JP6524346B2 - 空気調和機の室外機 - Google Patents

空気調和機の室外機 Download PDF

Info

Publication number
JP6524346B2
JP6524346B2 JP2018520246A JP2018520246A JP6524346B2 JP 6524346 B2 JP6524346 B2 JP 6524346B2 JP 2018520246 A JP2018520246 A JP 2018520246A JP 2018520246 A JP2018520246 A JP 2018520246A JP 6524346 B2 JP6524346 B2 JP 6524346B2
Authority
JP
Japan
Prior art keywords
compressor
fan
inverter circuit
unit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018520246A
Other languages
English (en)
Other versions
JPWO2017208345A1 (ja
Inventor
博之 高山
博之 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017208345A1 publication Critical patent/JPWO2017208345A1/ja
Application granted granted Critical
Publication of JP6524346B2 publication Critical patent/JP6524346B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、空調を行う空気調和機の室外機に関する。
空気調和機の室外機は、複数のスイッチング素子を用いて直流電力を三相交流電力に変換するインバータ回路を備えている。このようなインバータ回路は、スイッチング素子を順次オンとオフとに切替えることで三相交流電力を生成し、圧縮機モータおよび冷却用ファンモータを駆動している。
スイッチング素子は、圧縮機モータの出力増大に伴ってスイッチング素子への電流が増加するので、スイッチング素子の発熱が増大する。このため、特許文献1の空気調和機は、スイッチング素子が熱で破壊されることを防ぐため、サーミスタによる温度検出値と圧縮機モータを流れる電流値とを用いて、冷却用ファンの回転数を制御している。
特開2015−17734号公報
上記従来の技術である特許文献1では、空気調和機が、サーミスタによる温度検出値に基づいて、冷却用ファンの回転数を制御している。しかしながら、サーミスタは、急激な温度変化を短時間で検出することが困難である。
このため、MOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)のような発熱量が大きい半導体素子がスイッチング素子に用いられた場合、ファン回転数を上げて冷却能力を上げる制御が行なわれた時点で既にスイッチング素子の熱破壊が起こりうる温度領域となっている可能性がある。
本発明は、上記に鑑みてなされたものであって、スイッチング素子の熱破壊を防止しつつ動作することができる空気調和機の室外機を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る空気調和機の室外機は、圧縮機を駆動するための直流電力を複数のスイッチング素子によって疑似三相交流に変換する圧縮機駆動インバータ回路を備えている。また、本発明の空気調和機の室外機は、前記スイッチング素子を冷却するファンのファン回転数を検出するファン回転数検出部と、空気調和機が配置されている位置の外気温度を検出する外気温度検出部と、を備えている。さらに、本発明の空気調和機の室外機は、前記圧縮機駆動インバータ回路を制御することによって前記圧縮機の圧縮機回転数を制御する圧縮機インバータ駆動部を備えている。そして、前記圧縮機インバータ駆動部は、前記ファン回転数および前記外気温度に基づいて、前記圧縮機駆動インバータ回路を制御する。さらに、前記圧縮機インバータ駆動部は、前記ファン回転数が基準値よりも大きくなると前記圧縮機回転数が基準回転数よりも上がるよう前記圧縮機駆動インバータ回路を制御する。
本発明によれば、スイッチング素子の熱破壊を防止しつつ動作することが可能になるという効果を奏する。
実施の形態に係る空気調和機の構成を示す図 実施の形態に係る空気調和機の室外機の構成を示す図 実施の形態の室外機が備える構成要素が処理回路であることを示す図 実施の形態の室外機が備える圧縮機インバータ駆動部の構成例を示す図 ファン回転数制御の処理手順を示すフローチャート 圧縮機駆動インバータ回路への制御処理手順を示すシーケンス図 ファン回転数が固定されている場合の圧縮機回転数を説明するための図 外気温度が一定であるとした場合の圧縮機回転数を説明するための図
以下に、本発明の実施の形態に係る空気調和機の室外機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態
図1は、実施の形態に係る空気調和機の構成を示す図である。実施の形態に係る空気調和機は、室外ユニットである室外機100と、室内機200と、冷媒管300とを備えている。
