JP6520530B2 - 光走査装置 - Google Patents

光走査装置 Download PDF

Info

Publication number
JP6520530B2
JP6520530B2 JP2015151081A JP2015151081A JP6520530B2 JP 6520530 B2 JP6520530 B2 JP 6520530B2 JP 2015151081 A JP2015151081 A JP 2015151081A JP 2015151081 A JP2015151081 A JP 2015151081A JP 6520530 B2 JP6520530 B2 JP 6520530B2
Authority
JP
Japan
Prior art keywords
light receiving
light
receiving elements
axis
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015151081A
Other languages
English (en)
Other versions
JP2017032714A (ja
Inventor
寛一 中澤
寛一 中澤
西川 英昭
英昭 西川
酒井 賢一
賢一 酒井
浩市 大山
浩市 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015151081A priority Critical patent/JP6520530B2/ja
Publication of JP2017032714A publication Critical patent/JP2017032714A/ja
Application granted granted Critical
Publication of JP6520530B2 publication Critical patent/JP6520530B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

本発明は、可変焦点型の光走査装置に関するものである。
MEMS(Micro Electro Mechanical Systems)型光走査装置は、ミラーを有する反射部と、反射部を両持ち支持する支持梁とを備え、支持梁の軸周りに反射部を回転させることにより光ビームの走査を行うものである。
光走査装置の中には、屈曲することで反射光の焦点位置を変化させる遠近焦点MEMSミラーを備えたものがある。例えば特許文献1では、圧電素子の上にミラーを積層し、圧電素子への電圧の印加により、圧電素子と共にミラーを屈曲させて反射光の焦点位置を変化させる光走査装置が提案されている。
特開2014−215399号公報
このような可変焦点型の光走査装置において精度の高い走査をするためには、出荷前の試験等において、圧電素子等の屈曲部を動作させ、屈曲するミラーの反射面の曲率を検出し、所望の曲率が得られているか否かを調べる必要がある。
本発明は上記点に鑑みて、反射面の曲率を検出する光走査装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、光ビームを反射させる反射面(12a)を有する反射部(1)と、反射面を球面状に屈曲させることで反射面による反射光の焦点位置を変化させる屈曲部(2)と、反射部を中心として反射面の平面における一方向の両側に延設され、反射部を両持ち支持すると共に一方向に平行な第1回転軸(Ar1)周りに揺動可能とする支持梁(3)と、照射される光の入射角度に応じて変化する光の強度に対応した出力信号を発生させる第1受光素子(4)と、球面状に屈曲する反射面の曲率を検出する制御部(5)と、支持梁を共振振動させることにより、反射部を第1回転軸周りに揺動させる第1の駆動部(6)と、を備え、第1受光素子は、反射部のうち反射面と共に屈曲する部分の一面側に配置され、制御部は、第1受光素子に一定方向の光を照射し、第1受光素子からの出力信号を用いて、反射面の曲率を検出することを特徴としている。
これによれば、第1受光素子が、反射部のうち反射面と共に屈曲する部分の一面側に配置されているため、反射部が停止した状態において、制御部が第1受光素子に一定方向の光を照射すると、第1受光素子からの出力信号は、反射面の曲率により変化する。そのため、第1受光素子からの出力信号を用いて、反射面の曲率を検出することができる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。
本発明の第1実施形態にかかる光走査装置の平面図である。 図1のII−II線における断面図である。 図1中の領域IIIの拡大図である。 図3のIV−IV線における断面図である。 図4中の領域Vの拡大図である。 本発明の第2実施形態にかかる光走査装置の部分拡大図である。 本発明の第3実施形態にかかる光走査装置の部分拡大図である。 図7のVIII−VIII線における断面図である。 本発明の第4実施形態にかかる光走査装置の部分拡大図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
本発明の第1実施形態について図1〜図5を用いて説明する。本実施形態の光走査装置100は、可変焦点型の光走査装置であり、反射部1と、屈曲部2と、支持梁3と、受光素子4と、制御部5と、第1の駆動部6と、連結部7と、第2の駆動部8と、支持部9とを備える。
なお、図1は断面図ではないが、図を見やすくするために、後述するミラー12、圧電素子62、配線63、パッド64a、64b、圧電素子82にハッチングを施してある。
光走査装置100が備える上記の構成要素のうち、反射部1、屈曲部2、支持梁3、受光素子4(図3〜図5参照)、第1の駆動部6、連結部7、第2の駆動部8、支持部9は、板状の基板10を用いて形成されている。
