JP6513619B2 - 三次元計測装置 - Google Patents
三次元計測装置 Download PDFInfo
- Publication number
- JP6513619B2 JP6513619B2 JP2016189281A JP2016189281A JP6513619B2 JP 6513619 B2 JP6513619 B2 JP 6513619B2 JP 2016189281 A JP2016189281 A JP 2016189281A JP 2016189281 A JP2016189281 A JP 2016189281A JP 6513619 B2 JP6513619 B2 JP 6513619B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength
- imaging
- polarization
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02001—Interferometers characterised by controlling or generating intrinsic radiation properties
- G01B9/02011—Interferometers characterised by controlling or generating intrinsic radiation properties using temporal polarization variation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02001—Interferometers characterised by controlling or generating intrinsic radiation properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02001—Interferometers characterised by controlling or generating intrinsic radiation properties
- G01B9/0201—Interferometers characterised by controlling or generating intrinsic radiation properties using temporal phase variation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02041—Interferometers characterised by particular imaging or detection techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/02075—Reduction or prevention of errors; Testing; Calibration of particular errors
- G01B9/02078—Caused by ambiguity
- G01B9/02079—Quadrature detection, i.e. detecting relatively phase-shifted signals
- G01B9/02081—Quadrature detection, i.e. detecting relatively phase-shifted signals simultaneous quadrature detection, e.g. by spatial phase shifting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02083—Interferometers characterised by particular signal processing and presentation
- G01B9/02087—Combining two or more images of the same region
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/45—Multiple detectors for detecting interferometer signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/70—Using polarization in the interferometer
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Description
本発明は、被計測物の形状を計測する三次元計測装置に関するものである。
従来より、被計測物の形状を計測する三次元計測装置として、干渉計を利用した三次元計測装置が知られている。
かかる三次元計測装置においては、計測光の波長(例えば1500nm)の半分(例えば750nm)が計測可能な計測レンジ(ダイナミックレンジ)となる。
そのため、仮に被計測物上に計測光の波長の半分以上の高低差がある場合には、計測レンジが不足し、被計測物の形状を適正に計測できないおそれがある。これに対し、計測光の波長を長くした場合には、分解能が粗くなり、計測精度が悪化するおそれがある。
これに鑑み、近年では、レンジ不足を解消するため、波長の異なる2種類の光を利用して計測を行う三次元計測装置も提案されている(例えば、特許文献1参照)。
かかる三次元計測装置においては、第1波長光と第2波長光を合成した状態で干渉光学系(偏光ビームスプリッタ等)へ入射させ、ここから出射される干渉光を所定の光学分離手段(ダイクロイックミラー等)により波長分離し、第1波長光に係る干渉光と、第2波長光に係る干渉光とを得る。そして、各波長光に係る干渉光を個別に撮像した干渉縞画像を基に被計測物の形状計測を行う。
波長の異なる2種類の光を利用して、三次元計測に係る計測レンジをより広げるためには、2種類の光の波長差をより小さくすればよい。2種類の光の波長が近ければ近いほど、計測レンジを広げることができる。
しかしながら、2種類の光の波長が近ければ近いほど、2種類の光の波長を適切に分離することが困難となる。
換言すれば、波長差が小さい2種類の光で三次元計測を行おうとした場合、第1波長光に係る干渉光の撮像と、第2波長光に係る干渉光の撮像をそれぞれ異なるタイミングで行う必要があり、計測効率が低下するおそれがある。
例えば位相シフト法を利用した三次元計測において、位相を4段階に変化させる場合には、4通りの画像データを取得する必要があるため、2種類の光を用いる場合には、それぞれ異なるタイミングで4回ずつ、計8回分の撮像時間が必要となる。
本発明は、上記事情等に鑑みてなされたものであり、その目的は、波長の異なる光を利用して、計測レンジの拡大を図ると共に、計測効率の向上を図ることのできる三次元計測装置を提供することにある。
以下、上記課題を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。
手段1.入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系(特定光学系)と、
前記所定の光学系の第1入出力部に対し入射させる、所定の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系の第2入出力部に対し入射させる、所定の偏光を含む第2光を出射可能な第2照射手段と、
前記所定の光学系の前記第1入出力部に対し前記第1光を入射することにより該第1入出力部から(入射する第1光と同軸で)出射される前記第1光に係る出力光を入射可能な第1撮像手段と、
前記所定の光学系の前記第2入出力部に対し前記第2光を入射することにより該第2入出力部から(入射する第2光と同軸で)出射される前記第2光に係る出力光を入射可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像し取得された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
前記所定の光学系の第1入出力部に対し入射させる、所定の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系の第2入出力部に対し入射させる、所定の偏光を含む第2光を出射可能な第2照射手段と、
前記所定の光学系の前記第1入出力部に対し前記第1光を入射することにより該第1入出力部から(入射する第1光と同軸で)出射される前記第1光に係る出力光を入射可能な第1撮像手段と、
前記所定の光学系の前記第2入出力部に対し前記第2光を入射することにより該第2入出力部から(入射する第2光と同軸で)出射される前記第2光に係る出力光を入射可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像し取得された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
尚、以下同様であるが、「所定の光学系(特定光学系)」から出力される「第1光に係る出力光」には「第1光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれ、「第2光に係る出力光」には「第2光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれる。
つまり「所定の光学系」には、「参照光及び計測光を内部で干渉させた上で干渉光として出力する光学系」のみならず、「参照光及び計測光を内部で干渉させることなく、単に合成光として出力する光学系」も含まれる。但し、「所定の光学系」から出力される「出力光」が「合成光」の場合には、「干渉縞画像」を撮像するために、少なくとも「撮像手段」にて撮像される前段階において、所定の干渉手段を介して「干渉光」を得ることとなる。
それ故、光の干渉を生じさせること(干渉縞画像を撮像すること)を目的として、入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な光学系を「干渉光学系」と称することができる。従って、上記手段1において(以下の各手段においても同様)、「所定の光学系(特定光学系)」を「干渉光学系」と換言してもよい。
上記手段1によれば、「第1光」及び「第2光」をそれぞれ所定の光学系の異なる位置(「第1入出力部」及び「第2入出力部」)から入射することにより、「第1光」及び「第2光」は互いに干渉することなく、別々に所定の光学系の異なる位置(「第1入出力部」及び「第2入出力部」)からそれぞれ出射されることとなる。つまり、所定の光学系から出射される光を所定の分離手段を用いて「第1光」と「第2光」とに分離する必要がない。
これにより、「第1光」に含まれる偏光と、「第2光」に含まれる偏光として、波長の近い2種類の偏光を用いることができる。結果として、波長の近い2種類の偏光を利用して、三次元計測に係る計測レンジをより広げることができる。
