JP6524817B2 - 経路制御装置、経路制御システムおよび経路制御方法 - Google Patents

経路制御装置、経路制御システムおよび経路制御方法 Download PDF

Info

Publication number
JP6524817B2
JP6524817B2 JP2015124692A JP2015124692A JP6524817B2 JP 6524817 B2 JP6524817 B2 JP 6524817B2 JP 2015124692 A JP2015124692 A JP 2015124692A JP 2015124692 A JP2015124692 A JP 2015124692A JP 6524817 B2 JP6524817 B2 JP 6524817B2
Authority
JP
Japan
Prior art keywords
router
route
information processing
communication
traffic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015124692A
Other languages
English (en)
Other versions
JP2017011480A (ja
Inventor
辰哉 村松
辰哉 村松
幹夫 小曽根
幹夫 小曽根
健哉 森
健哉 森
竜貴 相磯
竜貴 相磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015124692A priority Critical patent/JP6524817B2/ja
Publication of JP2017011480A publication Critical patent/JP2017011480A/ja
Application granted granted Critical
Publication of JP6524817B2 publication Critical patent/JP6524817B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Description

本発明は、経路制御装置、経路制御システムおよび経路制御方法に関する。
コンピュータネットワークにおいて、通信経路を制御する経路制御装置が用いられている。経路制御装置は、例えば、ルータまたはL3スイッチである。経路制御装置は、情報処理装置間の通信経路が登録されたルーティングテーブルを有する。経路制御装置は、ルーティングテーブルに登録された通信経路にしたがって、情報処理装置間の通信を中継する。
コンピュータネットワークでは、経路制御装置と情報処理装置との間の通信経路を冗長化させることがある。通信経路が冗長化されることで、経路制御装置は、通信経路の一部に障害が発生した場合でも、情報処理装置との通信経路を障害が発生していない他の通信経路に切り替えることで、当該障害の発生した箇所を迂回することができる。経路制御装置は、例えば、リンクダウンによって通信経路の障害を検知する。経路制御装置は、障害を検知する他の方法として、例えば、通信経路の疎通を確認するパケットを所定間隔で送信することで、通信経路の障害を検知する(例えば、特許文献1参照)。
特開平9−8847号公報
ところで、障害が発生した箇所と経路制御装置との間に、スイッチングハブ等の他の通信装置が存在する場合がある。このような場合、当該他の通信装置は障害によるリンクダウンが生ずる。しかしながら、経路制御装置は、当該障害の発生した箇所との間に他の通信装置が介在しているため、当該障害によるリンクダウンを検知できない。そのため、経路制御装置はリンクダウンによって通信経路の障害を検知できない。その結果、経路制御装置は、障害の発生した箇所を迂回する迂回経路に通信経路を切り替えることができない。このような場合でも、経路制御装置は、所定間隔で送信されるパケットによって疎通確認を行う方法によれば通信経路の障害を検知できる。しかしながら、所定間隔で疎通確認のためのパケットを送信すると、情報処理装置間の通信とは異なる余分なトラフィックが通信経路上に流れることになる。
そこで、開示の技術の1つの側面は、余分なトラフィックを流さずに通信経路上の障害箇所を迂回できる経路制御装置を提供することを課題とする。
開示の技術の1つの側面は、次のような経路制御装置によって例示される。本経路制御装置は、情報処理装置への通信経路が冗長化されたネットワークの経路制御を行う経路制御装置であって、検知部、計測部、疎通確認部および制御部を備える。検知部は、経路制御装置を経由して情報処理装置へ向かう第1のトラフィックを検知する。計測部は、検知からの経過時間を計測する。疎通確認部は、経過時間が情報処理装置への通信経路に障害が発生したと判定する所定時間を超えるまでの間に情報処理装置からの第2のトラフィックが検知されない場合、情報処理装置へ疎通確認を行うリクエストを送信し、リクエストの応答の有無を判定する。制御部は、リクエストの応答が無いと判定された場合、情報処
理装置への通信経路を迂回経路に切り替える。
本経路制御装置は、余分なトラフィックを流さずに通信経路上の障害箇所を迂回できる。
図1は、第1比較例に係る内部ネットワークの一例を示す図である。 図2は、ルータに登録されているルーティングテーブルの一例を示す図である。 図3は、ルートの情報源とAdministrative Distance(AD)値との対応の一例を示す図である。 図4は、ルータの冗長化を行うプロトコルであるVRRPの動作を説明する図の一例である。 図5は、ルータ間の通信経路上に障害が発生した内部ネットワークの一例を示す図である。 図6は、通信経路上に障害が発生していない場合の内部ネットワークにおける通信経路の一例を示す図である。 図7は、ルータとL2スイッチとの間で障害が発生した内部ネットワークの一例を示す図である。 図8は、L2スイッチ間で障害が発生した内部ネットワークの一例を示す図である。 図9は、第2比較例に係る内部ネットワークの一例を示す図である。 図10は、L2スイッチ間で障害が発生した内部ネットワークの一例を示す図である。 図11は、ルータとL2スイッチとの間のリンクをリンクダウンさせた内部ネットワークの一例を示す図である。 図12は、第1実施形態に係る内部ネットワークの一例を示す図である。 図13は、情報処理装置のハードウェア構成の一例を示す図である。 図14は、ルータの処理ブロックの一例を示す図である。 図15は、下りトラフィックを監視するトラフィック監視部の処理の流れの一例を示すフローチャートである。 図16は、トラフィックデータベース部に登録されている宛先情報の一例を示す図である。 図17は、上りトラフィックを監視するトラフィック監視部の処理の流れの一例を示すフローチャートである。 図18は、経路迂回制御部の処理の流れの一例を示すフローチャートである。 図19は、スタティックルートが追加されたルーティングテーブルの一例を示す図である。 図20は、ルータからサーバへの通信経路に障害が発生していない内部ネットワークの一例を示す図である。 図21は、何らかの原因によってサーバからの上りトラフィックが検知されない内部ネットワークの一例を示す図である。 図22は、ARP要求の応答が確認された内部ネットワークの一例を示す図である。 図23は、ARP要求の応答が確認されない内部ネットワークの一例を示す図である。 図24は、迂回経路に切り替えられた後の内部ネットワークの一例を示す図である。 図25は、L2スイッチ間の障害が復旧した内部ネットワークの一例を示す図である。
以下、図面を参照して、一実施形態に係るルータについて説明する。以下に示す実施形態の構成は例示であり、開示の技術は実施形態の構成に限定されない。
<第1比較例>
図1は、第1比較例に係る内部ネットワーク500の一例を示す図である。内部ネットワーク500は、ルータ520a、520b、L2スイッチ530a、530b、サーバ540を含む。内部ネットワーク500では、2台のルータ520a、520bおよび2台のL2スイッチ530a、530bによって、外部ネットワーク510とサーバ540との間の通信経路が冗長化されている。以下、本明細書において、通信経路はルートとも称する。
外部ネットワーク510は、内部ネットワーク500の外部のネットワークであり、例えば、インターネットである。ルータ520a、520bは、内部ネットワーク500の通信経路を制御する経路制御装置である。ルータ520aのポートP1は、L2スイッチ530aに接続されている。ルータ520aのポートP2は、ルータ520bに接続されている。ルータ520bは、L2スイッチ530bと接続されている。ルータ520a、520bを総称して、ルータ520と称する。ルータ520は、通信経路の経路情報が登録されたテーブルであるルーティングテーブルを有する。ルータ520は、ルーティングテーブルに登録された経路情報にしたがって、経路制御を行う。経路制御は、ルーティングとも称する。ルータ520は、内部ネットワーク500のゲートウェイとして外部ネットワーク510と接続されている。ルータ520は、リンクダウンによって通信経路上の障害を検知する。ルータ520は、例えば、ルータの冗長化に用いられるプロトコルである仮想ルータ冗長プロトコル(Virtual Router Redundancy Protocol、VRRP)によって、冗長構成となっている。冗長構成とされたルータ520のうち、ルータ520aはアクティブ状態のマスタールータ、ルータ520bはスタンバイ状態のバックアップルータとなっている。
