(T)を測定し、温度Tとゼロ開放電圧Vc(T)の第3関係を求める。この第3関係は、回帰分析等を行うことによって所定の関係で表され、蓄電池2の温度Tが種々の温度であるときのゼロ開放電圧Vc(T)が求められる。こうして、図2(c)に示すように、各温度Tごとのゼロ開放電圧Vc(T)の値をプロットして、温度−開放電圧関係式X3が求められる。
The temperature-open voltage relationship X3 is obtained as follows.
Specifically, as shown in FIG. 3B, when the temperature T of the storage battery 2 is a predetermined temperature and the charge rate SOC of the storage battery 2 is substantially zero, the voltage of the storage battery 2 in an unloaded state The open circuit voltage V0, which is V, is measured as the zero open circuit voltage Vc (T). And the temperature T of the storage battery 2 is changed suitably, the zero open circuit voltage Vc (T) of the storage battery 2 when the temperature T is changed appropriately is measured, and the third relationship between the temperature T and the zero open circuit voltage Vc (T) is obtained. Ask. The third relationship is expressed as a predetermined relationship by performing regression analysis or the like, and the zero open circuit voltage Vc (T) when the temperature T of the storage battery 2 is various temperatures is obtained. Thus, as shown in FIG. 2C, the value of the zero open circuit voltage Vc (T) for each temperature T is plotted to obtain the temperature-open circuit voltage relational expression X3.

制御段階における制御装置3の動作は次のように行われる。
蓄電池2の充電及び放電の制御を行うときには、図5に示すように、制御装置3は、充電又は放電を行う負荷状態にある蓄電池2の電圧V、電流I及び温度Tを、所定の時間間隔で逐次測定する(図5のステップS1)。また、この測定を行った後には、制御装置3の充電率算出手段41は、測定した温度Tを、温度−内部抵抗関係式X1、温度−充電率係数関係式X2及び温度−開放電圧関係式X3にそれぞれ代入して、測定時点における内部抵抗R(T)、充電率係数A(T)及びゼロ開放電圧Vc(T)を逐次算出する(S2)。また、この算出を行った後には、充電率算出手段41は、測定した電圧V及び電流I、並びに測定時点における内部抵抗R(T)、充電率係数A(T)及びゼロ開放電圧Vc(T)を算出式Yに代入して、算出充電率SOC1を逐次算出する(S3)。そして、充電率算出手段41は、算出充電率SOC1の算出を所定の時間間隔で繰り返し行い(S1〜S4)、この算出充電率SOC1をモニタ34に表示する。
The operation of the control device 3 in the control stage is performed as follows.
When controlling the charging and discharging of the storage battery 2, as shown in FIG. 5, the control device 3 sets the voltage V, current I and temperature T of the storage battery 2 in a load state for charging or discharging at predetermined time intervals. Are sequentially measured (step S1 in FIG. 5). Further, after performing this measurement, the charging rate calculation means 41 of the control device 3 converts the measured temperature T into the temperature-internal resistance relational expression X1, the temperature-charging rate coefficient relational expression X2, and the temperature-open-circuit voltage relational expression. Substituting each for X3, the internal resistance R (T), the charging rate coefficient A (T) and the zero open circuit voltage Vc (T) at the time of measurement are sequentially calculated (S2). After this calculation, the charging rate calculation means 41 measures the measured voltage V and current I, the internal resistance R (T) at the time of measurement, the charging rate coefficient A (T), and the zero open circuit voltage Vc (T ) Is substituted into the calculation formula Y, and the calculated charging rate SOC1 is sequentially calculated (S3). Then, the charging rate calculation unit 41 repeatedly calculates the calculated charging rate SOC1 at predetermined time intervals (S1 to S4), and displays the calculated charging rate SOC1 on the monitor 34.

なお、蓄電池2が無負荷状態にあるときにおいても、制御装置3は、蓄電池2の電圧V、電流I及び温度Tを所定の時間間隔で逐次測定し、算出充電率SOC1を算出することができる。この場合には、蓄電池2が、長期間未使用状態にあって、蓄電池2から自然放電がなされた場合の充電率を算出することができる。   Note that, even when the storage battery 2 is in a no-load state, the control device 3 can sequentially calculate the voltage V, current I, and temperature T of the storage battery 2 at predetermined time intervals to calculate the calculated charging rate SOC1. . In this case, it is possible to calculate the charging rate when the storage battery 2 is unused for a long period of time and spontaneous discharge is performed from the storage battery 2.