図2に示すように、本実施形態では、基板10は、デバイス層10a、BOX層(埋め込み酸化層:Buried Oxide)10b、ハンドル層10cが順に積層された構造のSOI(Silicon on Insulator)基板にて構成されている。
デバイス層10aは例えばSi等で構成され、BOX層10bはSiO等で構成され、ハンドル層10cはSi等で構成される。デバイス層10aは、光走査装置100が備える反射部1、屈曲部2、支持梁3、受光素子4、第1の駆動部6、連結部7、第2の駆動部8、支持部9にパターニングされている。
反射部1は、光走査装置100に照射された光ビームを反射させるものであり、基部11と、ミラー12とを備える。基部11は、デバイス層10aを円形にパターニングすることにより形成された部分である。図2に示すように、基部11の上面には、屈曲部2、ミラー12が順に積層されている。ミラー12は、屈曲部2と反対側の表面である反射面12aにおいて光ビームを反射させる部分であり、例えばAlにより構成されている。
図2〜図4に示すように、基部11の内周部11aでは、ハンドル層10cおよびBOX層10bが除去されている。また、基部11の外周部11bでは、ハンドル層10cおよびBOX層10bが残されている。
このように、内周部11aにおいてハンドル層10cおよびBOX層10bを除去し、内周部11aの厚みを小さくすることにより、内周部11aが屈曲変形しやすくなる。それとともに、外周部11bにおいてハンドル層10cおよびBOX層10bを残し、外周部11bの厚みを大きくして、剛性を内周部11aよりも高くすることにより、光走査装置100の駆動中に基部11およびミラー12が振動により変形することが抑制される。
本実施形態では、図3、図4に示すように、屈曲部2およびミラー12が、基部11の内周部11aの上面に積層されており、内周部11aは、ミラー12が屈曲する際、反射面12aと共に屈曲する。
屈曲部2は、上面形状が円形状とされ、反射面12aを球面状に屈曲させることで反射面12aによる反射光の焦点位置を変化させるものであり、下部電極2a、圧電膜2b、上部電極2cが順に積層された構造の圧電素子により構成されている。下部電極2aおよび上部電極2cは、例えばAl、Au、Pt等により構成されている。また、圧電膜2bは、例えばチタン酸ジルコン酸鉛(PZT)等の圧電材料により構成されている。なお、下部電極2aおよび上部電極2cを、Pt/Ti等の積層構造としてもよい。
下部電極2aと上部電極2cは、それぞれ、図示しない配線を介して後述する制御装置51の出力端子に接続されている。制御装置51により下部電極2aと上部電極2cとの間に電位差が発生させられると、圧電膜2bが変形する。また、これに伴い、圧電膜2bを含む屈曲部2と共に積層構造をなす基部11およびミラー12が屈曲し、反射面12aが屈曲して、反射光の焦点位置が変化する。
反射面12aの平面における一方向をx方向、反射面12aの平面におけるx方向に垂直な方向をy方向とする。図1、図3に示すように、反射部1は、反射部1を中心としてx方向の両側に延設された支持梁3により両持ち支持されている。支持梁3は、反射部1をx方向に平行な第1回転軸Ar1周りに揺動可能とするものである。
反射部1のうち反射面12aと共に屈曲する部分、つまり内周部11aの一面側に、受光素子4が配置されている。受光素子4は、照射される光の強度に応じて出力信号を変化させるものである。
本実施形態では、反射面12aの中心からの距離が互いに等しくなるように、複数の受光素子4が配置されている。具体的には、図3、図4に示すように、受光素子4は、内周部11aのうちミラー12の外側であって、反射面12aに対する法線方向から見て第1軸A1の上に位置する部分に、第1回転軸Ar1に対して線対称に2つ配置されている。第1軸A1は、反射面12aの中心を通る反射面12aに平行な軸であり、本実施形態では、第1軸A1はy方向に平行である。2つの受光素子4をそれぞれ受光素子4a、4bとする。受光素子4a、4bは、本発明の第1受光素子に相当する。
図5に示すように、デバイス層10aのうち基部11を構成する部分の上面には、絶縁膜11c、遮光膜11dが順に積層されている。絶縁膜11cは、例えばSiOで構成される。遮光膜11dは、例えばAlで構成される。受光素子4は、デバイス層10aの上面に形成されたフォトダイオードで構成され、受光素子4の上部においては、絶縁膜11cおよび遮光膜11dが除去され、開口部11eが形成されている。
図5に示すように、開口部11eは、受光素子4の上面に対する法線方向に延設されている。そのため、基部11に光が照射された場合、光が遮光膜11dにより遮られずに開口部11eを通じて受光素子4に照射される面積は、光の方向が受光素子4の上面に対して垂直のときに最大となる。また、この面積は、光の方向が受光素子4の上面に対する法線方向から離れるにつれて、光が遮光膜11dに遮られることによって小さくなる。
後述する光源52は一定方向の光を発生させるため、ミラー12と共に内周部11aが屈曲すると、開口部11eに対する光の入射角度が変化し、上記のように、光が受光素子4に照射される面積が変化する。これにより、受光素子4全体において照射される光の強度が変化して、受光素子4の出力信号が変化する。
このように、受光素子4の上部において絶縁膜11cおよび遮光膜11dを除去し、開口部11eを形成した構成により、受光素子4は、照射される光の入射角度に応じて変化する光の強度に対応した出力信号を発生するものとなっている。
制御部5は、受光素子4に一定方向の光を照射し、受光素子4からの出力信号を用いて、球面状に屈曲する反射面12aの曲率を検出するものであり、図1に示すように、制御装置51と、光源52とを備える。