L2スイッチ530a、530bは、コンピュータネットワークの通信を中継するスイッチングハブである。L2スイッチ530aおよびL2スイッチ530bは、互いに接続されている。L2スイッチ530a、530bを総称して、L2スイッチ530と称する。L2スイッチ530は、MACアドレスによる経路制御を行う事が可能である。なお、図中では、L2スイッチ530に接続されているサーバは1台のサーバ540である。しかしながら、L2スイッチ530に接続されるサーバは、1台のサーバ540に限定されるわけではない。L2スイッチ530には、複数台のサーバが接続されてもよいし、サーバ以外の情報処理装置が接続されてもよい。
サーバ540は、情報処理装置である。サーバ540は、外部ネットワークを介して図示しないクライアント端末からの要求に応答して様々なサービスを提供する。サーバ540は、例えば、ウェブサーバ、メールサーバまたはネームサーバである。サーバ540は、NIC#1およびNIC#2の2つのNetwork Interface Card(NIC)を有する。NIC#1は、L2スイッチ530aに接続されている。NIC#2は、L2スイッチ530bに接続されている。サーバ540のNICはNIC#1およびNIC#2によって冗長化されている。NIC#1がスタンバイ状態のNICであり、NIC#2がアクティブ状態のNICである。以下、図中において、アクティブ状態のNICには「A」、スタンバイ状態のNICには「S」の表記を付記する。なお、サーバ540の台数に限定は無い。サーバ540は、1台であっても複数台であってもよい。
図2は、ルーティングテーブルの一例を示す図である。図2では、ルータにおいて、ルーティングテーブルを出力するコマンドの実行結果の一例が示されている。なお、図2に例示されるルーティングテーブルは、ルータ520に登録されているルーティングテーブルとはアドレス体系が異なっている。図2の上側は、コマンドの実行結果の凡例が記載されている。図2の下側4行は、ルーティングテーブルに登録された通信経路の情報が各行に一つずつ記載されている。通信経路の情報のうち、左端の項目には、当該通信経路の情報の情報源が記載されている。例えば、(2)で示される通信経路は、凡例を参照すると、staticとなっている。すなわち、(2)で示される通信経路は、ルーティングテーブルにスタティックルートとして設定されたものである。通信経路の情報のうち、左から2番目の項目には、宛先のIPアドレスが記載されている。
図3は、ルートの情報源とAdministrative Distance(AD)値との対応の一例を示す
図である。AD値とは、ルートの情報源の信頼度の高さを示す値である。AD値の小さいルートの情報源ほど、信頼度が高いと判定される。図3の左から1列目には、ルートの情報の情報源が記載されている。図3の左から2列目には、左から1列目に記載された情報源に対応するAD値が記載されている。図3の左から3列目には、通信経路の情報の情報源が記載されている。図3の左から4列目には、左から3列目に記載された情報源に対応するAD値が記載されている。例えば、ルートの情報源がOSPFの場合、AD値は110となる。
図2および図3を参照して、ルータによるルーティングについて説明する。ルータは、ルータ等を含む他の経路制御装置との間で、各種ルーティングプロトコルによってルーティングテーブルに登録された通信経路の経路情報を交換する。ルーティングプロトコルは、Open Shortest Path First(OSPF)、Internal Border Gateway Protocol(IBGP)およびRouting Information Protocol(RIP)を含む。ルータは、同一の宛先に対しての通信
経路がルーティングテーブルに複数登録されている場合、ロンゲストマッチ、AD値、メトリックの優先順位で使用する通信経路を選択する。ロンゲストマッチによる選択では、複数の通信経路のうち、最もプレフィックス長が長い通信経路が選択される。AD値による選択では、より信頼度の高い情報源から入手されたルートが選択される。すなわち、AD値による選択では、よりAD値が低い通信経路が選択される。メトリックは、通信経路のコストを示す値である。メトリックは、例えば、宛先までに経由するルータの数である。メトリックによる選択では、複数の通信経路のうち、よりメトリックの低い通信経路が選択される。
図2を参照すると、ルータからIPアドレス192.168.2.2の情報処理装置への通信経路
は、(1)で示される通信経路と、(2)で示される通信経路の2通りあることがわかる。(1)で示される通信経路のプレフィックス値は、24ビットである。また、(2)で示される通信経路のプレフィックス値は、32ビットである。したがって、(2)で示される通信経路の方が、(1)で示される通信経路よりもプレフィックス長が長い。そのため、ルータ520は、ロンゲストマッチによって(1)で示される通信経路を選択する。
図4は、ルータの冗長化を行うプロトコルであるVRRPの動作を説明する図の一例である。図4を参照して、VRRPについて説明する。VRRPは、複数のルータを一つの仮想ルータとして扱う。仮想ルータには、仮想IPアドレスおよび仮想MACアドレスが割り当てられる。VRRPでは、複数のルータを含む仮想ルータを作成することで、ルータの冗長化が図られる。図4では、ルータ520aは、VRRPグループが4、VRRPプライオリティ値が105に設定されている。ルータ520bは、VRRPグループが4、VRRPプライオリティ値が100に設定されている。同一のVRRPグループに属するルータ520aおよびルータ520bによって、VRRPによる仮想ルータは作成される。まず、ルータ520aおよびルータ52
0bは、自身のVRRPプライオリティ値を含むアドバタイズメントを交換する。その結果、VRRPプライオリティ値が大きい値になっているルータ520aがマスタールータとなり、ルータ520bは、バックアップルータとなる。その後、マスタールータとなったルータ520aは、バックアップルータとなったルータ520bに対してアドバタイズメントを断続的に送信する。断続的に送信されるアドバタイズメントによって、バックアップルータであるルータ520bは、マスタールータであるルータ520aの稼働を確認できる。ここで、ルータ520aおよびルータ520bを含む仮想ルータには、例えば、仮想IPアドレスとして3.3.3.1、仮想MACアドレスとして0000.5E00.0104が割り当てられてい
る。
サーバ540からIPアドレス3.3.3.1宛てにAddress Resolution Protocol(ARP)要求がなされると、マスタールータとなっているルータ520aが当該ARP要求に応答する。そのため、サーバ540から外部ネットワーク510宛ての通信は、ルータ520aを経由する。
図5は、ルータ520aとルータ520bとの間の通信経路上に障害が発生した内部ネットワーク500の一例を示す図である。ルータ520aとルータ520bとの間の通信経路上の障害により、ルータ520aから送信されたアドバタイズメントがルータ520bに届かない。そのため、ルータ520bは、ルータ520aに障害があったと判定する。その結果、ルータ520bは、マスタールータとして稼働を開始する。マスタールータとして稼働を開始したルータ520bは、ルータ520aに対してアドバタイズメントを送信する。すなわち、障害が発生した状態では、ルータ520aおよびルータ520bの双方がマスタールータとしてアドバタイズメントを送信する。しかしながら、障害が継続している間、このアドバタイズメントは、宛先に到達しない。
障害が復旧すると、ルータ520aおよびルータ520bによって送信されたアドバタイズメントが宛先に到達する。その結果、VRRPプライオリティ値が大きい値に設定されているルータ520aがマスタールータとなり、ルータ520bがバックアップルータになる。以上説明したような仕組みにより、VRRPはルータの冗長化を実現する。
図6は、通信経路上に障害が発生していない場合の内部ネットワーク500における通信経路の一例を示す図である。図6の下方に記載されている表は、ルータ520aに登録されているルーティングテーブルの一例である。なお、本明細書において、外部ネットワーク510から内部ネットワーク500へ向かうトラフィックを下りトラフィック、内部ネットワーク500から外部ネットワーク510へ向かうトラフィックを上りトラフィックと称する。