次に、本例の蓄電池2の充電率の算出方法の作用効果について説明する。
本例の算出方法においては、制御段階において、制御装置3によって電圧V、電流I及び温度Tを測定し、これらを用いて算出充電率SOC1を算出する。これにより、蓄電池2の温度Tが変化する場合であっても、この温度Tの変化に対応して充電率を算出することができる。そのため、蓄電池2の温度Tの変化による影響を見込んで充電率を算出することができ、充電率の算出精度を向上させることができる。
Next, the effect of the calculation method of the charging rate of the storage battery 2 of this example will be described.
In the calculation method of this example, in the control stage, the voltage V, the current I, and the temperature T are measured by the control device 3, and the calculated charging rate SOC1 is calculated using these. Thereby, even if it is a case where the temperature T of the storage battery 2 changes, a charging rate can be calculated corresponding to the change of this temperature T. Therefore, it is possible to calculate the charging rate in anticipation of the influence of the change in the temperature T of the storage battery 2, and it is possible to improve the calculation accuracy of the charging rate.

また、制御装置3には、温度−内部抵抗関係式X1、温度−充電率係数関係式X2、及び温度−開放電圧関係式X3を示すデータが記憶されているのみであり、任意の温度Tごとの電圧Vと電流Iの関係マップを記憶しておく必要がない。そのため、制御装置3における記憶量を少なくすることができる。
また、各関係式X1,X2,X3はいずれも、温度Tを変数として関数の値が変化する形で算出されており、各関数である内部抵抗R(T)、充電率係数A(T)及びゼロ開放電圧Vc(T)の値は、蓄電池2の温度Tを代入して直接的に算出することができるものである。そして、測定した電圧V及び電流Iと、算出した内部抵抗R(T)、充電率係数A(T)及びゼロ開放電圧Vc(T)を用いることにより、蓄電池2の充電率を極めて容易に算出することができる。
Further, the control device 3 only stores data indicating a temperature-internal resistance relational expression X1, a temperature-charge rate coefficient relational expression X2, and a temperature-open voltage relational expression X3. It is not necessary to store a relationship map between the voltage V and the current I. Therefore, the storage amount in the control device 3 can be reduced.
Each of the relational expressions X1, X2, and X3 is calculated in such a way that the value of the function changes with the temperature T as a variable, and the internal resistance R (T) and the charging rate coefficient A (T) that are the functions. The value of the zero open circuit voltage Vc (T) can be directly calculated by substituting the temperature T of the storage battery 2. Then, by using the measured voltage V and current I, the calculated internal resistance R (T), the charging rate coefficient A (T), and the zero open circuit voltage Vc (T), the charging rate of the storage battery 2 can be calculated very easily. can do.

それ故、本例の蓄電池2の充電率の算出方法によれば、制御装置3における記憶量を少なくして、精度良く充電率を算出することができる。   Therefore, according to the calculation method of the charging rate of the storage battery 2 of this example, the storage rate in the control device 3 can be reduced and the charging rate can be calculated with high accuracy.

(実施例2)
本例は、上記実施例1に記載した蓄電池2の充電率の算出方法を用いて、電流積算法に基づく充電率を補正する方法について示す。
本例の蓄電池システム1における制御装置3には、図6に示すように、電流積算法に基づく充電率を算出するための電流積算手段42と、充電率の補正を行うか否かを判定する判定手段43とが構築されている。その他の蓄電池システム1の構成は、図1の場合と同様である。
(Example 2)
This example shows a method for correcting the charging rate based on the current integration method using the method for calculating the charging rate of the storage battery 2 described in the first embodiment.
As shown in FIG. 6, the control device 3 in the storage battery system 1 of the present example determines whether or not to correct the charging rate with the current integrating means 42 for calculating the charging rate based on the current integration method. The determination means 43 is constructed. Other configurations of the storage battery system 1 are the same as those in FIG.