空気調和機では、室内に配置される室内機200と、室外に配置される室外機100とが冷媒管300によって接続されている。そして、空気調和機は、1つの完結した冷凍サイクルを、室外機100、室内機200および冷媒管300で形成している。空気調和機は、冷媒管300を通って室内機200と室外機100との間を循環する冷媒を使用して、空調対象空間である室内の空気と室外の空気との間で熱移動を行い、室内の空気調和を実現している。換言すると、空気調和機は、冷媒管300中を流れる冷媒の圧力を室外機100の備える圧縮機によって変化させて冷媒の吸熱または放熱により空気調和を行う。
図2は、実施の形態に係る空気調和機の室外機の構成を示す図である。室外機100は、外郭である不図示の筐体と、筐体の内部に収納されて回転時に気流を発生させる不図示のファンと、筐体の内部に格納された圧縮機3とを備えている。圧縮機3は、冷媒を圧縮するとともに、冷媒を循環させる。圧縮機3は、圧縮機駆動インバータ回路2からの電流を用いて冷媒を圧縮する。ファンモータ5は、ファンインバータ回路4からの電流を用いて扇であるファンを回転させる。ファンは、回転することによって、室外熱交換器を通過する気流を形成する。
室外機100は、圧縮機3と、交流電力を直流電力に変換するコンバータ回路1と、直流電力を交流電力に変換して圧縮機3を駆動する圧縮機駆動インバータ回路2と、直流電力を交流電力に変換してファンモータ5を駆動するファンインバータ回路4とを備えている。また、室外機100は、圧縮機駆動インバータ回路2をPWM(Pulse Width Modulation)制御によって駆動する圧縮機インバータ駆動部9と、ファンインバータ回路4をPWM制御によって駆動するファンインバータ駆動部6とを備えている。また、室外機100は、ファンのファン回転数を検出するファン回転数検出部7と、外気温度を検出する外気温度検出部12と、フィン温度を検出するフィン温度検出部11とを備えている。また、室外機100は、圧縮機駆動インバータ回路2に流れる電流を検出する圧縮機電流検出部10と、圧縮機3を流れる電流を判定する圧縮機電流変換部8とを備えている。
圧縮機駆動インバータ回路2は、圧縮機3を駆動するための直流電力を複数のスイッチング素子によって疑似三相交流に変換する。具体的には、圧縮機駆動インバータ回路2は、コンバータ回路1から供給される直流電力を複数のスイッチング素子を用いて交流の電力に変換する。圧縮機駆動インバータ回路2は、変換した疑似三相交流によって圧縮機3を駆動する。圧縮機駆動インバータ回路2が直流電力から変換する疑似三相交流が作る相は、U相、V相およびW相である。圧縮機駆動インバータ回路2は、圧縮機インバータ駆動部9からのパルス幅変調信号であるPWM信号に基づいて圧縮機3の駆動制御を行う。
ファンインバータ回路4は、コンバータ回路1から供給される直流電力を複数のスイッチング素子を用いて交流の電力に変換する。ファンインバータ回路4は、変換した疑似三相交流によってファンモータ5を駆動する。ファンインバータ回路4が直流電力から変換する疑似三相交流が作る相は、U相、V相およびW相である。ファンインバータ回路4は、ファンインバータ駆動部6からのPWM信号に基づいてファンモータ5の駆動制御を行う。
フィン温度検出部11は、フィンの温度であるフィン温度を検出するセンサである。フィン温度検出部11は、フィン温サーミスタを備えている。フィン温度検出部11は、ヒートシンクのフィン部に取り付けられている。ヒートシンクは、圧縮機駆動インバータ回路2に配置されたスイッチング素子、または圧縮機駆動インバータ回路2が配置されているインバータモジュールに取り付けられている。ヒートシンクは、圧縮機駆動インバータ回路2に配置された複数のスイッチング素子を冷却するためのものである。スイッチング素子に取り付けられたヒートシンクは、ファンの気流にさらされている。このため、ファンによる気流は、スイッチング素子への冷却風となる。フィン温度検出部11は、検出したフィン温度を、ファンインバータ駆動部6および圧縮機インバータ駆動部9に通知する。
外気温度検出部12は、外気温度を検出する外気温度検出センサである。外気温度検出部12は、外気温度サーミスタを備えている。外気温度検出部12は、空気調和機の室外機100が有する熱交換器冷却風路の吸入側の面に取り付けられている。外気温度検出部12は、空気調和機の室外機100の周辺温度を検出する。具体的には、外気温度検出部12は、空気調和機の室外機100が配置されている位置の外気温度を検出する。外気温度検出部12は、検出した外気温度を圧縮機インバータ駆動部9に通知する。
圧縮機電流検出部10は、圧縮機駆動インバータ回路2内の配線に接続されている。圧縮機電流検出部10は、圧縮機3を流れる電流値を検出するために、圧縮機駆動インバータ回路2内のシャント抵抗の両端にかかる電圧値を検出する。換言すると、圧縮機電流検出部10は、圧縮機3を流れる電流値に比例する電圧値を検出する。圧縮機電流検出部10は、検出した電圧値を圧縮機電流変換部8に送る。
圧縮機電流変換部8は、圧縮機電流検出部10から送られてきた電圧値を、電流値である圧縮機電流値に変換する。圧縮機電流変換部8は、圧縮機電流値を示す情報を、圧縮機インバータ駆動部9に送る。
ファン回転数検出部7は、ファンモータ5から取得した情報に基づいてファンのファン回転数を検出する。ファン回転数検出部7は、検出したファン回転数を、ファンインバータ駆動部6および圧縮機インバータ駆動部9に送る。ファン回転数検出部7は、ファンモータ5から1回転ごとに出力されるパルス信号を一定の検出時間でカウントすることによってファン回転数を検出する。なお、ファン回転数検出部7は、その他の何れの方法によって回転数を検出してもよい。