図6に例示されるルーティングテーブルには、IPアドレス3.3.3.3であるサーバ54
0への通信経路として、ルータ520aのポートP1からL2スイッチ530aを経由する通信経路と、ルータ520aからルータ520bを経由する通信経路とが登録されている。この2つの通信経路では、宛先のプレフィックス長がいずれも24ビットである。そのため、ルータ520aは、ロンゲストマッチでは通信経路を選択できない。そこで、ルータ520aは、ロンゲストマッチの次に優先順位の高い通信経路の選択方法であるAD値による通信経路の選択を行う。ここで、図3に一例を示すAD値を参照すると、情報源「Connected(図3の接続されているインタフェースに対応)」の方が「IBGP」よりも優先度が
高い。すなわち、ルータ520aは、ポートP1からL2スイッチ530aを経由する通信経路によってサーバ540と通信を行う。そのため、図6に一例を示すように、下りトラフィックは、外部ネットワーク510、ルータ520a、L2スイッチ530a、L2スイッチ530bを経由してサーバ540のNIC#2に到達する。また、上りトラフィックは、サーバ540のNIC#2、L2スイッチ530b、L2スイッチ530a、ル
ータ520aを経由して、外部ネットワーク510に到達する。
図7は、ルータ520aとL2スイッチ530aとの間で障害が発生した内部ネットワーク500の一例を示す図である。ルータ520aは、L2スイッチ530aとのリンクダウンによって当該障害を検知する。障害を検知したルータ520aは、障害の発生した経路であるポートP1からL2スイッチ530aを経由する通信経路をルーティングテーブルから削除する。その結果、ルータ520aは、サーバ540との通信経路を情報源「IBGP」から入手した経路である、ポートP2からルータ520bを経由する迂回経路に切り替える。すなわち、図7に一例を示すように、迂回経路における下りトラフィックは、外部ネットワーク510、ルータ520a、ルータ520b、L2スイッチ530bを経由してサーバ540のNIC#2に到達する。また、迂回経路における上りトラフィックは、サーバ540のNIC#2、L2スイッチ530b、ルータ520b、ルータ520aを経由して、外部ネットワーク510に到達する。
図8は、L2スイッチ530aとL2スイッチ530bとの間で障害が発生した内部ネットワーク500の一例を示す図である。図8の下方に記載されている表は、ルータ520aに登録されているルーティングテーブルの一例である。この場合、ルータ520aとL2スイッチ530aとの間の接続はリンクダウンしない。そのため、ルータ520aはこの障害を検知できず、外部ネットワーク510からのサーバ540へのトラフィックをL2スイッチ520aを経由して中継しようとする。そのため、外部ネットワーク510からのトラフィックがサーバ540に到達しない。このような場合、内部ネットワーク500の管理者が、Simple Network Management Protocol(SNMP)等によって、L2スイッチ530aとL2スイッチ530bとの間の障害を検知する。障害を検知した内部ネットワーク500の管理者は、障害箇所を迂回する迂回経路をルータ520aのルーティングテーブルに登録する。すなわち、内部ネットワーク500の管理者は、ルータ520aからサーバ540への通信経路を、ルータ520a、ルータ520b、L2スイッチ530b、サーバ540のNIC#2となるように設定する。
第1比較例では、ルータ520は、リンクダウンによって通信経路上の障害を検知した。そのため、ルータ520と障害が発生した箇所との間にL2スイッチ530のような通信機器が存在すると、ルータ520は、当該障害を検知できない虞がある。そのため、ルータ520は、障害の発生した通信経路を選択してサーバ540との通信を行おうとする。その結果、第1比較例では、サーバ540との通信ができなくなる虞がある。
<第2比較例>
第1比較例では、L2スイッチ530aとL2スイッチ530bとの間で障害が発生すると、管理者が当該障害箇所を迂回する迂回経路をルーティングテーブルに追加した。第2比較例では、ルータ520aとL2スイッチ530aとの間のリンクをリンクダウンさせることで、障害箇所を迂回する。図9は、第2比較例に係る内部ネットワーク500の一例を示す図である。図9の下方に記載されている表は、ルータ520aに登録されているルーティングテーブルの一例である。図9では、サーバ540aおよびサーバ540bが例示されている。サーバ540aおよびサーバ540bは、それぞれ2枚のNIC#1およびNIC#2を有している。サーバ540aでは、NIC#1がスタンバイ状態のNICであり、NIC#2がアクティブ状態のNICである。サーバ540aでは、スタンバイ状態のNIC#1がL2スイッチ530aに接続され、アクティブ状態のNIC#2がL2スイッチ530bに接続されている。サーバ540bでは、NIC#1がアクティブ状態のNICであり、NIC#2がスタンバイ状態のNICである。サーバ540bでは、アクティブ状態のNIC#1がL2スイッチ530aに接続され、スタンバイ状態のNIC#2がL2スイッチ530bに接続されている。すなわち、障害が発生してない場合のルータ220aからサーバ540aへの通信経路は、ルーティングテーブルに従い、
ルータ220a、L2スイッチ530a、L2スイッチ530b、サーバ540aのNIC#2となる。また、障害が発生してない場合のルータ220aからサーバ540bへの通信経路は、ルータ220a、L2スイッチ530a、サーバ540aのNIC#1となる。
図10は、L2スイッチ530aとL2スイッチ530bとの間で障害が発生した内部ネットワーク500の一例を示す図である。図10の下方に記載されている表は、ルータ520aに登録されているルーティングテーブルの一例である。ルータ520aとサーバ540aとの間の通信経路は、障害発生個所であるL2スイッチ530aとL2スイッチ530bとの間を含む。そのため、ルータ520aとサーバ540aとの間の通信は、当該障害の影響を受ける。しかしながら、ルータ520aとサーバ540bとの間の通信経路は、障害発生個所であるL2スイッチ530aとL2スイッチ530bとの間を含まない。そのため、ルータ520aからサーバ540bとの間の通信は、当該障害の影響を受けない。
図11は、ルータ520aとL2スイッチ530aとの間のリンクをリンクダウンさせた内部ネットワーク500の一例を示す図である。図11の下方に記載されている表は、ルータ520aに登録されているルーティングテーブルの一例である。ルータ520aとL2スイッチ530aとの間のリンクがリンクダウンされたことにより、宛先IPアドレス3.3.3.0/24宛ての通信は、ルータ520bを経由することになる。すなわち、ルータ520aからサーバ540aへの通信経路は、ルータ520a、ルータ520b、L2スイッチ530b、サーバ540aのNIC#2となる。また、ルータ520aからサーバ540bへの通信経路は、ルータ520a、ルータ520b、L2スイッチ530b、サーバ540bのNIC#2となる。ここで、サーバ540bのNIC#2は、スタンバイ状態のNICである。そのため、サーバ540bにおいては、ルータ520aとの通信を可能とするため、NIC#1をスタンバイ状態にし、NIC#2をアクティブ状態にする作業が発生する。その結果、ルータ520aとL2スイッチ530aとの間のリンクをリンクダウンさせたことにより、障害の影響を受けていなかったサーバ540bに対する作業が発生することになる。
<第1実施形態>
第1比較例および第2比較例では、ルータ520はリンクダウンによって通信経路上の障害を検知した。第1実施形態では、所定時間通信が検知できない場合に通信経路上に障害が発生したと判定するルータについて説明する。なお、第1比較例または第2比較例と同一の構成については同一の符号を付し、その説明を省略する。以下、図面を参照して第1実施形態について説明する。
図12は、第1実施形態に係る内部ネットワーク300の一例を示す図である。図12の下方に記載されている表は、ルータ220aに登録されているルーティングテーブルの一例である。図12に例示されるルーティングテーブルでは、宛先IPアドレス3.3.3.0/24への通信経路として、2つの通信経路が登録されている。一方の通信経路は、情報源を「Connected(図3の接続されているインターフェースに対応)」とするルータ220a
のポートP1からL2スイッチ530aへ中継される通信経路である。他方の通信経路は、情報源を「IBGP」とするルータ220aのポートP2からルータ220bへ中継される通信経路である。図3に例示されるAD値を参照すると、「IBGP」よりも「Connected」
の方が優先度が高い。そのため、情報源を「Connected」とするルータ220aのポート
P1からL2スイッチ530aへ中継される通信経路が優先される。内部ネットワーク300は、ルータ220aおよびルータ220bを有する点で、内部ネットワーク500と異なる。内部ネットワーク300は、「情報処理装置への通信経路が冗長化されたネットワーク」の一例である。