尚、以下の手段においても同様であるが、「第1照射手段」から照射される「第1光」は、少なくとも「所定の偏光」を含んだ光であればよく、その後「所定の光学系」においてカットされる他の余分な成分を含んだ光(例えば「無偏光」や「円偏光」)であってもよい。
同様に、「第2照射手段」から照射される「第2光」は、少なくとも「所定の偏光」を含んだ光であればよく、その後「所定の光学系」においてカットされる他の余分な成分を含んだ光(例えば「無偏光」や「円偏光」)であってもよい。
さらに、本手段によれば、第1光に係る出力光の撮像と、第2光に係る出力光の撮像を同時に行うことができるため、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
尚、複数の光を用いる場合には、複数の干渉光学系(干渉計モジュール)を用いて被計測物を計測する構成も考えられるが、かかる構成では、基準となる参照面が各干渉光学系ごとに異なり、参照光と計測光とに光路差を生じさせる光路区間が複数の光で異なることとなるため、計測精度が低下するおそれがある。また、複数の干渉光学系の光路長を正確に一致させることは難しく、その調整作業も非常に困難な作業となる。
この点、本手段は、基準となる参照面を1つ備えた1つの干渉光学系(所定の光学系)に対し2つの光を用いる構成となっているため、参照光と計測光とに光路差を生じさせる光路区間が2つの光で同一となる。結果として、複数の干渉光学系を備えることに起因した種々の不具合の発生を防止することができる。
加えて、本手段では、所定の光学系の第1入出力部に対し入射させた第1光に係る出力光が同一位置である第1入出力部から出力され、第2入出力部に対し入射させた第2光に係る出力光が同一位置である第2入出力部から出力される構成となっている。
かかる構成とすることにより、干渉光学系(所定の光学系)の内部において、偏光の偏光方向を変えるための手段(1/4波長板等)を設ける必要がなく、構成の簡素化を図ることができる。
手段2.前記所定の光学系は、
入射する所定の光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を前記計測光として前記被計測物に照射しかつ他方の偏光を前記参照光として前記参照面に照射すると共に、これらを再び合成して出射可能な光学系であって、
前記第1入出力部から入射した前記第1光を、第1の偏光方向を有する偏光(例えばP偏光)よりなる前記参照光と、第2の偏光方向を有する偏光(例えばS偏光)よりなる前記計測光とに分割し、
前記第2入出力部から入射した前記第2光を、前記第2の偏光方向を有する偏光よりなる前記参照光と、前記第1の偏光方向を有する偏光よりなる前記計測光とに分割可能な光学系であることを特徴とする手段1に記載の三次元計測装置。
入射する所定の光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を前記計測光として前記被計測物に照射しかつ他方の偏光を前記参照光として前記参照面に照射すると共に、これらを再び合成して出射可能な光学系であって、
前記第1入出力部から入射した前記第1光を、第1の偏光方向を有する偏光(例えばP偏光)よりなる前記参照光と、第2の偏光方向を有する偏光(例えばS偏光)よりなる前記計測光とに分割し、
前記第2入出力部から入射した前記第2光を、前記第2の偏光方向を有する偏光よりなる前記参照光と、前記第1の偏光方向を有する偏光よりなる前記計測光とに分割可能な光学系であることを特徴とする手段1に記載の三次元計測装置。
上記手段2によれば、「第1光」及び「第2光」をそれぞれ所定の光学系の異なる位置(「第1入出力部」及び「第2入出力部」)から入射することにより、「第1光」に係る参照光及び計測光と、「第2光」に係る参照光及び計測光がそれぞれ異なる偏光成分(P偏光又はS偏光)に分割されるため、所定の光学系に入射した「第1光」及び「第2光」は互いに干渉することなく、別々に所定の光学系の異なる位置(「第1入出力部」及び「第2入出力部」)からそれぞれ出射されることとなる。結果として、上記手段1の作用効果がより確実に奏されることとなる。
手段3.入射する所定の光を偏光方向が互いに直交する2つの偏光に分割する境界面を有し、該分割した一方の偏光を計測光として被計測物に照射しかつ他方の偏光を参照光として参照面に照射すると共に、これらを再び合成して出射可能な偏光ビームスプリッタと、
前記境界面を挟んで隣り合う前記偏光ビームスプリッタの第1面及び第2面のうち第1入出力部となる前記第1面に対し入射させる、所定の偏光を含む第1光を出射可能な第1照射手段と、
前記偏光ビームスプリッタの第2入出力部となる前記第2面に対し入射させる、所定の偏光を含む第2光を出射可能な第2照射手段と、
前記偏光ビームスプリッタの前記第1面に対し前記第1光を入射することにより該第1面から(入射する第1光と同軸で)出射される前記第1光に係る出力光を入射可能な第1撮像手段と、
前記偏光ビームスプリッタの前記第2面に対し前記第2光を入射することにより該第2面から(入射する第2光と同軸で)出射される前記第2光に係る出力光を入射可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像し取得された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
前記境界面を挟んで隣り合う前記偏光ビームスプリッタの第1面及び第2面のうち第1入出力部となる前記第1面に対し入射させる、所定の偏光を含む第1光を出射可能な第1照射手段と、
前記偏光ビームスプリッタの第2入出力部となる前記第2面に対し入射させる、所定の偏光を含む第2光を出射可能な第2照射手段と、
前記偏光ビームスプリッタの前記第1面に対し前記第1光を入射することにより該第1面から(入射する第1光と同軸で)出射される前記第1光に係る出力光を入射可能な第1撮像手段と、
前記偏光ビームスプリッタの前記第2面に対し前記第2光を入射することにより該第2面から(入射する第2光と同軸で)出射される前記第2光に係る出力光を入射可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像し取得された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
尚、「偏光ビームスプリッタ」は、その境界面において、第1の偏光方向を有する偏光(例えばP偏光)を透過させ、第2の偏光方向を有する偏光(例えばS偏光)を反射する機能を有する。従って、偏光ビームスプリッタの第1面から入射した第1光は、例えば第1の偏光方向を有する偏光(例えばP偏光)よりなる参照光と、第2の偏光方向を有する偏光(例えばS偏光)よりなる計測光とに分割され、偏光ビームスプリッタの第2面から入射した第2光は、例えば第2の偏光方向を有する偏光(例えばS偏光)よりなる参照光と、第1の偏光方向を有する偏光(例えばP偏光)よりなる計測光とに分割されることとなる。
つまり、「第1光」と「第2光」をそれぞれ偏光ビームスプリッタの異なる位置(「第1面」及び「第2面」)から入射することにより、「第1光」に係る参照光及び計測光と、「第2光」に係る参照光及び計測光がそれぞれ異なる偏光成分(P偏光又はS偏光)に分割されるため、「第1光」と「第2光」は互いに干渉することなく、別々に偏光ビームスプリッタの異なる位置(「第1面」及び「第2面」)から出射されることとなる。
従って、上記手段3によれば、マイケルソン干渉計の原理に基づいた比較的簡素な構成で、上記手段1等に係る構成を実現することができる。
手段4.前記第1照射手段から出射される第1光の少なくとも一部を前記第1入出力部に向け入射させると共に、前記第1入出力部から出射される前記第1光に係る出力光の少なくとも一部を前記第1撮像手段に向け入射させる第1導光手段と、
前記第2照射手段から出射される第2光の少なくとも一部を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第2光に係る出力光の少なくとも一部を前記第2撮像手段に向け入射させる第2導光手段とを備えたことを特徴とする手段1乃至3のいずれかに記載の三次元計測装置。
前記第2照射手段から出射される第2光の少なくとも一部を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第2光に係る出力光の少なくとも一部を前記第2撮像手段に向け入射させる第2導光手段とを備えたことを特徴とする手段1乃至3のいずれかに記載の三次元計測装置。
上記手段4によれば、比較的簡素な構成で、上記手段1等に係る構成を実現することができる。
例えば「前記第1照射手段から出射される第1光の一部を透過させかつ残りを反射させ、該第1光の透過光又は反射光を前記第1入出力部に向け入射させると共に、前記第1入出力部から出射される第1光に係る出力光の一部を透過させかつ残りを反射させ、該第1光に係る出力光の透過光又は反射光を前記第1撮像手段に向け入射させる第1無偏光ビームスプリッタ(ハーフミラー等)と、
前記第2照射手段から出射される第2光の一部を透過させかつ残りを反射させ、該第2光の透過光又は反射光を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第2光に係る出力光の一部を透過させかつ残りを反射させ、該第2光に係る出力光の透過光又は反射光を前記第2撮像手段に向け入射させる第2無偏光ビームスプリッタ(ハーフミラー等)とを備えた」構成が一例に挙げられる。
前記第2照射手段から出射される第2光の一部を透過させかつ残りを反射させ、該第2光の透過光又は反射光を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第2光に係る出力光の一部を透過させかつ残りを反射させ、該第2光に係る出力光の透過光又は反射光を前記第2撮像手段に向け入射させる第2無偏光ビームスプリッタ(ハーフミラー等)とを備えた」構成が一例に挙げられる。
手段5.前記照射手段は、自身が有する所定の発光部から出射される一方向の光のみを透過しかつ逆方向の光を遮断する光アイソレータを備えていることを特徴とする手段4に記載の三次元計測装置。
上記手段4の導光手段として、例えば無偏光ビームスプリッタを備えた場合には、該無偏光ビームスプリッタが、入出力部から出射された光の一部を透過させかつ残りを反射させ、該光の透過光又は反射光の一方を撮像手段に向け入射させる際に、該撮像手段に入射しない他方の光が照射手段に向かうこととなる。仮に、かかる光が発光部(光源等)に入射した場合には、発光部が損傷したり動作が不安定となるおそれがある。
これに対し、本手段5によれば、光アイソレータを備えることにより、発光部の損傷や不安定化などを防止することができる。
手段6.前記第1照射手段は、
第1波長(例えば491nm)の偏光を含む第1波長光を出射可能な第1波長光出射部、及び/又は、第2波長(例えば540nm)の偏光を含む第2波長光を出射可能な第2波長光出射部を備え、
前記第1波長の偏光、及び/又は、前記第2波長の偏光を含む前記第1光を出射可能に構成され、
前記第2照射手段は、
第3波長(例えば488nm)の偏光を含む第3波長光を出射可能な第3波長光出射部、及び/又は、第4波長(例えば532nm)の偏光を含む第4波長光を出射可能な第4波長光出射部を備え、