制御装置51は、受光素子4からの出力信号を用いて反射面12aの曲率を検出するものであり、CPU、ROMやRAM等の記憶部を含んで構成されるマイクロコンピュータ、およびその周辺回路から構成されている。
光源52は、受光素子4に一定方向の光を照射する装置である。具体的には、光源52は、反射部1が揺動せずに停止している状態において、光源52から照射される光が反射面12aの中央部に対して垂直となるように配置されている。また、本実施形態では、光源52が発生させる光の強度は一定である。本実施形態では、走査に用いる光ビームの発生装置を光源52として用いる。
制御装置51の入力端子は、図示しない配線により2つの受光素子4に接続されており、制御装置51の出力端子は、図1に示すように、光源52に接続されている。また、制御装置51の出力端子は、図示しない配線により屈曲部2、第1の駆動部6、第2の駆動部8に接続されており、制御装置51により光走査装置100の走査動作、反射面12aの屈曲動作が行われる。
図1に示すように、反射部1は、支持梁3を介して第1の駆動部6により支持されている。第1の駆動部6は、支持梁3を共振振動させることにより、反射部1を第1回転軸Ar1周りに揺動させるものであり、デバイス層10aをパターニングして形成された長方形状の枠体61の上面に、4つの圧電素子62と、配線63とを形成することで構成されている。支持梁3は、枠体61の対向する2つの辺のうち、それぞれの中央部と接続されている。
図2に示すように、圧電素子62は、下部電極62aと、圧電膜62bと、上部電極62cとが順に積層された構造とされている。下部電極62aおよび上部電極62cは、例えばAl、Au、Pt等により構成されている。また、圧電膜62bは、例えばチタン酸ジルコン酸鉛(PZT)等の圧電材料により構成されている。なお、下部電極62aおよび上部電極62cを、Pt/Ti等の積層構造としてもよい。
4つの圧電素子62をそれぞれ圧電素子621、622、623、624とすると、図1に示すように、第1回転軸Ar1の一方側に圧電素子621、622が配置され、他方側に圧電素子623、624が配置されている。また、反射部1のx方向における一方側に圧電素子621、623が配置され、他方側に圧電素子622、624が配置されている。
配線63は、図2に示すように、下部配線63aと、絶縁膜63bと、上部配線63cとが順に積層された構造とされており、図1に示すように、4つの配線631、632、633、634に分けられている。下部配線63a、上部配線63cは、下部電極62a、上部電極62cと同様に、例えばAl、Au、Pt等により構成されている。また、絶縁膜63bは、例えばチタン酸ジルコン酸鉛(PZT)等により構成されている。なお、下部配線63aおよび上部配線63cを、Pt/Ti等の積層構造としてもよい。
図1、図2に示すように、配線631は、枠体61の上面に形成されており、圧電素子621と圧電素子622とを電気的に接続している。図1に示すように、配線632は、枠体61の上面に形成されており、圧電素子623と圧電素子624とを電気的に接続している。枠体61のうち上面に配線631、632が形成された部分は、図2に示すように、内周部11a、後述する基部81に比べて厚みが大きい。
配線633、634は、それぞれ、圧電素子621、623を支持部9の上面に形成されたパッド64a、64bに接続するものであり、デバイス層10aの上面のうち、枠体61から連結部7、第2の駆動部8、支持部9に至る部分に形成されている。パッド64a、64bは、図示しない配線もしくはボンディングワイヤ等を介して制御装置51に接続されている。
図1に示すように、枠体61のうち、x方向の一方の端部から、y方向の外側へ向けて連結部7が延設されている。連結部7は、枠体61と反対側の端部において、第2の駆動部8と接続されている。
第2の駆動部8は、連結部7を通して枠体61をy方向に平行な軸周りに揺動させることにより、反射部1をy方向に平行な第2回転軸Ar2周りに揺動させるものである。第2回転軸Ar2は、反射面12aに平行で、かつ、第1回転軸Ar1に垂直である。第2の駆動部8は、デバイス層10aをパターニングして形成された基部81の上面に、2つの圧電素子82を形成することで構成されている。
図1に示すように、基部81は、反射部1のy方向における両側に配置され、x方向に延設されており、x方向の一方側の端部において連結部7と接続され、他方側の端部において支持部9と接続されている。基部81のうち、反射部1に対して圧電素子621、622とy方向における同じ側に配置された部分を基部81a、圧電素子623、624と同じ側に配置された部分を基部81bとする。
図2に示すように、圧電素子82は、下部電極82aと、圧電膜82bと、上部電極82cとが順に積層された構造とされている。下部電極82aおよび上部電極82cは、例えばAl、Au、Pt等により構成されている。また、圧電膜82bは、例えばチタン酸ジルコン酸鉛(PZT)等の圧電材料により構成されている。なお、下部電極82aおよび上部電極82cを、Pt/Ti等の積層構造としてもよい。
2つの圧電素子82をそれぞれ圧電素子821、822とする。図1に示すように、圧電素子821、822は、それぞれ、基部81a、81bの上面に形成されており、また、基部81a、81bの上面のうち連結部7側の端部から、支持部9の上面に至って形成されている。
基部81aの上面のうちy方向において圧電素子821よりも反射部1に近い部分、基部81bの上面のうちy方向において圧電素子822よりも反射部1に近い部分には、それぞれ、連結部7から支持部9に至る配線633、634が形成されている。
