JP6532453B2 - Hvac&rシステムの自動制御用の電子コントローラデバイス並びにそれを使用するhvac&rシステム及び方法 - Google Patents

Hvac&rシステムの自動制御用の電子コントローラデバイス並びにそれを使用するhvac&rシステム及び方法 Download PDF

Info

Publication number
JP6532453B2
JP6532453B2 JP2016502350A JP2016502350A JP6532453B2 JP 6532453 B2 JP6532453 B2 JP 6532453B2 JP 2016502350 A JP2016502350 A JP 2016502350A JP 2016502350 A JP2016502350 A JP 2016502350A JP 6532453 B2 JP6532453 B2 JP 6532453B2
Authority
JP
Japan
Prior art keywords
electronic controller
controller
thermostat
signal
load unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016502350A
Other languages
English (en)
Other versions
JP2016521341A (ja
Inventor
コルク・リチャード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacecontrols LLC
Original Assignee
Pacecontrols LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacecontrols LLC filed Critical Pacecontrols LLC
Publication of JP2016521341A publication Critical patent/JP2016521341A/ja
Application granted granted Critical
Publication of JP6532453B2 publication Critical patent/JP6532453B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/59Remote control for presetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Temperature (AREA)
  • Selective Calling Equipment (AREA)

Description

本出願は、2013年3月15日に出願された先の米国仮特許出願第61/799,804号について米国特許法第119条(e)項の利益を主張し、その全体を参照してここに援用する。
本発明は、電力が供給される制御システムを介して制御され、ブロワを有し又は有しない、コンプレッサー、並びに/若しくは、ガス式、オイル式及びプロパン式の燃焼暖房機器を備え、デューティーサイクルを有する電力エネルギー消費機器の制御及び最適化を自動的に行う電子コントローラに関する。また、本発明は、電子コントローラを組み込んだ暖房、換気、空調及び冷凍機器システム、並びに、当該システムにおける前記コントローラの使用方法に関する。
暖房、換気、空調及び/又は冷凍(「HVACR」又は「HVAC&R」)制御システムは、2つの主要な機能、つまり、温度調節及び除湿を行うように設計されてきた。これらのシステムで使用されるコンプレッサ及びブロアは、一般的には電動モータで動く。二酸化炭素排出量及び環境技術への関心の高まりが、数多くのエネルギー関連の改良につながっている。当該改良には、高効率の冷媒、可変速のコンプレッサー及びファン、サイクル変更、並びに、高効率のバーナーが含まれる。多くの市場において電力エネルギー使用量及びそのコストが増加しているため、新規システム及び既存システムにおいて、HVAC&Rのエネルギー効率を向上させることが必要とされてきた。
HVAC&Rにおいて使用されているものも含めて、冷却/冷凍コンプレッサー、及び/又は、暖房/冷却ブロアのために、オリジナル及び/又は後付け可能な、使用/要求制御及びエネルギー管理の技術が提供されることが望まれていた。当該技術は、サーモスタットからのリモートセンサ又は他のセンサには依存しない自動制御を提供可能にし、OEM(オリジナル機器メーカ)仕様書、事前設定及び/又は設置者の判断を超えて、エネルギー効率の向上を可能にする。
本発明の特徴は、サーモスタット制御を有するHVAC&Rシステムにおいて追加デバイスとして使用することができ、サーモスタット制御自体による動作と比較して改良された方法で、エネルギー消費及び/又は需要消費の管理及び削減を自動的に行う電子コントローラを提供することにある。
本発明の更なる特徴及び利点は、以下の説明において部分的に明記され、当該説明から部分的に明らかになり、あるいは、本発明の実施によって学ぶことができる。本発明の目的及び他の利点は、明細書及び添付した請求の範囲において特に指摘した要素及び組み合わせを用いることにより実現及び達成される。
これら及び他の利点を達成するために、また、本願発明の目的に従って、ここに具体化されて広範囲に記載されているように、本発明は、暖房、還気、空調又は冷凍(HVAC&R)システムの自動制御用の電子コントローラデバイスに関する。当該電子コントローラデバイスは、a)少なくとも1つのサーモスタット信号線を取り付けるための少なくとも1つの入力コネクタと、前記コントローラデバイスから負荷ユニットへ制御信号を出力するための少なくとも1つの信号線を取り付けるための少なくとも1つの出力コネクタとを有し、前記コントローラデバイスは、前記HVAC&Rシステムの負荷ユニットに対するサーモスタット命令を遮断することが可能であり、さらに、b)負荷ユニットをパワーオンするための信号の送信を遅延させることが可能であり、また、選択され調整された空間温度変化を実現する遅延始動コントローラと、c)選択された電力需要を得るためにオン時間及びオフ時間を計算可能な需要調整器コントローラとによって構成される。前記電子コントローラは、さらに、少なくとも1つの超過時間コントローラ及び超過サイクルコントローラをオプションとして含むことができる。
さらに、本発明は、暖房、換気、空調又は冷凍ユニットと、前記HVAC&Rシステムのサーモスタット制御信号を遮断し、そこにアルゴリズムを適用して前記HVAC&Rシステムの負荷ユニットに対する出力制御信号を生成する前述の電子コントローラデバイスとを備える暖房、換気、空調、又は冷凍(HVAC&R)システムに関する。
さらに、本発明は、HVAC&Rシステムの自動制御システムに関し、当該システムは、i)サーモスタット、ii)前述の電子コントローラデバイス、iii)電力供給線に接続されて動作する少なくとも1つの負荷ユニットを備える。
さらに、本発明は、HVAC&Rシステムにおいて電力が供給される少なくとも1つの負荷ユニットのエネルギー使用及び/又は負荷需要並びに動作を自動的に制御及び管理する方法に関し、当該方法は、a)負荷ユニットのためのサーモスタットと、前記負荷ユニットのための機器負荷制御スイッチとの間の制御信号線に前述のコントローラデバイスを電気的に接続し、b)前記コントローラデバイスにおいて、冷却、冷凍又は暖房のための前記サーモスタットからの少なくとも1つのサーモスタット命令を遮断し、c)前記電子コントローラによるアルゴリズムを前記遮断されたサーモスタット命令に適用することにより、出力信号として、調整された制御信号を生成し、あるいは、前記OEM信号を承認し、d)前記負荷ユニットの動作を制御する負荷ユニットスイッチへ前記コントローラデバイスによって生成された前記出力信号を出力し、e)前記エネルギー消費及び/又は需要消費の節約を推定するステップにより構成される。
以上の一般的な記述及び以下の詳細な記述は、いずれも例示的かつ説明的なものに過ぎず、クレームされている通りの本発明の更なる説明を提供することを意図していると理解すべきである。
添付図面は、本出願に組み込まれてその一部を構成し、明細書とともに本発明のいくつかの実施形態を示しており、本発明の原理を説明するのに役立つ。
本発明の一例によるHVAC&Rシステムのブロック/概略図であり、当該システムは、電子コントローラを含む。
本発明の一例による図1の電子コントローラのマイクロコントローラのブロック図である。
本発明の一例によるHVAC&Rシステムの動作を自動制御するための電子コントローラを用いたプロセスのプロセス制御ロジックのフローチャートである。 本発明の一例によるHVAC&Rシステムの動作を自動制御するための電子コントローラを用いたプロセスのプロセス制御ロジックのフローチャートである。
本発明の一例による電子コントローラの超過時間コントローラの動作のためのプロセス制御ロジックのフローチャートである。 本発明の一例による電子コントローラの超過時間コントローラの動作のためのプロセス制御ロジックのフローチャートである。
本発明の一例による電子コントローラの遅延起動コントローラの動作のためのプロセス制御ロジックのフローチャートである。
本発明の一例による電子コントローラの需要調整器コントローラの動作のためのプロセス制御ロジックのフローチャートである。
本発明の一例による電子コントローラの超過サイクルコントローラの動作のためのプロセス制御ロジックのフローチャートである。 本発明の一例による電子コントローラの超過サイクルコントローラの動作のためのプロセス制御ロジックのフローチャートである。
本発明の一例による電子コントローラを用いる機器の制限「遅延時間、オン時間及びオフ時間」のためのプロセス制御ロジックのフローチャートである。 本発明の一例による電子コントローラを用いる機器の制限「遅延時間、オン時間及びオフ時間」のためのプロセス制御ロジックのフローチャートである。
本発明の一例による図3A及び図3Bに示された電子コントローラの信号生成器の動作のためのプロセス制御ロジックのフローチャートである。 本発明の一例による図3A及び図3Bに示された電子コントローラの信号生成器の動作のためのプロセス制御ロジックのフローチャートである。
本発明の一例による図3B、8C及び8Dの信号生成器の動作のためのチャンネル1入力(u1)及びチャンネル1出力(y1)時間履歴を示すグラフである。
本発明の一例による電子コントローラを用いた単一ステージ冷却アプリケーションのための電気的接続図であり、単一サーモスタットを使用して1つのHVAC冷却デバイス(例えば、コンプレッサー)を制御するときに使用される構成が示されている。
本発明の一例による電子コントローラを用いた二重ステージ冷却アプリケーションのための電気的接続図であり、二重サーモスタットを使用して2つのHVAC冷却デバイス(例えば、コンプレッサー)を制御するときに使用される構成が示されている。
本発明の一例による電子コントローラを用いた単一ステージガス暖房アプリケーションのための電気的接続図であり、単一サーモスタットを使用して単一ステージガス暖房デバイスを制御するときに使用される構成が示されている。
本発明の一例による電子コントローラを用いた二重ステージガス暖房アプリケーションのための電気的接続図であり、二重サーモスタットを使用して二重ステージガス暖房デバイスを制御するときに使用される構成が示されている。
本発明の一例による電子コントローラを用いた単一ステージ電気暖房アプリケーションのための電気的接続図であり、単一サーモスタットを使用して単一ステージ電気暖房デバイスを制御するときに使用される構成が示されている。
本発明の一例による電子コントローラを用いた二重ステージ電気暖房アプリケーションのための電気的接続図であり、二重サーモスタットを使用して二重ステージ電気暖房デバイスを制御するときに使用される構成が示されている。
本発明の一例による電子コントローラを用いた電気暖房アプリケーションを有する冷却のための電気的接続図であり、二重サーモスタットを使用して空調コンプレッサー及び電気暖房デバイスを制御するときに使用される構成が示されている。
本発明の一例による電子コントローラを用いたガス暖房アプリケーションを有する冷却のための電気的接続図であり、二重サーモスタットを使用して空調コンプレッサー及びガス暖房デバイス(温風又は温水のいずれかを利用)を制御するときに使用される構成が示されている。
本発明の一例による電子コントローラを用いた電気暖房アプリケーションを有するヒートポンプのための電気的接続図であり、二重サーモスタットを使用して、補助的な電気暖房デバイスを有するヒートポンプコンプレッサーを制御するときに使用される構成が示されている。「オプション外部温度スイッチ」は、蒸発器の排出部に取り付けられ、ユニットが冷却又は暖房モードで動作しているときに検知を行う。
本発明の一例による電子コントローラを用いたボイラアプリケーションのための電気的接続図であり、単一サーモスタットを使用して単一ステージボイラ暖房デバイスを制御するときに使用される構成が示されている。
OEMコントローラ(サーモスタット)を有するとともに、本発明の一例による電子コントローラを離れて有するHVAC&Rシステムの冷却アプリケーションにおいて、負荷デバイスのシミュレーション制御の期間にわたる調整空間(領域)温度(°F)を示すグラフである。
OEMコントローラ(サーモスタット)を有するとともに、本発明の一例による電子コントローラを離れて有するHVAC&Rシステムの負荷デバイスの図19に示されたシミュレーション制御の期間にわたる需要設定値に関し、エネルギー消費を表す需要(%)を示すグラフである。
本発明の一例による電子コントローラを有するHVAC&Rシステムの負荷デバイスの図19に示されたシミュレーション制御のためのコントローラオフ時間、オン時間及び遅延時間を示すグラフである。
OEMコントローラ(サーモスタット)を有するとともに、本発明の一例による電子コントローラを離れて有するHVAC&Rシステムの負荷デバイスの図19に示されたシミュレーション制御における目盛付稼働時間エネルギー消費を示すグラフである。
本発明の一例による電子コントローラを有するHVAC&Rシステムの負荷デバイスの図19に示されたシミュレーション制御のための、許可された最大値及び時間当たりの実際の機器起動を示すグラフである。
本発明の一例による電子コントローラを有するHVAC&Rシステムの負荷デバイスの図19に示されたシミュレーション制御のために、類似動作時間の期間におけるOEMエネルギー要求のパーセンテージ(%)として、エネルギー節約を示すグラフである。
発明の詳細な説明
本発明は、デューティーサイクルを用いて制御される暖房機器、冷却機器及び/又は冷凍機器のために、デューティーサイクル及びサイクル継続時間の自動的かつ最適に計算及び実行制御を行うことができる統合プログラムを含む後付け可能なコントローラ追加デバイスに一部関連する。
追加デバイスは、1以上のサーモスタット制御信号線に直列に取り付けることができる電子コントローラであり、サーモスタット制御信号がHVAC&Rシステムにおける目的とする負荷ユニットに到達する前に、サーモスタット制御信号を遮断することが可能である。電子コントローラは、OEM信号及びその作用にアルゴリズムを適用することにより、元の制御信号を置き換えた(又は承認した)負荷ユニットに対する出力信号を生成し、当該システムにおける負荷ユニットの動作のエネルギー効率を向上させることができる。この改良を実現するに当たって、電子コントローラは、少なくとも遅延起動(DS:delayed start)コントローラ及び需要調整器(DR:demand regulator)コントローラと、オプションとしての超過時間(ET:excess time)コントローラ及び/又は超過サイクル(EC:excess cycle)コントローラとを含む。これらのコントローラは、メモリに格納された一組のコンピュータプログラムであって、電子コントローラにより具現化されたマイクロプロセッサにより実行可能なものとして実装される。併せて、当該プログラムは、信号処理アルゴリズムを提供することができる。電子コントローラは、制御信号をコントローラデバイスから負荷ユニットへ出力する信号生成機能を有する。電子コントローラは、既存のHVAC&Rシステム内に容易に後付することが可能であり、あるいは、新規のHVAC&Rシステム内に組み込むことができる。電子コントローラは、設計通りに機能するために、直接的なセンサ補助又はライン電源を必要としない。
遅延起動コントローラは、電子コントローラを構成し、OEMオン信号の負荷ユニットへの到達を遅延又は先送りすることができる。これは、OEMオフ時間に因数又は乗数を適用することにより行われる。その結果、負荷ユニットへの電源投入前の待機時間がより長くなる。この操作により、空調スペースの温度プロファイルを著しく変化させることなく、エネルギーを節約できることがわかった。電子コントローラは、需要管理も向上させることができる。需要調整器コントローラは、電子コントローラを構成し、需要を満たすために負荷ユニットが継続して動作するのを防止することができる。需要調整器コントローラは、負荷ユニットを周期的に停止させることができ、設定値に戻す温度調整に必要な時間を増加させる傾向があるかもしれないが、必要とされる総需要を全体として削減する。このことは、商工業アプリケーションにおける電力コストが(1)総kW消費及び(2)ピークkW需要という2つの項目に基づいていることから、重要である。総kW消費は(理想的には)機器稼働時間に比例する。ピークkW需要は、15又は30分の間隔又はウィンドウにおけるkW消費の最大平均値である。ピークkW需要の値は、電力料金がどのように定められるかを決定するのに用いられる。電力は、kWhの、異なる「逓減ブロック料金」で請求され、各逓減ブロック料金には、kWhコストが対応づけられている。第1ブロック(初めに適用されるもの)は、最も高価であり、第2ブロック(次に適用されるもの)は、より安価であり、以下も同様である。総kW消費が一定であれば、電力の総コストは、ピークkW需要の値によって変化し、ピークkW需要の値が低下するほど、コストも低下する。本発明の電子コントローラの上述の需要制御調整器を使用することにより、ピークkW需要の値を低下させることができる。需要調整器コントローラは、最悪の場合の需要を削減することができるとともに、それでも空調スペースに適切な冷房及び暖房を提供することができ、制御された負荷ユニットに適用可能である。