本例の制御段階においては、電流積算法に基づく充電率を算出するために、制御装置3は、負荷状態にある蓄電池2の電流Iの変化を逐次測定する(図7のステップS1)。そして、制御装置3の電流積算手段42は、蓄電池2の電流Iの変化の積算値を算出し、この積算値に基づいて充電率としての積算充電率SOC2を逐次算出する(S4)。また、制御装置3は、蓄電池2の電流Iを逐次測定すると同時に、蓄電池2の電圧V及び温度Tも逐次測定する(S1)。そして、蓄電池2の電圧V、電流I、温度Tを用い、上述した算出充電率SOC1を逐次算出する(S2,S3)。   In the control stage of this example, in order to calculate the charging rate based on the current integration method, the control device 3 sequentially measures the change in the current I of the storage battery 2 in the load state (step S1 in FIG. 7). Then, the current integrating means 42 of the control device 3 calculates the integrated value of the change in the current I of the storage battery 2, and sequentially calculates the integrated charging rate SOC2 as the charging rate based on this integrated value (S4). Further, the control device 3 sequentially measures the current I of the storage battery 2 and simultaneously measures the voltage V and the temperature T of the storage battery 2 (S1). Then, using the voltage V, current I, and temperature T of the storage battery 2, the above-described calculated charging rate SOC1 is sequentially calculated (S2, S3).

また、制御装置3の判定手段43は、積算充電率SOC2と算出充電率SOC1との算出を行った後には、積算充電率SOC2と算出充電率SOC1との差が所定の誤差範囲内にあるか否かを逐次判定する(S6)。そして、積算充電率SOC2と算出充電率SOC1との差が所定の誤差範囲内にあるときには、積算充電率SOC2を蓄電池2の充電率として用いる。一方、積算充電率SOC2と算出充電率SOC1との差が所定の誤差範囲を超えたときには、算出充電率SOC1に基づいて補正した積算充電率SOC2を蓄電池2の充電率として用いる(S6)。
なお、上記所定の範囲は、蓄電池2の充電及び放電を行う際に、許容される充電率の誤差に基づいて決定することができる。
In addition, after determining the integrated charging rate SOC2 and the calculated charging rate SOC1, the determination unit 43 of the control device 3 determines whether the difference between the integrated charging rate SOC2 and the calculated charging rate SOC1 is within a predetermined error range. It is sequentially determined whether or not (S6). When the difference between the integrated charging rate SOC2 and the calculated charging rate SOC1 is within a predetermined error range, the integrated charging rate SOC2 is used as the charging rate of the storage battery 2. On the other hand, when the difference between the accumulated charging rate SOC2 and the calculated charging rate SOC1 exceeds a predetermined error range, the accumulated charging rate SOC2 corrected based on the calculated charging rate SOC1 is used as the charging rate of the storage battery 2 (S6).
The predetermined range can be determined based on an allowable charge rate error when the storage battery 2 is charged and discharged.

本例の判定手段43による積算充電率SOC2の補正は、積算充電率SOC2の値を、算出充電率SOC1の値に近づけるよう、所定の期間に亘って段階的に補正する。この補正は、例えば、次のようにして行うことができる。具体的には、上記誤差範囲を超えた、積算充電率SOC2(%)と算出充電率SOC1(%)との誤差量を補正量Eとして、補正量Eは、E=(SOC2−SOC1)/SOC1×100(%)として求められる。そして、積算充電率SOC2及び算出充電率SOC1の算出を行う所定の算出回数Nの間において、積算充電率SOC2及び算出充電率SOC1の算出を行う時点ごとに、補正後の積算充電率SOC2’を、SOC2’=SOC2+E/Nとして求め、積算充電率SOC2の値を算出充電率SOC1の値に段階的に近づけることができる。
本例においても、その他の構成及び図中の符号は実施例1と同様であり、実施例1と同様の作用効果を得ることができる。
The correction of the integrated charging rate SOC2 by the determination unit 43 of this example is performed in a stepwise manner over a predetermined period so that the value of the integrated charging rate SOC2 approaches the value of the calculated charging rate SOC1. This correction can be performed as follows, for example. Specifically, assuming that the error amount between the accumulated charge rate SOC2 (%) and the calculated charge rate SOC1 (%) exceeding the error range is the correction amount E, the correction amount E is E = (SOC2-SOC1) / It is calculated | required as SOC1 * 100 (%). Then, the corrected integrated charging rate SOC2 ′ is calculated at each time point when the integrated charging rate SOC2 and the calculated charging rate SOC1 are calculated during a predetermined calculation number N for calculating the integrated charging rate SOC2 and the calculated charging rate SOC1. , SOC2 ′ = SOC2 + E / N, and the value of the integrated charging rate SOC2 can be made closer to the calculated charging rate SOC1 stepwise.
Also in this example, the other configurations and the reference numerals in the drawings are the same as those in the first embodiment, and the same effects as those in the first embodiment can be obtained.