前記第3波長の偏光、及び/又は、前記第4波長の偏光を含む前記第2光を出射可能に構成され、
前記第1撮像手段は、
前記第1入出力部に対し前記第1波長の偏光を含む前記第1光が入射された場合に、前記第1入出力部から出射される前記第1光に係る出力光に含まれる前記第1波長の偏光に係る出力光を撮像可能な第1波長光撮像部、
及び/又は、
前記第1入出力部に対し前記第2波長の偏光を含む前記第1光が入射された場合に、前記第1入出力部から出射される前記第1光に係る出力光に含まれる前記第2波長の偏光に係る出力光を撮像可能な第2波長光撮像部を備え、
前記第2撮像手段は、
前記第2入出力部に対し前記第3波長の偏光を含む前記第2光が入射された場合に、前記第2入出力部から出射される前記第2光に係る出力光に含まれる前記第3波長の偏光に係る出力光を撮像可能な第3波長光撮像部、
及び/又は、
前記第2入出力部に対し前記第4波長の偏光を含む前記第2光が入射された場合に、前記第2入出力部から出射される前記第2光に係る出力光に含まれる前記第4波長の偏光に係る出力光を撮像可能な第4波長光撮像部を備えていることを特徴とする手段1乃至5のいずれかに記載の三次元計測装置。
第1波長(例えば491nm)の偏光を含む第1波長光を出射可能な第1波長光出射部、及び/又は、第2波長(例えば540nm)の偏光を含む第2波長光を出射可能な第2波長光出射部を備え、
前記第1波長の偏光、及び/又は、前記第2波長の偏光を含む前記第1光を出射可能に構成され、
前記第2照射手段は、
第3波長(例えば488nm)の偏光を含む第3波長光を出射可能な第3波長光出射部、及び/又は、第4波長(例えば532nm)の偏光を含む第4波長光を出射可能な第4波長光出射部を備え、
前記第3波長の偏光、及び/又は、前記第4波長の偏光を含む前記第2光を出射可能に構成され、
前記第1撮像手段は、
前記第1入出力部に対し前記第1波長の偏光を含む前記第1光が入射された場合に、前記第1入出力部から出射される前記第1光に係る出力光に含まれる前記第1波長の偏光に係る出力光を撮像可能な第1波長光撮像部、
及び/又は、
前記第1入出力部に対し前記第2波長の偏光を含む前記第1光が入射された場合に、前記第1入出力部から出射される前記第1光に係る出力光に含まれる前記第2波長の偏光に係る出力光を撮像可能な第2波長光撮像部を備え、
前記第2撮像手段は、
前記第2入出力部に対し前記第3波長の偏光を含む前記第2光が入射された場合に、前記第2入出力部から出射される前記第2光に係る出力光に含まれる前記第3波長の偏光に係る出力光を撮像可能な第3波長光撮像部、
及び/又は、
前記第2入出力部に対し前記第4波長の偏光を含む前記第2光が入射された場合に、前記第2入出力部から出射される前記第2光に係る出力光に含まれる前記第4波長の偏光に係る出力光を撮像可能な第4波長光撮像部を備えていることを特徴とする手段1乃至5のいずれかに記載の三次元計測装置。
尚、「第1光に係る出力光」に含まれる「第1波長の偏光に係る出力光」には「第1波長の偏光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれ、「第2波長の偏光に係る出力光」には「第2波長の偏光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれる。
同様に、「第2光に係る出力光」に含まれる「第3波長の偏光に係る出力光」には「第3波長の偏光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれ、「第4波長の偏光に係る出力光」には「第4波長の偏光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれる。
また、「第1波長光出射部」から出射される「第1波長光」は、少なくとも「第1波長の偏光」を含んだ光であればよく、他の余分な成分を含んだ光であってもよいし、「第2波長光出射部」から出射される「第2波長光」は、少なくとも「第2波長の偏光」を含んだ光であればよく、他の余分な成分を含んだ光であってもよい。
同様に、「第3波長光出射部」から出射される「第3波長光」は、少なくとも「第3波長の偏光」を含んだ光であればよく、他の余分な成分を含んだ光であってもよいし、「第4波長光出射部」から出射される「第4波長光」は、少なくとも「第4波長の偏光」を含んだ光であればよく、他の余分な成分を含んだ光であってもよい。
上記手段6によれば、「第1光(「第1波長の偏光」及び/又は「第2波長の偏光」)」と「第2光(「第3波長の偏光」及び/又は「第4波長の偏光」)」をそれぞれ所定の光学系(偏光ビームスプリッタ等)の異なる位置(「第1入出力部」及び「第2入出力部」)から入射することにより、「第1光」及び「第2光」は互いに干渉することなく、別々に所定の光学系(偏光ビームスプリッタ等)の異なる位置(「第1入出力部」及び「第2入出力部」)からそれぞれ出射されることとなる。
これにより、「第1光」に含まれる偏光(「第1波長の偏光」及び/又は「第2波長の偏光」)と、「第2光」に含まれる偏光(「第3波長の偏光」及び/又は「第4波長の偏光」)として波長の近い2種類の偏光を用いることができる。結果として、波長の近い2種類の偏光を利用して、三次元計測に係る計測レンジをより広げることができる。特に本手段では、最大で4種類の波長の異なる光を利用できるため、計測レンジを飛躍的に広げることも可能となる。
また、「第1光に係る出力光(「第1波長の偏光に係る出力光」及び/又は「第2波長の偏光に係る出力光」)」の撮像と、「第2光に係る出力光(「第3波長の偏光に係る出力光」及び/又は「第4波長の偏光に係る出力光」)」の撮像を個別かつ同時に行うことができる。結果として、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。特に本手段では、最大で4種類の偏光に係る出力光を個別かつ同時に撮像できるため、計測効率等を飛躍的に向上させることも可能となる。
さらに、本手段によれば、例えば「第1波長の偏光」及び「第3波長の偏光」の2種類の偏光を用いた計測と、「第2波長の偏光」及び「第4波長の偏光」の2種類の偏光を用いた計測を、被計測物の種類に応じて切替えることができる。つまり、本手段によれば、波長の近い2種類の偏光を用いて計測レンジの拡大を図りつつも、被計測物の種類に応じて光の種類(波長)を切替えることができる。結果として、利便性や汎用性の向上を図ることができる。
例えば赤系光が適さないウエハ基板などの被計測物に対しては、「第1波長の偏光」及び「第3波長の偏光」の2種類の偏光(例えば491nmと488nmの青系色の2光)を用いた計測を行う一方、青系光が適さない銅などの被計測物に対しては、「第2波長の偏光」及び「第4波長の偏光」の2種類の偏光(例えば540nmと532nmの緑系色の2光)を用いた計測を行うことができる。勿論、各偏光の波長は上記例示したものに限定されるものではなく、他の波長の偏光を採用してもよい。
手段7.前記第1照射手段は、
前記第1波長光出射部から出射される前記第1波長光、及び、前記第2波長光出射部から出射される前記第2波長光を、前記第1光として合成可能な第1合成手段を備え、
前記第2照射手段は、
前記第3波長光出射部から出射される前記第3波長光、及び、前記第4波長光出射部から出射される前記第4波長光を、前記第2光として合成可能な第2合成手段を備え、
前記第1撮像手段は、
前記第1波長の偏光及び前記第2波長の偏光を含む前記第1光が前記第1照射手段から出射された場合に、前記第1入出力部から出射される前記第1光に係る出力光を、前記第1波長の偏光に係る出力光、及び、前記第2波長の偏光に係る出力光に分離可能な第1分離手段を備え、
前記第2撮像手段は、
前記第3波長の偏光及び前記第4波長の偏光を含む前記第2光が前記第2照射手段から出射された場合に、前記第2入出力部から出射される前記第2光に係る出力光を、前記第3波長の偏光に係る出力光、及び、前記第4波長の偏光に係る出力光に分離可能な第2分離手段を備えていることを特徴とする手段6に記載の三次元計測装置。
前記第1波長光出射部から出射される前記第1波長光、及び、前記第2波長光出射部から出射される前記第2波長光を、前記第1光として合成可能な第1合成手段を備え、
前記第2照射手段は、
前記第3波長光出射部から出射される前記第3波長光、及び、前記第4波長光出射部から出射される前記第4波長光を、前記第2光として合成可能な第2合成手段を備え、
前記第1撮像手段は、
前記第1波長の偏光及び前記第2波長の偏光を含む前記第1光が前記第1照射手段から出射された場合に、前記第1入出力部から出射される前記第1光に係る出力光を、前記第1波長の偏光に係る出力光、及び、前記第2波長の偏光に係る出力光に分離可能な第1分離手段を備え、
前記第2撮像手段は、
前記第3波長の偏光及び前記第4波長の偏光を含む前記第2光が前記第2照射手段から出射された場合に、前記第2入出力部から出射される前記第2光に係る出力光を、前記第3波長の偏光に係る出力光、及び、前記第4波長の偏光に係る出力光に分離可能な第2分離手段を備えていることを特徴とする手段6に記載の三次元計測装置。
上記手段7によれば、第1波長光と第2波長光を合成した状態で所定の光学系(偏光ビームスプリッタ等)へ入射させ、ここから出射される出力光を分離手段(ダイクロイックミラー等)により波長分離し、第1波長の偏光に係る出力光と、第2波長の偏光に係る出力光とを得ることができる。
同様に、第3波長光と第4波長光を合成した状態で所定の光学系(偏光ビームスプリッタ等)へ入射させ、ここから出射される出力光を分離手段(ダイクロイックミラー等)により波長分離し、第3波長の偏光に係る出力光と、第4波長の偏光に係る出力光とを得ることができる。
結果として、従来同様の干渉光学系(所定の光学系)を用いることが可能となるため、構成の簡素化を図ることができる。さらに、本手段によれば、最大で4種類の光を同時に利用することが可能となるため、計測レンジのさらなる拡大を図ると共に、計測効率のさらなる向上を図ることができる。
従って、第1合成手段により「第1波長の偏光」と「第2波長の偏光」を合成する場合には、「第1光」に含まれる「第1波長の偏光」と「第2波長の偏光」は第1分離手段(ダイクロイックミラー等)で分離可能な程度に波長が離れた偏光であることが好ましい。同様に、第2合成手段により「第3波長の偏光」と「第4波長の偏光」を合成する場合には、「第2光」に含まれる「第3波長の偏光」と「第4波長の偏光」は第2分離手段(ダイクロイックミラー等)で分離可能な程度に波長が離れた偏光であることが好ましい。
手段8.前記被計測物を前記参照面と同一の平面とした場合において、前記第1入出力部に対し入射させる前記第1光に含まれる偏光(例えば「第1波長の偏光」及び/又は「第2波長の偏光」)の偏光方向と、該第1入出力部から出射される前記第1光に係る出力光に含まれる偏光(例えば「第1波長の偏光」及び/又は「第2波長の偏光」)の偏光方向とが同一となり、かつ、前記第2入出力部に対し入射させる前記第2光に含まれる偏光(例えば「第3波長の偏光」及び/又は「第4波長の偏光」)の偏光方向と、該第2入出力部から出射される前記第2光に係る出力光に含まれる偏光(例えば「第3波長の偏光」及び/又は「第4波長の偏光」)の偏光方向とが同一となることを特徴とする手段1乃至7のいずれかに記載の三次元計測装置。