超過時間コントローラは、オプションであり、電子コントローラを構成することにより、電子コントローラが継続稼働状態(例えば、OEMが決して停止しない状態)にある状況において需要設定値を変更する。これが発生したとき、温度設定値が満たされていないという仮定が行われ、それによって、需要設定値がOEM制御サイクルまで増加される。需要設定値がその最大値まで増加され、かつ、OEMが未だサイクルしていないならば、需要設定値は1.0に設定され、コントローラを事実上迂回し、OEMに対する制御を諦める。超過サイクル(EC)コントローラは、オプションであり、電子コントローラを構成することにより、コントローラ出力信号のオン及びオフ時間を調整し、それにより、最大値を超過しないように、時間当たりの機器起動の回数を制御する。
図1には、電子コントローラ18を備えたHVAC&Rシステム11が示されている。電子コントローラ18は、上述した遅延起動コントローラ、需要調整器コントローラ、超過時間コントローラ及び超過サイクルコントローラのプログラムを保持し、当該プログラムが実行されることにより、信号の処理及び生成が行われる。電子コントローラ18は、システム11内に後付けされることにより、領域2において空調制御を行う少なくとも1つのHVAC&R負荷ユニット20を制御することができる。電力線10は、少なくとも1つの制御されるべき負荷ユニット20が設置されている建造物の需給メーターを通る。メーター12は、その場所において電力エネルギーの使用及び需要を計測する。負荷ユニット20は、例えば、空調、ヒートポンプ、加熱炉、冷凍、ボイラ又はHVAC&Rシステムの他の負荷ユニットである。駆動用主電力線10は、通常、条件が設けられておらず、リレーのような負荷コントロールスイッチ26を介して、また、一般的には他の負荷及び同じ構造物内の電気器具を介して(不図示)、負荷ユニット20へ駆動用電力を供給する。電力供給線10は、例えば、110ボルト交流電流(VAC)、220VAC、又は、コントローラ18を後付けしたHVAC&Rシステム11に電力を供給する他の主電力供給線である。後付けが行われるシステム11は、HVAC&R負荷ユニット20に接続された少なくとも1つの標準サーモスタット14を有する。サーモスタット14は、ライン13を介して電力線10に接続される。この図を簡略化するために、電力線10からサーモスタットへの電力供給に用いられる24ボルトトランスのような降圧トランスは、この図には描かれていないが、図9〜18に示した配線図には描かれている。電子コントローラ18は、電力線10から直接的に電力供給されておらず、その必要もない。電子コントローラ18は、負荷デバイスを対象とすることを意図したサーモスタット信号によって電力供給される。電子コントローラ18は、一般的には、サーモスタットからのオン信号を受信/遮断するまで、その信号処理機能に関して電気的な休止状態(又は非アクティブ)であり、あるいは、スリープしている。その後、コントローラ18は、覚醒され(アクティブになり)、対象とする負荷デバイスに対する信号制御処理及び信号生成制御のために、一連のプログラムをアルゴリズムの一部として活用する。
1つの典型的な状況において、サーモスタット制御が、例えば、空調ユニット(負荷ユニット)による冷却、又は、電気炉による加熱などを要求している期間中、サーモスタット14の制御信号線15は、24ボルトの交流電圧を伝送することができる。制御信号は、通常、主電力線10上の負荷制御スイッチ26をアクティブにし、負荷ユニット20に電力を供給する。つまり、電子コントローラ18がなければ、制御信号線15が負荷ユニット制御スイッチ26の開閉を制御し、それにより、駆動電力線10の回路を開閉し、負荷ユニット20への駆動電力の流れを制御する。電子コントローラ18は、サーモスタット14及び負荷ユニット制御スイッチ26の間のどこかにおいて、直列にサーモスタット信号線15に割り込ませて設置される。図示した通り、サーモスタット線15は、切断され、一方の切断端において電子コントローラ18に接続され得る。また、図示した通り、切断された制御信号線の残りの部分は、線24として参照され、一端において電子コントローラ18に接続され、他端において負荷制御スイッチ26に接続され得る。
電子コントローラ18は、例えば、負荷ユニットに使用される標準的な板金構造の筐体のような、負荷ユニット20近傍の板金(不図示)に物理的に取り付けることができる。好ましくは、コントローラ18の制御信号線15(24)内への上記挿入は、実際に実現可能な限り負荷制御スイッチ26の近くで行われる。通常、負荷ユニット自身の物理的領域内において接続することが可能である。電子コントローラ18の制御信号線への接続は、例えば、住宅の空調ユニットのコンプレッサーユニットを含むケーシング内で行われ得る。例えば、電子コントローラ18は、空調ユニットのコンプレッサー用のOEM制御装置を収容する板金筐体に取り付けることができ、当該空調ユニットは、当該ユニットを支持する家又はビルに直接隣接する地面近傍のスラブ又はプラットホーム上又はその屋上に設置される。電子コントローラ18は、オンボードユーザインタフェース制御装置19を含むことができ、及び/又は、リモート入力デバイス21からの制御入力及び/又はパラメータデータ23を受信することができる。このことは後述する本書の他の説明により、もっと理解することができる。入力デバイス21は、電子コントローラ18から物理的に分離しているデバイスという意味では「リモート」であり、着脱可能な通信ワイヤ、ケーブルリンク又はワイヤレス通信リンクなどを介して、コントローラと通信することができる。
動作時、電子コントローラ18は、負荷ユニット20に電源を投入するためのサーモスタット制御信号に基づく制御信号線15上の電気の流れを受信する。そして、出力制御信号が電子コントローラ18から負荷ユニットスイッチ26へ送られる前に、制御コントローラ18は、直ちに覚醒して、サーモスタット信号を遮断し、一連の制御プログラムを初期化する。上述したように、出力制御信号は、OEM信号の置換信号であってもよいし、あるいは、OEM信号であってもよく、コントローラのアルゴリズムの実行結果に依存している。
サーモスタット14は、好ましくは、オン/オフ信号のみを生成するように(予め)設定され、それにより、空調/ヒートポンプコンプレッサー、加熱炉又は他の負荷ユニットがオン/オフされる。好ましくは、システム11で使用されるサーモスタット14は、負荷ユニットにおけるオン/オフ制御を提供し、負荷ユニットを完全にオンし、あるいは、完全にオフするように設計されている。サーモスタットがオン/オフ制御デバイスであるとき、サーモスタットは、出力がオンされ、オフされ、あるいは、現状維持されることが必要であるかどうかを決定できる。OEMサーモスタットによるオン/オフ制御は、通常、設定値の選択を含み、当該設定値を跨ぐネイティブ又はデフォルトのOEM不感帯が適用され、あるいは、ユーザによって選択される。ここで述べるように、本発明のコントローラの一つの特徴は、不感帯タイプ制御を調整又は最適化し、エネルギー効率を増加させる機能に関する。可変速制御を提供するサーモスタットは、電子コントローラとの組み合わせによる使用にはあまり向いていない。
電子コントローラ18は、専用の温度センサからの直接入力を必要とすることなく、設計された通りに動作及び機能する。本発明のシステムは、当該システム内の既存の1又は2以上のサーモスタットの温度検知性能、若しくは、そのユニットによる処理用のサーモスタットにそのような情報を送ることが可能なリモートセンサを含むシステムの温度検知性能に依存している。サーモスタットから離れているか、あるいは、サーモスタットに組み込まれた検知部品としてかにかかわらず、当該コントローラを使用するHVAC&Rシステムにおいて温度センサを用いる必要は全くない。温度信号は、OEM制御信号タイミングと、既存のASHRAE又はそれに類似する設定値用のデータと、ヒステリシス温度値とから推定され得る。
単純化のために、図1には、切断され、単一サーモスタット14から接続され、電子コントローラ18へ接続された単一の制御線15が示されているが、図10、12及び14〜17に示すような単一又は二重のサーモスタットの構成において、単一のサーモスタットからの二重の制御線(例えば、図10、12、14)、又は、二重のサーモスタットのそれぞれからの単一の制御線(例えば、図15〜17)のそれぞれが、切断され、電子コントローラの異なる各入力ピンに接続されるように、電子コントローラ18に別々に接続され得ることが十分に理解されるであろう。図10、12及び14〜17に示すように、電子コントローラ18が2以上の負荷デバイスを制御する場合、出力信号制御線は、一端が電子コントローラ18に接続され、他端が各負荷デバイスの負荷制御スイッチに接続され得る。例えば、単純化のために、図1のHVAC&Rシステム11には、単一の制御信号線上にあり、電子コントローラ18の負荷制御及び管理下にある1つの負荷ユニット20のみが示されているが、HVAC&Rシステム11は、例えば、並列のコンプレッサー、又は、コンプレッサーユニット及びブロワ、さらに、その構成に依存する類似する又は異なる複数の負荷のような、サーモスタット制御下にある並列の個別負荷を含むことができる。上述した通り、この発明の電子コントローラは、機器の複数の個別サブ負荷の複数の制御線において、全てに接続されることが可能である。換言すると、空調機器は、コンプレッサーユニット及びブロワユニットのサブ負荷用の別々の制御線を有することが可能である。電子コントローラは、これらのサブ負荷の1つ又は両方のいずれかを制御するのに用いられ得る。空調ユニットの全てのサブ負荷への全ての電力線が、一般に、本発明の電子コントローラによって変更されることは一切ない。さらに、本発明に特に関連する事項ではないので、通常の従来の電気接地手段は、図1の概略図には示されていない。
図1の電子コントローラ18は、例えば、スタンドアローン構成又はネットワーク構成において実現される。スタンドアローン構成は、例えば、単一負荷ユニット家庭用アプリケーション(例えば、約5トン未満のHVAC&R負荷ユニット)において用いられ得る。ネットワーク構成は、例えば、エネルギー使用/需要の大きな住宅用、商業用又は産業用のビル又は機器などのような大規模アプリケーションにおいてHVAC&Rを供給するビル管理システム(BMS)の一部として、あるいは、それぞれが専用の負荷ユニットに取り付けられた複数の電子コントローラのネットワークとして、使用される。
図1の電子コントローラ18は、サーモスタット入力信号を受信し、上記プログラムを受信したサーモスタット信号に適用し、且つ、マイクロコントローラの命令により出力信号を制御対象のHVAC&R負荷ユニットへ送信することができる少なくとも1つのマイクロプロセッサを含む。
図2に示す通り、マイクロコントローラ183(図1における18)は、例えば、マイクロプロセッサを備え、当該マイクロプロセッサが、上述した遅延起動コントローラ、需要調整器コントローラ、超過時間コントローラ、並びに、超過サイクルコントローラプログラムを格納及び実行し、さらに、データ収集機能、負荷デバイスへの制御信号生成、並びに、エネルギー及び/又は需要の節約計算を実行することができる。図2に示す通り、マイクロコントローラ183は、マイクロプロセッサ1832、メモリ1835を組み込んだものとして示されたコンピュータ読取可能な媒体1833及びクロック1834を備え、これら全てが同一チップに集積されている。マイクロプロセッサ1832は、中央処理装置(CPU)としても知られており、ここで述べるコントローラ機能をサポートするための計算能力を提供するために必要とされる演算、ロジック及び制御回路を含む。コンピュータ読取可能な記憶媒体1832のメモリ1835は、不揮発性メモリ、揮発性メモリ又はその両方を含むことができる。コンピュータ読取可能な記憶媒体1833は、少なくとも1つの非一時的なコンピュータ利用可能な記憶媒体を備えることができる。不揮発性メモリは、例えば、リードオンリーメモリ(ROM)又は他の永久記憶媒体を含むことができる。揮発性メモリは、例えば、ランダムアクセスメモリ(RAM)、バッファー、キャッシュメモリ、ネットワーク回路又はこれらの組み合わせを含むことができる。マイクロコントローラ183のコンピュータ読取可能な記憶媒体1833は、組み込み型ROM及びRAMを備えることができる。図4に関連して述べる通り、マイクロコントローラ用のリード/ライト増設(フラッシュ)メモリも提供される。プログラミング及びデータは、メモリ1835を含むコンピュータ読取可能な記憶媒体1833に記憶され得る。プログラムメモリは、例えば、上述した遅延起動コントローラプログラム1836、需要調整器コントローラプログラム1837、超過時間コントローラプログラム1831及び超過サイクルコントローラプログラム1839のために提供され、さらに記憶メニュー、制御指示、及び、本書で述べるような他のプログラミング、コントローラ18を制御するためのパラメータ値などに提供され得る。これらのプログラムは、ROM又は他のメモリに記憶され得る。これらのプログラムは、ROM又は他のメモリに記録され得る。上述した遅延起動コントローラプログラム1836、需要調整器コントローラプログラム1837、超過時間コントローラプログラム1831、及び超過サイクルコントローラプログラム1839は、組み合わせることにより、コントローラ18に格納されている統合された制御プログラム1838を提供する。フラッシュメモリのようなデータメモリは、データパラメータにより構成され得る。メモリは、サーモスタット命令のオン時間及び計算されたオフ時間のような、制御対象の負荷デバイスの動作に関連する取得データを記憶するために用いることができる。クロック1834は、オフ状態の間、コントローラのマイクロプロセッサ機能とともに電源が遮断されない実時間クロックである。クロック1834は、「オン」状態の開始又は終了の記録に用いることができるタイミングデバイスを提供する。電子コントローラ18は、「オン」状態及びその継続時間を記録して「オフ」時間を算出することにより、サーモスタットOEM制御の挙動を学習することができる。サーモスタット信号に基づくデューティーサイクルの「オフ」状態の間、コントローラの信号処理機能は、通常、動作可能ではない。このため、サーモスタットに基づくデューティーサイクルのオフ状態と同時にコントローラが電源を遮断したときの時刻を記録し、負荷ユニットを対象としてサーモスタットにより送信された次の継続的パワーオン信号を遮断した場合にOEMが再び電源投入する次の時刻を記録し、「オフ時間」の期間に対応するこれら2つの記録された時刻の差を計算することにより、「オフ」状態の継続時間を計算することができる。このデータは、マイクロプロセッサの不揮発性のフラッシュメモリ又は他のメモリに記録され得る。上記のように、クロック1834は、例えば、実時間デジタルクロックである。クロック1834は、バッテリ駆動することができる(例えば、リチウムボタン電池等)。マイクロプロセッサ1832、メモリ1833及びクロック1834は、それら全てが汎用マザーボード1830等上に集約され支持される。当該汎用マザーボードは、筐体(不図示)内に収容され、当該筐体は、入出力接続ターミナルピン、コミュニケーションリンク/インターフェース接続ポート(例えば、対応するサイズのUSBプラグを受け付けるミニ、マイクロ又はスタンダードサイズのUSBポート)などを有し、これらについては図9〜18に関してさらに述べる。
マイクロコントローラ183は、例えば、8ビット又は16ビット、若しくは、より大きなマイクロチップのマイクロプロセッサであり、上述したマイクロプロセッサ、メモリ及びクロック部品を含み、上述した遅延起動コントローラ、需要調整器コントローラ、超過時間コントローラ及び超過サイクルコントローラプログラムの入力及び実行を行うことができる。プログラマブルマイクロコントローラは、商業的に入手可能であり、本書で述べた制御プログラムが当該プログラマブルコントローラへ入力されることにより、所望の制御が提供される。この点に関して適切なマイクロコントローラは、アリゾナ州チャンドラー市のマイクロチップテクノロジ社のような商用ベンダから入手可能なものを含む。この点に関して商業的に入手可能なマイクロコントローラの例には、例えば、マイクロチップテクノロジ社のPIC16F87X、PIC16F877、PIC16F877A、PIC16F887、dsPIC30F4012及びPIC32MX795F512L−801/PT、アナログデバイセズのADSPシリーズ、ジェニックのJNファミリー、ナショナルセミコンダクタのCOP8ファミリ、フリースケールの68000ファミリー、マキシムのMAXQシリーズ、テキサスインスツルメンツのMSP430シリーズ、並びに、インテルの8051ファミリーなどが含まれる。他に可能性のあるデバイスとしては、FPGA/ARM及びASICがある。本書で述べる遅延起動コントローラ、需要調整器コントローラ、超過時間コントローラ及び超過サイクルコントローラプログラムは、マイクロチップテクノロジ社が提供するMPLABX統合開発環境のような産業開発ツールを用いて、それぞれのマイクロコントローラへ入力される。