ルータ220a、220bは、コンピュータネットワークの通信経路を制御する経路制御装置である。ルータ220a、220bを総称して、ルータ220と称する。ルータ220は、通信経路上のトラフィックを監視することで通信経路上の障害を検知する点でルータ520と異なる。ルータ220は、「経路制御装置」の一例である。
図13は、情報処理装置100のハードウェア構成の一例を示す図である。情報処理装置100は、プロセッサ101、主記憶部102、補助記憶部103、通信部104および接続バスB1を含む。プロセッサ101、主記憶部102、補助記憶部103および通信部104は、接続バスB1によって相互に接続されている。情報処理装置100は、ルータ220およびサーバ540として利用できる。サーバ540は、「情報処理装置」の一例である。
情報処理装置100では、プロセッサ101が補助記憶部103に記憶されたプログラムを主記憶部102の作業領域に展開し、プログラムの実行を通じて周辺装置の制御を行う。これにより、情報処理装置100は、所定の目的に合致した処理を実行することができる。主記憶部102および補助記憶部103は、情報処理装置100が読み取り可能な記録媒体である。
主記憶部102は、プロセッサ101から直接アクセスされる記憶部として例示される。主記憶部102は、Random Access Memory(RAM)およびRead Only Memory(ROM)を含む。
補助記憶部103は、各種のプログラムおよび各種のデータを読み書き自在に記録媒体に格納する。補助記憶部103は外部記憶装置とも呼ばれる。補助記憶部103には、オペレーティングシステム(Operating System、OS)、各種プログラム、各種テーブル等が格納される。OSは、通信部104を介して接続される外部装置等とのデータの受け渡しを行う通信インターフェースプログラムを含む。外部装置等には、例えば、コンピュータネットワーク等で接続された、他の情報処理装置および外部記憶装置が含まれる。なお、補助記憶部103は、例えば、ネットワーク上のコンピュータ群であるクラウドシステムの一部であってもよい。
補助記憶部103は、例えば、Erasable Programmable ROM(EPROM)、ソリッド
ステートドライブ(Solid State Drive、SSD)、ハードディスクドライブ(Hard Disk
Drive、HDD)等である。また、補助記憶部103は、例えば、Compact Disc(CD)ドライブ装置、Digital Versatile Disc(DVD)ドライブ装置、Blu-ray(登録商標) Disc(BD)ドライブ装置等である。また、補助記憶部103は、Network Attached Storage(NAS)あるいはStorage Area Network(SAN)によって提供されてもよい。
情報処理装置100が読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、情報処理装置100から読み取ることができる記録媒体をいう。このような記録媒体のうち情報処理装置100から取り外し可能なものとしては、例えばフレキシブルディスク、光磁気ディスク、CD−ROM、CD−R/W、DVD、ブルーレイディスク、DAT、8mmテープ、フラッシュメモリなどのメモリカード等がある。また、情報処理装置100に固定された記録媒体としてハードディスク、SSDあるいはROM等がある。
通信部104は、例えば、通信経路とのインターフェースである。通信部104は、通信経路を介して外部の装置と通信を行う。
情報処理装置100は、例えば、ユーザ等からの操作指示等を受け付ける入力部をさらに備えてもよい。このような入力部として、キーボード、ポインティングデバイス、タッチパネル、加速度センサーあるいは音声入力装置といった入力デバイスを例示できる。
情報処理装置100は、例えば、プロセッサ101で処理されるデータや主記憶部102に記憶されるデータを出力する出力部を備えるものとしてもよい。このような、出力部として、Cathode Ray Tube(CRT)ディスプレイ、Liquid Crystal Display(LCD)、Plasma Display Panel(PDP)、Electroluminescence(EL)パネル、有機ELパ
ネルあるいはプリンタといった出力デバイスを例示できる。
<ルータ220の処理ブロック>
図14は、ルータ220の処理ブロックの一例を示す図である。図14では、トラフィック処理部301、インターフェース処理部302、トラフィック監視部303、トラフィックデータベース部304、タイマー部305、経路迂回制御部306、ルータ設定情報307、ルーティングテーブル308、ルーティング制御部309およびARP制御部310の各処理ブロックが例示されている。例えば、ルータ220のプロセッサ101が図14の各処理ブロックとして主記憶部102に展開されたコンピュータプログラムを実行する。ただし、図14のいずれかの処理ブロックの少なくとも一部はハードウェア回路、専用のプロセッサまたはデジタルシグナルプロセッサ(Digital Signal Processor、DSP)を含んでもよい。
トラフィック処理部301は、物理インターフェース(図中では、IFと表記)およびインターフェース処理部302を含む。物理インターフェースは、例えば、図12のポートP1およびP2に対応する。トラフィック処理部301では、ルータ220のプロセッサ101がインターフェース処理部302として物理インターフェースを管理を行う。インターフェース処理部302は、例えば、物理インターフェースのリンクアップまたはリンクダウンを検知する。
ルータ220のプロセッサ101は、トラフィック監視部303として、ルータ220を通過するトラフィックを監視する。トラフィック監視部303は、下りトラフィックを検知すると、当該下りトラフィックの宛先であるサーバ540を示す宛先情報をトラフィックデータベース部304に格納する。トラフィック監視部303は、下りトラフィックを検知すると、当該下りトラフィックの宛先であるサーバ540を示す宛先情報をタイマー部305に通知するとともに、タイマー部305に対し経過時間の計測を開始させる。トラフィック監視部303は、サーバ540からの上りトラフィックを検知し、かつ、トラフィックデータベース部304にサーバ540を示す宛先情報が登録されていると、タイマー部305による経過時間の計測をリスタートする。トラフィック監視部303は、「検知部」の一例である。下りトラフィックは、「第1のトラフィック」の一例である。上りトラフィックは、「第2のトラフィック」の一例である。
トラフィックデータベース部304には、トラフィック監視部303によってトラフィックの宛先であるサーバ540を示す宛先情報が記憶される。宛先情報とは、宛先となるサーバ540を特定する情報であり、例えば、IPアドレスまたはホスト名である。トラフィックデータベース部304は、例えば、図13の主記憶部102または補助記憶部103上に構築される。
ルータ220のプロセッサ101は、タイマー部305として、下りトラフィックが検知されてからの経過時間の計測を行う。経過時間は、下りトラフィックに含まれる宛先情報によって示されるサーバ540毎に計測される。タイマー部305は、「計測部」の一例である。
ルータ220のプロセッサ101は、経路迂回制御部306として、サーバ540への通信経路の情報をルータ設定情報307に登録するとともに、ルーティング制御部309に対し、通信経路の変更を指示する。通信経路変更の指示は、タイマー部305によって計測される経過時間が所定時間を超えた場合に行われる。所定時間は、サーバ540への通信経路に障害が発生したと判定される時間である。所定時間は、例えば、ルータ220の初期設定時に図13の主記憶部102または補助記憶部103に記憶される。経路迂回制御部306は、「制御部」の一例である。
ルータ220のプロセッサ101は、ルーティング制御部309として、ルーティングテーブル308に登録された通信経路の情報にしたがって経路制御を行う。ルーティング制御部309は、経路迂回制御部306からの指示を契機に、ルーティングテーブル308の編集を行う。ルーティング制御部309は、ルータ設定情報307に登録された情報に基づいてルーティングテーブル308を編集する。
ルータ220のプロセッサ101は、ARP制御部310として、ARP要求を行う。ARP要求は、経路迂回制御部306からの指示を契機として行われる。経路迂回制御部306からの指示には、ARP要求を行う宛先となるサーバ540のIPアドレスが含まれる。すなわち、ARP制御部310は、経路迂回制御部306によって指示されたサーバ540に対してARP要求を行う。また、ARP要求310は、サーバ540からのARP要求に対する応答の有無を経路迂回制御部306に通知する。ARP制御部は、「疎通確認部」の一例である。ARP要求は、「疎通確認のリクエスト」の一例である。