上記手段8によれば、上記手段1等の作用効果がより確実に奏されることとなる。
手段9.前記第1入出力部に対し前記第1光を入射する入射方向と、前記第2入出力部に対し前記第2光を入射する入射方向とを該両入射方向を含む平面上において一致させた場合において、前記第1光に含まれる偏光(例えば「第1波長の偏光」及び/又は「第2波長の偏光」)の偏光方向と、前記第2光に含まれる偏光(例えば「第3波長の偏光」及び/又は「第4波長の偏光」)の偏光方向とが90°異なることを特徴とする手段1乃至8のいずれかに記載の三次元計測装置。
上記手段9によれば、上記手段1等の作用効果がより確実に奏されることとなる。
手段10.(例えば被計測物や参照面に向け)同一軸線上を同一方向に向かう前記第1光に含まれる偏光(例えば「第1波長の偏光」及び/又は「第2波長の偏光」)又はその計測光若しくは参照光の偏光方向と、前記第2光に含まれる偏光(例えば「第3波長の偏光」及び/又は「第4波長の偏光」)又はその計測光若しくは参照光の偏光方向とが90°異なることを特徴とする手段1乃至9のいずれかに記載の三次元計測装置。
手段11.前記参照光と前記計測光との間に相対的な位相差を付与する位相シフト手段を備え、
前記画像処理手段は、
前記位相シフト手段により複数通り(例えば3又は4通り)に位相シフトされた前記出力光を撮像し取得された複数通りの干渉縞画像を基に、位相シフト法により前記被計測物の三次元計測を実行可能に構成されていることを特徴とする手段1乃至10のいずれかに記載の三次元計測装置。
前記画像処理手段は、
前記位相シフト手段により複数通り(例えば3又は4通り)に位相シフトされた前記出力光を撮像し取得された複数通りの干渉縞画像を基に、位相シフト法により前記被計測物の三次元計測を実行可能に構成されていることを特徴とする手段1乃至10のいずれかに記載の三次元計測装置。
位相シフト法を利用した従来の三次元計測装置においては、位相を4段階又は3段階に変化させ、これらに対応する4通り又は3通りの干渉縞画像を撮像する必要があった。そのため、計測レンジ向上のため、波長差が小さい2種類の光を用いる場合には、それぞれ異なるタイミングで4回ずつ(又は3回ずつ)、計8回分(又は計6回分)の撮像時間が必要であった。
これに対し、本手段11によれば、第1光に係る出力光の撮像と、第2光に係る出力光の撮像を同時に行うことができるため、計4回分(又は計3回分)の撮像時間で、2種類の光に係る計8通り(又は6通り)の干渉縞画像を取得することができる。結果として、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
特に、上記手段6に係る構成の下では、第1光に係る出力光に含まれる「第1波長の偏光に係る出力光」及び/又は「第2波長の偏光に係る出力光」の撮像と、第2光に係る出力光に含まれる「第3波長の偏光に係る出力光」及び/又は「第4波長の偏光に係る出力光」の撮像を個別かつ同時に行うことができるため、例えば計4回分の撮像時間で、最大4種類の光に係る計16通り(4×4通り)の干渉縞画像を取得することができる。
手段12.前記出力光を複数の光に分割する分光手段と、
前記位相シフト手段として、前記分光手段により分割された複数の分割光のうち、少なくとも前記位相シフト法による計測に必要な数(例えば3つ又は4つ)の分割光に対してそれぞれ異なる位相差を付与するフィルタ手段とを備え、
前記撮像手段は、少なくとも前記フィルタ手段を透過する前記複数の分割光を同時に撮像可能に構成されていることを特徴とする手段11に記載の三次元計測装置。
前記位相シフト手段として、前記分光手段により分割された複数の分割光のうち、少なくとも前記位相シフト法による計測に必要な数(例えば3つ又は4つ)の分割光に対してそれぞれ異なる位相差を付与するフィルタ手段とを備え、
前記撮像手段は、少なくとも前記フィルタ手段を透過する前記複数の分割光を同時に撮像可能に構成されていることを特徴とする手段11に記載の三次元計測装置。
上記位相シフト手段としては、例えば参照面を光軸に沿って移動させることにより物理的に光路長を変化させる構成が考えられる。しかしながら、かかる構成では、計測に必要なすべての干渉縞画像を取得するまでに一定時間を要するため、計測時間が長くなるばかりでなく、その空気の揺らぎや振動等の影響を受けるため、計測精度が低下するおそれがある。
この点、本手段12によれば、計測に必要なすべての干渉縞画像を同時に取得することができる。例えば2種類の光に係る計8通り(又は6通り)の干渉縞画像を同時に取得することができる。特に、上記手段6に係る構成の下では、最大で4種類の光に係る計16通り(4×4通り)の干渉縞画像を同時に取得することができる。結果として、計測精度の向上を図ると共に、総体的な撮像時間を大幅に短縮でき、計測効率の飛躍的な向上を図ることができる。
尚、「分光手段」としては、例えば「入射される光を、それぞれ光路長が等しくかつ進行方向に直交する平面において光路がマトリクス状に並ぶ4つの光に分割する分光手段」などが挙げられる。例えば、下記の手段13のような構成が一例に挙げられる。
手段13.前記分光手段は、
第1の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第1の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第1分岐手段(第1のハーフミラー)を有する第1の光学部材(第1のケスタープリズム)と、
前記第1の平面と直交する第2の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第2の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第2分岐手段(第2のハーフミラー)を有する第2の光学部材(第2のケスタープリズム)とを備え、
前記第1の光学部材の第3面と前記第2の光学部材の第1面とを相対向するように配置することにより、
前記第1の光学部材の前記第1面に対し(垂直に)入射される光を前記第1分岐手段にて2方向に分岐させ、このうち前記第1分岐手段にて反射した分割光を前記第1面にて前記第3面側に向け反射させ、前記第1分岐手段を透過した分割光を前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する2つの分割光として出射させ、
前記第1の光学部材の第3面から出射された2つの分割光を前記第2の光学部材の第1面に対し(垂直に)入射させ、該2つの分割光をそれぞれ前記第2分岐手段にて2方向に分岐させ、このうち前記第2分岐手段にて反射した2つの分割光をそれぞれ前記第1面にて前記第3面側に向け反射させ、前記第2分岐手段を透過した2つの分割光をそれぞれ前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する4つの分割光として出射させることを特徴とする手段12に記載の三次元計測装置。
第1の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第1の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第1分岐手段(第1のハーフミラー)を有する第1の光学部材(第1のケスタープリズム)と、
前記第1の平面と直交する第2の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第2の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第2分岐手段(第2のハーフミラー)を有する第2の光学部材(第2のケスタープリズム)とを備え、
前記第1の光学部材の第3面と前記第2の光学部材の第1面とを相対向するように配置することにより、
前記第1の光学部材の前記第1面に対し(垂直に)入射される光を前記第1分岐手段にて2方向に分岐させ、このうち前記第1分岐手段にて反射した分割光を前記第1面にて前記第3面側に向け反射させ、前記第1分岐手段を透過した分割光を前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する2つの分割光として出射させ、
前記第1の光学部材の第3面から出射された2つの分割光を前記第2の光学部材の第1面に対し(垂直に)入射させ、該2つの分割光をそれぞれ前記第2分岐手段にて2方向に分岐させ、このうち前記第2分岐手段にて反射した2つの分割光をそれぞれ前記第1面にて前記第3面側に向け反射させ、前記第2分岐手段を透過した2つの分割光をそれぞれ前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する4つの分割光として出射させることを特徴とする手段12に記載の三次元計測装置。
上記手段13によれば、所定の光学系(干渉光学系)等から出射される光を2行2列のマトリクス状に並ぶ4つの光に分光することができる。これにより、例えば下記の手段14のように複数の分割光を単一の撮像素子により同時撮像する構成において、撮像素子の撮像領域をマトリクス状に4等分した分割領域を、4つの分割光にそれぞれ割り当てることができるため、撮像素子の撮像領域を有効活用することができる。例えばアスペクト比が4:3の一般的な撮像素子の撮像領域を4等分した場合、各分割領域のアスペクト比は同じく4:3となるため、各分割領域内のより広範囲を利用可能となる。ひいては、さらなる計測精度の向上を図ることができる。
また、仮に回折格子を分光手段として用いた場合には分解能が低下するおそれがあるが、本手段では、1つの光を平行する2つの光に分割し、さらに該2つの光をそれぞれ平行する2つの光に分割することにより、平行する4つの光に分光する構成となっているため、分解能の低下抑制を図ることができる。
さらに、1つの光を平行する2つの光に分割する手段として、上記構成を有する光学部材(ケスタープリズム)を採用しているため、分割された2つの光の光路長が光学的に等しくなる。結果として、分割された2つの光の光路長を調整する光路調整手段を備える必要がなく、部品点数の削減を図ると共に、構成の簡素化や装置の小型化等を図ることができる。
また、第1の光学部材の第3面と第2の光学部材の第1面とが当接していれば、分光手段に対し1つの光が入射されてから、4つの光が出射されるまでの間、光が光学部材内のみを進み、空気中に出ない構成となるため、空気の揺らぎ等による影響を低減することができる。
手段14.前記撮像手段は、少なくとも前記フィルタ手段を透過する前記複数の分割光を単一の撮像素子により同時に撮像可能に構成されていることを特徴とする手段12又は13に記載の三次元計測装置。
尚、複数の分割光を同時に撮像する場合には、複数のカメラ(撮像素子)により各分割光をそれぞれ撮像する構成も考えられるが、かかる構成では、各カメラ(撮像素子)の違い等により、計測誤差が生じるおそれがある。
この点、本手段によれば、複数の分割光を単一の撮像素子により同時撮像する構成となっているため、計測誤差等の発生を抑制し、計測精度の向上を図ることができる。
手段15.前記被計測物が、プリント基板に印刷されたクリーム半田、又は、ウエハ基板に形成された半田バンプであることを特徴とする手段1乃至14のいずれかに記載の三次元計測装置。