支持部9は、支持梁3、第1の駆動部6、連結部7、第2の駆動部8を介して反射部1を支持するものであり、反射部1、屈曲部2、支持梁3、受光素子4、第1の駆動部6、連結部7、第2の駆動部8を内部に配置した長方形状の枠体で構成されている。ただし、第1の駆動部6、第2の駆動部8のうち、配線633、634の一部と、パッド64a、64bと、圧電素子821、822の一部は、支持部9の上面に形成されている。図2に示すように、支持部9は、内周部11a、基部81に比べて厚みが大きい。
以上のようにして、本実施形態にかかる光走査装置100が構成されている。このような光走査装置100は、フォトリソグラフィおよびエッチングによりデバイス層10aの表面に各圧電素子、各配線、各パッド、ミラー12、受光素子4等を形成し、基板10をパターニングして反射部1等を上記のように形成することで製造できる。
このように構成された光走査装置100では、第1の駆動部6の圧電素子62が備える下部電極62a、上部電極62cに対して制御装置51により共振走査用電圧を印加することで、圧電膜62bを変形させ、支持梁3を共振振動させる。これにより、反射部1を第1回転軸Ar1周りに揺動させる。このとき、基部11の外周部11bにおいてハンドル層10cおよびBOX層10bが残され、外周部11bの剛性が高くなっているため、反射部1の揺動による変形が抑制される。
また、第2の駆動部8の圧電素子82が備える下部電極82a、上部電極82cに対して制御装置51により強制走査用電圧を印加することで、圧電膜82bを変形させ、基部81の連結部7側の端部、連結部7、枠体61の連結部7側の端部をxy平面に垂直な方向に変位させる。これにより、反射部1をy方向に平行な第2回転軸Ar2周りに揺動させる。
このように、第1の駆動部6および第2の駆動部8により、反射部1がx方向に平行な第1回転軸Ar1およびy方向に平行な第2回転軸Ar2周りに揺動し、2次元での走査が可能となる。
また、光走査装置100では、屈曲部2を構成する圧電素子が備える下部電極2a、上部電極2cに対して制御装置51により電圧を印加することで、圧電膜2bを変形させ、反射面12aを屈曲させる。これにより、反射光の焦点位置を変化させる。
このような可変焦点型の光走査装置100において精度の高い走査をするためには、出荷前の試験等において、屈曲部2を動作させた場合に所望の曲率が得られるか否かを調べる必要がある。また、これを調べるためには、屈曲部2を動作させたときの反射面12aの曲率を検出する必要がある。
本実施形態の光走査装置100では、第1の駆動部6および第2の駆動部8が動作せず、反射部1が揺動せずに停止している状態において、光源52により光ビームを発生させ、受光素子4に照射することにより、反射面12aの曲率を検出することができる。
具体的には、制御装置51は、屈曲部2の圧電素子が備える下部電極2a、上部電極2cに電圧を印加し、屈曲部2を動作させ、反射面12aを屈曲させる。また、光源52は、一定方向の光ビームを発生させ、2つの受光素子4に照射する。このとき、屈曲部2の動作により反射面12aと共に内周部11aも屈曲しているため、制御装置51から屈曲部2に印加される電圧に応じて、内周部11aのうち受光素子4が配置された部分の光源52に対する角度が変化する。
光源52が発生させる光ビームの方向は一定であるが、このように内周部11aが屈曲し、内周部11aのうち受光素子4が配置された部分の光源52に対する角度が変化すると、受光素子4に対する光ビームの入射角度が変化する。
前述したように、受光素子4は、照射される光の入射角度に応じて変化する光の強度に対応した出力信号を発生するものとなっているため、受光素子4からの出力信号は、反射面12aの曲率に応じて変化する。
制御装置51の記憶部には、受光素子4からの出力と第1軸A1における反射面12aの曲率との関係を示す測定データ等が記憶されている。制御装置51は、記憶された測定データ等と受光素子4からの出力信号とを用いて、第1軸A1における反射面12aの曲率を検出する。
このように、本実施形態の光走査装置100では、内周部11aに受光素子4を配置することにより、これらの受光素子4からの出力信号を用いて反射面12aの曲率を検出することができる。また、これにより、出荷前の試験等において屈曲部2を動作させた場合に所望の曲率が得られるか否かを調べ、精度の高い走査を行うことができる。また、光走査装置100の出荷後においても、第1の駆動部6および第2の駆動部8の動作を停止させることにより、受光素子4からの出力信号を用いて反射面12aの曲率を検出することができる。
なお、本実施形態では、光源52は、反射部1が揺動せずに停止している状態において、光源52から照射される光が反射面12aの中央部に対して垂直となるように配置されている。また、2つの受光素子4は、第1回転軸Ar1に対して線対称に配置されている。
そのため、反射面12aの曲率にかかわらず、受光素子4a全体に照射される光の強度と、受光素子4b全体に照射される光の強度は、互いに等しい。つまり、受光素子4aの出力信号と受光素子4bの出力信号は互いに等しい。
したがって、制御装置51に記憶された測定データ等と、2つの受光素子4の出力信号の平均値とを用いることにより、反射面12aの曲率の検出精度を向上させることができる。
(第2実施形態)
本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対して受光素子4の数を変更したものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図6に示すように、本実施形態の光走査装置100は、受光素子4を4つ備えている。具体的には、光走査装置100は、受光素子4a、4bに加え、受光素子4c、4dを備えている。