また、蓄電池2の充電率の算出方法によって算出される算出充電率SOC1は、蓄電池2の劣化度合いを判定する際に用いることもできる。
具体的には、蓄電池2の劣化がない初期状態において、蓄電池2の算出充電率SOC1が特定の充電率であって、蓄電池2の温度Tが特定の温度である場合の内部抵抗R(T)又は開放電圧V0を算出しておく。また、蓄電池2を長期間使用した後の劣化状態においても、蓄電池2の算出充電率SOC1が特定の充電率であって、蓄電池2の温度Tが特定の温度である場合の内部抵抗R(T)又は開放電圧V0を算出する。そして、初期状態における内部抵抗R(T)又は開放電圧V0と、劣化状態における内部抵抗R(T)又は開放電圧V0とを比較して、両者の差に基づいて蓄電池2の劣化度合いを判定することができる。
The calculated charging rate SOC1 calculated by the method for calculating the charging rate of the storage battery 2 can also be used when determining the degree of deterioration of the storage battery 2.
Specifically, in the initial state where the storage battery 2 is not deteriorated, the internal resistance R (T) when the calculated charging rate SOC1 of the storage battery 2 is a specific charging rate and the temperature T of the storage battery 2 is a specific temperature. Alternatively, the open circuit voltage V0 is calculated in advance. Further, even in a deteriorated state after the storage battery 2 has been used for a long period of time, the internal resistance R (T (T) when the calculated charging rate SOC1 of the storage battery 2 is a specific charging rate and the temperature T of the storage battery 2 is a specific temperature. ) Or the open circuit voltage V0 is calculated. Then, the internal resistance R (T) or the open voltage V0 in the initial state is compared with the internal resistance R (T) or the open voltage V0 in the deteriorated state, and the degree of deterioration of the storage battery 2 is determined based on the difference between the two. be able to.

1 蓄電池システム
2 蓄電池
3 制御装置
V 電圧
V0 開放電圧
I 電流
T 温度
R(T) 内部抵抗
A(T) 充電率係数
Vc(T) ゼロ開放電圧
X1 温度−内部抵抗関係式
X2 温度−充電率係数関係式
X3 温度−開放電圧関係式
SOC1 算出充電率
SOC2 積算充電率
DESCRIPTION OF SYMBOLS 1 Storage battery system 2 Storage battery 3 Control device V voltage V0 Open circuit voltage I Current T Temperature R (T) Internal resistance A (T) Charge rate coefficient Vc (T) Zero open circuit voltage X1 Temperature-internal resistance relational expression X2 Temperature-Charge rate coefficient Relational Expression X3 Temperature-Open Voltage Relational Expression SOC1 Calculated Charging Rate SOC2 Accumulated Charging Rate

Claims (3)