上記手段15によれば、プリント基板に印刷されたクリーム半田、又は、ウエハ基板に形成された半田バンプの高さ計測等を行うことができる。ひいては、クリーム半田又は半田バンプの検査において、その計測値に基づいてクリーム半田又は半田バンプの良否判定を行うことができる。従って、かかる検査において、上記各手段の作用効果が奏されることとなり、精度よく良否判定を行うことができる。結果として、半田印刷検査装置又は半田バンプ検査装置における検査精度の向上を図ることができる。
〔第1実施形態〕
以下、三次元計測装置の一実施形態について図面を参照しつつ説明する。図1は本実施形態に係る三次元計測装置1の概略構成を示す模式図であり、図2は三次元計測装置1の電気的構成を示すブロック図である。以下、便宜上、図1の紙面前後方向を「X軸方向」とし、紙面上下方向を「Y軸方向」とし、紙面左右方向を「Z軸方向」として説明する。
以下、三次元計測装置の一実施形態について図面を参照しつつ説明する。図1は本実施形態に係る三次元計測装置1の概略構成を示す模式図であり、図2は三次元計測装置1の電気的構成を示すブロック図である。以下、便宜上、図1の紙面前後方向を「X軸方向」とし、紙面上下方向を「Y軸方向」とし、紙面左右方向を「Z軸方向」として説明する。
三次元計測装置1は、マイケルソン干渉計の原理に基づき構成されたものであり、所定の光を出力可能な2つの投光系2A,2B(第1投光系2A,第2投光系2B)と、該投光系2A,2Bからそれぞれ出射される光が入射される干渉光学系3と、該干渉光学系3から出射される光が入射される2つの撮像系4A,4B(第1撮像系4A,第2撮像系4B)と、投光系2A,2Bや干渉光学系3、撮像系4A,4Bなどに係る各種制御や画像処理、演算処理等を行う制御装置5とを備えている。
ここで、「制御装置5」が本実施形態における「画像処理手段」を構成し、「干渉光学系3」が本実施形態における「所定の光学系(特定光学系)」を構成する。尚、本願に係る各実施形態においては、光の干渉を生じさせること(干渉縞画像を撮像すること)を目的として、入射する所定の光を2つの光(計測光及び参照光)に分割し、該2つの光に光路差を生じさせた上で、再度合成して出力する光学系を「干渉光学系」という。つまり、2つの光(計測光及び参照光)を内部で干渉させた上で干渉光として出力する光学系のみならず、2つの光(計測光及び参照光)を内部で干渉させることなく、単に合成光として出力する光学系についても「干渉光学系」と称している。従って、本実施形態にて後述するように、「干渉光学系」から、2つの光(計測光及び参照光)が干渉することなく合成光として出力される場合には、少なくとも撮像される前段階(例えば撮像系の内部など)において、所定の干渉手段を介して干渉光を得ることとなる。
まず、2つの投光系2A,2B(第1投光系2A,第2投光系2B)の構成について詳しく説明する。第1投光系2Aは、第1発光部11A、第1光アイソレータ12A、第1無偏光ビームスプリッタ13Aなどを備えている。ここで「第1発光部11A」及び「第1光アイソレータ12A」により本実施形態における「第1照射手段」が構成される。
図示は省略するが、第1発光部11Aは、特定波長λ1の直線偏光を出力可能なレーザ光源や、該レーザ光源から出力される直線偏光を拡大し平行光として出射するビームエキスパンダ、強度調整を行うための偏光板、偏光方向を調整するための1/2波長板などを備えている。
かかる構成の下、本実施形態では、第1発光部11Aから、X軸方向及びY軸方向に対し45°傾斜した方向を偏光方向とする波長λ1(例えばλ1=1500nm)の直線偏光がZ軸方向左向きに出射される。以降、第1発光部11Aから出射される波長λ1の光を「第1光」という。
第1光アイソレータ12Aは、一方向(本実施形態ではZ軸方向左向き)に進む光のみを透過し逆方向(本実施形態ではZ軸方向右向き)の光を遮断する光学素子である。これにより、第1発光部11Aから出射された第1光のみを透過することとなり、戻り光による第1発光部11Aの損傷や不安定化などを防止することができる。
第1無偏光ビームスプリッタ13Aは、直角プリズム(直角二等辺三角形を底面とする三角柱状のプリズム。以下同様。)を貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面13Ahには例えば金属膜などのコーティングが施されている。「第1無偏光ビームスプリッタ13A」により本実施形態における「第1導光手段」が構成される。
以下同様であるが、無偏光ビームスプリッタは、偏光状態も含め、入射光を所定の比率で透過光と反射光とに分割するものである。本実施形態では、1:1の分割比を持った所謂ハーフミラーを採用している。つまり、透過光のP偏光成分及びS偏光成分、並びに、反射光のP偏光成分及びS偏光成分が全て同じ比率で分割されると共に、透過光と反射光の各偏光状態は入射光の偏光状態と同じとなる。
尚、本実施形態では、図1の紙面に平行な方向(Y軸方向又はZ軸方向)を偏光方向とする直線偏光をP偏光(P偏光成分)といい、図1の紙面に垂直なX軸方向を偏光方向とする直線偏光をS偏光(S偏光成分)という。「P偏光」が本実施形態における「第1の偏光方向を有する偏光」に相当し、「S偏光」が「第2の偏光方向を有する偏光」に相当する。
また、第1無偏光ビームスプリッタ13Aは、その接合面13Ahを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第1無偏光ビームスプリッタ13Aの接合面13AhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第1光アイソレータ12Aを介して、第1発光部11AからZ軸方向左向きに入射する第1光の一部(半分)をZ軸方向左向きに透過させ、残り(半分)をY軸方向下向きに反射させるように配置されている。
第2投光系2Bは、上記第1投光系2Aと同様、第2発光部11B、第2光アイソレータ12B、第2無偏光ビームスプリッタ13Bなどを備えている。ここで「第2発光部11B」及び「第2光アイソレータ12B」により本実施形態における「第2照射手段」が構成される。
第2発光部11Bは、上記第1発光部11Aと同様、特定波長λ2の直線偏光を出力可能なレーザ光源や、該レーザ光源から出力される直線偏光を拡大し平行光として出射するビームエキスパンダ、強度調整を行うための偏光板、偏光方向を調整するための1/2波長板などを備えている。
かかる構成の下、本実施形態では、第2発光部11Bから、X軸方向及びZ軸方向に対し45°傾斜した方向を偏光方向とする波長λ2(例えばλ2=1503nm)の直線偏光がY軸方向上向きに出射される。以降、第2発光部11Bから出射される波長λ2の光を「第2光」という。
第2光アイソレータ12Bは、第1光アイソレータ12Aと同様、一方向(本実施形態ではY軸方向上向き)に進む光のみを透過し逆方向(本実施形態ではY軸方向下向き)の光を遮断する光学素子である。これにより、第2発光部11Bから出射された第2光のみを透過することとなり、戻り光による第2発光部11Bの損傷や不安定化などを防止することができる。
第2無偏光ビームスプリッタ13Bは、第1無偏光ビームスプリッタ13Aと同様、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面13Bhには例えば金属膜などのコーティングが施されている。「第2無偏光ビームスプリッタ13B」により本実施形態における「第2導光手段」が構成される。
また、第2無偏光ビームスプリッタ13Bは、その接合面13Bhを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第2無偏光ビームスプリッタ13Bの接合面13BhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第2光アイソレータ12Bを介して、第2発光部11BからY軸方向上向きに入射する第2光の一部(半分)をY軸方向上向きに透過させ、残り(半分)をZ軸方向右向きに反射させるように配置されている。
次に干渉光学系3の構成について詳しく説明する。干渉光学系3は、偏光ビームスプリッタ(PBS)20、参照面23、設置部24などを備えている。
偏光ビームスプリッタ20は、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面(境界面)20hには例えば誘電体多層膜などのコーティングが施されている。
偏光ビームスプリッタ20は、入射される直線偏光を偏光方向が互いに直交する2つの偏光成分(P偏光成分とS偏光成分)に分割するものである。本実施形態における偏光ビームスプリッタ20は、P偏光成分を透過させ、S偏光成分を反射する構成となっている。従って、本実施形態における偏光ビームスプリッタ20は、入射する所定の光を2つの光(計測光及び参照光)に分割すると共に、これらを再び合成する機能を有することとなる。
偏光ビームスプリッタ20は、その接合面20hを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、偏光ビームスプリッタ20の接合面20hがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
より詳しくは、上記第1無偏光ビームスプリッタ13AからY軸方向下向きに反射した第1光が入射する偏光ビームスプリッタ20の第1面(Y軸方向上側面)20a、並びに、該第1面20aと相対向する第3面(Y軸方向下側面)20cがY軸方向と直交するように配置されている。「偏光ビームスプリッタ20の第1面20a」が本実施形態における「第1入出力部」に相当する。
一方、第1面20aと接合面20hを挟んで隣り合う面であって、上記第2無偏光ビームスプリッタ13BからZ軸方向右向きに反射した第2光が入射する偏光ビームスプリッタ20の第2面(Z軸方向左側面)20b、並びに、該第2面20bと相対向する第4面(Z軸方向右側面)20dがZ軸方向と直交するように配置されている。「偏光ビームスプリッタ20の第2面20b」が本実施形態における「第2入出力部」に相当する。
また、偏光ビームスプリッタ20の第3面20cとY軸方向に相対向するように参照面23が配置されている。そして、偏光ビームスプリッタ20の第3面20cから出射される直線偏光(参照光)は参照面23に対し照射される。また、参照面23で反射した参照光は、再度、偏光ビームスプリッタ20の第3面20cに入射する。
一方、偏光ビームスプリッタ20の第4面20dとZ軸方向に相対向するように設置部24が配置されている。そして、偏光ビームスプリッタ20の第4面20dから出射される直線偏光(計測光)は設置部24に置かれた被計測物としてのワークWに対し照射される。また、ワークWにて反射した計測光は、再度、偏光ビームスプリッタ20の第4面20dに入射する。
次に2つの撮像系4A,4B(第1撮像系4A,第2撮像系4B)の構成について詳しく説明する。「第1撮像系4A」により本実施形態における「第1撮像手段」が構成され、「第2撮像系4B」により「第2撮像手段」が構成される。
第1撮像系4Aは、1/4波長板31A、第1偏光板32A、第1カメラ33Aなどを備えている。
1/4波長板31Aは、第1無偏光ビームスプリッタ13AをY軸方向上向きに透過してきた直線偏光(第1光の参照光成分及び計測光成分)をそれぞれ円偏光に変換するためのものである。