ファンインバータ駆動部6は、ファン回転数検出部7からのファン回転数と、フィン温度検出部11からのフィン温度を示す情報とに基づいて、ファンインバータ回路4に対してファン回転数の制御を行う。ファンインバータ駆動部6は、ファンインバータ回路4に対してファン回転数の制御を行うことによってファン速度の制御を行う。
圧縮機インバータ駆動部9は、圧縮機電流変換部8からの圧縮機電流値と、ファン回転数検出部7からのファン回転数とを取得する。また、圧縮機インバータ駆動部9は、フィン温度検出部11からフィン温度を示す情報を取得し、外気温度検出部12から外気温度を示す情報を取得する。
圧縮機インバータ駆動部9は、圧縮機電流値と、ファン回転数と、フィン温度と、外気温度とに基づいて、圧縮機駆動インバータ回路2を制御する。圧縮機インバータ駆動部9は、圧縮機電流値に基づいて、現在の圧縮機3に流れている電流量を算出する。圧縮機インバータ駆動部9は、算出結果である電流量に基づいて、圧縮機3の駆動状態を推測し、推測結果に基づいて、圧縮機3の回転数である圧縮機回転数を制御する。
本実施の形態の圧縮機インバータ駆動部9は、ファン回転数および外気温度に基づいて、圧縮機回転数が変更されるよう圧縮機駆動インバータ回路2を制御する。なお、圧縮機インバータ駆動部9は、ファン回転数または外気温度に基づいて、圧縮機回転数が変更されるよう圧縮機駆動インバータ回路2を制御してもよい。また、圧縮機インバータ駆動部9は、ファン回転数および外気温度の少なくとも一方と、フィン温度とに基づいて、圧縮機回転数が変更されるよう圧縮機駆動インバータ回路2を制御してもよい。
なお、室外機100は、圧縮機駆動インバータ回路2を流れる電流の閾値を予め記憶しておいてもよい。この場合、圧縮機駆動インバータ回路2を流れる電流が閾値を超えた場合に、室外機100の圧縮機インバータ駆動部9またはコンバータ回路1が直ちに圧縮機3を停止させる。圧縮機インバータ駆動部9が圧縮機3を停止させる場合には、圧縮機インバータ駆動部9が、圧縮機駆動インバータ回路2を制御することによって圧縮機3を停止させる。このように、室外機100は、圧縮機駆動インバータ回路2を保護する過電流保護機能を有している。これにより、室外機100は、圧縮機駆動インバータ回路2内に過電流が流れてスイッチング素子が破壊されることを防止できる。
なお、室外機100が備える構成要素の機能の一部又は全部は、後述する処理回路30によって実現されてもよい。図3は、実施の形態の室外機が備える構成要素が処理回路であることを示す図である。処理回路30は、専用のハードウェアである。処理回路30は、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field−Programmable Gate Array)、又はこれらを組み合わせたものである。処理回路30を構成する構成要素の一部は、残部とは別個の専用のハードウェアであってもよい。
本実施の形態では、室外機100の圧縮機インバータ駆動部9が、処理回路30によって実現されてもよい。なお、室外機100が備えるファンインバータ駆動部6、ファン回転数検出部7、圧縮機電流変換部8、圧縮機インバータ駆動部9および圧縮機電流検出部10の少なくとも1つが処理回路30で実現されてもよい。
また、室外機100が備える構成要素の一部は、プログラムを実行する後述のプロセッサ91によって実現されてもよい。この場合、室外機100が備える構成要素の一部は、プロセッサ91が、メインメモリであるメモリを用いることによって、機能が実現される。ここでは、室外機100の圧縮機インバータ駆動部9の制御機能が、プロセッサ91によって実現される場合について説明する。
図4は、実施の形態の室外機が備える圧縮機インバータ駆動部の構成例を示す図である。図4では、圧縮機インバータ駆動部9が備える構成要素の一部又は全部が制御部51および駆動回路50で実現される場合について説明する。制御部51は、駆動回路50に接続され、駆動回路50が圧縮機インバータ回路2に接続されている。駆動回路50は、制御部51からの指示に従って圧縮機インバータ回路2に信号を出力する。圧縮機インバータ駆動部9が、図2に示すような構成の場合、制御部51がソフトウェアを用いて実現され、駆動回路50が、ハードウェアで実現される。
制御部51は、プロセッサ91およびメモリ91を備えている。プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)である。プロセッサ91は、メモリ92に格納されているプログラム90を実行する。
圧縮機インバータ駆動部9が備える構成要素の一部又は全部がプロセッサ91で実現される場合、制御部51によって圧縮機インバータ駆動部9の機能が実現される。すなわち、圧縮機インバータ駆動部9を構成する少なくとも一部の構成要素の機能は、プロセッサ91と、プログラム90とによって実現される。プログラム90は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせの何れかである。ソフトウェア又はファームウェアは、プログラム90で記述され、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラム90を読み出して実行することによって、圧縮機インバータ駆動部9を構成する構成要素の機能を実現する。
プロセッサ91が実行するプログラム90は、コンピュータで実行可能な、圧縮機駆動インバータ回路2を駆動するための複数の命令を含むコンピュータ読取り可能かつ非遷移的な記録媒体を有するコンピュータプログラムプロダクトである。プロセッサ91が実行するプログラム90は、複数の命令が圧縮機駆動インバータ回路2を制御することをコンピュータに実行させる。