コントローラ18は、制御対象の負荷ユニットにつながるサーモスタット信号線15(24)内に挿入されたスタンドアロンユニットとして図1に示されているが、コントローラの上述したマイクロエレクトロニクスは、サーモスタットユニット又はビル管理システム(BMS)内に付加的に組み込まれて集約されてもよい。遅延起動コントローラ、需要調整器コントローラ、超過時間コントローラ及び超過サイクルコントローラを組み込んだアルゴリズム並びに電子デバイスの機能は、サーモスタットの生来のサーモスタット信号制御に加えることができ、あるいは、ビル管理システム(BMS)が負荷ユニット又はHVAC&Rのユニットに制御を提供する場合におけるBMSソフトウェアに加えることができるので、電子コントローラデバイスが物理的に離れている必要はない。サーモスタット/電子コントローラを組み合わせた構成では、OEMサーモスタット信号の遮断及びコントローラマイクロエレクトロニクスによるその処理は、改良されたサーモスタットユニットにおいて行うことができ、サーモスタット及び制御対象の負荷ユニットの間においてサーモスタット信号線15(24)上に挿入される物理的に分離されたマイクロエレクトロニクスコントローラを必要としない。
図3A及び3Bは、HVAC&Rシステムの動作を自動制御するために本発明の電子コントローラ100が使用するプロセス制御ロジック100を示す。コントローラ内には、(1)4つのコントローラ、(2)限定モジュール及び(3)制御信号生成器、並びに、図3〜8に示した他の機能が存在している。上述した通り、コントローラは、HVAC&Rシステムにおいて、OEMサーモスタット信号が、目的とする負荷ユニットに直接的に到達するのを阻み、そして、これらの信号を遮断することにより、目的とする負荷ユニットに対する最適化された出力信号へ変換するための学習及び処理が行われる。信号取得は時間ベースである。上述した通り、OEMオン及びオフ時間は、電子コントローラによって決定される。電子コントローラは、時間出力のトリプレット又はトライアドを計算するアルゴリズムを具現化する。当該時間出力は、負荷ユニットへ出力される制御信号に関する遅延時間、オン時間及びオフ時間である。これらの信号は、図3のブロック「信号生成器」において時間履歴信号に変換される。出力信号は、図3Bに示す出力y1及びy2に用いられているように、0又は1の値をもつバイナリ出力として記録及び処理される。
電子コントローラへの読取可能な入力は、1)OEM入力105:OEMチャンネル1(ch1)(u1:コンプレッサー又はヒータ)、OEMチャンネル2(ch2)(u2;ブロワ又はコンプレッサー2又はヒータ2)及びビル管理システム(BMS)に集約可能なドライ接点(全て1/0=オン/オフ);2)算出値106:FPF1及びFPF2(OEMch1及びOEMch2用の第1パスフラグ、ch1−tオフOEM及びch2−tオフOEM(OEMch1及びch2オフ時間)、及び、3)パラメータ107:サービスツール等からコントローラに入力され、メモリ(例えば、フラッシュメモリ)に記録される設定パラメータを含む。入力チャンネル1(u1)及びチャンネル2(u2)の値は、当該システムにおける2つの異なる負荷ユニットに対する読み出されたOEM入力に対応する。単一の負荷ユニットに対するサーモスタット制御を有するシステムでは、チャンネル1及びチャンネル2の一つに対するOEM入力が用いられる。算出値106のために、OEMch1及びch2オフ時間は、電子コントローラがアクティブになった最初のときにゼロに初期化され、その後は、遭遇したOEMデューティーサイクル履歴に基づいて計算される。電子コントローラは、そのパラメータ設定107を通して構築され、コンプレッサー、加熱炉、ボイラ又は他のHVAC&R負荷ユニットを制御する。
電子コントローラ100は、遅延起動コントローラ101、需要調整器コントローラ102、超過時間コントローラ103及び超過サイクルコントローラ104を具現化することができる。これらのプログラムは、電子コントローラのアセンブリ中に、あるいは、使用前のどこかで、ROMのような電子コントローラのメモリ内にロードされる。需要調整器コントローラ102及び超過時間コントローラは、必須であり、遅延起動コントローラ101及び超過サイクルコントローラ104は、オプションである。これらのコントローラの実行シーケンスがある。遅延起動コントローラ101は、それが使用されるならば、最初に実行され、その後に、需要調整器コントローラ102及び超過時間コントローラが並列に実行されるが、S→Vボックス112における処理のために出力を組み合わせる。超過サイクルコントローラ104が、もし含まれるなら、これに続き、限定モジュール108、最終的に信号生成器109がさらに続く。コントローラの出力は、1)コンプレッサー又はヒーター並びにブロワのそれぞれに対するy1及びy2(ch1及びch2出力;1/0=オン/オフ)、並びに、2)4つのLED信号である。出力y1は、コンプレッサー又はヒーター用のチャンネル1制御信号に一致し、出力y2は、ブロワ用のチャンネル2出力に対応する。出力の書き込み及びLEDの書き込みは、110及び111に示されている。アルゴリズムは、コントローラが覚醒している期間中、2x/秒、3x/秒、4x/秒又は5x/秒若しくは他の速度のような、1秒当たり1掛ける(x)の一定間隔で実行される。
図4A及び4Bは、プロセス制御ロジック120A、120B及び120Cのフローチャートであり、これらのロジックは、電子コントローラの、オプションとして使用可能な超過時間コントローラの動作のためのものである。制御ロジック120A及び120Bは、図4Aに示され、制御ロジック120Cは、図4Cに示される。図示した通り、プロセス制御ロジック120Bによって生成された「オンタイム」値、及び、図4Aに示された制御ロジック120Aにおいてロードされないパラメータは、他の前記算出値及び/又はパラメータに加えて、図4Aに示された制御ロジックから続く図4Bに示されたプロセスフローロジック120Cにおける入力として用いられる。超過時間(ET)コントローラは、当該コントローラが継続動作状態(この状態において、OEMは決して停止しない)にある状況において、需要設定値を変更することができる。これが起きるとき、温度設定値が充足されておらず、そのために需要設定値がOEM制御サイクルまで増加したという仮定が行われる。需要設定値がその最大値に増加し、OEMが未だサイクルしていない場合、需要設定値を1.0に維持し、コントローラを事実上迂回してOEMが制御することを許可する。この機能は、3つのパラメータ:待機時間=初期動作のオン時間、この時間の間、何も動作は行われない、及び、水平時間&最大需要:「待機時間」秒後にOEMが未だサイクルしていなければ、需要設定値は、その初期設定値「需要設定値1」から値:(待機時間後の時間)*(最大需要−需要設定値1)/(水平時間−待機時間)ごとにリニアに増加される、を有する。このコントローラは、需要設定値を1までリニアに増加させることができ、OEMがサイクルしていなければ、次のOEMサイクルが発生するまで、需要設定値=1に設定する。
図5は、プロセス制御ロジック130A及び130Bのフローチャートであり、これらのロジックは、本発明の一例による電子コントローラの遅延起動コントローラの動作のためのものである。図示した通り、プロセス制御ロジック130Aの「要因設定値」及び「生来時間遅延」値は、他の前記算出値及び/又はパラメータに加え、図5に示されたプロセスフローロジック130Bにおける入力として用いられる。遅延起動(DS)コントローラは、遅延時間(t遅延速度)を算出する。例えば、ほとんどのOEMサーモスタットは、設定値の華氏±1度(°F)内への制御を行っており、これは不感帯(Tdb)が華氏2度であることを意味する。OEMサーモスタット設定値が70°Fに設定されれば、領域温度は69〜71°Fの範囲になる。Tdb=2°F(設定値=70°F)、OEMは領域温度を69〜71°Fに制御する。要因設定値が1.75であれば、速度は、不感帯=1.75*2=3.5°F(69°F〜72.5°F)に制御する。2°Fの不感帯を超えるために必要な時間は、「tオフ領域」(領域のオフ時間)として計測される。不感帯がdT1であり、オフ時間がt1であれば、dT1/t1が、(概ね)等しい(=)定数として記載される。オフタイム値が倍増されt2=2*t1になると、不感帯も概ね倍増dT2=2*dT1されるのに対し、比率は一定=dT2/t2=dT1/t1に維持される。要因は、dT2/dT1=要因=t2/t1により定義され、要因*t1=t2として、あるいは、両辺からt1を引いて要因*t1−t1=t2−t1として記載される。値t2−t1は、「t遅延速度」として規定される追加的な時間遅延であり、t遅延速度=t1*(要因−1)により求められる。図5に示された生来時間遅延は、加熱又は冷却のための電気的要求と、機器がサイクルしてオンする時刻との間の遅延時間である。それはOEM制御において時々存在する。既存システムの生来遅延時間が分からない場合、サーモスタットがオンしてから負荷ユニットがオンするまでの時間を計測することにより、あるいは、推定値を用いて初期化して必要に応じて調整することにより、決定することができる。
t遅延速度の値は、遅延起動コントローラによって算出され、ブロワの制御にも用いられる。ブロワ制御は、コンプレッサーの最初の起動時に起動され、サーモスタットがそれを停止するまで動作状態を維持する。この方法は、OEMコントローラサイクルの間、ブロワの好ましくないサイクルを防止するが、その初期遅延が節約メカニズムとして優位性を有する。
図6は、プロセス制御ロジック140A及び140Bのフローチャートであり、これらのロジックは、本発明の一例に係る電子コントローラの需要調整器コントローラの動作のためのものである。図示した通り、「要求設定値」、「短サイクル時間」及び「コンプレッサー消費割合」の値は、プロセス制御ロジック140Aによって生成され、他の前記算出値及び/又はパラメータに加え、図6に示したプロセスフローロジック140Bにおける入力として用いられる。需要調整器コントローラは、コントローラ出力「オン」時間の値、「tオン速度値」を算出することにより、需要設定値を得ることができる。需要調整(DR)コントローラは、コントローラ出力オン時間を算出する。コントローラ出力オン時間は、tオン速度のための次の方程式を解くことにより、デューティーサイクル(需要設定値)及びコントローラオフ時間(tオフ速度=短サイクル時間)が与えられる。
需要設定値=(tオン速度/(tオン速度+tオフ速度))*コンプレッサー消費,割合+1−コンプレッサー消費,割合)。ブロワ消費は、(1−コンプレッサー消費,割合)として定義される。最も右側の項は、この計算において、ブロワが常時オンであると仮定している(従って、(1−コンプレッサー消費,割合)が存在)。この機能も、需要設定値をブロワ消費割合(1−コンプレッサー消費,割合)未満にさせる値以下にtオン速度が低下することを認めるものではない。これが発生すれば、tオン速度は0に設定され、効果的にコンプレッサーを停止させる。
上述した通り、需要調整(DR)コントローラは、負荷ユニットに送られるコントローラ出力「オン」(tオン速度)及び「オフ」(tオフ速度)時間を調整することにより、所望の電力需要が得られる。理論上、電力需要は、通常、15分間隔の間における総「オン」時間として算出される。DRコントローラは、速度コントローラが15分間隔の全ての間、継続的にサイクルする状況である「最悪」需要を推定することができる。最悪需要は、負荷が増加するほど正確になり、より低い負荷ではより正確でなくなるが、常に、実際の需要よりも大きい最悪需要が推定される。DRコントローラは、tオフ速度の値を短サイクル時間(例えば、一般に3〜4分)に固定し、所望の需要を満たすためにtオン速度を調整することができる。
図7A及び7Bは、プロセス制御ロジック150A、150B及び150Cのフローチャートであり、これらのロジックは、本発明の一例による電子コントローラの、オプションとして使用可能な超過サイクルコントローラの動作のためのものである。制御ロジック150A及び150Bは、図7Aに示され、制御ロジック150Cは、図7Bに示される。図示された通り、プロセス制御ロジック150Aの「1時間当たり機器起動最大」値は、プロセス制御ロジック150Bにおいて用いられ、プロセス制御ロジック150Bによって生成される「tオン速度」値、並びに、プロセス制御ロジック150Aによって生成される「需要設定値」及び「コンプレッサー消費要因」値は、前記算出値及び/又はパラメータに加え、図7Aに示された制御ロジックから続く図7Bに示されたプロセスフローロジック150Cにおける入力として用いられる。超過サイクルコントローラは、1時間当たり機器起動最大(MAX)を充足するために、tオン速度を増加することができる。超過サイクル(EC)コントローラは、tオン速度及びtオフ速度を調整することにより、最大(MAX)値を超えないように、1時間当たり機器起動の回数を制御する。最初に、超過サイクルコントローラは、1時間当たり機器起動の回数がMAXを超えているかどうかを決定する。超過していれば、その後、実際の1時間当たり機器起動回数<MAX値になるまでtオン速度が増加される。tオン速度の増加後に需要設定値が未だ得られていない場合、tオフ速度は、その後、実需要(tオン速度/(tオン速度+tオフ速度)に等しい)≦需要設定値になるまで増加される。従って、tオン速度が変更されたが、需要が満たされていない場合、tオフ速度は、その後、需要設定値を充足するように更に調整される。
図8A及び8Bは、プロセス制御ロジック170A及び170Bのそれぞれのフローチャートであり、これらのロジックは、本発明の一例による電子コントローラを用いる機器起動を限定するためのものである。図示した通り、図8Aのプロセス制御ロジック170Aによって生成される「動作モード」は、前記他の算出値及び/又はパラメータに加えて、図8Bに示されたプロセスフローロジック170Bにおいて入力として用いられる。この機能は、tオン速度、tオフ速度及びt遅延速度に最少(MIN)及び最大(MAX)限界を与える。ドライ接点入力は、以下のように規定される動作モードを選択するために用いられる:1=拡張(超過暖房又は冷却の要求)、0=通常。ドライ接点入力は、電子コントローラによって制御されるt遅延、tオン及びtオフ(「速度」)値を限定するために、通常又は拡張設定のいずれを用いるのかを選択するために使用される。有効ドライ接点:1/0=ドライ接点入力が可能/不可能。ドライ接点入力=1/0=オープン回路/クローズド回路。直流インバータは、ドライ接点入力信号の極性反転を許可する。直流インバータ=「オフ」=0のとき、動作モードは、ドライ接点入力値に設定される。ドライ接点入力=1のとき、拡張設定が用いられる。ドライ接点入力=0のとき、通常設定が用いられる。直流インバータ=「オン」=1のとき、動作モードは、(ドライ接点入力)値のない設定値にされる。ドライ接点入力=1のとき、通常設定が用いられる。ドライ接点入力=0のとき、拡張設定が用いられる。
暖房アプリケーションにおける一例として
暖房アプリケーションでは、OAT上の55°Fスナップセンサが、超過暖房要求の検知に用いられ、当該センサは、温度<55°Fにおいて閉じ、温度>55°Fにおいて開き、ドライ接点入力=0/1(クローズ/オープン=拡張/通常)=55°F未満/55°F超=拡張値/通常値であり、DCインバータ=オフに設定する。
冷却アプリケーションでは、OAT上の85°Fスナップセンサが、超過冷却要求の検知に用いられ、当該センサは、温度>85°Fにおいて閉じ、温度<85°Fにおいて開き、ドライ接点入力=1/0(オープン/クローズ=通常/拡張)=85°F未満/85°F超=通常値及び拡張値であり、及び、DCインバータ=オンに設定する。
ヒートポンプアプリケーションでは、蒸発器ライン上の55°Fスナップセンサが、ヒートポンプが冷却又は暖房動作中であるか否かの検出に用いられ、当該センサは、温度<55°F(冷却用)において閉じ、温度>55°F(暖房用)において開き、ドライ接点入力=0/1(クローズ/オープン=通常/拡張)=55°F未満/55°F超であり、拡張値は暖房に用いられ、通常値は冷却に用いられ、直流インバータ=オフに設定する。
図8C及び8Dは、プロセス制御ロジック180A及び180Bのそれぞれのフローチャートであり、これらのロジックは、図3Bに示された電子コントローラの信号生成器109の動作のためのものである。図示した通り、図8Cのプロセス制御ロジック180Aによって生成される「速度サイクル時間」値は、前記他の算出値及び/又はパラメータに加えて、図8Cに示された制御ロジックから続く図8Dに示されたプロセスフローロジック180Bにおいて入力として用いられる。単純化のために、図8C〜8Dでは、2つのチャンネルのうち1つのみが図示されている(入力u1及び出力y1を有するチャンネル1)。第2チャンネル2(入力u2及び出力y2を有するチャンネル2)は、チャンネル1のために図示されているのと同様に処理される。信号生成器109は、上述したDS及びDRコントローラによって算出された時間トリプレット(t遅延速度1、tオン速度1及びtオフ速度1)の機能として、バイナリ変調された制御信号を生成するように機能することができる。信号生成器は、次のように動作することができる。OEM制御信号がオフからオンへ変遷するとき、第1パスフラグ(FPF1)がパルス化され、図8Cのタイマ機能「uOEMオン時間タイマ」が動き始め、OEM制御信号の「オン時間」を測定する。「オン時間」が「t遅延速度1」値を超えるとすぐに、「サイクルタイマ」機能は「速度サイクル時間」の算出を開始する。「速度サイクル時間」は、望ましいサイクル期間「tオン速度1+tオフ速度1」を超える各時間をリセットして0にする。「y1」制御信号は、「オン時間」≧「t遅延速度1」及び「速度サイクル時間」<「tオン速度1」のときにオンであり、そうでないときにはオフである。
種々のコントローラ及びモジュールの機能、並びに、図3、4A〜B、5、6、7A〜B及び8A〜Dの何れかに示されたプロセス制御ロジックの他の特徴は、電子コントローラの前記マイクロプロセッサで実行可能なソフトウェアを用いて実現される。