蓄電池の満充電量に対する現在の充電量を示す充電率を算出する方法であって、
上記蓄電池を使用する前の準備段階において、上記蓄電池の充電又は放電を行う負荷状態において、該蓄電池の電流を変化させたときの該蓄電池の電圧の変化を示す関係グラフの傾きとして、該蓄電池の内部抵抗を読み取るとともに、該蓄電池の温度を変化させたときの上記内部抵抗の変化を読み取って、温度と内部抵抗との関係式としての温度−内部抵抗関係式を算出し、
かつ、上記蓄電池の充電及び放電を行わない無負荷状態において、該蓄電池の上記充電率を変化させたときの該蓄電池の開放電圧の変化を示す関係グラフの係数として、該蓄電池の充電率係数を読み取るとともに、該蓄電池の温度を変化させたときの上記充電率係数の変化を読み取って、温度と充電率係数との関係式としての温度−充電率係数関係式を算出し、
かつ、上記蓄電池の充電及び放電を行わない無負荷状態において、上記充電率をほぼゼロにした場合の上記蓄電池のゼロ開放電圧を読み取るとともに、上記蓄電池の温度を変化させたときの上記ゼロ開放電圧の変化を読み取って、温度とゼロ開放電圧との関係式としての温度−ゼロ開放電圧関係式を算出し、
上記蓄電池を使用する制御段階において、上記負荷状態又は上記無負荷状態にある上記蓄電池の電圧、電流及び温度を測定し、
該測定した温度を、上記温度−内部抵抗関係式、上記温度−充電率係数関係式及び温度−ゼロ開放電圧関係式にそれぞれ代入して、測定時点における内部抵抗、充電率係数及びゼロ開放電圧を算出し、
上記測定した電圧及び電流、並びに上記測定時点における内部抵抗、充電率係数及びゼロ開放電圧を用いて、上記充電率としての算出充電率を算出することを特徴とする蓄電池の充電率の算出方法。
A method for calculating a charge rate indicating a current charge amount with respect to a full charge amount of a storage battery,
In the preparatory stage before using the storage battery, in the load state where the storage battery is charged or discharged, the slope of the relational battery showing the change in the storage battery voltage when the current of the storage battery is changed is Read the internal resistance, read the change in the internal resistance when the temperature of the storage battery is changed, calculate a temperature-internal resistance relational expression as a relational expression between the temperature and the internal resistance,
And, in the no-load state where the storage battery is not charged and discharged, the charge rate coefficient of the storage battery is expressed as a coefficient of a relational graph indicating a change in the open voltage of the storage battery when the charge rate of the storage battery is changed. While reading, the change in the charge rate coefficient when the temperature of the storage battery is changed is read to calculate a temperature-charge rate coefficient relational expression as a relational expression between the temperature and the charge rate coefficient,
And in the no-load state in which the storage battery is not charged and discharged, the zero open voltage of the storage battery when the charge rate is almost zero is read and the temperature of the storage battery is changed. The temperature-zero open circuit voltage relational expression as a relational expression between temperature and zero open circuit voltage is calculated,
In the control stage using the storage battery, the voltage, current and temperature of the storage battery in the loaded state or in the no-load state are measured,
The measured temperature is substituted into the temperature-internal resistance relational expression, the temperature-charge rate coefficient relational expression, and the temperature-zero open-circuit voltage relational expression, respectively, and the internal resistance, charging rate coefficient, and zero open-circuit voltage at the time of measurement are calculated. Calculate
A method for calculating a charging rate of a storage battery, wherein the calculated charging rate as the charging rate is calculated using the measured voltage and current, and the internal resistance, charging rate coefficient, and zero open voltage at the time of the measurement.
上記制御段階において、上記測定した電圧をV、上記測定した電流をI、上記測定した温度をT、上記測定した温度を上記温度−内部抵抗関係式に代入して得られる内部抵抗をR(T)、上記測定した温度を上記温度−充電率係数関係式に代入して得られる充電率係数をA(T)、上記測定した温度を上記温度−ゼロ開放電圧関係式に代入して得られるゼロ開放電圧をVc(T)としたとき、上記蓄電池の上記算出充電率SOC1を、
SOC1=EXP[{V−Vc(T)−R(T)・I}/A(T)]の式に基づいて算出することを特徴とする請求項1に記載の蓄電池の充電率の算出方法。
In the control stage, the measured voltage is V, the measured current is I, the measured temperature is T, and the internal resistance obtained by substituting the measured temperature into the temperature-internal resistance relation is R (T ), The charge rate coefficient obtained by substituting the measured temperature into the temperature-charge rate coefficient relational expression A (T), and the zero obtained by substituting the measured temperature into the temperature-zero open circuit voltage relational expression When the open circuit voltage is Vc (T), the calculated charging rate SOC1 of the storage battery is
The calculation method of the charging rate of the storage battery according to claim 1, wherein the calculation is based on an expression of SOC1 = EXP [{V-Vc (T) -R (T) · I} / A (T)]. .
請求項1又は2に記載の蓄電池の充電率の算出方法を用いて、電流積算法に基づく充電率を補正する方法であって、
上記制御段階において、上記負荷状態にある上記蓄電池の電流の変化を逐次測定するとともに、該電流の変化の積算値を算出し、該積算値に基づいて上記充電率としての積算充電率を算出し、
かつ、上記負荷状態又は上記無負荷状態にある上記蓄電池の電圧、電流及び温度を逐次測定するとともに、上記算出充電率を逐次算出し、
上記積算充電率と上記算出充電率との差が所定の誤差範囲内にあるときには、上記積算充電率を上記蓄電池の上記充電率として用い、一方、上記積算充電率と上記算出充電率との差が所定の誤差範囲を超えたときには、上記算出充電率に基づいて補正した上記積算充電率を上記蓄電池の上記充電率として用いることを特徴とする電流積算法に基づく充電率の補正方法。
A method for correcting a charging rate based on a current integration method using the method for calculating a charging rate of a storage battery according to claim 1 or 2,
In the control step, the change in the current of the storage battery in the load state is sequentially measured, the integrated value of the change in the current is calculated, and the integrated charge rate as the charge rate is calculated based on the integrated value. ,
And while sequentially measuring the voltage, current and temperature of the storage battery in the loaded state or in the no-load state, the calculated charging rate is sequentially calculated,
When the difference between the accumulated charge rate and the calculated charge rate is within a predetermined error range, the accumulated charge rate is used as the charge rate of the storage battery, while the difference between the accumulated charge rate and the calculated charge rate. When the value exceeds a predetermined error range, the charging rate correction method based on a current integration method, wherein the integrated charging rate corrected based on the calculated charging rate is used as the charging rate of the storage battery.
JP2014244399A 2014-12-02 2014-12-02 Calculation method of charge rate of storage battery Active JP6386351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014244399A JP6386351B2 (en) 2014-12-02 2014-12-02 Calculation method of charge rate of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014244399A JP6386351B2 (en) 2014-12-02 2014-12-02 Calculation method of charge rate of storage battery