プロセッサ91が実行するプログラム90は、メモリ92に格納しておく。メモリ92に格納されるプログラム90は、圧縮機駆動インバータ回路2を構成する構成要素の手順又は方法をコンピュータに実行させるものであるともいえる。メモリ92は、不揮発性半導体メモリであってもよいし、揮発性の半導体メモリであってもよい。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read−Only Memory)であってもよい。なお、メモリ92は、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)であってもよい。
圧縮機インバータ駆動部9を構成する複数の構成要素の機能について、一部を専用のハードウェアで実現し、残部をソフトウェア又はファームウェアで実現してもよい。このように、圧縮機インバータ駆動部9を構成する複数の構成要素の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。
なお、室外機100が備えるファンインバータ駆動部6、ファン回転数検出部7、圧縮機電流変換部8、圧縮機インバータ駆動部9および圧縮機電流検出部10の少なくとも1つがプロセッサ91を用いて実現されてもよい。
ここで、ファンインバータ駆動部6によるファンへのファン回転数制御処理について説明する。図5は、ファン回転数制御の処理手順を示すフローチャートである。室外機100では、フィン温度検出部11が、フィン部の温度を検出する。フィン温度検出部11は、検出した温度であるフィン温度を、ファンインバータ駆動部6に通知する。これにより、ファンインバータ駆動部6は、フィン温度を示す情報を取得する。
ファンインバータ駆動部6は、フィン温度を示す情報に基づいて、圧縮機駆動インバータ回路2が有するスイッチング素子の温度を算出する。ファンインバータ駆動部6は、フィンの構造、フィンの材質、フィン温度検出部11の配置位置、スイッチング素子の構造または室外機100の配置環境を用いて、フィン温度からスイッチング素子の温度である素子温度を算出する。これにより、ステップS10において、ファンインバータ駆動部6は、フィン温度に基づいて、素子温度を取得する。このように、ファンインバータ駆動部6は、フィン温度検出部11から送られてくるフィン温度に基づいて、現状のスイッチング素子の素子温度を見積もっている。
ファンインバータ駆動部6は、素子温度と、スイッチング素子の基準温度である素子基準温度とを比較する。そして、ステップS20において、ファンインバータ駆動部6は、素子温度が素子基準温度よりも高いか否かを判定する。
ファンインバータ駆動部6が、素子温度は素子基準温度以下であると判定した場合、すなわち、ステップS20においてNoの場合、ステップS30において、ファンインバータ駆動部6は、ファンの回転数を通常のファン目標回転数Ffaに設定する。そして、ファンインバータ駆動部6は、設定したファン目標回転数Ffaでファンが回転するよう、ファンインバータ回路4を駆動する。これにより、ファンインバータ回路4が、ファン目標回転数Ffaでファンが回転するよう、ファンモータ5を制御する。この結果、素子温度が素子基準温度以下である場合には、ファンモータ5がファン目標回転数Ffaでファンを回転させる。
一方、ファンインバータ駆動部6が、素子温度は素子基準温度よりも高いと判定した場合、すなわち、ステップS20においてYesの場合、ステップS40において、ファンインバータ駆動部6は、ファンの回転数を通常値よりも大きなファン目標回転数Ffbに設定する。ファン目標回転数Ffbは、通常のファン目標回転数Ffaよりも大きな回転数である。すなわち、ファン目標回転数Ffbと通常のファン目標回転数Ffaとは、Ffa<Ffbの関係を有している。
ファンインバータ駆動部6は、設定したファン目標回転数Ffbでファンが回転するよう、ファンインバータ回路4を駆動する。これにより、ファンインバータ回路4が、ファン目標回転数Ffbでファンが回転するよう、ファンモータ5を制御する。この結果、素子温度が素子基準温度よりも高い場合には、ファンモータ5がファン目標回転数Ffbでファンを回転させる。室外機100は、ファン速度を大きくするに従って、スイッチング素子への冷却風量を増大させることができる。
このように、ファンインバータ駆動部6は、フィン温度に基づいて、スイッチング素子の素子温度が素子基準温度よりも大きいと判断した場合には、ファン速度を大きくすることで冷却風量を増大させる。換言すると、ファンインバータ駆動部6は、フィン温度に基づいて、スイッチング素子の発熱量が基準の発熱量よりも大きいと判断した場合には、ファン速度を大きくすることで冷却風量を増大させる。この結果、室外機100は、スイッチング素子の素子温度が素子基準温度よりも大きい場合には、スイッチング素子の素子温度を下げることができる。
つぎに、圧縮機インバータ駆動部9による圧縮機駆動インバータ回路2への動作制御処理について説明する。図6は、圧縮機駆動インバータ回路への制御処理手順を示すシーケンス図である。なお、図6に示す制御機構20は、圧縮機インバータ駆動部9に対応している。また、図6に示す圧縮機構40は、圧縮機駆動インバータ回路2に対応している。
室外機100では、外気温度検出部12が、外気温度を検出する。処理P1では、圧縮機インバータ駆動部9に対応する制御機構20が、外気温度検出部12に対して外気温度の問い合わせを行う。これにより、処理P2では、外気温度検出部12が、検出した外気温度を、制御機構20に通知する。