図3、8C及び8Dに示された信号生成器109の動作を図示する図8Eを参照すると、OEM信号u1は、次の設定を用いる一例における信号生成器に適用される。t遅延速度1=20秒、tオン速度1=10秒及びtオフ速度1=20秒である。u1及びy1時間履歴は、図8Eに示されている。u1信号の与えられたサイクルに対し、y1信号は、最初にt遅延速度1=20秒を伴って生成され、その後、10秒オン(tオン速度1)のシーケンスを繰り返し、更にその後、20秒オフ(tオフ速度1)となる。y1信号は、u1信号がオフになるときに、オフになる。前記図におけるu1信号は、サイクルの間に増加するオン時間を伴って生成され、それゆえに、最初のu1サイクル及びその後の3つのy1サイクルには、2つのy1サイクルだけがある。
10例のインストール設定のそれぞれに対する終端配線は、図9〜図18を参照しつつ以下に示されている。図9〜18の図の全てに対し、電子コントローラ1018は、異なる機器構成をサポートするように配線された2つの独立した制御チャンネルを提供する。第1ピンモジュール1001を参照すると、第1チャンネル1001Aは、ピン1〜3の1つを備え、第2チャンネル1001Bは、そのピン4〜6の1つを備える。負荷ユニットへの出力線は、ピン4〜6の1つから延伸するように示される。第1チャンネル1001A及び第2チャンネル1001Bは、特に、図9のみに示されており、これらのチャンネルに対する同一表示のピン割当は、図10〜18のそれぞれにおいて電子コントローラ1018内に示されたような類似するピンモジュール1001に適用可能であると理解できる。加えて、コントローラは、既存のBMSシステムのような、コントローラのリモート制御に用いられる分離「ドライ接点」入力チャンネルを提供する。第2ピンモジュール1010を参照すれば、そのピン1〜2が、このドライ接点入力モジュールに用いられている。通信ポート1020は、これらの図では、ミニUSBポート(例えば、カメラサイズUSBポート)として示されているが、それに限定されない。サービスツール(不図示)は、ポート1020を介してコントローラとの通信リンクを確立することにより、パラメータ等を電子コントローラ1018内へ取り込み/入力するために使用される。電子コントローラ1018は、上述した遅延起動コントローラ、需要調整器コントローラ、超過時間コントローラ及び超過サイクルコントローラのプログラムを備え、これらのプログラムは、その組み立て中及び現地における設置前に、コントローラのオンボードメモリ内に予めロードされる。
図9は、本発明の一例による電子コントローラを用いる単一ステージ冷却アプリケーションのための電気接続図1000である。この構成に対する終端配線は、図に示されている。単一の空調サーモスタットが1つのHVAC冷却デバイス(コンプレッサー)の制御に用いられるときに、この構成が使用される。この構成は、複数のサーモスタットをサポートし、これらのサーモスタットは、暖房又は冷却動作のいずれかを選択する手動スイッチを提供する。コンプレッサーは、蒸気圧縮冷却/冷凍システムにおける使用に適したコンプレッサーである。コンプレッサーは、当該コンプレッサーを駆動するのに用いられる電気モータ(不図示)を含むことができる。電気モータ自身は、このような負荷ユニットを駆動するのに使用され又は活用できる従来型の電気モータ又は他の適した電気モータである。
サーモスタットは、ビル内のいくつかの位置に配置され、周囲の空気の温度を検知し、選択された快適設定よりも温度が高ければ、空調ユニットをアクティブにするための信号を送信する。上述した通り、本発明では、コントローラがサーモスタット信号を遮断し、当該信号が電子コントローラに電源を投入することにより、そのプログラムされたアルゴリズムに従って当該信号が処理された後、コントローラ処理された出力信号を負荷ユニットへ送る。空調ユニットは、通常、閉じられた冷却システム(不図示)において、互いに接続されたコンプレッサー、凝縮器及び蒸発器を備える。冷却サイクル自身は、よく知られている(例えば、その全体を参照して本明細書に援用されている米国特許第4,094,166号を参照)。基本的に、ガス状の冷媒は、コンプレッサーから凝縮器コイルへ運ばれ、そこで熱を放出し、その後、拡張バルブを通って蒸発器コイルへ送られ、蒸発器ファンによってその向こう側を通る循環空気から熱を吸収する。周囲の空気が選択されたレベルまで冷却されたことをサーモスタットが検知したとき、周囲の空気が更なる冷却が必要となるレベルに再び到達するまで、サーモスタットは、オフ状態になり、コンプレッサー、蒸発器ファン及びコンデンサファンを停止させる。上述した通り、本発明の電子コントローラは、サーモスタットが負荷ユニットへの信号送信を停止したとき、サーモスタットが次の起動信号を同じ負荷ユニットへ送信するまでスリープする。サーモスタット信号は、上述した通り、コントローラによって遮断され、当該信号が電子コントローラに電源を投入することにより、そのプログラムされたアルゴリズムに従って当該信号が処理された後、コントローラ処理された出力信号を負荷ユニットへ送る。上述した通り、不感帯は、通常、サーモスタットにおける制御温度設定に適用されるが、当該不感帯は、電子コントローラによって効果的に変更されることにより、制御された方法により、エネルギー節約を増加させることができる。
図10は、本発明の一例による電子コントローラを用いる二重冷却アプリケーションのための電気接続図1100である。この構成に対する終端配線は、図に示されている。単一サーモスタットが、この例では2つのコンプレッサーである2つのHVAC冷却デバイスの制御に用いられるときに、この構成が使用される。この構成も、複数のサーモスタットをサポートし、これらのサーモスタットは、暖房又は冷却動作のいずれかを選択する手動スイッチを提供する。
図11は、本発明の一例による電子コントローラを用いる単一ステージガス暖房アプリケーションのための電気接続図1200である。この構成に対する終端配線は、図に示されている。単一サーモスタットが、単一ステージガス加熱デバイスの制御に用いられるときに、この構成が使用される。この構成も、複数のサーモスタットをサポートし、これらのサーモスタットは、暖房又は冷却動作のいずれかを選択する手動スイッチを提供する。
図12は、本発明の一例による電子コントローラを用いる二重ステージガス暖房アプリケーションのための電気接続図1300である。この構成に対する終端配線は、図に示されている。単一サーモスタットが、二重ステージガス加熱デバイスの制御に用いられるときに、この構成が使用される。この構成も、複数のサーモスタットをサポートし、これらのサーモスタットは、暖房又は冷却動作のいずれかを選択する手動スイッチを提供する。
図13は、本発明の一例による電子コントローラを用いる単一ステージ電気暖房アプリケーションのための電気接続図1400である。この構成に対する終端配線は、図に示されている。単一サーモスタットが、1つの単一ステージ電気加熱デバイスの制御に用いられるときに、この構成が使用される。この構成も、複数のサーモスタットをサポートし、これらのサーモスタットは、暖房又は冷却動作のいずれかを選択する手動スイッチを提供する。
図14は、本発明の一例による電子コントローラを用いる二重ステージ電気暖房アプリケーションのための電気接続図1500を示す。この構成に対する終端配線は、図に示されている。単一サーモスタットが、二重ステージ電気加熱デバイスの制御に用いられるときに、この構成が使用される。この構成も、複数のサーモスタットをサポートし、これらのサーモスタットは、暖房又は冷却動作のいずれかを選択する手動スイッチを提供する。
図15は、本発明の一例による電子コントローラを用いる電気暖房付の冷却アプリケーションのための電気接続図1600である。この構成に対する終端配線は、図に示されている。二重サーモスタットが、空調コンプレッサー及び電気加熱デバイスの制御に用いられるときに、この構成が使用される。この構成も、複数のサーモスタットをサポートし、これらのサーモスタットは、暖房又は冷却動作のいずれかを選択する手動スイッチを提供する。コントローラ1018は、BMS又は他の類似システム(不図示)からの入力によってリモートで制御され得る。この機能が必要とされる場合、「ドライ接点」入力1010が使用される。図15も、オプションの外部温度センサをドライ接点入力に接続するための終端配線を含んでいる。
図16は、本発明の一例による電子コントローラを用いるガス暖房付の冷却アプリケーションのための電気接続図1700である。この構成に対する終端配線は、図に示されている。二重サーモスタットが、空調コンプレッサー及びガス加熱デバイスの制御に用いられるときに、この構成が使用される。この構成も、複数のサーモスタットをサポートし、これらのサーモスタットは、暖房又は冷却動作のいずれかを選択する手動スイッチを提供する。コントローラ1018は、BMS又は他の類似システム(不図示)からの入力によってリモートで制御され得る。図15の構成と同様、この機能が必要とされる場合、「ドライ接点」入力が使用される。図16も、オプションの外部温度センサをドライ接点入力に接続するための終端配線を含んでいる。
図17は、本発明の一例による電子コントローラを用いる電気暖房付のヒートポンプアプリケーションのための電気接続図1800である。この構成に対する終端配線は、図に示されている。二重サーモスタットが、補助的電気加熱デバイスを有するヒートポンプコンプレッサーの制御に用いられるときに、この構成が使用される。この構成も、複数のサーモスタットをサポートし、これらのサーモスタットは、暖房又は冷却動作のいずれかを選択する手動スイッチを提供する。コントローラ1018は、BMS又は他の類似システム(不図示)からの入力によってリモートで制御され得る。図15及び16の構成と同様、この機能が必要とされる場合、「ドライ接点」入力が使用される。図17も、オプションの外部温度センサをドライ接点入力に接続するための終端配線を含んでいる。
図18は、本発明の一例による電子コントローラを用いるボイラアプリケーションのための電気接続図1900である。この構成に対する終端配線は、図に示されている。単一サーモスタットが、1つの単一ステージボイラ暖房デバイスの制御に用いられるときに、この構成が使用される。
これらの方法により、例えば、上述した遅延起動コントローラ、需要調整器コントローラ、超過時間コントローラ及び超過サイクルコントローラのプログラムを有する電子コントローラは、強化された制御信号を自動生成するアルゴリズムを用いて、サーモスタットの制御信号を遮断及び処理することができる。他の利益及び優位性において、既存のHVAC&Rシステムは、例えば、本願において図示したようなコントローラを実装することにより、暖房、冷却及び冷凍機器のエネルギー消費を改善し、エネルギーコストを削減することができる。
本発明は、任意の順序及び/又は組み合わせにおいて、以下の態様/実施形態/特徴を含む。
1. 本発明は、暖房、換気、空調又は冷凍(HVAC&R)システムの自動制御用の電子コントローラデバイスに係り、以下のものによって構成される。
少なくとも1つのサーモスタット信号線を取り付けるための少なくとも1つの入力コネクタと、前記コントローラデバイスから負荷ユニットへ制御信号を出力するための少なくとも1つの信号線を取り付けるための少なくとも1つの出力コネクタとを備え、前記コントローラデバイスは、前記HVAC&Rシステムの負荷ユニットに対するサーモスタット命令を遮断することが可能であり、
さらに、負荷ユニットをパワーオンするための信号の送信を遅延させることが可能であり、また、選択され調整された空間温度変化を実現する遅延始動コントローラと、
選択された電力需要を得るためにオン時間及びオフ時間を計算することが可能な需要調整器コントローラ。
2. 先の又は以下の実施形態/特徴/態様のいずれかのコントローラデバイスは、コンプレッサー、ブロワ又はヒーターの少なくとも1つに対するサーモスタット命令を遮断することが可能である。
3. 先の又は以下の実施形態/特徴/態様のいずれかのコントローラデバイスは、コンピュータ読取可能な記憶媒体と、プログラム可能なマイクロプロセッサと、リアルタイムクロックとを備え、前記遅延起動コントローラ及び需要調整器コントローラは、前記コンピュータ読取可能な記憶媒体にプログラムとして記録され、前記マイクロプロセッサにおいて実行可能であり、前記コントローラデバイスは、前記リアルタイムクロックを参照してOEMパワーオン時間を記録する。
4. 先の又は以下の実施形態/特徴/態様のいずれかのコントローラデバイスは、前記遅延起動コントローラが、負荷ユニットを起動するための信号の送信を遅延させることが可能であり、サーモスタットのOEM温度不感帯設定が、OEM温度不感帯を置換する領域温度不感帯を求めるために、1以上である数値を有する選択された係数が乗算される。
5. 先の又は以下の実施形態/特徴/態様のいずれかのコントローラデバイスは、前記要求調整器コントローラが、コントローラオフ時間値を固定値に設定することが可能であるとともに、100%及び0%需要の間の選択された電力需要設定値を満たすコントローラオン時間値を調整することが可能である。
6. 先の又は以下の実施形態/特徴/態様のいずれかのコントローラデバイスは、少なくとも1つの超過時間コントローラ及び超過サイクルコントローラをさらに備える。
7. 先の又は以下の実施形態/特徴/態様のいずれかのコントローラデバイスは、前記遅延起動コントローラ及び需要調整器コントローラと少なくとも部分的に協働して、前記電子コントローラデバイスによって遮断されたサーモスタット命令に対し、信号処理アルゴリズムのアプリケーションに少なくとも部分的に基づいて、制御信号を生成することが可能である信号生成器をさらに備える。
8. 本発明は、暖房、換気、空調又は冷凍(HVAC&R)システムに係り、当該システムは、暖房、換気、空調又は冷凍ユニットと、前記HVAC&Rシステムのサーモスタット制御信号を遮断し、そこにアルゴリズムを適用して前記HVAC&Rシステムの負荷ユニットに対する出力制御信号を生成する請求項1の前記電子コントローラデバイスとを備える。
9. 本発明は、HVAC&Rシステムの自動制御システムに係り、当該システムは、
サーモスタットと、
電子コントローラデバイスと、
電力供給線に接続された少なくとも1つの負荷ユニットとを備え、
前記電子コントローラデバイスは、a)少なくとも1つのサーモスタット信号線を取り付けるための少なくとも1つの入力コネクタと、前記コントローラデバイスから負荷ユニットへ制御信号を出力するための少なくとも1つの信号線を取り付けるための少なくとも1つの出力コネクタとを有し、前記コントローラデバイスは、前記HVAC&Rシステムの負荷ユニットに対するサーモスタット命令を遮断することが可能であり、さらに、b)負荷ユニットをパワーオンするための信号の送信を遅延させることが可能であり、また、選択され調整された空間温度変化を実現する遅延始動コントローラと、c)選択された電力需要を得るためにオン時間及びオフ時間を計算することが可能な需要調整器コントローラとを有する。
10. 先の又は以下の実施形態/特徴/態様のいずれかのシステムは、前記HVAC&Rシステムの多重負荷ユニットが、前記電子コントローラによって同時に制御される。
11. 先の又は以下の実施形態/特徴/態様のいずれかのシステムは、前記遅延起動コントローラ及び需要調整器コントローラと少なくとも部分的に協働して、前記電子コントローラデバイスによって遮断されたサーモスタット命令に対し、信号処理アルゴリズムのアプリケーションに少なくとも部分的に基づいて、制御信号を生成することが可能である信号生成器をさらに備える。
12. 先の又は以下の実施形態/特徴/態様のいずれかのシステムは、少なくとも前記遅延起動コントローラ及び前記需要調整器コントローラを組み込んだアルゴリズムは、前記サーモスタットのサーモスタットソフトウェア又はビル管理システム(BMS)ソフトウェアに加えられ、BMSが前記少なくとも1つの負荷ユニットに対し制御を提供する。
13. 本発明は、HVAC&Rシステムにおいて電気で駆動される少なくとも1つの負荷ユニットの電力使用及び/又は負荷需要並びに動作を自動的に制御及び管理する方法に係り、当該方法は、
負荷ユニットのためのサーモスタットと、前記負荷ユニットのための機器負荷制御スイッチとの間の制御信号線にコントローラデバイスを電気的に接続し、前記コントローラデバイスは、a)少なくとも1つのサーモスタット信号線を取り付けるための少なくとも1つの入力コネクタと、前記コントローラデバイスから負荷ユニットへ制御信号を出力するための少なくとも1つの信号線を取り付けるための少なくとも1つの出力コネクタとを有し、前記コントローラデバイスは、前記HVAC&Rシステムの負荷ユニットに対するサーモスタット命令を遮断することが可能であり、さらに、b)負荷ユニットをパワーオンするための信号の送信を遅延させることが可能であり、また、選択され調整された空間温度変化を実現する遅延始動コントローラと、c)選択された電力需要を得るためにオン時間及びオフ時間を計算することが可能な需要調整器コントローラとを有し、
前記コントローラデバイスにおいて、冷却、冷凍又は暖房のための前記サーモスタットからの少なくとも1つのサーモスタット命令を遮断し、
前記電子コントローラによるアルゴリズムを前記遮断されたサーモスタット命令に適用することにより、出力信号として、調整された制御信号を生成し、あるいは、前記OEM信号を承認し、
前記負荷ユニットの動作を制御する負荷ユニットスイッチへ前記コントローラデバイスによって生成された前記出力信号を出力し、
e)前記エネルギー消費及び/又は需要消費の節約を推定するステップを備える。
14. 先の又は以下の実施形態/特徴/態様のいずれかの方法は、前記HVAC&Rシステムの前記負荷ユニットが、コンプレッサー、ブロワ、ガス式、オイル式又は電気式のヒーター、若しくは、ボイラによって構成される。
15. 先の又は以下の実施形態/特徴/態様のいずれかの方法は、前記HVAC&Rシステムの多重負荷ユニットが、前記電子コントローラによって同時に制御される。
本発明は、これらの様々な特徴、若しくは、上記及び/又は以下の文章及び/又は段落において明記された実施形態の組み合わせを含むことができる。ここに開示された特徴のいかなる組み合わせも本発明の一部とみなされ、組み合わせ可能な特徴に関して、限定することを意図していない。
本発明は、本発明の例示を目的とする次の実施例により、さらに明確になるであろう。