図15は、下りトラフィックを監視するトラフィック監視部303の処理の流れの一例を示すフローチャートである。図15を参照して、下りトラフィックを監視するトラフィック監視部303の処理について説明する。
T1では、トラフィック監視部303は、下りトラフィックがルータ220に流入したか否かを判定する。下りトラフィックがルータ220に流入した場合、トラフィック監視部303は、処理をT2に進める。下りトラフィックがルータ220に流入していない場合、トラフィック監視部303は、T1の判定を繰り返す。
T2では、トラフィック監視部303は、下りトラフィックの宛先として指定されているIPアドレスがトラフィックデータベース部304に登録されているか否かを確認する。下りトラフィックの宛先として指定されているIPアドレスがトラフィックデータベース部304に登録されている場合、トラフィック監視部303は、処理をT1に進める。下りトラフィックの宛先として指定されているIPアドレスがトラフィックデータベース部304に登録されていない場合、トラフィック監視部303は、処理をT3に進める。
図16は、トラフィックデータベース部304に登録されている宛先情報の一例を示す図である。トラフィックデータベース部304には、下りトラフィックの宛先情報としてIPアドレスが登録されている。図16では、宛先情報として、IPアドレス:3.3.3.2
およびIPアドレス3.3.3.3が登録されている。
図15に戻り、T3では、トラフィック監視部303は、下りトラフィックの宛先として指定されているIPアドレスをトラフィックデータベース部304に登録する。T4では、トラフィック監視部303は、タイマー部305による経過時間の計測を開始する。
図17は、上りトラフィックを監視するトラフィック監視部303の処理の流れの一例を示すフローチャートである。図17を参照して、上りトラフィックを監視するトラフィ
ック監視部303の処理について説明する。
T11では、トラフィック監視部303は、上りトラフィックがルータ220に流入したか否かを判定する。上りトラフィックがルータ220に流入した場合、トラフィック監視部303は、処理をT12に進める。上りトラフィックがルータ220に流入していない場合、トラフィック監視部303は、T11の判定を繰り返す。
T12では、トラフィック監視部303は、上りトラフィックの送信元として指定されているIPアドレスがトラフィックデータベース部304に登録されているか否かを確認する。上りトラフィックの送信元として指定されているIPアドレスがトラフィックデータベース部304に登録されている場合、トラフィック監視部303は、処理をT13に進める。上りトラフィックの送信元として指定されているIPアドレスがトラフィックデータベース部304に登録されていない場合、トラフィック監視部303は、処理をT11に進める。
T13では、トラフィック監視部303は、タイマー部305による経過時間の計測をリスタートする。すなわち、トラフィック監視部303はタイマー部305に対し、計測された経過時間を一度0にリセットし、再度経過時間の計測を開始させる。
図18は、経路迂回制御部306の処理の流れの一例を示すフローチャートである。図18を参照して、経路迂回制御部306の処理について説明する。
T31では、経路迂回制御部306は、タイマー部305によって宛先IPアドレス毎に計測されている経過時間が所定時間以下であるか否かを確認する。タイマー部305によって計測されている経過時間が所定時間以上である場合、経路迂回制御部306は、処理をT32に進める。タイマー部305によって計測されている経過時間が所定時間未満である場合、経路迂回制御部306は、T31の判定を繰り返す。
T32では、経路迂回制御部306は、ARP制御部310に対し、ARP要求を送信するよう指示する。ARP制御部310は、経路迂回制御部306による指示に従って、ARP要求を行う。ARP要求は、タイマー部305によって計測された経過時間が所定時間を超えた宛先IPアドレスに対して行われる。換言すれば、ARP要求は、ルータ220aとの間の通信経路に障害発生の疑いのある宛先IPアドレスに対して行われる。
T33では、ARP制御部310は、ARP要求に対する応答の有無を確認する。ARP制御部310は、確認結果を経路迂回制御部306に通知する。ARP要求に対する応答が確認された場合、経路迂回制御部306は、処理をT37に進める。ARP要求に対する応答が確認されなかった場合、経路迂回制御部306は、処理をT34に進める。
T34では、経路迂回制御部306は、ARP要求に対する応答が確認されなかった宛先のIPアドレスをルータ設定情報307に登録するとともに、ルーティング制御部309に対し、ルーティングテーブル308に設定変更を指示する。ルーティング制御部309は、ルータ設定情報307に登録された情報にしたがって、ルーティングテーブル308を変更する。具体的には、ルーティング制御部309は、ルータ設定情報に登録されたIPアドレスをルーティングテーブル308にスタティックルートとして登録する。
図19は、スタティックルートが追加されたルーティングテーブルの一例を示す図である。図19では、サーバ540へのスタティックルートとして、宛先IPアドレス3.3.3.3/32へのトラフィックをルータ220bに転送する通信経路が追加されている。図19に例示されるルーティングテーブルでは、IPアドレス3.3.3.3であるサーバ540への通
信経路は複数登録されている。ここで、ルータ220aは、ロンゲストマッチにしたがって、追加された通信経路をサーバ540への迂回経路として選択する。
図18に戻り、T35では、経路迂回制御部306は、タイマー部305による経過時間の計測がリスタートされたか否かを判定する。タイマー部305による経過時間の計測がリスタートされた場合、経路迂回制御部306は、処理をT36に進める。タイマー部305による経過時間の計測がリスタートされていない場合、経路迂回制御部306は、処理をT35の判定を繰り返す。
T36では、経路迂回制御部306は、T34で追加したIPアドレスの情報をルータ設定情報307から削除し、ルーティング制御部309に対し、ルーティングテーブル308に設定変更を指示する。ルーティング制御部309は、ルータ設定情報307に登録された情報にしたがって、ルーティングテーブル308を変更する。具体的には、ルーティング制御部309は、ルータ設定情報から削除されたIPアドレスをルーティングテーブル308から削除する。
T37では、経路迂回制御部306は、タイマー部305による経過時間の計測をリスタートする。すなわち、経路迂回制御部306はタイマー部305に対し、計測された経過時間を一度0にリセットし、再度経過時間の計測を開始させる。
以上で説明したことを前提に、ルータ220aによる通信経路の迂回経路への切り替えを説明する。
図20は、ルータ220aからサーバ540への通信経路に障害が発生していない内部ネットワーク300の一例を示す図である。図20の下方に記載されている表は、ルータ220aに登録されているルーティングテーブルの一例である。ルータ220aは、トラフィック監視部303によってサーバ540への下りトラフィックを検知する。下りトラフィックを検知したトラフィック監視部303は、タイマー部305に対し経過時間の計測開始を指示する。サーバ540からの上りトラフィックを検知したトラフィック監視部303は、タイマー部305に対し、経過時間計測のリスタートを指示する。
図21は、何らかの原因によってサーバ540からの上りトラフィックが検知されない内部ネットワーク300の一例を示す図である。図21の下方に記載されている表は、ルータ220aに登録されているルーティングテーブルの一例である。図21では、タイマー部305によって計測される経過時間が所定時間以上となっても、トラフィック監視部303はサーバ540からの上りトラフィックを検知していない。このような場合、ルータ220aとサーバ540との間の通信経路上に障害発生の虞がある。そこで、ルータ220aの経路迂回制御部306は、ARP制御部310に対し、サーバ540へARP要求を送信するように指示する。
図22は、ARP要求の応答が確認された内部ネットワーク300の一例を示す図である。図22の下方に記載されている表は、ルータ220aに登録されているルーティングテーブルの一例である。図22では、ルータ220aから送信されたARP要求がサーバ540に到達する。ARP要求を受信したサーバ540は、ARP要求に対する応答をルータ220aに送信する。ルータ220aは、サーバ540からのARP要求に対する応答を受信することで、ルータ220aからサーバ540への通信経路上に障害が発生していないと判定できる。
図23は、ARP要求の応答が確認されない内部ネットワーク300の一例を示す図である。図23では、L2スイッチ530aとL2スイッチ530bとの間で障害が発生し