また、処理P3では、制御機構20が、ファン回転数検出部7に対してファン回転数の問い合わせを行う。これにより、処理P4では、ファン回転数検出部7が、検出したファン回転数を、制御機構20に通知する。これにより、制御機構20は、外気温度を示す情報と、ファン回転数を示す情報とを取得する。なお、室外機100は、処理P1と処理P3の何れを先に実行してもよい。
処理P1〜P4が完了した後、処理P5において、制御機構20が、圧縮機3への設定回転数である圧縮機回転数を更新する。このとき、制御機構20が、外気温度とファン回転数とに基づいて、現在のスイッチング素子への冷却能力を見積もる。そして、制御機構20は、現在のスイッチング素子への冷却能力に基づいて、圧縮機回転数を算出する。制御機構20は、算出した圧縮機回転数を最新の圧縮機回転数に設定することによって、圧縮機回転数を更新する。
ファンによる冷却風量は、ファン回転数に対応する。また、スイッチング素子への冷却能力は、冷却風量および外気温度の影響を受ける。したがって、本実施の形態の制御機構20は、外気温度およびファン回転数に基づいて、現在のスイッチング素子への冷却能力を算出し、算出した冷却能力に基づいて、圧縮機3の最大能力を算出する。この圧縮機3の最大能力が、処理P5において更新する圧縮機回転数である。制御機構20は、圧縮機回転数を更新した後、処理P6において、圧縮機回転数を圧縮機駆動インバータ回路2である圧縮機構40に指示する。
ここで、圧縮機回転数について説明する。圧縮機インバータ駆動部9は、ファン回転数がファン回転数Fで固定されている場合には、外気温度に基づいて、圧縮機回転数を設定する。また、圧縮機インバータ駆動部9は、外気温度が一定である場合には、ファン回転数に基づいて、圧縮機回転数を設定する。
図7は、ファン回転数が固定されている場合の圧縮機回転数を説明するための図である。図7に示すグラフは、縦軸が圧縮機3への設定回転数を示す圧縮機回転数であり、横軸が動作時間である。圧縮機回転数fmaxは、外気温度が基準値の外気温度Tであり且つファン回転数が基準回転数のファン回転数Fである場合に、圧縮機インバータ駆動部9が設定する圧縮機回転数の最大値である。圧縮機回転数fmaxは、圧縮機駆動インバータ回路2に対して設定可能な圧縮機回転数のうちの許容最大値である。
なお、後述する圧縮機回転数fmax_Ta,fmax_Tb,fmax_Fc,fmax_Fdも、圧縮機駆動インバータ回路2に対して設定可能な圧縮機回転数のうちの許容最大値である。圧縮機回転数fmax_Taは、外気温度が外気温度Taである場合の圧縮機回転数の許容最大値であり、圧縮機回転数fmax_Tbは、外気温度が外気温度Tbである場合の圧縮機回転数の許容最大値である。また、圧縮機回転数fmax_Fcは、ファン回転数がファン回転数Fcである場合の圧縮機回転数の許容最大値であり、圧縮機回転数fmax_Fdは、ファン回転数がファン回転数Fdである場合の圧縮機回転数の許容最大値である。
ファン回転数Fが固定されている場合に、外気温度TaがT<Taになると、スイッチング素子への冷却能力が下がる。このため、圧縮機インバータ駆動部9は、圧縮機回転数fmaxを下げる。すなわち、圧縮機インバータ駆動部9は、fmax_Ta<fmaxとなる圧縮機回転数fmax_Taを設定する。
これにより、圧縮機インバータ駆動部9は、外気温度が基準値である外気温度Tよりも高くなると、圧縮機3の圧縮機回転数が基準回転数である圧縮機回転数fmaxよりも下がるよう、圧縮機駆動インバータ回路2を制御する。
なお、圧縮機インバータ駆動部9は、外気温度が高くなるほど圧縮機回転数fmax_Taが下がるよう圧縮機駆動インバータ回路2を制御してもよい。これにより、外気温度が高くなると圧縮機3の回転数を小さく抑えることができるので、小さな冷却能力でスイッチング素子を冷却することが可能となる。
一方、ファン回転数Fが固定されている場合に、外気温度TaがTb<Tになると、スイッチング素子への冷却能力が上がる。このため、圧縮機インバータ駆動部9は、圧縮機回転数fmaxを上げる。すなわち、圧縮機インバータ駆動部9は、fmax<fmax_Tbとなる圧縮機回転数fmax_Tbを設定する。
これにより、圧縮機インバータ駆動部9は、外気温度が基準値である外気温度Tよりも低くなると、圧縮機3の圧縮機回転数が基準回転数である圧縮機回転数fmaxよりも上がるよう、圧縮機駆動インバータ回路2を制御する。
なお、圧縮機インバータ駆動部9は、外気温度が低くなるほど圧縮機回転数fmax_Tbが上がるよう圧縮機駆動インバータ回路2を制御してもよい。これにより、外気温度が低くなると、圧縮機3の回転数が大きくなっても、大きな冷却能力でスイッチング素子を冷却することが可能となる。
図8は、外気温度が一定であるとした場合の圧縮機回転数を説明するための図である。図8に示すグラフは、縦軸が圧縮機3への設定回転数を示す圧縮機回転数であり、横軸が動作時間である。圧縮機回転数fmaxは、外気温度が基準値の外気温度Tであり且つファン回転数が基準回転数のファン回転数Fである場合に、圧縮機インバータ駆動部9が設定する圧縮機回転数の最大値である。
外気温度Tが固定されている場合に、ファン回転数FcがF<Fcになると、スイッチング素子への冷却能力が上がる。このため、圧縮機インバータ駆動部9は、圧縮機回転数fmaxを上げる。すなわち、圧縮機インバータ駆動部9は、fmax<fmax_Fcとなる圧縮機回転数fmax_Fcを設定する。