[実施例1]
性能は次のように評価された。単一サーモスタットを使用して、図9に示されたような1つのコンプレッサーを制御する単一ステージ冷却システムの動作のシミュレーションが、電子コントローラを備える場合、また、電子コントローラを備えない(OEM制御のみ)場合について、実施された。シミュレーションは、米国マサチューセッツ州ウェストフォードのヴィジュアルソリューションから入手したヴィスシムソフトウェアを用いて開発されたコンピュータモデル上で実行された。開発されたプログラムは、図3〜8に示したプロセス制御ロジックを利用する電子コントローラの動作と、単独で動作するOEMサーモスタット制御(電子コントローラを有しない)の動作とをシミュレーションするためのものである。改良されたモデルは、上述した単一ステージ冷却設定が行われ、あるいは、現地に独立のOEMサーモスタットを有する同一機器の動作から得られた実データに部分的に基づいている。シミュレーションモデルは、現地データと一致するように較正される。
要因設定値に従う電子コントローラの能力は、温度調整の観点から、図19に示された履歴グラフに表わされている。要因設定値は、最初に2.7に設定され、需要設定値は0.8に設定され、1時間当たり機器起動は7に設定される。2.7の要素設定値は、目的領域温度が2.7*2度=5.4度の不感帯を横切って変化すべきことを意味し、今回は、シミュレーションが行われる領域温度が68及び71.75度の間で変化し、3.75度の不感帯を受け入れ可能である。タイム10000秒において、要因設定値は、減少して1.5(3度の領域温度変化に相当し、シミュレーションされた変化は68から71度、つまり、3度であった)になり、その後に増大してタイム20000秒では2.7に戻り、その後に減少してタイム60000秒では1.5に戻った。これらの温度は、全て°Fを参照している。
需要設定値に従う電子コントローラの能力は、温度調整の観点から、図20に示された履歴グラフに表されている。需要設定値は、減少してタイム40000秒のときに60%になったが、その後に増加してタイム50000秒のときに80%まで戻った。需要設定値の追従は受け入れ可能であるが、タイム65000及び80000秒の間、「オン」及び「オフ」時間が動作の限定された状態(これらの限定は、可変であるが、機器へのダメージを防止するために実施されている)にあったため、需要設定値を補足することができなかった。また、タイム40000及び50000の間において、右上に時間履歴グラフが見られるように、需要設定値が減少しているので、温度について逆効果になっている。
需要設定値が減少しているので、当該機器は、低い頻度で動作し、空調スペースの温度は増加する。
図20は、DRコントローラの需要追従性能を示す。
図21に示したグラフは、DSコントローラによって算出された時間遅延(t遅延速度)、並びに、需要設定値及び要因設定値が変化したのでDRコントローラにより算出された「オン」及び「オフ」時間(tオン速度及びtオフ速度)が表されている。
時間当たりの機器起動は、図23に示した時間履歴において示される。時間当たりの起動は、タイム65000秒まで7回に固定され、そこで3回に減少され、その後、タイム80000秒のときに6回に戻る。コントローラは、許容された時間当たり機器起動の最大を超過しないように設計されている。
図22は、同一負荷状態における同一機器で動作するOEM制御と比較した本発明による制御下のコンプレッサー及びブロワのエネルギー消費を示している。
図23は、時間当たりのコンプレッサー起動を示しており、説明を要しない。
図24は、本発明の一例による電子コントローラを含むHVAC&Rシステムにおける負荷デバイスの図19に示されたシミュレーションによる制御に対し、類似する動作期間におけるOEMエネルギー要求の正規化された割合(%)として、エネルギー節約を示すグラフである。この図の場合のエネルギー節約は、約20%である。
本開示において引用される全ての文献の全内容は、それらの全体を参照してここに援用する。さらに、量、濃度、その他の値又はパラメータは、範囲、好ましい範囲、又は、上側の好適値及び下側の好適値のリストのいずれかとして与えられる。このことは、どの範囲が具体的に開示されているかに拘わらず、任意の上側の範囲限度又は好適値と、任意の下側の範囲限度又は好適値との任意のペアから形成される範囲の全てを開示していると理解されるべきである。ここに数値の範囲が開示されている場合、特に明記しない限り、その範囲は、端点を含み、また、その範囲内の全ての整数及び小数を含んでいる。範囲を定義するときに挙げられた具体的な数値へ発明の範囲を限定することは意図していない。
本発明の他の実施形態は、本明細書の考察、及び、ここに開示された本発明の実施によって、当業者には自明である。本明細書および実施例は、下記の特許請求の範囲及びその均等物によって示される発明の真の範囲及び精神のみを備えた例示として理解されることを意図している。