第1偏光板32Aは、1/4波長板31Aにより円偏光に変換された第1光の各成分を選択的に透過させるものである。これにより、回転方向の異なる第1光の参照光成分と計測光成分とを特定の位相について干渉させることができる。「第1偏光板32A」が本実施形態における「位相シフト手段」及び「干渉手段」を構成する。
本実施形態に係る第1偏光板32Aは、Y軸方向を軸心として回転可能に構成されると共に、その透過軸方向が45°ずつ変化するように制御される。具体的には、透過軸方向がX軸方向に対し「0°」、「45°」、「90°」、「135°」となるように変化する。
これにより、第1偏光板32Aを透過する第1光の参照光成分及び計測光成分を4通りの位相で干渉させることができる。つまり、位相が90°ずつ異なる干渉光を生成することができる。具体的には、位相が「0°」の干渉光、位相が「90°」の干渉光、位相が「180°」の干渉光、位相が「270°」の干渉光を生成することができる。
第1カメラ33Aは、レンズや撮像素子等を備えてなる公知のものである。本実施形態では、第1カメラ33Aの撮像素子として、CCDエリアセンサを採用している。勿論、撮像素子は、これに限定されるものではなく、例えばCMOSエリアセンサ等を採用してもよい。
第1カメラ33Aによって撮像され得られた画像データは、第1カメラ33A内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置5(画像データ記憶装置54)に入力されるようになっている。
具体的には、第1光に係る位相「0°」の干渉縞画像、位相「90°」の干渉縞画像、位相「180°」の干渉縞画像、位相「270°」の干渉縞画像が第1カメラ33Aにより撮像されることとなる。
第2撮像系4Bは、第1撮像系4Aと同様、1/4波長板31B、第2偏光板32B、第2カメラ33Bなどを備えている。
1/4波長板31Bは、第2無偏光ビームスプリッタ13BをZ軸方向左向きに透過してきた直線偏光(第2光の参照光成分及び計測光成分)をそれぞれ円偏光に変換するためのものである。
第2偏光板32Bは、第1偏光板32Aと同様、1/4波長板31Bにより円偏光に変換された第2光の各成分を選択的に透過させるものである。これにより、回転方向の異なる第2光の参照光成分と計測光成分とを特定の位相について干渉させることができる。「第2偏光板32B」が本実施形態における「位相シフト手段」及び「干渉手段」を構成する。
本実施形態に係る第2偏光板32Bは、Z軸方向を軸心として回転可能に構成されると共に、その透過軸方向が45°ずつ変化するように制御される。具体的には、透過軸方向がY軸方向に対し「0°」、「45°」、「90°」、「135°」となるように変化する。
これにより、第2偏光板32Bを透過する第2光の参照光成分及び計測光成分を4通りの位相で干渉させることができる。つまり、位相が90°ずつ異なる干渉光を生成することができる。具体的には、位相が「0°」の干渉光、位相が「90°」の干渉光、位相が「180°」の干渉光、位相が「270°」の干渉光を生成することができる。
第2カメラ33Bは、第1カメラ33Aと同様、レンズや撮像素子等を備えてなる公知のものである。本実施形態では、第1カメラ33Aと同様、第2カメラ33Bの撮像素子として、CCDエリアセンサを採用している。勿論、撮像素子は、これに限定されるものではなく、例えばCMOSエリアセンサ等を採用してもよい。
第1カメラ33Aと同様、第2カメラ33Bによって撮像され得られた画像データは、第2カメラ33B内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置5(画像データ記憶装置54)に入力されるようになっている。
具体的には、第2光に係る位相「0°」の干渉縞画像、位相「90°」の干渉縞画像、位相「180°」の干渉縞画像、位相「270°」の干渉縞画像が第2カメラ33Bにより撮像されることとなる。
ここで制御装置5の電気的構成について説明する。図2に示すように、制御装置5は、三次元計測装置1全体の制御を司るCPU及び入出力インターフェース51、キーボードやマウス、あるいは、タッチパネルで構成される「入力手段」としての入力装置52、液晶画面などの表示画面を有する「表示手段」としての表示装置53、カメラ33A,33Bにより撮像され得られた画像データ等を順次記憶するための画像データ記憶装置54、各種演算結果を記憶するための演算結果記憶装置55、各種情報を予め記憶しておく設定データ記憶装置56を備えている。なお、これら各装置52〜56は、CPU及び入出力インターフェース51に対し電気的に接続されている。
次に三次元計測装置1の作用について説明する。尚、後述するように、本実施形態における第1光及び第2光の照射は同時に行われるものであり、第1光の光路と第2光の光路が一部で重なることとなるが、ここでは、より分かりやすくするため、第1光及び第2光の光路ごとに異なる図面を用いて個別に説明する。
まず第1光の光路について図3を参照して説明する。図3に示すように、波長λ1の第1光(偏光方向がX軸方向及びY軸方向に対し45°傾斜した直線偏光)が第1発光部11AからZ軸方向左向きに出射される。
第1発光部11Aから出射された第1光は、第1光アイソレータ12Aを通過し、第1無偏光ビームスプリッタ13Aに入射する。第1無偏光ビームスプリッタ13Aに入射した第1光の一部はZ軸方向左向きに透過し、残りはY軸方向下向きに反射する。
このうち、Y軸方向下向きに反射した第1光(偏光方向がX軸方向及びZ軸方向に対し45°傾斜した直線偏光)は、偏光ビームスプリッタ20の第1面20aに入射する。一方、Z軸方向左向きに透過した第1光は、何らかの光学系等に入射することなく、捨て光となる。
ここで、捨て光となる光を、必要に応じて波長計測あるいは光のパワー計測に利用すれば、光源を安定化させ如いては計測精度の向上を図ることができる。
偏光ビームスプリッタ20の第1面20aからY軸方向下向きに入射した第1光は、そのP偏光成分がY軸方向下向きに透過して第3面20cから参照光として出射される一方、そのS偏光成分がZ軸方向右向きに反射して第4面20dから計測光として出射される。
偏光ビームスプリッタ20の第3面20cから出射した第1光に係る参照光(P偏光)は、参照面23で反射する。その後、第1光に係る参照光(P偏光)は、再度、偏光ビームスプリッタ20の第3面20cに入射する。
一方、偏光ビームスプリッタ20の第4面20dから出射した第1光に係る計測光(S偏光)は、ワークWで反射する。その後、第1光に係る計測光(S偏光)は、再度、偏光ビームスプリッタ20の第4面20dに入射する。
ここで、偏光ビームスプリッタ20の第3面20cから再入射した第1光に係る参照光(P偏光)が接合面20hをY軸方向上向きに透過する一方、第4面20dから再入射した第1光に係る計測光(S偏光)は接合面20hにてY軸方向上向きに反射する。そして、第1光に係る参照光及び計測光が合成された状態の合成光が出力光として偏光ビームスプリッタ20の第1面20aから出射される。
偏光ビームスプリッタ20の第1面20aから出射された第1光に係る合成光(参照光及び計測光)は、第1無偏光ビームスプリッタ13Aに入射する。第1無偏光ビームスプリッタ13Aに対しY軸方向上向きに入射した第1光に係る合成光は、その一部がY軸方向上向きに透過し、残りがZ軸方向右向きに反射する。このうち、Y軸方向上向きに透過した合成光(参照光及び計測光)は第1撮像系4Aに入射することとなる。一方、Z軸方向右向きに反射した合成光は、第1光アイソレータ12Aによりその進行を遮断され、捨て光となる。
第1撮像系4Aに入射した第1光に係る合成光(参照光及び計測光)は、まず1/4波長板31Aにより、その参照光成分(P偏光成分)が右回りの円偏光に変換され、その計測光成分(S偏光成分)が左回りの円偏光に変換される。ここで、左回りの円偏光と右回りの円偏光は回転方向が異なるので干渉しない。
第1光に係る合成光は、続いて第1偏光板32Aを通過することにより、その参照光成分と計測光成分とが第1偏光板32Aの角度に応じた位相で干渉する。そして、かかる第1光に係る干渉光が第1カメラ33Aにより撮像される。
次に第2光の光路について図4を参照して説明する。図4に示すように、波長λ2の第2光(偏光方向がX軸方向及びZ軸方向に対し45°傾斜した直線偏光)が第2発光部11BからY軸方向上向きに出射される。
第2発光部11Bから出射された第2光は、第2光アイソレータ12Bを通過し、第2無偏光ビームスプリッタ13Bに入射する。第2無偏光ビームスプリッタ13Bに入射した第2光の一部はY軸方向上向きに透過し、残りはZ軸方向右向きに反射する。
このうち、Z軸方向右向きに反射した第2光(偏光方向がX軸方向及びY軸方向に対し45°傾斜した直線偏光)は、偏光ビームスプリッタ20の第2面20bに入射する。一方、Y軸方向上向きに透過した第2光は、何らかの光学系等に入射することなく、捨て光となる。
ここで、捨て光となる光を、必要に応じて波長計測あるいは光のパワー計測に利用すれば、光源を安定化させ如いては計測精度の向上を図ることができる。
偏光ビームスプリッタ20の第2面20bからZ軸方向右向きに入射した第2光は、そのS偏光成分がY軸方向下向きに反射して第3面20cから参照光として出射される一方、そのP偏光成分がZ軸方向右向きに透過して第4面20dから計測光として出射される。
偏光ビームスプリッタ20の第3面20cから出射した第2光に係る参照光(S偏光)は、参照面23で反射する。その後、第2光に係る参照光(S偏光)は、再度、偏光ビームスプリッタ20の第3面20cに入射する。
一方、偏光ビームスプリッタ20の第4面20dから出射した第2光に係る計測光(P偏光)は、ワークWで反射する。その後、第2光に係る計測光(P偏光)は、再度、偏光ビームスプリッタ20の第4面20dに入射する。
ここで、偏光ビームスプリッタ20の第3面20cから再入射した第2光に係る参照光(S偏光)は接合面20hにてZ軸方向左向きに反射する一方、第4面20dから再入射した第2光に係る計測光(P偏光)は接合面20hをZ軸方向左向きに透過する。そして、第2光に係る参照光及び計測光が合成された状態の合成光が出力光として偏光ビームスプリッタ20の第2面20bから出射される。
偏光ビームスプリッタ20の第2面20bから出射された第2光に係る合成光(参照光及び計測光)は、第2無偏光ビームスプリッタ13Bに入射する。第2無偏光ビームスプリッタ13Bに対しZ軸方向左向きに入射した第2光に係る合成光は、その一部がZ軸方向左向きに透過し、残りがY軸方向下向きに反射する。このうち、Z軸方向左向きに透過した合成光(参照光及び計測光)は第2撮像系4Bに入射することとなる。一方、Y軸方向下向きに反射した合成光は、第2光アイソレータ12Bによりその進行を遮断され、捨て光となる。
第2撮像系4Bに入射した第2光に係る合成光(参照光及び計測光)は、まず1/4波長板31Bにより、その参照光成分(S偏光成分)が左回りの円偏光に変換され、その計測光成分(P偏光成分)が右回りの円偏光に変換される。ここで、左回りの円偏光と右回りの円偏光は回転方向が異なるので干渉しない。