ている。ルータ220aからのARP要求は、当該障害の影響により、サーバ540に到達しない。ルータ220aは、サーバ540からのARP要求に対する応答を受信しないことで、ルータ220aからサーバ540への通信経路上に障害が発生していると判定できる。
図24は、迂回経路に切り替えられた後の内部ネットワーク300の一例を示す図である。ルーティング制御部309は、経路迂回制御部306によってルータ設定情報307に登録された情報に基づいて、ルーティングテーブル308にサーバ540へのスタティックルートの情報を追加する。その結果、ルータ220aからサーバ540への通信経路は、障害箇所を迂回する迂回経路となる。
図25は、L2スイッチ530aとL2スイッチ530bとの間の障害が復旧した内部ネットワーク300の一例を示す図である。障害復旧により、サーバ540からの上りトラフィックがルータ220aのポートP1で検知されるようになる。トラフィック監視部303は、サーバ540からのトラフィックをポートP1で検知すると、タイマー部305による経過時間の計測をリスタートする。経路迂回制御部306は、タイマー部305を監視することで、経過時間の計測がリスタートされたことを検知する。経過時間計測のリスタートを検知した経路迂回制御部306は、迂回経路として追加したスタティックルートの情報をルータ設定情報307から削除するとともに、ルーティング制御部309にルーティングの変更を指示する。ルーティング制御部309は、ルータ設定情報307に登録された情報に基づいて、ルーティングテーブル308から迂回経路として登録したスタティックルートの情報を削除する。その結果、ルータ220aとサーバ540との間の通信経路は、図20に例示される状態に戻る。
第1実施形態では、ルータ220は、サーバ540への下りトラフィックを検知してから所定時間を超えるまでの間にサーバ540からのトラフィックが検知されない場合、ルータ220とサーバ540との間の通信経路上に障害が発生している虞があると判定した。すなわち、ルータ220は、サーバ540との疎通確認のために所定間隔でパケットを送信しなくともよい。その結果、第1実施形態によれば、疎通確認のための余分なトラフィックの発生を抑制できる。
第1実施形態では、ルータ220は、サーバ540との間の通信経路上に障害が発生している虞があると判定した場合、サーバ540へARP要求を送信した。ルータ220は、ARP要求に対する応答の有無によって、ルータ220とサーバ540との間の通信経路上に障害が発生しているか否かを判定する。その結果、第1実施形態によれば、通信経路上に障害が無く、サーバ540がトラフィックを送信していないような場合の迂回経路への切り替えを抑制できる。また、ARP要求は、サーバ540との間の通信経路上に障害が発生している虞があると判定された場合に行われる。そのため、第1実施形態によれば、疎通確認のために所定間隔でパケットを送信する場合と比較して、疎通確認のための余分なトラフィックの発生が抑制される。
第1実施形態では、サーバ540との疎通確認にARP要求を用いた。そのため、第1実施形態によれば、NICの交換等でサーバ540のMACアドレスが変更された場合でも、サーバ540からの応答を受信できる。
第1実施形態では、サーバ540との疎通確認にARP要求を行った。しかしながら、サーバ540との疎通確認は、ARP要求に限定されるわけではない。サーバ540との疎通確認には、サーバ540に応答を要求する様々なコマンドが採用可能である。サーバ540に応答を要求するコマンドとして、例えば、pingコマンド、tracerouteコマンドおよびtelnetコマンド等が挙げられる。
第1実施形態では、通信経路上に障害が発生すると、当該障害の影響を受けるサーバへの通信経路を迂回経路に変更した。そのため、第1実施形態によれば、当該障害の影響を受けないサーバへの当該迂回経路への変更による影響が抑制される。
第1実施形態では、トラフィック処理部301、インターフェース処理部302、トラフィック監視部303、トラフィックデータベース部304、タイマー部305、経路迂回制御部306、ルータ設定情報307、ルーティングテーブル308、ルーティング制御部309およびARP制御部310の各処理ブロックを有するルータ220が、経路制御を行った。しかしながら、ルータ220は、このような形態に限定されない。ルータ220は、例えば、各処理ブロックが各々異なる情報処理装置によって実行されてもよい。この場合、各処理ブロックを実行する情報処理装置が、互いにネットワークで接続され、連携して稼働すればよい。各処理ブロックを実行し、互いに連携する情報処理装置は、「経路制御システム」の一例である。
<その他>
以上説明した実施形態に関し、更に以下の付記を開示する。
(付記1)
情報処理装置への通信経路が冗長化されたネットワークの経路制御を行う経路制御装置であって、
前記経路制御装置を経由して前記情報処理装置へ向かう第1のトラフィックを検知する検知部と、
前記検知からの経過時間を計測する計測部と、
前記経過時間が前記情報処理装置への通信経路に障害が発生したと判定する所定時間を超えるまでの間に前記情報処理装置からの第2のトラフィックが検知されない場合、前記情報処理装置へ疎通確認を行うリクエストを送信し、前記リクエストの応答の有無を判定する疎通確認部と、
前記リクエストの応答が無いと判定された場合、前記情報処理装置への通信経路を迂回経路に切り替える制御部と、を備える、
経路制御装置。
(付記2)
前記ネットワークには複数の情報処理装置が存在し、
前記計測部は、前記第1のトラフィックに含まれる宛先情報によって示される情報処理装置毎に経過時間の計測を行う、
付記1に記載の経路制御装置。
(付記3)
前記計測部は、前記第2のトラフィックが検知されると前記経過時間を初期化し、経過時間の計測を再開する、
付記1または2に記載の経路制御装置。
(付記4)
前記疎通確認のリクエストは、ARP要求である、
付記1から3のいずれか一項に記載の経路制御装置。
(付記5)
情報処理装置への通信経路が冗長化されたネットワークの経路制御を行う経路制御システムであって、
前記経路制御装置を経由して前記情報処理装置へ向かう第1のトラフィックを検知する検知装置と、
前記検知からの経過時間を計測する計測装置と、
前記経過時間が前記情報処理装置への通信経路に障害が発生したと判定する所定時間を超えるまでの間に前記情報処理装置からの第2のトラフィックが検知されない場合、前記
情報処理装置へ疎通確認を行うリクエストを送信し、前記リクエストの応答の有無を判定する疎通確認装置と、
前記リクエストの応答が無いと判定された場合、前記情報処理装置への通信経路を迂回経路に切り替える制御装置と、を備える、
経路制御システム。
(付記6)
前記ネットワークには複数の情報処理装置が存在し、
前記計測部は、前記第1のトラフィックに含まれる宛先情報によって示される情報処理装置毎に経過時間の計測を行う、
付記5に記載の経路制御システム。
(付記7)
前記計測装置は、前記第2のトラフィックが検知されると前記経過時間を初期化し、経過時間の計測を再開する、
付記5または6に記載の経路制御システム。
(付記8)
前記疎通確認のリクエストは、ARP要求である、
付記5から7のいずれか一項に記載の経路制御システム。
(付記9)
情報処理装置への通信経路が冗長化されたネットワークの経路制御を行う経路制御装置が実行する経路制御方法であって、
前記経路制御装置を経由して前記情報処理装置へ向かう第1のトラフィックを検知し、
前記検知からの経過時間を計測し、
前記経過時間が前記情報処理装置への通信経路に障害が発生したと判定する所定時間を超えるまでの間に前記情報処理装置からの第2のトラフィックが検知されない場合、前記情報処理装置へ疎通確認を行うリクエストを送信し、前記リクエストの応答の有無を判定し、
前記リクエストの応答が無いと判定された場合、前記情報処理装置への通信経路を迂回経路に切り替える、
経路制御方法。
(付記10)
前記ネットワークには複数の情報処理装置が存在し、
前記計測は、前記第1のトラフィックに含まれる宛先情報によって示される情報処理装置毎に経過時間の計測を含む、
付記9に記載の経路制御方法。
(付記11)
前記計測は、前記第2のトラフィックが検知されると前記経過時間を初期化し、経過時間の計測を再開する処理を含む、
付記9または10に記載の経路制御方法。
(付記12)
前記疎通確認のデータは、ARP要求である、
付記9から11のいずれか一項に記載の経路制御方法。
301・・・トラフィック処理部
302・・・インターフェース処理部
303・・・トラフィック監視部
304・・・トラフィックデータベース部
305・・・タイマー部
306・・・経路迂回制御部
307・・・ルータ設定情報
308・・・ルーティングテーブル
309・・・ルーティング制御部
310・・・ARP制御部
300、500・・・内部ネットワーク
510・・・外部ネットワーク
220、220a、220b、520、520a、520b・・・ルータ
530、530a、530b・・・L2スイッチ
540・・・サーバ