受光素子4c、4dは、内周部11aのうちミラー12の外側であって、反射面12aに対する法線方向から見て第2軸A2の上に位置する部分に、第1軸A1に対して線対称に配置されている。第2軸A2は、反射面12aの中心を通る反射面12aに平行な軸であり、本実施形態では、第2軸A2はx方向に平行であり、第1軸A1に垂直である。受光素子4c、4dは、本発明の第1受光素子に相当する。
受光素子4c、4dは、受光素子4a、4bと同様に、デバイス層10aの上面に形成されたフォトダイオードで構成され、受光素子4c、4dの上部においては、絶縁膜11cおよび遮光膜11dが除去され、開口部11eが形成されている。
受光素子4c、4dは、図示しない配線により、制御装置51の入力端子に接続されている。光源52が発生させる光ビームは、受光素子4c、4dにも照射される。制御装置51は、第1実施形態と同様の方法により、受光素子4c、4dからの出力信号を用いて第2軸A2における反射面12aの曲率を検出する。
このような構成の本実施形態においても、第1実施形態と同様に、受光素子4a、4bからの出力信号を用いて反射面12aの第1軸A1における曲率を検出できる。また、本実施形態では、受光素子4c、4dが配置されているため、上記のように、受光素子4c、4dからの出力信号を用いて第2軸A2における反射面12aの曲率を検出できる。
このように、反射面12aの平面内に置かれた2つの軸それぞれにおける反射面12aの曲率を検出することにより、反射面12aの曲率の検出精度を向上させることができる。
なお、本実施形態においても、受光素子4c、4dの出力信号の平均値を用いることにより、第1実施形態と同様に、反射面12aの曲率の検出精度を向上させることができる。
(第3実施形態)
本発明の第3実施形態について説明する。本実施形態は、第2実施形態に対して受光素子4の数を変更したものであり、その他に関しては第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。
図7、図8に示すように、本実施形態の光走査装置100は、受光素子4を6つ備えている。具体的には、光走査装置100は、受光素子4a、4b、4c、4dに加え、受光素子4e、4fを備えている。
受光素子4e、4fは、反射部1のうち受光素子4a、4b、4c、4dが形成された部分よりも剛性の高い部分、つまり外周部11bの一面側に、第1回転軸Ar1に対して線対称に配置されている。本実施形態では、受光素子4e、4fは、反射面12aに対する法線方向から見て第1軸A1の上に位置する部分に配置されている。受光素子4e、4fは、本発明の第2受光素子に相当する。
受光素子4e、4fは、受光素子4a、4b、4c、4dと同様に、デバイス層10aの上面に形成されたフォトダイオードで構成され、受光素子4e、4fの上部においては、絶縁膜11cおよび遮光膜11dが除去され、開口部11eが形成されている。受光素子4e、4fは、図示しない配線により、制御装置51の入力端子に接続されている。光源52が発生させる一定方向の光ビームは、受光素子4e、4fにも照射される。
本実施形態の光走査装置100では、光源52により光ビームを発生させ、受光素子4e、4fに照射することにより、反射部1の第1回転軸Ar1周りの走査角を検出することができる。
具体的には、第1の駆動部6が動作しており、第2の駆動部8が動作していない状態において、光源52は、一定方向の光ビームを発生させ、受光素子4e、4fに照射する。このとき、第1の駆動部6の動作により反射部1が第1回転軸Ar1周りに揺動しているため、反射部1の第1回転軸Ar1周りの走査角に応じて、外周部11bの光源52に対する角度が変化する。
光源52が発生させる光ビームの方向は一定であるが、このように反射部1が揺動し、外周部11bの光源52に対する角度が変化すると、受光素子4e、4fに対する光ビームの入射角度が変化する。
前述したように、受光素子4は、照射される光の入射角度に応じて変化する光の強度に対応した出力信号を発生するものとなっている。また、光走査装置100では、外周部11bにおいてハンドル層10cおよびBOX層10bを残し、外周部11bの厚みを大きくして、剛性を内周部11aよりも高くすることで、基部11の振動または内周部11aの屈曲による外周部11bの変形が抑制されている。そのため、受光素子4e、4fからの出力信号は、反射部1の第1回転軸Ar1周りの走査角に応じて変化する。
制御装置51の記憶部には、受光素子4e、4fからの出力と反射部1の第1回転軸Ar1周りの走査角との関係を示す測定データ等が記憶されている。制御装置51は、記憶された測定データ等と受光素子4e、4fからの出力信号とを用いて、反射部1の第1回転軸Ar1周りの走査角を検出する。
なお、本実施形態では、外周部11bに受光素子4が2つ配置されているため、光源52が発生させる光ビームの強度が変化した場合にも、外周部11bに配置された2つの受光素子4からの出力を比較することにより、反射部1の第1回転軸Ar1周りの走査角を検出することができる。この場合、光ビームの強度の変化に応じて2つの受光素子4からの出力の差が大きく変化するほど検出精度が向上する。そのため、本実施形態のように、受光素子4e、4fを、反射面12aに対する法線方向から見て第1軸A1の上に位置する部分に配置し、2つの受光素子4の間の距離を大きくして、2つの受光素子4からの出力の差を大きくすることが望ましい。
このように、本実施形態では、反射部1の第1回転軸Ar1周りの走査角を検出することができる。これにより、さらに精度の高い走査を行うことができる。また、本実施形態においても第2実施形態と同様の効果が得られる。
なお、本実施形態のように、内周部11aおよび外周部11bにそれぞれ複数の受光素子4を配置することで、反射面12aの曲率と反射部1の走査角とを同時に検出することができる。これにより、さらに精度の高い走査を行うことができる。