Publications (2)

Publication Number Publication Date
JP2016109455A JP2016109455A (en) 2016-06-20
JP6386351B2 true JP6386351B2 (en) 2018-09-05

Family

ID=56123726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014244399A Active JP6386351B2 (en) 2014-12-02 2014-12-02 Calculation method of charge rate of storage battery

Country Status (1)

Country Link
JP (1) JP6386351B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102101002B1 (en) * 2019-01-21 2020-04-14 (주)인텍에프에이 Method for battery lifetime prediction
JP7302508B2 (en) * 2020-03-02 2023-07-04 株式会社デンソー Control device
JP2022096471A (en) * 2020-12-17 2022-06-29 株式会社デンソー Battery monitor
CN112816889B (en) * 2020-12-30 2023-02-03 捷威动力工业江苏有限公司 Method for correcting DCR test result of lithium ion battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4215152B2 (en) * 2001-08-13 2009-01-28 日立マクセル株式会社 Battery capacity detection method
JP4686139B2 (en) * 2004-05-31 2011-05-18 株式会社Gsユアサ Battery charge state calculation method
US8736232B2 (en) * 2010-05-14 2014-05-27 Panasonic Corporation Full charge capacity correction circuit, charging system, battery pack and full charge capacity correction method
JP5863603B2 (en) * 2012-08-24 2016-02-16 日立オートモティブシステムズ株式会社 Battery state estimation device, battery control device, battery system, battery state estimation method
JP5888215B2 (en) * 2012-12-04 2016-03-16 株式会社デンソー Battery system

Also Published As

Publication number Publication date
JP2016109455A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
US20210072321A1 (en) System and method for sensing battery capacity
TWI384246B (en) Apparatus and method for estimating resistance characteristics of battery based on open circuit voltage estimated by battery voltage variation
US10895602B2 (en) Battery assembly state estimation device and battery assembly state estimation method
KR100985667B1 (en) Apparatus for estimating of battery's open circuit voltage, Apparatus for estimating of batter's state of charge and Method for controlling the same
JP5170851B2 (en) Storage battery charge state detection method and storage battery charge state detection device
JP5897701B2 (en) Battery state estimation device
WO2014045706A1 (en) State-of-charge estimation device and state-of-charge estimation method
KR102347014B1 (en) Remaining battery estimating device, storage battery remaining estimating method, and program
US10191117B2 (en) Battery remaining power predicting device and battery pack
US9891285B2 (en) Battery fuel gauge
JP2020508442A (en) Battery state of charge estimation apparatus and method
JP2015111086A (en) Battery state calculation device and battery state calculation method
JP6386351B2 (en) Calculation method of charge rate of storage battery
TWI654439B (en) Battery residual quantity prediction device and battery pack
JP5163542B2 (en) Secondary battery input / output possible power estimation device
JP2014025739A (en) Battery state estimation apparatus
JP6541412B2 (en) Charging rate calculation method and charging rate calculation device
JP6350174B2 (en) Battery system control device and battery system control method
CN112540303B (en) Correction method and device
WO2018025306A1 (en) Estimation device, estimation program, and charging control device
WO2018029849A1 (en) Estimation device, estimation program, and charging control device
US11467217B2 (en) Charge capacity calculation device and method for energy storage system
JP2021144886A (en) Battery management device, battery management system and battery management method
JP7399765B2 (en) Internal resistance calculation device, battery control system, and internal resistance calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180809

R150 Certificate of patent or registration of utility model

Ref document number: 6386351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250