Claims (15)

  1. 暖房、換気、空調又は冷凍(HVAC&R)システムの自動制御用の電子コントローラデバイスにおいて、
    少なくとも1つのサーモスタット信号線を取り付けるための少なくとも1つの入力コネクタと、前記電子コントローラデバイスから負荷ユニットへ制御信号を出力するための少なくとも1つの信号線を取り付けるための少なくとも1つの出力コネクタとを備え、前記電子コントローラデバイスは、前記HVAC&Rシステムの負荷ユニットに対するサーモスタット命令を遮断することが可能であり、
    さらに、負荷ユニットをパワーオンするための信号の送信を遅延させることが可能であり、また、選択され調整された空間温度変化を実現する遅延起動コントローラと、
    選択された電力需要を得るためにオン時間及びオフ時間を計算することが可能な需要調整器コントローラとを備える電子コントローラデバイス。
  2. コンプレッサー、ブロワ又はヒーターの少なくとも1つに対するサーモスタット命令を遮断することが可能である請求項1に記載の電子コントローラデバイス。
  3. コンピュータ読取可能な記憶媒体と、プログラム可能なマイクロプロセッサと、リアルタイムクロックとを備え、前記遅延起動コントローラ及び需要調整器コントローラは、前記コンピュータ読取可能な記憶媒体にプログラムとして記録され、前記マイクロプロセッサにおいて実行可能であり、前記電子コントローラデバイスは、前記リアルタイムクロックを参照してOEMパワーオン時間を記録する請求項1に記載の電子コントローラデバイス。
  4. 前記遅延起動コントローラは、負荷ユニットを起動するための信号の送信を遅延させることが可能であり、サーモスタットのOEM温度不感帯設定は、OEM温度不感帯を置換する領域温度不感帯を求めるために、1以上である数値を有する選択された係数が乗算される請求項1に記載の電子コントローラデバイス。
  5. 前記需要調整器コントローラは、コントローラオフ時間値を固定値に設定することが可能であるとともに、100%及び0%の間の選択された電力需要設定値を満たすコントローラオン時間値を調整することが可能である請求項1に記載の電子コントローラデバイス。
  6. 少なくとも1つの超過時間コントローラ及び超過サイクルコントローラをさらに備える請求項1に記載の電子コントローラデバイス。
  7. 前記遅延起動コントローラ及び需要調整器コントローラと少なくとも部分的に協働して、前記電子コントローラデバイスによって遮断されたサーモスタット命令に対し、信号処理アルゴリズムのアプリケーションに少なくとも部分的に基づいて、制御信号を生成することが可能である信号生成器をさらに備える請求項1に記載の電子コントローラデバイス。
  8. 暖房、換気、空調又は冷凍ユニットと、前記HVAC&Rシステムのサーモスタット制御信号を遮断し、そこにアルゴリズムを適用して前記HVAC&Rシステムの負荷ユニットに対する出力制御信号を生成する請求項1の前記電子コントローラデバイスとを備える暖房、換気、空調又は冷凍(HVAC&R)システム。
  9. サーモスタットと、
    電子コントローラデバイスと、
    電力供給線に接続された少なくとも1つの負荷ユニットとを備え、
    前記電子コントローラデバイスは、a)少なくとも1つのサーモスタット信号線を取り付けるための少なくとも1つの入力コネクタと、前記電子コントローラデバイスから負荷ユニットへ制御信号を出力するための少なくとも1つの信号線を取り付けるための少なくとも1つの出力コネクタとを有し、前記電子コントローラデバイスは、暖房、換気、空調又は冷凍(HVAC&R)システムの負荷ユニットに対するサーモスタット命令を遮断することが可能であり、さらに、b)負荷ユニットをパワーオンするための信号の送信を遅延させることが可能であり、また、選択され調整された空間温度変化を実現する遅延起動コントローラと、c)選択された電力需要を得るためにオン時間及びオフ時間を計算することが可能な需要調整器コントローラとを有するHVAC&Rシステムの自動制御システム。
  10. 前記HVAC&Rシステムの多重負荷ユニットが、前記電子コントローラデバイスによって同時に制御される請求項9に記載のシステム。
  11. 前記遅延起動コントローラ及び需要調整器コントローラと少なくとも部分的に協働して、前記電子コントローラデバイスによって遮断されたサーモスタット命令に対し、信号処理アルゴリズムのアプリケーションに少なくとも部分的に基づいて、制御信号を生成することが可能である信号生成器をさらに備える請求項9に記載のシステム。
  12. 少なくとも前記遅延起動コントローラ及び前記需要調整器コントローラを組み込んだアルゴリズムは、前記サーモスタットのサーモスタットソフトウェア又はビル管理システム(BMS)ソフトウェアに加えられ、BMSが前記少なくとも1つの負荷ユニットに対し制御を提供する請求項9に記載のシステム。
  13. HVAC&Rシステムにおいて電気で駆動される少なくとも1つの負荷ユニットの電力使用及び/又は負荷需要並びに動作を自動的に制御及び管理する方法であって、
    負荷ユニットのためのサーモスタットと、前記負荷ユニットのための機器負荷制御スイッチとの間の制御信号線に電子コントローラデバイスを電気的に接続し、前記電子コントローラデバイスは、a)少なくとも1つのサーモスタット信号線を取り付けるための少なくとも1つの入力コネクタと、前記電子コントローラデバイスから負荷ユニットへ制御信号を出力するための少なくとも1つの信号線を取り付けるための少なくとも1つの出力コネクタとを有し、前記電子コントローラデバイスは、前記HVAC&Rシステムの負荷ユニットに対するサーモスタット命令を遮断することが可能であり、さらに、b)負荷ユニットをパワーオンするための信号の送信を遅延させることが可能であり、また、選択され調整された空間温度変化を実現する遅延起動コントローラと、c)選択された電力需要を得るためにオン時間及びオフ時間を計算することが可能な需要調整器コントローラとを有し、
    前記電子コントローラデバイスにおいて、冷却、冷凍又は暖房のための前記サーモスタットからのOEM信号を構成する少なくとも1つのサーモスタット命令を遮断し、
    前記電子コントローラデバイスによるアルゴリズムを前記遮断されたサーモスタット命令に適用することにより、出力信号として、調整された制御信号を生成し、あるいは、前記OEM信号を承認し、
    前記負荷ユニットの動作を制御する負荷ユニットスイッチへ前記電子コントローラデバイスによって生成された前記出力信号を出力し、
    e)エネルギー消費及び/又は需要消費の節約を推定するステップを備えた方法。
  14. 前記HVAC&Rシステムの前記負荷ユニットは、コンプレッサー、ブロワ、ガス式、オイル式又は電気式のヒーター、若しくは、ボイラによって構成される請求項13に記載の方法。
  15. 前記HVAC&Rシステムの多重負荷ユニットは、前記電子コントローラデバイスによって同時に制御される請求項13に記載の方法。
JP2016502350A 2013-03-15 2014-03-14 Hvac&rシステムの自動制御用の電子コントローラデバイス並びにそれを使用するhvac&rシステム及び方法 Active JP6532453B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361799804P 2013-03-15 2013-03-15
US61/799,804 2013-03-15
PCT/US2014/027152 WO2014152276A1 (en) 2013-03-15 2014-03-14 Controller for automatic control of duty cycled hvac&r equipment, and systems and methods using same