これにより、圧縮機インバータ駆動部9は、ファン回転数が基準値であるファン回転数Fよりも大きくなると、圧縮機3の圧縮機回転数が基準回転数である圧縮機回転数fmaxよりも上がるよう、圧縮機駆動インバータ回路2を制御する。
なお、圧縮機インバータ駆動部9は、ファン回転数が大きくなるほど圧縮機回転数fmax_Fcが上がるよう圧縮機駆動インバータ回路2を制御してもよい。これにより、ファン回転数が大きくなると、圧縮機3の回転数が大きくなっても、大きな冷却能力でスイッチング素子を冷却することが可能となる。
一方、外気温度Tが固定されている場合に、ファン回転数FcがFd<Fになると、スイッチング素子への冷却能力が下がる。このため、圧縮機インバータ駆動部9は、圧縮機回転数fmaxを下げる。すなわち、圧縮機インバータ駆動部9は、fmax_Fd<fmaxとなる圧縮機回転数fmax_Fdを設定する。
これにより、圧縮機インバータ駆動部9は、ファン回転数が基準値であるファン回転数Fよりも小さくなると、圧縮機3の圧縮機回転数が基準回転数である圧縮機回転数fmaxよりも下がるよう、圧縮機駆動インバータ回路2を制御する。
なお、圧縮機インバータ駆動部9は、ファン回転数が小さくなるほど圧縮機回転数fmax_Fdが下がるよう、圧縮機駆動インバータ回路2を制御してもよい。これにより、ファン回転数が小さくなると、圧縮機3の回転数を小さく抑えることができるので、小さな冷却能力でスイッチング素子を冷却することが可能となる。
なお、図7ではファン回転数が固定されている場合について説明し、図8では外気温度が固定されている場合について説明したが、ファン回転数および外気温度の両方ともが変動してもよい。この場合、圧縮機インバータ駆動部9は、ファン回転数および外気温度に基づいて、スイッチング素子への冷却能力を算出し、スイッチング素子への冷却能力に対応する圧縮機回転数を設定する。具体的には、圧縮機インバータ駆動部9は、スイッチング素子への冷却能力が下がる場合には、圧縮機回転数を下げる。また、圧縮機インバータ駆動部9は、スイッチング素子への冷却能力が上がる場合には、圧縮機回転数を上げる。
以上の説明のように、本実施の形態に係る空気調和機の室外機100は、入力された交流の電力をコンバータ回路1にて直流電力に変換する。そして、室外機100は、圧縮機駆動インバータ回路2とファンインバータ回路4とで直流電力を交流電力に再変換し、圧縮機3およびファンモータ5を駆動制御する。
また、圧縮機インバータ駆動部9は、ファン回転数検出部7から冷却風量の情報であるファン回転数を取得し、外気温度検出部12から室外機100の周囲温度の情報である外気温度を取得する。そして、圧縮機インバータ駆動部9は、ファン回転数および外気温度に基づいて、圧縮機駆動インバータ回路2が備えるスイッチング素子の冷却能力を見積もる。さらに、圧縮機インバータ駆動部9は、スイッチング素子の冷却能力に対応する圧縮機回転数を設定し、設定した圧縮機回転数で圧縮機駆動インバータ回路2を制御する。圧縮機駆動インバータ回路2を制御する際に用いられる圧縮機回転数は、圧縮機3の最大運転範囲に対応している。
上述した制御によって、圧縮機インバータ駆動部9は、圧縮機駆動インバータ回路2のスイッチング素子が熱破壊する可能性が高い動作範囲に入る前に、圧縮機回転数で規定された安全動作範囲を設定できる。このため、室外機100は、スイッチング素子が熱破壊に至ることのない動作を実行することが可能となる。
ところで、空気調和機の暖房運転時は、室外は寒いので、冷房運転時に比べて外気温度が低い。したがって、スイッチング素子の冷却能力は、同じファン回転数であっても暖房運転時の方が冷房運転時よりも高くなる。このため、圧縮機インバータ駆動部9は、暖房運転時には冷房運転時よりも圧縮機3の出力を上げて動作させることができる。これにより、圧縮機インバータ駆動部9は、室外機100の運転能力幅を広げることができる。
このように、実施の形態によれば、圧縮機インバータ駆動部9が、ファン回転数および外気温度に基づいて、圧縮機3の圧縮機回転数を設定するので、空気調和機の室外機100は、スイッチング素子の熱破壊を防止しつつ動作することが可能となる。また、外気温度に基づいて圧縮機3の圧縮機回転数を設定するので、空気調和機の室外機100は、空気調和能力を向上させることが可能となる。
上述した実施の形態は必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態例の構成の一部を他の実施の形態の構成に置き換える事が可能であり、また、ある実施の形態の構成に他の実施の形態例の構成を加えることも可能である。また、各実施の形態例の構成の一部について、他の構成の追加、削除または置換をする事が可能である。
1 コンバータ回路、2 圧縮機駆動インバータ回路、3 圧縮機、4 ファンインバータ回路、5 ファンモータ、6 ファンインバータ駆動部、7 ファン回転数検出部、8 圧縮機電流変換部、9 圧縮機インバータ駆動部、10 圧縮機電流検出部、11 フィン温度検出部、12 外気温度検出部、30 処理回路、40 圧縮機構、100 室外機。

Claims (7)

  1. 圧縮機を駆動するための直流電力を複数のスイッチング素子によって疑似三相交流に変換する圧縮機駆動インバータ回路と、
    前記スイッチング素子を冷却するファンのファン回転数を検出するファン回転数検出部と、
    空気調和機が配置されている位置の外気温度を検出する外気温度検出部と、
    前記圧縮機駆動インバータ回路を制御することによって前記圧縮機の圧縮機回転数を制御する圧縮機インバータ駆動部と、