第2光に係る合成光は、続いて第2偏光板32Bを通過することにより、その参照光成分と計測光成分とが第2偏光板32Bの角度に応じた位相で干渉する。そして、かかる第2光に係る干渉光が第2カメラ33Bにより撮像される。
次に、制御装置5によって実行される形状計測処理の手順について詳しく説明する。まずは、設置部24へワークWを設置した後、第1撮像系4Aの第1偏光板32Aの透過軸方向を所定の基準位置(例えば「0°」)に設定すると共に、第2撮像系4Bの第2偏光板32Bの透過軸方向を所定の基準位置(例えば「0°」)に設定する。
続いて、第1投光系2Aから第1光を照射すると同時に、第2投光系2Bから第2光を照射する。その結果、干渉光学系3の偏光ビームスプリッタ20の第1面20aから第1光に係る合成光(参照光及び計測光)が出射されると同時に、偏光ビームスプリッタ20の第2面20bから第2光に係る合成光(参照光及び計測光)が出射される。
そして、偏光ビームスプリッタ20の第1面20aから出射された第1光に係る合成光を第1撮像系4Aにより撮像すると同時に、偏光ビームスプリッタ20の第2面20bから出射された第2光に係る合成光を第2撮像系4Bにより撮像する。
尚、ここでは第1偏光板32A及び第2偏光板32Bの透過軸方向がそれぞれ「0°」に設定されているため、第1カメラ33Aでは第1光に係る位相「0°」の干渉縞画像が撮像され、第2カメラ33Bでは第2光に係る位相「0°」の干渉縞画像が撮像されることとなる。
そして、各カメラ33A,33Bにおいてそれぞれ撮像され得られた画像データが制御装置5へ出力される。制御装置5は、入力した画像データを画像データ記憶装置54に記憶する。
次に制御装置5は、第1撮像系4Aの第1偏光板32A、及び、第2撮像系4Bの第2偏光板32Bの切替処理を行う。具体的には、第1偏光板32A及び第2偏光板32Bをそれぞれ透過軸方向が「45°」となる位置まで回動変位させる。
該切替処理が終了すると、制御装置5は、上記一連の1回目の撮像処理と同様の2回目の撮像処理を行う。つまり、制御装置5は、第1投光系2Aから第1光を照射すると同時に、第2投光系2Bから第2光を照射し、偏光ビームスプリッタ20の第1面20aから出射された第1光に係る合成光を第1撮像系4Aにより撮像すると同時に、偏光ビームスプリッタ20の第2面20bから出射された第2光に係る合成光を第2撮像系4Bにより撮像する。これにより、第1光に係る位相「90°」の干渉縞画像が取得されると共に、第2光に係る位相「90°」の干渉縞画像が撮像されることとなる。
以降、上記1回目及び2回目の撮像処理と同様の撮像処理が2回繰り返し行われる。つまり、第1偏光板32A及び第2偏光板32Bの透過軸方向を「90°」に設定した状態で3回目の撮像処理を行い、第1光に係る位相「180°」の干渉縞画像を取得すると共に、第2光に係る位相「180°」の干渉縞画像を取得する。
その後、第1偏光板32A及び第2偏光板32Bの透過軸方向を「135°」に設定した状態で4回目の撮像処理を行い、第1光に係る位相「270°」の干渉縞画像を取得すると共に、第2光に係る位相「270°」の干渉縞画像を取得する。
このように、4回の撮像処理を行うことにより、三次元計測を行う上で必要な全ての画像データ(第1光に係る4通りの干渉縞画像データ、及び、第2光に係る4通りの干渉縞画像データからなる計8つの干渉縞画像データ)を取得することができる。
そして、制御装置5は、画像データ記憶装置54に記憶された第1光に係る4通りの干渉縞画像データ、及び、第2光に係る4通りの干渉縞画像データを基に、位相シフト法によりワークWの表面形状を計測する。つまり、ワークWの表面上の各位置における高さ情報を算出する。
まずは一般的な位相シフト法による高さ計測の原理について説明する。所定の光(第1光又は第2光)に係る4通りの干渉縞画像データの同一座標位置(x,y)における干渉縞強度、すなわち輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)は、下記[数1]の関係式で表すことができる。
ここで、Δφ(x,y)は、座標(x,y)における計測光と参照光との光路差に基づく位相差を表している。また、A(x,y)は干渉光の振幅、B(x,y)はバイアスを表している。但し、参照光は均一であるため、これを基準として見ると、Δφ(x,y)は「計測光の位相」を表し、A(x,y)は「計測光の振幅」を表すこととなる。
従って、計測光の位相Δφ(x,y)は、上記[数1]の関係式を基に、下記[数2]の関係式で求めることができる。
また、計測光の振幅A(x,y)は、上記[数1]の関係式を基に、下記[数3]の関係式で求めることができる。
次に、上記位相Δφ(x,y)と振幅A(x,y)から、下記[数4]の関係式を基に撮像素子面上における複素振幅Eo(x,y)を算出する。ここで、iは虚数単位を表している。
続いて、複素振幅Eo(x,y)を基に、ワークW面上の座標(ξ,η)における複素振幅Eo(ξ,η)を算出する。
まずは、下記[数5]に示すように、上記複素振幅Eo(x,y)をフレネル変換する。ここで、λは波長を表す。
これをEo(ξ,η)について解くと、下記[数6]のようになる。
さらに、得られた複素振幅Eo(ξ,η)から、下記[数7]の関係式を基に、計測光の位相φ(ξ,η)と、計測光の振幅A(ξ,η)を算出する。
計測光の位相φ(ξ,η)は、下記[数8]の関係式により求めることができる。
計測光の振幅A(ξ,η)は、下記[数9]の関係式により求めることができる。
その後、位相−高さ変換処理を行い、ワークWの表面の凹凸形状を3次元的に示す高さ情報z(ξ,η)を算出する。
高さ情報z(ξ,η)は、下記[数10]の関係式により算出することができる。
次に、波長の異なる2種類の光を用いた2波長位相シフト法の原理について説明する。波長の異なる2種類の光を用いることで計測レンジを広げることができる。尚、かかる原理は3種類又は4種類の光を用いた場合にも応用できる。
波長の異なる2種類の光(波長λ1,λ2)を用いて計測を行った場合には、その合成波長λ0の光で計測を行ったことと同じこととなる。そして、その計測レンジはλ0/2に拡大することとなる。合成波長λ0は、下記式(M1)で表すことができる。
λ0=(λ1×λ2)/(λ2−λ1) ・・・(M1)
但し、λ2>λ1とする。
但し、λ2>λ1とする。
ここで、例えばλ1=1500nm、λ2=1503nmとすると、上記式(M1)から、λ0=751.500μmとなり、計測レンジはλ0/2=375.750μmとなる。
2波長位相シフト法を行う際には、まず波長λ1の第1光に係る4通りの干渉縞画像データの輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)を基に(上記[数1]参照)、ワークW面上の座標(ξ,η)における第1光に係る計測光の位相φ1(ξ,η)を算出する(上記[数8]参照)。
尚、第1光に係る計測の下、座標(ξ,η)における高さ情報z(ξ,η)は、下記式(M2)で表すことができる。
z(ξ,η)=d1(ξ,η)/2
=[λ1×φ1(ξ,η)/4π]+[m1(ξ,η)×λ1/2] ・・・(M2)
但し、d1(ξ,η)は、第1光に係る計測光と参照光との光路差を表し、m1(ξ,η)は、第1光に係る縞次数を表す。
=[λ1×φ1(ξ,η)/4π]+[m1(ξ,η)×λ1/2] ・・・(M2)
但し、d1(ξ,η)は、第1光に係る計測光と参照光との光路差を表し、m1(ξ,η)は、第1光に係る縞次数を表す。
よって、位相φ1(ξ,η)は下記式(M2´)で表すことができる。
φ1(ξ,η)=(4π/λ1)×z(ξ,η)−2πm1(ξ,η) ・・・(M2´)
同様に、波長λ2の第2光に係る4通りの干渉縞画像データの輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)を基に(上記[数1]参照)、ワークW面上の座標(ξ,η)における第2光に係る計測光の位相φ2(ξ,η)を算出する(上記[数8]参照)。
同様に、波長λ2の第2光に係る4通りの干渉縞画像データの輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)を基に(上記[数1]参照)、ワークW面上の座標(ξ,η)における第2光に係る計測光の位相φ2(ξ,η)を算出する(上記[数8]参照)。
尚、第2光に係る計測の下、座標(ξ,η)における高さ情報z(ξ,η)は、下記式(M3)で表すことができる。
z(ξ,η)=d2(ξ,η)/2
=[λ2×φ2(ξ,η)/4π]+[m2(ξ,η)×λ2/2] ・・・(M3)
但し、d2(ξ,η)は、第2光に係る計測光と参照光との光路差を表し、m2(ξ,η)は、第2光に係る縞次数を表す。
=[λ2×φ2(ξ,η)/4π]+[m2(ξ,η)×λ2/2] ・・・(M3)
但し、d2(ξ,η)は、第2光に係る計測光と参照光との光路差を表し、m2(ξ,η)は、第2光に係る縞次数を表す。
よって、位相φ2(ξ,η)は下記式(M3´)で表すことができる。
φ2(ξ,η)=(4π/λ2)×z(ξ,η)−2πm2(ξ,η) ・・・(M3´)
続いて、波長λ1の第1光に係る縞次数m1(ξ,η)、又は、波長λ2の第2光に係る縞次数m2(ξ,η)を決定する。縞次数m1,m2は、2種類の光(波長λ1,λ2)の光路差Δd及び波長差Δλを基に求めることができる。ここで光路差Δd及び波長差Δλは、それぞれ下記式(M4),(M5)のように表すことができる。
続いて、波長λ1の第1光に係る縞次数m1(ξ,η)、又は、波長λ2の第2光に係る縞次数m2(ξ,η)を決定する。縞次数m1,m2は、2種類の光(波長λ1,λ2)の光路差Δd及び波長差Δλを基に求めることができる。ここで光路差Δd及び波長差Δλは、それぞれ下記式(M4),(M5)のように表すことができる。
Δd=(λ1×φ1−λ2×φ2)/2π ・・・(M4)
Δλ=λ2−λ1 ・・・(M5)
但し、λ2>λ1とする。
Δλ=λ2−λ1 ・・・(M5)
但し、λ2>λ1とする。
尚、2波長の合成波長λ0の計測レンジ内において、縞次数m1,m2の関係は、以下の3つの場合に分けられ、各場合ごとに縞次数m1(ξ,η)、m2(ξ,η)を決定する計算式が異なる。ここで、例えば縞次数m1(ξ,η)を決定する場合について説明する。勿論、縞次数m2(ξ,η)についても、同様の手法により求めることができる。
例えば「φ1−φ2<−π」の場合には「m1−m2=−1」となり、かかる場合、m1は下記式(M6)のように表すことができる。
m1=(Δd/Δλ)−(λ2/Δλ)
=(λ1×φ1−λ2×φ2)/2π(λ2−λ1)−λ2/(λ2−λ1)・・・(M6)
「−π<φ1−φ2<π」の場合には「m1−m2=0」となり、かかる場合、m1は下記式(M7)のように表すことができる。
=(λ1×φ1−λ2×φ2)/2π(λ2−λ1)−λ2/(λ2−λ1)・・・(M6)
「−π<φ1−φ2<π」の場合には「m1−m2=0」となり、かかる場合、m1は下記式(M7)のように表すことができる。
m1=Δd/Δλ
=(λ1×φ1−λ2×φ2)/2π(λ2−λ1)・・・(M7)
「φ1−φ2>π」の場合には「m1−m2=+1」となり、かかる場合、m1は下記式(M8)のように表すことができる。
=(λ1×φ1−λ2×φ2)/2π(λ2−λ1)・・・(M7)