Publications (2)

Publication Number Publication Date
JP2016521341A JP2016521341A (ja) 2016-07-21
JP6532453B2 true JP6532453B2 (ja) 2019-06-19

Family

ID=51581171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016502350A Active JP6532453B2 (ja) 2013-03-15 2014-03-14 Hvac&rシステムの自動制御用の電子コントローラデバイス並びにそれを使用するhvac&rシステム及び方法

Country Status (10)

Country Link
US (1) US10782032B2 (ja)
EP (1) EP2972635A4 (ja)
JP (1) JP6532453B2 (ja)
KR (1) KR20160042810A (ja)
CN (1) CN105393182B (ja)
AU (1) AU2014240001B2 (ja)
BR (1) BR112015023182B1 (ja)
CA (1) CA2910248C (ja)
MX (1) MX2015012279A (ja)
WO (1) WO2014152276A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181957B (zh) * 2014-01-22 2017-08-25 漳州灿坤实业有限公司 一种电加热控制系统和使用该系统设计的电子感温棒
WO2016064780A1 (en) * 2014-10-20 2016-04-28 Pacecontrols Llc Method for demand control of duty cycled hvac&r equipment, and controllers and systems for same
WO2016064782A1 (en) * 2014-10-20 2016-04-28 Pacecontrols Llc Method for short on cycle protection of duty cycled hvac&r equipment under interventive automatic control, and controllers and systems for same
US10605474B2 (en) * 2015-07-30 2020-03-31 Encycle Corporation Smart thermostat orchestration
CN105990343B (zh) * 2015-02-13 2019-10-08 上海华力微电子有限公司 具有用于嵌入锗材料的成形腔的半导体器件及其双沟槽制造工艺
US10151506B2 (en) 2015-07-02 2018-12-11 Pacecontrols, Llc Method, controllers, and systems for energy control and savings estimation of duty cycled HVAC and R equipment
KR20180100230A (ko) 2016-01-12 2018-09-07 옵티멈 에너지 엘엘씨 예측적 자유-냉각
US10295212B2 (en) * 2016-08-04 2019-05-21 Eaton Intelligent Power Limited Load control system and method for regulating power supply to a thermostat
BR102016024765B1 (pt) * 2016-10-24 2023-10-10 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Sistema e método de alimentação elétrica e controle eletrônico de um compressor de capacidade variável incorporado a um refrigerador
EP3343717A1 (en) * 2016-12-27 2018-07-04 Vito NV Hierarchical implicit controller for shielded system in a grid
US10940739B2 (en) * 2017-10-26 2021-03-09 RB Distribution, Inc. Programmable climate controller for a vehicle
US11041644B2 (en) * 2018-05-16 2021-06-22 Distech Controls Inc. Method and environment controller using a neural network for bypassing a legacy environment control software module
US10848565B1 (en) * 2019-05-10 2020-11-24 Johnson Controls Technology Company Systems and methods for distributed controls via edge devices
CN111716991B (zh) * 2020-05-29 2022-03-25 东风汽车集团有限公司 一种空调参数自适应标定方法及系统
EP4209112A1 (en) * 2020-09-04 2023-07-12 Watlow Electric Manufacturing Company Method and system for controlling an electric heater using control on energy