    を備え、
    前記圧縮機インバータ駆動部は、前記ファン回転数および前記外気温度に基づいて、前記圧縮機駆動インバータ回路を制御し、前記ファン回転数が基準値よりも大きくなると前記圧縮機回転数が基準回転数よりも上がるよう前記圧縮機駆動インバータ回路を制御する、
    ことを特徴とする空気調和機の室外機。
  2. 前記圧縮機インバータ駆動部は、前記ファン回転数が大きくなるほど前記圧縮機回転数が上がるよう前記圧縮機駆動インバータ回路を制御する、
    ことを特徴とする請求項1に記載の空気調和機の室外機。
  3. 前記圧縮機インバータ駆動部は、前記外気温度が基準値よりも高くなると前記圧縮機回転数が基準回転数よりも下がるよう前記圧縮機駆動インバータ回路を制御することを特徴とする請求項1に記載の空気調和機の室外機。
  4. 前記圧縮機インバータ駆動部は、前記外気温度が高くなるほど前記圧縮機回転数が下がるよう前記圧縮機駆動インバータ回路を制御する、
    ことを特徴とする請求項1に記載の空気調和機の室外機。
  5. ヒートシンクのフィン部の温度であるフィン温度を検出するフィン温度検出部をさらに備え、
    前記圧縮機インバータ駆動部は、前記ファン回転数、前記外気温度および前記フィン温度に基づいて、前記圧縮機駆動インバータ回路を制御する、
    ことを特徴とする請求項1に記載の空気調和機の室外機。
  6. ヒートシンクのフィン部の温度であるフィン温度を検出するフィン温度検出部と、
    前記ファン回転数と、前記フィン温度とに基づいて、前記ファン回転数の制御を行うファンインバータ駆動部と、
    をさらに備えることを特徴とする請求項1に記載の空気調和機の室外機。
  7. 前記圧縮機駆動インバータ回路に流れる電流を検出する圧縮機電流検出部をさらに備え、
    前記圧縮機インバータ駆動部は、前記電流が閾値を超えた場合に、前記圧縮機駆動インバータ回路を制御することによって前記圧縮機を停止させる、
    ことを特徴とする請求項1に記載の空気調和機の室外機。
JP2018520246A 2016-05-31 2016-05-31 空気調和機の室外機 Active JP6524346B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066028 WO2017208345A1 (ja) 2016-05-31 2016-05-31 空気調和機の室外機

Publications (2)

Publication Number Publication Date
JPWO2017208345A1 JPWO2017208345A1 (ja) 2018-09-13
JP6524346B2 true JP6524346B2 (ja) 2019-06-05

Family

ID=60478213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018520246A Active JP6524346B2 (ja) 2016-05-31 2016-05-31 空気調和機の室外機

Country Status (5)

Country Link
US (1) US10684034B2 (ja)
EP (1) EP3467394B1 (ja)
JP (1) JP6524346B2 (ja)
CN (1) CN109154450B (ja)
WO (1) WO2017208345A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375175B (zh) 2018-02-08 2019-09-24 珠海格力电器股份有限公司 空调系统控制方法及装置
CN108397853B (zh) * 2018-02-11 2019-11-01 珠海格力电器股份有限公司 空调机组控制方法和装置
JP6937940B2 (ja) * 2018-10-03 2021-09-22 三菱電機株式会社 冷凍サイクル装置
CN109945397B (zh) * 2019-03-29 2020-12-22 广东美的制冷设备有限公司 空调器及其防凝露方法和装置
CN112032981B (zh) * 2020-07-24 2021-10-22 广东积微科技有限公司 空调室内外机通讯电路及空调
CN112032968B (zh) * 2020-08-27 2022-06-03 海信(山东)空调有限公司 空调器及其控制方法和计算机可读存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257238A (en) * 1979-09-28 1981-03-24 Borg-Warner Corporation Microcomputer control for an inverter-driven heat pump
JP3356551B2 (ja) * 1994-07-13 2002-12-16 東芝キヤリア株式会社 空気調和機
JPH1151454A (ja) * 1997-08-06 1999-02-26 Fujitsu General Ltd 空気調和機の制御方法
WO2003083376A1 (en) * 2002-03-29 2003-10-09 Daikin Industries, Ltd. Air conditioner
US20060112702A1 (en) * 2004-05-18 2006-06-01 George Martin Energy efficient capacity control for an air conditioning system