Claims (6)

  1. 情報処理装置への通信経路が冗長化されたネットワークの経路制御を行う経路制御装置であって、
    前記経路制御装置を経由して前記情報処理装置へ向かう第1のトラフィックを検知する検知部と、
    前記検知からの経過時間を計測する計測部と、
    前記経過時間が前記情報処理装置への通信経路に障害が発生したと判定する所定時間を超えるまでの間に前記情報処理装置からの第2のトラフィックが検知されない場合、前記情報処理装置へ疎通確認を行うリクエストを送信し、前記リクエストの応答の有無を判定する疎通確認部と、
    前記リクエストの応答が無いと判定された場合、前記情報処理装置への通信経路を迂回経路に切り替える制御部と、を備える、
    経路制御装置。
  2. 前記ネットワークには複数の情報処理装置が存在し、
    前記計測部は、前記第1のトラフィックに含まれる宛先情報によって示される情報処理装置毎に前記経過時間の計測を行う、
    請求項1に記載の経路制御装置。
  3. 前記計測部は、前記第2のトラフィックが検知されると前記経過時間を初期化し、経過時間の計測を再開する、
    請求項1または2に記載の経路制御装置。
  4. 前記疎通確認のリクエストは、ARP(Address Resolution Protocol)要求である、
    請求項1から3のいずれか一項に記載の経路制御装置。
  5. 情報処理装置への通信経路が冗長化されたネットワークの経路制御を行う経路制御システムであって、
    前記経路制御システムを経由して前記情報処理装置へ向かう第1のトラフィックを検知する検知装置と、
    前記検知からの経過時間を計測する計測装置と、
    前記経過時間が前記情報処理装置への通信経路に障害が発生したと判定する所定時間を超えるまでの間に前記情報処理装置からの第2のトラフィックが検知されない場合、前記情報処理装置へ疎通確認を行うリクエストを送信し、前記リクエストの応答の有無を判定する疎通確認装置と、
    前記リクエストの応答が無いと判定された場合、前記情報処理装置への通信経路を迂回経路に切り替える制御装置と、を備える、
    経路制御システム。
  6. 情報処理装置への通信経路が冗長化されたネットワークの経路制御を行う経路制御装置が実行する経路制御方法であって、
    前記経路制御装置を経由して前記情報処理装置へ向かう第1のトラフィックを検知し、
    前記検知からの経過時間を計測し、
    前記経過時間が前記情報処理装置への通信経路に障害が発生したと判定する所定時間を超えるまでの間に前記情報処理装置からの第2のトラフィックが検知されない場合、前記情報処理装置へ疎通確認を行うリクエストを送信し、前記リクエストの応答の有無を判定し、
    前記リクエストの応答が無いと判定された場合、前記情報処理装置への通信経路を迂回経路に切り替える、
    経路制御方法。
JP2015124692A 2015-06-22 2015-06-22 経路制御装置、経路制御システムおよび経路制御方法 Active JP6524817B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124692A JP6524817B2 (ja) 2015-06-22 2015-06-22 経路制御装置、経路制御システムおよび経路制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124692A JP6524817B2 (ja) 2015-06-22 2015-06-22 経路制御装置、経路制御システムおよび経路制御方法