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3478808A (en) * 1964-10-08 1969-11-18 Bunker Ramo Method of continuously casting steel
GB2043371B (en) 1979-02-21 1983-05-25 South Eastern Elec Board Load shedding
US4476423A (en) * 1983-04-20 1984-10-09 Westinghouse Electric Corp. Motor control apparatus with motor starts per time period limiter
US4847781A (en) 1986-09-23 1989-07-11 Associated Data Consoltants Energy management system
US5687139A (en) 1987-03-23 1997-11-11 Budney; Stanley M. Electrical load optimization device
US5426620A (en) 1987-03-23 1995-06-20 Budney; Stanley M. Method for controlling and managing load demand
US4977515A (en) 1988-08-29 1990-12-11 Rudden Frank G Load management device and method of use
US5168170A (en) 1989-09-07 1992-12-01 Lexington Power Management Corporation Subscriber electric power load control system
JP2892717B2 (ja) 1989-11-15 1999-05-17 株式会社日立製作所 電力開閉制御装置
US5037291A (en) * 1990-07-25 1991-08-06 Carrier Corporation Method and apparatus for optimizing fuel-to-air ratio in the combustible gas supply of a radiant burner
US5323307A (en) 1990-11-29 1994-06-21 Square D Company Power management and automation system
US5198809A (en) 1991-02-22 1993-03-30 James L. Day Co. Inc. Hard wired programmable controller especially for heating ventilating and air conditioning (HVAC systems)
JPH0557945A (ja) 1991-05-09 1993-03-09 Seiko Epson Corp 発熱体通電制御回路
US5231565A (en) 1991-06-28 1993-07-27 Square D Company Electrical distribution system having mappable control inputs
US5253159A (en) 1991-06-28 1993-10-12 Square D Company Electrical distribution system having controller responsive to multiple command paths
US5455760A (en) 1991-06-28 1995-10-03 Square D Company Computer-controlled circuit breaker arrangement with circuit breaker having identification circuit
US5203179A (en) 1992-03-04 1993-04-20 Ecoair Corporation Control system for an air conditioning/refrigeration system
US5761083A (en) 1992-03-25 1998-06-02 Brown, Jr.; Robert J. Energy management and home automation system
US5261247A (en) 1993-02-09 1993-11-16 Whirlpool Corporation Fuzzy logic apparatus control
DE4334488C2 (de) 1993-10-09 1996-06-20 Priesemuth W Verfahren und Vorrichtung zur Reduzierung der Spitzenbelastung elektrischer Energienetze und Energieerzeuger
US5455469A (en) 1993-10-12 1995-10-03 Watsco Components, Inc. Comparator controlled delay-on-break devices
US5611484A (en) 1993-12-17 1997-03-18 Honeywell Inc. Thermostat with selectable temperature sensor inputs
CA2127928A1 (en) 1994-07-13 1996-01-14 Gaston Lefebvre Electrical load controller to regulate power consumption
JP3186938B2 (ja) 1994-12-12 2001-07-11 富士通株式会社 外部電源オン/オフ制御システム
US5615829A (en) 1995-06-06 1997-04-01 Honeywell Inc. Air conditioning system thermostat having adjustable cycling rate
US5735134A (en) 1996-05-30 1998-04-07 Massachusetts Institute Of Technology Set point optimization in vapor compression cycles
US5669222A (en) 1996-06-06 1997-09-23 General Electric Company Refrigeration passive defrost system
US5953226A (en) 1996-12-05 1999-09-14 Square D Company Control system having an application function with integrated self diagnostics
US5996361A (en) 1998-04-27 1999-12-07 General Electric Company Refrigeration system
US6196468B1 (en) 1998-07-24 2001-03-06 Dennis Guy Young Air conditioning and heating environmental control sensing system
US6179213B1 (en) * 1999-02-09 2001-01-30 Energy Rest, Inc. Universal accessory for timing and cycling heat, ventilation and air conditioning energy consumption and distribution systems
US6528957B1 (en) 1999-09-08 2003-03-04 Lutron Electronics, Co., Inc. Power/energy management control system
US20010048030A1 (en) 2000-01-07 2001-12-06 Sharood John N. Retrofit damper system
JP2002118961A (ja) 2000-10-04 2002-04-19 Sanyo Electric Co Ltd 電力負荷管理システム
WO2002049181A1 (fr) 2000-12-12 2002-06-20 Kabushiki Kaisha Yamatake Controleur d'etat
US6675591B2 (en) 2001-05-03 2004-01-13 Emerson Retail Services Inc. Method of managing a refrigeration system
US6658373B2 (en) 2001-05-11 2003-12-02 Field Diagnostic Services, Inc. Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US6832135B2 (en) 2001-07-10 2004-12-14 Yingco Electronic Inc. System for remotely controlling energy distribution at local sites
US6799091B2 (en) 2001-10-19 2004-09-28 James Alfred Bradford Electrical energy control system
WO2003058788A1 (en) * 2001-12-21 2003-07-17 Caltek Corporation Miniaturized motor overload protector
JP3897612B2 (ja) 2002-02-26 2007-03-28 キヤノン株式会社 節電管理システム
US20030171851A1 (en) 2002-03-08 2003-09-11 Peter J. Brickfield Automatic energy management and energy consumption reduction, especially in commercial and multi-building systems
US7110832B2 (en) 2002-03-22 2006-09-19 Whirlpool Corporation Energy management system for an appliance
JP2003307331A (ja) * 2002-04-15 2003-10-31 Yamatake Corp 空調設備の運転制御装置
EP1367685A1 (en) 2002-05-31 2003-12-03 Whirlpool Corporation Electronic system for power consumption management of appliances
US6975926B2 (en) 2002-11-08 2005-12-13 Usa Technologies, Inc. Method and apparatus for power management control of a compressor-based appliance that reduces electrical power consumption of an appliance
WO2004068614A2 (en) 2003-01-24 2004-08-12 Tecumseh Products Company Integrated hvacr control and protection system
US7392661B2 (en) * 2003-03-21 2008-07-01 Home Comfort Zones, Inc. Energy usage estimation for climate control system
JP2005003329A (ja) 2003-06-13 2005-01-06 Ionasu Technologies:Kk 温度調節機の電力制御方法及び装置
US7010363B2 (en) 2003-06-13 2006-03-07 Battelle Memorial Institute Electrical appliance energy consumption control methods and electrical energy consumption systems
US7149605B2 (en) 2003-06-13 2006-12-12 Battelle Memorial Institute Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices
US7242114B1 (en) 2003-07-08 2007-07-10 Cannon Technologies, Inc. Thermostat device with line under frequency detection and load shedding capability
US7055759B2 (en) 2003-08-18 2006-06-06 Honeywell International Inc. PDA configuration of thermostats
US7669061B2 (en) 2003-10-06 2010-02-23 Power Monitors, Inc. System and method for providing for remote monitoring and controlling of voltage power transmission and distribution devices
US20050087616A1 (en) * 2003-10-17 2005-04-28 Attridge Russell G. Thermal balance temperature control system
US7177728B2 (en) 2003-12-30 2007-02-13 Jay Warren Gardner System and methods for maintaining power usage within a set allocation
US7152415B2 (en) 2004-03-18 2006-12-26 Carrier Commercial Refrigeration, Inc. Refrigerated compartment with controller to place refrigeration system in sleep-mode
US7264175B2 (en) 2004-07-01 2007-09-04 Honeywell International Inc. Thermostat with parameter adjustment
US7809472B1 (en) * 2004-07-06 2010-10-05 Custom Manufacturing & Engineering, Inc. Control system for multiple heating, ventilation and air conditioning units
JP4758716B2 (ja) 2005-09-16 2011-08-31 株式会社タムラ製作所 加熱装置の制御方法
US7394217B2 (en) 2005-12-27 2008-07-01 Standard Microsystems Corporation Dynamic hysteresis for autofan control
ES2569495T3 (es) 2006-02-15 2016-05-11 Mitsubishi Denki Kabushiki Kaisha Sistema estabilizador de sistema de energía
JP5114026B2 (ja) 2006-06-28 2013-01-09 三洋電機株式会社 デマンド制御装置
US20080083834A1 (en) * 2006-10-04 2008-04-10 Steve Krebs System and method for selecting an operating level of a heating, ventilation, and air conditioning system
BE1017362A3 (nl) * 2006-11-10 2008-07-01 Atlas Copco Airpower Nv Werkwijze voor het koeldrogen.
EP2137471B1 (en) 2006-12-29 2018-06-13 Carrier Corporation Air-conditioning control algorithm employing air and fluid inputs
US7653443B2 (en) 2007-03-01 2010-01-26 Daniel Flohr Methods, systems, circuits and computer program products for electrical service demand management
US8740100B2 (en) * 2009-05-11 2014-06-03 Ecofactor, Inc. System, method and apparatus for dynamically variable compressor delay in thermostat to reduce energy consumption
US8483850B2 (en) * 2009-05-21 2013-07-09 Lennox Industries Inc. HVAC system, a method for determining a location of an HVAC unit with respect to a site and an HVAC controller
JP5840136B2 (ja) * 2009-11-18 2016-01-06 ペースコントロールズ,エルエルシー デューティサイクル化されたhvac&r機器の自動制御及び最適化のためのコントローラー、並びに該コントローラーを用いるシステム及び方法
US9219365B2 (en) * 2010-08-26 2015-12-22 Oscar E. Ontiveros Controller for reducing electricity demand spikes
US20120047921A1 (en) 2010-11-22 2012-03-01 General Electric Company Dsm enabling of electro mechanically controlled refrigeration systems
US9851728B2 (en) * 2010-12-31 2017-12-26 Google Inc. Inhibiting deleterious control coupling in an enclosure having multiple HVAC regions
KR20160042809A (ko) 2013-03-15 2016-04-20 페이스컨트롤스, 엘엘씨 통합 hvacr 및 다른 에너지 효율 및 수요 반응에 대한 시스템 및 장치
US9377210B2 (en) * 2013-12-19 2016-06-28 Emerson Electric Co. HVAC communication bus decoders and corresponding methods

Also Published As

Publication number Publication date
BR112015023182A2 (pt) 2017-07-18
CA2910248C (en) 2022-07-19
BR112015023182B1 (pt) 2022-03-29
KR20160042810A (ko) 2016-04-20
AU2014240001B2 (en) 2017-07-27
EP2972635A4 (en) 2016-11-23
CN105393182A (zh) 2016-03-09
WO2014152276A1 (en) 2014-09-25
CA2910248A1 (en) 2014-09-25
CN105393182B (zh) 2020-04-14
EP2972635A1 (en) 2016-01-20
US20160018126A1 (en) 2016-01-21
AU2014240001A1 (en) 2015-11-05
MX2015012279A (es) 2016-04-15
JP2016521341A (ja) 2016-07-21
US10782032B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
JP6532453B2 (ja) Hvac&rシステムの自動制御用の電子コントローラデバイス並びにそれを使用するhvac&rシステム及び方法
US10151506B2 (en) Method, controllers, and systems for energy control and savings estimation of duty cycled HVAC and R equipment
US11118590B2 (en) Adaptive control for motor fan with multiple speed taps
US6860431B2 (en) Strategic-response control system for regulating air conditioners for economic operation
US7489988B2 (en) Generator control system, generating apparatus control method, program and record medium
US8943845B2 (en) Window air conditioner demand supply management response
US10012407B2 (en) Heating controls and methods for an environmental control system
US7992630B2 (en) System and method for pre-cooling of buildings
JP5296369B2 (ja) Hvac(暖房、換気および空調)システム
CA2885868C (en) Radiant heating controls and methods for an environmental control system
US20120247748A1 (en) Air control system
JP2004301505A (ja) 空調制御装置
CN103047740A (zh) 一种空调系统减小水流量的方法及动态温差流量调节阀
US20220228765A1 (en) Proactive system control using humidity prediction
US20130036756A1 (en) Methods and systems for controlling a motor
CN114110932A (zh) 外风机风量的调整方法、装置、空调外机和空调
CN103765115A (zh) 带有目标供电管理的供热、通风和/或空调装置
JP2021156474A (ja) 電力量推定装置および電力量推定プログラム
WO2016064782A1 (en) Method for short on cycle protection of duty cycled hvac&r equipment under interventive automatic control, and controllers and systems for same
WO2016064780A1 (en) Method for demand control of duty cycled hvac&r equipment, and controllers and systems for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190521

R150 Certificate of patent or registration of utility model

Ref document number: 6532453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250