US20060130504A1 (en) * 2004-12-17 2006-06-22 Agrawal Nityanand J Method and apparatus for control of a variable speed compressor
KR20080083846A (ko) * 2007-03-13 2008-09-19 엘지전자 주식회사 공기조화기
CN101424412A (zh) * 2007-10-29 2009-05-06 乐金电子(天津)电器有限公司 带有室外机风扇运转状态感知系统的空调室外机
KR101461559B1 (ko) * 2007-12-21 2014-11-13 엘지전자 주식회사 공기조화기의 전동기 제어장치
US8011199B1 (en) * 2010-07-27 2011-09-06 Nordyne Inc. HVAC control using discrete-speed thermostats and run times
CN102345915B (zh) * 2011-08-02 2013-11-27 宁波奥克斯电气有限公司 直流变频空调的故障运行控制方法
JP5858777B2 (ja) * 2011-12-28 2016-02-10 三菱電機株式会社 空気調和装置
JP5963539B2 (ja) * 2012-05-29 2016-08-03 三菱電機株式会社 空気調和装置
JP2015017734A (ja) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 空気調和機
JP6221580B2 (ja) * 2013-09-30 2017-11-01 株式会社富士通ゼネラル 空気調和機
CN104566840B (zh) * 2013-10-16 2018-04-27 海尔集团公司 冷媒散热装置、安装其的空调及温度控制方法
CN105333659B (zh) * 2014-08-15 2017-12-12 Tcl空调器(中山)有限公司 除湿机压缩机保护控制方法及除湿机
CN104566826B (zh) 2014-12-31 2017-06-16 广东美的制冷设备有限公司 变频空调及其压缩机控制方法和装置
CN205174706U (zh) * 2015-12-11 2016-04-20 安康学院 一种空调散热控制系统

Also Published As

Publication number Publication date
EP3467394B1 (en) 2020-04-22
EP3467394A1 (en) 2019-04-10
CN109154450B (zh) 2021-08-06
US20190203962A1 (en) 2019-07-04
WO2017208345A1 (ja) 2017-12-07
US10684034B2 (en) 2020-06-16
EP3467394A4 (en) 2019-06-26
JPWO2017208345A1 (ja) 2018-09-13
CN109154450A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
JP6524346B2 (ja) 空気調和機の室外機
JP5628233B2 (ja) モータ駆動装置、流体圧縮システム、及び空気調和機
JP6397050B2 (ja) 空気調和機
JP6401658B2 (ja) 空気調和機
JP5486434B2 (ja) 電力変換装置
JP6567173B2 (ja) 空気調和機
JP2006138577A (ja) 空気調和機
KR101765925B1 (ko) 차량용 전동압축기의 일체형 인버터 과열방지 방법
JP6629446B2 (ja) 除霜判断機器、除霜制御機器及び空気調和機
JP6378997B2 (ja) 室外機ユニット
JP5501987B2 (ja) 空気調和機
JP2013238234A (ja) レンジエクステンダ付き内燃機関を冷却するための方法およびレンジエクステンダ付き内燃機関を冷却するための装置
EP2933916A2 (en) Motor drive and method of controlling a temperature of a motor drive
JP2015029395A (ja) 空気調和機
JP6040066B2 (ja) ファンモータの駆動制御装置
JP6275015B2 (ja) 鉄道車両用空調装置
JP4294112B2 (ja) 室外ファンの制御装置
JP2013152040A (ja) 冷却コンプレッサ制御装置
JP2011202883A (ja) 冷凍サイクル装置の熱源機
JP2020145773A (ja) モータ駆動制御装置、ファン、およびモータ駆動制御方法
JP6877644B2 (ja) 冷凍サイクル装置、空気調和装置及び給湯装置
KR101151955B1 (ko) 차량의 공기조화장치용 전동식압축기의 제어방법
JP2011192575A (ja) 誘導加熱調理器
WO2020208722A1 (ja) 空気調和機の室外機
JP2018170906A (ja) 駆動装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6524346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250