例えば、本実施形態のように、内周部11aに4つの受光素子4が配置され、外周部11bに2つの受光素子が配置されている場合、制御装置51の記憶部には、6つの受光素子4からの出力と、反射面12aの曲率との関係を示す測定データ等が記憶される。また、制御装置51は、記憶された測定データ等と6つの受光素子4からの出力信号とを用いて、反射面12aの曲率を検出する。
(第4実施形態)
本発明の第4実施形態について説明する。本実施形態は、第3実施形態に対して受光素子4の数を変更したものであり、その他に関しては第3実施形態と同様であるため、第3実施形態と異なる部分についてのみ説明する。
図9に示すように、本実施形態の光走査装置100は、受光素子4を8つ備えている。具体的には、光走査装置100は、受光素子4a、4b、4c、4d、4e、4fに加え、受光素子4g、4hを備えている。
受光素子4g、4hは、反射部1のうち受光素子4a、4b、4c、4dが形成された部分よりも剛性の高い部分、つまり外周部11bの一面側に、第2回転軸Ar2に対して線対称に配置されている。本実施形態では、受光素子4g、4hは、反射面12aに対する法線方向から見て第2軸A2の上に位置する部分に配置されている。受光素子4g、4hは、本発明の第2受光素子に相当する。
受光素子4g、4hは、受光素子4a、4b、4c、4d、4e、4fと同様に、デバイス層10aの上面に形成されたフォトダイオードで構成され、受光素子4g、4hの上部においては、絶縁膜11cおよび遮光膜11dが除去され、開口部11eが形成されている。受光素子4g、4hは、図示しない配線により、制御装置51の入力端子に接続されている。光源52が発生させる一定方向の光ビームは、受光素子4g、4hにも照射される。
本実施形態の光走査装置100では、光源52により光ビームを発生させ、受光素子4e、4f、4g、4hに照射することにより、反射部1の第1回転軸Ar1、第2回転軸Ar2周りの走査角を検出することができる。
具体的には、第1の駆動部6および第2の駆動部8が動作している状態において、光源52は、一定方向の光ビームを発生させ、受光素子4e、4f、4g、4hに照射する。このとき、第2の駆動部8の動作により反射部1が第1回転軸Ar1、第2回転軸Ar2周りに揺動しているため、反射部1の第1回転軸Ar1、第2回転軸Ar2周りの走査角に応じて、外周部11bの光源52に対する角度が変化する。
光源52が発生させる光ビームの方向は一定であるが、このように反射部1が揺動し、外周部11bの光源52に対する角度が変化すると、受光素子4e、4f、4g、4hに対する光ビームの入射角度が変化する。
前述したように、受光素子4は、照射される光の入射角度に応じて変化する光の強度に対応した出力信号を発生するものとなっている。また、光走査装置100では、外周部11bにおいてハンドル層10cおよびBOX層10bを残し、外周部11bの厚みを大きくして、剛性を内周部11aよりも高くすることで、基部11の振動または内周部11aの屈曲による外周部11bの変形が抑制されている。そのため、受光素子4e、4f、4g、4hからの出力信号は、反射部1の第1回転軸Ar1、第2回転軸Ar2周りの走査角に応じて変化する。
制御装置51の記憶部には、受光素子4e、4f、4g、4hからの出力と反射部1の第1回転軸Ar1、第2回転軸Ar2周りの走査角との関係を示す測定データ等が記憶されている。制御装置51は、記憶された測定データ等と受光素子4e、4f、4g、4hからの出力信号とを用いて、反射部1の第1回転軸Ar1、第2回転軸Ar2周りの走査角を検出する。
なお、光源52が発生させる光ビームの強度が変化した場合にも、受光素子4e、4f、4g、4hからの出力を比較することにより、反射部1の第1回転軸Ar1、第2回転軸Ar2周りの走査角を検出することができる。
このように、本実施形態では、反射部1の第1回転軸Ar1、第2回転軸Ar2周りの走査角を検出することができる。これにより、さらに精度の高い走査を行うことができる。また、本実施形態においても第3実施形態と同様の効果が得られる。
(他の実施形態)
なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。
例えば、上記第1実施形態では、受光素子4a、4bは反射面12aに対する法線方向から見て第1軸A1の上に位置する部分に配置されているが、受光素子4a、4bがこの部分に配置されていなくてもよい。例えば、受光素子4a、4bが、反射面12aに対する法線方向から見て第1軸A1から離れた部分に配置されていてもよい。
同様に、上記第2実施形態において、受光素子4c、4dが、反射面12aに対する法線方向から見て第2軸A2から離れた部分に配置されていてもよい。また、上記第3実施形態において、受光素子4e、4fが、反射面12aに対する法線方向から見て第1軸A1から離れた部分に配置されていてもよい。また、上記第4実施形態において、受光素子4g、4hが、反射面12aに対する法線方向から見て第2軸A2から離れた部分に配置されていてもよい。
また、上記第1実施形態では、受光素子4a、4bが、反射面12aの中心からの距離が互いに等しくなるように配置されているが、反射面12aの中心から受光素子4aまでの距離と、反射面12aの中心から受光素子4bまでの距離とが、互いに異なっていてもよい。
また、上記第1実施形態では、第1軸A1はy方向に平行であるが、第1軸A1がy方向に平行でなくてもよい。例えば、反射面12aに対する法線方向から見て、第1軸A1がy方向に対して45度傾いていてもよい。