Publications (2)

Publication Number Publication Date
JP2017011480A JP2017011480A (ja) 2017-01-12
JP6524817B2 true JP6524817B2 (ja) 2019-06-05

Family

ID=57764044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124692A Active JP6524817B2 (ja) 2015-06-22 2015-06-22 経路制御装置、経路制御システムおよび経路制御方法

Country Status (1)

Country Link
JP (1) JP6524817B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133730A (ja) * 2017-02-16 2018-08-23 Kddi株式会社 ネットワークシステム
JP2021061478A (ja) * 2019-10-03 2021-04-15 セイコーソリューションズ株式会社 中継装置、中継システム、及び中継プログラム
WO2021152670A1 (ja) * 2020-01-27 2021-08-05 日本電信電話株式会社 通信装置、切り替え制御方法、及びプログラム
KR102221052B1 (ko) * 2020-11-30 2021-02-25 윤동권 Sdn 오픈플로우 프로토콜을 지원하는 네트워크 장비의 장애처리 시스템

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206894A (ja) * 1992-01-23 1993-08-13 Nec Corp 2ルート伝送制御システム
JP2932856B2 (ja) * 1992-08-24 1999-08-09 日本電気株式会社 ホストコンピュータ間通信状態監視方式
JP2004363986A (ja) * 2003-06-05 2004-12-24 Sumitomo Metal Ind Ltd 無線情報通信システム、端末用プログラム、及びサーバ用プログラム
JP2005086337A (ja) * 2003-09-05 2005-03-31 Fujitsu Ltd インターネット通信システム並びにインターネット通信システムにおける接続状態管理方法及び輻輳防止方法並びにインターネット通信システムに用いられる接続監視装置
JP5605237B2 (ja) * 2010-06-30 2014-10-15 沖電気工業株式会社 通信制御装置及びプログラム、並びに、通信システム
TWI536785B (zh) * 2013-08-29 2016-06-01 鴻海精密工業股份有限公司 網路通訊多通路選擇方法及系統

Also Published As

Publication number Publication date
JP2017011480A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
US9521070B2 (en) Apparatus, information processing method and information processing system
CN110113259B (zh) 路径状态通知方法、路径切换方法、转发设备及系统
US7792148B2 (en) Virtual fibre channel over Ethernet switch
JP6524817B2 (ja) 経路制御装置、経路制御システムおよび経路制御方法
JP4973734B2 (ja) ネットワーク監視システム、経路抽出方法、プログラム、及びプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2022509645A (ja) 分解されたネットワーク要素を含む論理ルータ
RU2612599C1 (ru) Устройство управления, система связи, способ управления коммутаторами и программа
JP2006129446A (ja) フォールト・トレラント・ネットワーク・アーキテクチャ
JP2015508631A (ja) 冗長ネットワーク接続
JP2015211374A (ja) 情報処理システム、情報処理システムの制御方法及び管理装置の制御プログラム
JP2014182544A (ja) 監視装置,情報処理システム,監視方法および監視プログラム
US11848995B2 (en) Failover prevention in a high availability system during traffic congestion
US20220286397A1 (en) Multihoming optimizations for fast failover in single-active networks
JP5736971B2 (ja) 通信制御方法および管理装置
JP6299745B2 (ja) 通信システム、制御装置、通信方法及びプログラム
JP5035219B2 (ja) 通信経路検出方法、通信経路検出プログラム、および通信経路検出装置
CN109347717B (zh) Vxlan隧道切换方法及装置
WO2016202015A1 (zh) 数据通信网络主备接入网元保护的方法及装置
JP4980971B2 (ja) ルートフラッピング防止装置、ルートフラッピング防止ルータ
JP6490167B2 (ja) 通信装置、通信方法、コンピュータプログラムおよび通信システム
JP6446891B2 (ja) 通信制御装置、通信制御方法および通信制御プログラム
CN113992571A (zh) Sdn网络中多路径业务收敛方法、装置和存储介质
JP7498128B2 (ja) 監視装置、障害検知方法および障害検知プログラム
JP5585437B2 (ja) ネットワーク管理装置、ネットワーク管理システム、および、ネットワーク管理方法
US11799749B1 (en) Systems and methods for facilitating traceroute operations across segment routing paths within networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6524817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150