また、上記第1実施形態において、光走査装置100が受光素子4を1つのみ備えていてもよい。また、光走査装置100が3つ以上の受光素子4を備えていてもよい。
また、上記第2実施形態において、光走査装置100が、受光素子4を2つのみ備えていてもよい。この場合、第1軸A1方向および第2軸A2方向において、2つの受光素子4の位置が互いに異なっていれば、2つの受光素子4からの出力信号を用いて、第1軸A1、および、第2軸A2における反射面12aの曲率を検出することができる。
また、上記第2実施形態において、光走査装置100が受光素子4を3つのみ備えていてもよい。この場合、3つの受光素子4のうち2つの受光素子4を、反射面12aに対する法線方向から見て第2軸A2の上に、第1軸A1に対して線対称に配置し、この2つの受光素子4の出力信号の平均値を用いることにより、反射面12aの曲率の検出精度を向上させることができる。また、光走査装置100が5つ以上の受光素子4を備えていてもよい。
また、上記第3、第4実施形態では、内周部11aの一面側においては、受光素子4は少なくとも1つ配置されていればよい。
また、上記第1実施形態では、光走査装置100は第2の駆動部8を備えているが、光走査装置100が第2の駆動部8を備えていなくてもよい。
1 反射部
2 屈曲部
3 支持梁
4 受光素子
5 制御部
6 第1の駆動部
8 第2の駆動部

Claims (7)

  1. 光ビームを反射させる反射面(12a)を有する反射部(1)と、
    前記反射面を球面状に屈曲させることで前記反射面による反射光の焦点位置を変化させる屈曲部(2)と、
    前記反射部を中心として前記反射面の平面における一方向の両側に延設され、前記反射部を両持ち支持すると共に前記一方向に平行な第1回転軸(Ar1)周りに揺動可能とする支持梁(3)と、
    照射される光の入射角度に応じて変化する前記光の強度に対応した出力信号を発生させる第1受光素子(4)と、
    球面状に屈曲する前記反射面の曲率を検出する制御部(5)と、
    前記支持梁を共振振動させることにより、前記反射部を前記第1回転軸周りに揺動させる第1の駆動部(6)と、を備え、
    前記第1受光素子は、前記反射部のうち前記反射面と共に屈曲する部分の一面側に配置され、
    前記制御部は、前記第1受光素子に一定方向の光を照射し、前記第1受光素子からの出力信号を用いて、前記反射面の曲率を検出することを特徴とする光走査装置。
  2. 前記第1受光素子が、少なくとも2つ備えられており、
    2つの前記第1受光素子が、前記反射面に対する法線方向から見て、前記反射面の中心を通る前記反射面に平行な第1軸(A1)の上に、前記第1回転軸に対して線対称に配置され、
    前記制御部が、前記第1軸の上に配置された2つの前記第1受光素子からの出力信号を用いて前記第1軸における前記反射面の曲率を検出することを特徴とする請求項1に記載の光走査装置。
  3. 前記第1受光素子は、少なくとも2つ備えられており、
    前記反射面の中心を通り前記反射面に平行な第1軸(A1)の方向、および、前記反射面の中心を通り前記反射面に平行でかつ前記第1軸に垂直な第2軸(A2)の方向において、2つの前記第1受光素子の位置が互いに異なり、
    前記制御部が、2つの前記第1受光素子からの出力信号を用いて、前記第1軸および前記第2軸における前記反射面の曲率を検出することを特徴とする請求項1に記載の光走査装置。
  4. 前記第1受光素子は、少なくとも3つ備えられており、
    3つの前記第1受光素子のうち2つの前記第1受光素子が、前記反射面に対する法線方向から見て前記第2軸の上に、前記第1軸に対して線対称に配置され、
    前記制御部が、前記第2軸の上に配置された2つの前記第1受光素子からの出力信号を用いて前記第2軸における前記反射面の曲率を検出することを特徴とする請求項3に記載の光走査装置。
  5. 照射される前記光の入射角度に応じて変化する前記光の強度に対応した出力信号を発生させる第2受光素子(4e、4f、4g、4h)を備え、
    前記第2受光素子が、前記反射部のうち前記第1受光素子が形成された部分よりも剛性の高い部分の一面側に複数配置され、
    前記制御部が、前記第2受光素子に一定方向の光を照射し、複数の前記第2受光素子からの出力信号を用いて、前記反射部の走査角を検出することを特徴とする請求項1ないし4のいずれか1つに記載の光走査装置。
  6. 前記第2受光素子が、前記第1回転軸に対して線対称に2つ配置され、
    前記制御部が、前記第1回転軸に対して線対称に配置された2つの前記第2受光素子からの出力信号を用いて、前記反射部の前記第1回転軸周りの走査角を検出することを特徴とする請求項5に記載の光走査装置。
  7. 前記反射面に平行で、かつ、前記第1回転軸に垂直な第2回転軸(Ar2)周りに前記反射部を揺動する第2の駆動部(8)を備え、
    前記第2受光素子は、前記第1軸回転軸に対して線対称に配置された2つに加えてさらに2つ備えられており、
    当該さらに2つの前記第2受光素子が、前記第2回転軸に対して線対称に2つ配置され、
    前記制御部が、前記第1軸回転軸に対して線対称に配置された2つの前記第2受光素子からの出力信号と、前記第2軸回転軸に対して線対称に配置された2つの前記第2受光素子からの出力信号とを用いて、前記反射部の前記第1回転軸周りの走査角と、前記反射部の前記第2回転軸周りの走査角とを検出することを特徴とする請求項6に記載の光走査装置。
JP2015151081A 2015-07-30 2015-07-30 光走査装置 Active JP6520530B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015151081A JP6520530B2 (ja) 2015-07-30 2015-07-30 光走査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015151081A JP6520530B2 (ja) 2015-07-30 2015-07-30 光走査装置

Publications (2)

Publication Number Publication Date
JP2017032714A JP2017032714A (ja) 2017-02-09
JP6520530B2 true JP6520530B2 (ja) 2019-05-29

Family

ID=57987921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151081A Active JP6520530B2 (ja) 2015-07-30 2015-07-30 光走査装置

Country Status (1)

Country Link
JP (1) JP6520530B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6972768B2 (ja) * 2017-08-22 2021-11-24 株式会社デンソー 可変焦点ミラーシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236262A (ja) * 2001-02-08 2002-08-23 Mitsubishi Electric Corp 光スイッチ
JP2003005124A (ja) * 2001-06-26 2003-01-08 Canon Inc 可動板の変位検出機能を備えた光偏向器、及び光偏向器を用いた光学機器
JP4476080B2 (ja) * 2004-09-14 2010-06-09 日本信号株式会社 可変焦点型光学装置
JP2008233405A (ja) * 2007-03-19 2008-10-02 Yamagata Prefecture 可変曲率ミラーデバイス及びその製造方法
JP2011179969A (ja) * 2010-03-01 2011-09-15 Ricoh Co Ltd 光走査装置及びレーザレーダ装置
US9285516B2 (en) * 2010-08-02 2016-03-15 Avinash Girish Bhardwaj Actuator motion control mechanism for a concave mirror
JP5979073B2 (ja) * 2013-04-24 2016-08-24 株式会社デンソー 可変焦点型光学装置
JP6015564B2 (ja) * 2013-05-31 2016-10-26 株式会社デンソー 光走査装置

Also Published As

Publication number Publication date
JP2017032714A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6493014B2 (ja) 光走査装置
US8730549B2 (en) Two-dimensional optical deflector including piezoelectric sensor on movable frame
US8817351B2 (en) Optical deflector including piezoelectric sensor on fixed frame
US9323048B2 (en) Optical deflector including meander-type piezoelectric actuators coupled by crossing bars therebetween
EP3591454B1 (en) Optical module and distance measurement device
JP2017207630A (ja) 光偏向器
JP2014215534A (ja) 光走査装置
JP2014235298A (ja) 光偏向器
US11644664B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
JP6634967B2 (ja) 光走査装置
JP2020515917A (ja) スキャナ向けの角度方向磁場センサ
WO2015145943A1 (ja) 光走査デバイス
JP6520530B2 (ja) 光走査装置
JP2015169745A (ja) 光偏向器
JP2022144257A (ja) 光偏向器、画像投影装置、ヘッドアップディスプレイ、レーザヘッドランプ、ヘッドマウントディスプレイ、距離測定装置、及び移動体
JP6758086B2 (ja) 光偏向器
JP2015090463A (ja) 2次元走査型レーザビーム放射装置
JP7338403B2 (ja) 光偏向器、画像投影装置、ヘッドアップディスプレイ、レーザヘッドランプ、ヘッドマウントディスプレイ、物体認識装置、及び車両
JP3114397B2 (ja) 光学装置
JP6485388B2 (ja) 可変焦点ミラーおよび光走査装置
CN110275285B (zh) 促动器以及光扫描装置
JP2022143323A (ja) 可動装置、画像投影装置、ヘッドアップディスプレイ、レーザヘッドランプ、ヘッドマウントディスプレイ、距離測定装置、及び移動体
JP2018022004A (ja) 光偏向器、画像表示システム
JP7019952B2 (ja) 光偏向器検査方法
JP6092595B2 (ja) 光偏向器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250