「φ1−φ2>π」の場合には「m1−m2=+1」となり、かかる場合、m1は下記式(M8)のように表すことができる。
m1=(Δd/Δλ)+(λ2/Δλ)
=(λ1×φ1−λ2×φ2)/2π(λ2−λ1)+λ2/(λ2−λ1)・・・(M8)
そして、このようにして得られた縞次数m1(ξ,η)又はm2(ξ,η)を基に、上記式(M2),(M3)から高さ情報z(ξ,η)を得ることができる。そして、このように求められたワークWの計測結果(高さ情報)は、制御装置5の演算結果記憶装置55に格納される。
=(λ1×φ1−λ2×φ2)/2π(λ2−λ1)+λ2/(λ2−λ1)・・・(M8)
そして、このようにして得られた縞次数m1(ξ,η)又はm2(ξ,η)を基に、上記式(M2),(M3)から高さ情報z(ξ,η)を得ることができる。そして、このように求められたワークWの計測結果(高さ情報)は、制御装置5の演算結果記憶装置55に格納される。
以上詳述したように、本実施形態では、波長λ1の第1光を偏光ビームスプリッタ20の第1面20aから入射させると共に、波長λ2の第2光を偏光ビームスプリッタ20の第2面20bから入射させることにより、第1光に係る参照光及び計測光と、第2光に係る参照光及び計測光がそれぞれ異なる偏光成分(P偏光又はS偏光)に分割されるため、偏光ビームスプリッタ20に入射した第1光と第2光は互いに干渉することなく、別々に偏光ビームスプリッタ20から出射されることとなる。つまり、偏光ビームスプリッタ20から出射される光を所定の分離手段を用いて第1光と第2光とに分離する必要がない。
その結果、第1光及び第2光として波長の近い2種類の光を用いることができ、三次元計測に係る計測レンジをより広げることができる。加えて、第1光に係る出力光の撮像と、第2光に係る出力光の撮像を同時に行うことができるため、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
さらに、本実施形態では、基準となる参照面23を1つ備えた1つの干渉光学系3に対し2種類の光を用いる構成となっているため、参照光と計測光とに光路差を生じさせる光路区間が2種類の光で同一となる。このため、2つの干渉光学系(干渉計モジュール)を用いる構成に比べて、計測精度が向上すると共に、2つの干渉光学系の光路長を正確に一致させる困難な作業を行う必要もない。
加えて、本実施形態では、偏光ビームスプリッタ20の第1面20aに対し入射させた第1光に係る出力光が同一位置である第1面20aから出力され、偏光ビームスプリッタ20の第2面20bに対し入射させた第2光に係る出力光が同一位置である第2面20bから出力される構成となっている。
かかる構成とすることにより、干渉光学系3の内部において、偏光の偏光方向を変えるための手段(1/4波長板等)を設ける必要がなく、構成の簡素化を図ることができる。
〔第2実施形態〕
以下、第2実施形態について図面を参照しつつ説明する。尚、第1実施形態と同一構成部分については、同一符号を付し、その詳細な説明を省略する。第2実施形態では、第1撮像系4A及び第2撮像系4Bに関連する構成が第1実施形態と異なる。
以下、第2実施形態について図面を参照しつつ説明する。尚、第1実施形態と同一構成部分については、同一符号を付し、その詳細な説明を省略する。第2実施形態では、第1撮像系4A及び第2撮像系4Bに関連する構成が第1実施形態と異なる。
本実施形態に係る第1撮像系4Aは、1/4波長板31Aを透過した第1光に係る合成光(参照光成分及び計測光成分)を4つの光に分割する分光手段としての分光光学系125を備えると共に、第1偏光板32Aに代えて、前記分光光学系125から出射された4つの光の所定成分を選択的に透過させるフィルタ手段としてのフィルタユニット126とを備え、該フィルタユニット126を透過した4つの光を第1カメラ33Aにより同時撮像する構成となっている。
第1撮像系4Aと同様、第2撮像系4Bは、1/4波長板31Bを透過した第2光に係る合成光(参照光成分及び計測光成分)を4つの光に分割する分光手段としての分光光学系125を備えると共に、第2偏光板32Bに代えて、前記分光光学系125から出射された4つの光の所定成分を選択的に透過させるフィルタ手段としてのフィルタユニット126とを備え、該フィルタユニット126を透過した4つの光を第2カメラ33Bにより同時撮像する構成となっている。
尚、本実施形態における第1撮像系4A及び第2撮像系4Bに用いられる分光光学系125及びフィルタユニット126は同一構成であるため、以下、第2撮像系4Bを例にして図5を参照しつつ説明する。
本実施形態では、第2カメラ33Bの光軸方向が、第2撮像系4Bに入射する第2光に係る合成光L0の入射方向(進行方向)と平行するように設定されている。つまり、本実施形態では、第2光に係る合成光L0の入射方向であるZ軸方向に沿って設定されている。
分光光学系125は、無偏光型の4つの光学部材(プリズム)を組み合わせて一体とした1つの光学部材として構成されている。
より詳しくは、分光光学系125は、第2無偏光ビームスプリッタ13Bから入射する合成光L0の進行方向(Z軸方向左向き)に沿って、干渉光学系3に近い側より順に第1のプリズム131、第2のプリズム132、第3のプリズム133、第4のプリズム134が配置された構成となっている。
尚、上記各プリズム131〜134は、それぞれ空気よりも屈折率の高い所定の屈折率を有する光学材料(例えばガラスやアクリル等)により形成されている。従って、各プリズム131〜134内を進む光の光路長は、空気中を進む光の光路長よりも光学的に長くなる。ここで、例えば4つのプリズム131〜134をすべて同じ材料により形成してもよいし、少なくとも1つを異なる材料により形成してもよい。後述する分光光学系125の機能を満たすものであれば、各プリズム131〜134の材質はそれぞれ任意に選択可能である。
第1のプリズム131は、正面視(Z−Y平面)平行四辺形状をなし、X軸方向に沿って延びる四角柱形状のプリズムである。以下、「第1のプリズム131」を「第1菱形プリズム131」という。
第1菱形プリズム131は、X軸方向に沿った長方形状の4面のうち、干渉光学系3側となるZ軸方向右側に位置する面131a(以下、「入射面131a」という)及びZ軸方向左側に位置する面131b(以下、「出射面131b」という)がそれぞれZ軸方向と直交するように配置され、Y軸方向下側に位置する面131c及びY軸方向上側に位置する面131dがそれぞれZ軸方向及びY軸方向に対し45°傾斜するように配置されている。
この2つの傾斜した面131c,131dのうち、Y軸方向下側に位置する面131cには無偏光のハーフミラー141が設けられ、Y軸方向上側に位置する面131dには内側に向け全反射する無偏光の全反射ミラー142が設けられている。以下、ハーフミラー141が設けられた面131cを「分岐面131c」といい、全反射ミラー142が設けられた面131dを「反射面131d」という。
尚、図5においては、便宜上、分岐面131c(ハーフミラー141)及び反射面131d(全反射ミラー142)にあたる部位に散点模様を付して示している。
第2のプリズム132は、正面視(Z−Y平面)台形状をなし、X軸方向に沿って延びる四角柱形状のプリズムである。以下、「第2のプリズム132」を「第1台形プリズム132」という。
第1台形プリズム132は、X軸方向に沿った長方形状の4面のうち、Y軸方向上側に位置する面132a及びY軸方向下側に位置する面132bがそれぞれY軸方向と直交するように配置され、Z軸方向右側に位置する面132cがZ軸方向及びY軸方向に対し45°傾斜するように配置され、Z軸方向左側に位置する面132dがZ軸方向と直交するように配置されている。
このうち、Z軸方向右側に位置する面132cは、第1菱形プリズム131の分岐面131c(ハーフミラー141)に密着している。以下、Z軸方向右側に位置する面132cを「入射面132c」といい、Z軸方向左側に位置する面132dを「出射面132d」という。
第3のプリズム133は、平面視(X−Z平面)平行四辺形状をなし、Y軸方向に沿って延びる四角柱形状のプリズムである。以下、「第3のプリズム133」を「第2菱形プリズム133」という。
第2菱形プリズム133は、Y軸方向に沿った長方形状の4面のうち、Z軸方向右側に位置する面133a及びZ軸方向左側に位置する面133bがそれぞれZ軸方向と直交するように配置され、X軸方向手前側に位置する面133c及びX軸方向奥側に位置する面133dがそれぞれZ軸方向及びX軸方向に対し45°傾斜するように配置されている。
この2つの傾斜した面133c,133dのうち、X軸方向手前側に位置する面133cには無偏光のハーフミラー143が設けられ、X軸方向奥側に位置する面133dには内側に向け全反射する無偏光の全反射ミラー144が設けられている。以下、ハーフミラー143が設けられた面133cを「分岐面133c」といい、全反射ミラー144が設けられた面133dを「反射面133d」という。
尚、図5においては、便宜上、分岐面133c(ハーフミラー143)及び反射面133d(全反射ミラー144)にあたる部位に散点模様を付して示している。
第2菱形プリズム133のZ軸方向右側に位置する面133aのうち、Y軸方向下側半分は、第1台形プリズム132の出射面132dに密着し、Y軸方向上側半分は、第1菱形プリズム131の出射面131bと相対向した状態となっている。以下、Z軸方向右側に位置する面133aを「入射面133a」といい、Z軸方向左側に位置する面133bを「出射面133b」という。
第4のプリズム134は、平面視(X−Z平面)台形状をなし、Y軸方向に沿って延びる四角柱形状のプリズムである。以下、「第4のプリズム134」を「第2台形プリズム134」という。
第2台形プリズム134は、Y軸方向に沿った長方形状の4面のうち、X軸方向奥側に位置する面134a及びX軸方向手前側に位置する面134bがそれぞれX軸方向と直交するように配置され、Z軸方向右側に位置する面134cがZ軸方向及びX軸方向に対し45°傾斜するように配置され、Z軸方向左側に位置する面134dがZ軸方向と直交するように配置されている。
このうち、Z軸方向右側に位置する面134cは、第2菱形プリズム133の分岐面133c(ハーフミラー143)に密着している。以下、Z軸方向右側に位置する面134cを「入射面134c」といい、Z軸方向左側に位置する面134dを「出射面134d」という。
第2菱形プリズム133の出射面133b及び第2台形プリズム134の出射面134dは、それぞれフィルタユニット126と相対向するように配置されている。
ここで、分光光学系125の作用について図5を参照しつつ詳しく説明する。1/4波長板31Bを透過した合成光L0は、第1菱形プリズム131の入射面131aに入射する。
入射面131aから入射した合成光L0は、分岐面131c(ハーフミラー141)にて2方向に分岐する。詳しくは、Y軸方向上側に向け反射する分光LA1と、Z軸方向に沿ってハーフミラー141を透過する分光LA2とに分岐する。
このうち、ハーフミラー141で反射した分光LA1は、第1菱形プリズム131内をY軸方向に沿って進み、反射面131d(全反射ミラー142)にてZ軸方向左側に向け反射し、出射面131bから出射する。出射面131aから出射した分光LA1は、Z軸方向に沿って空気中を進み、第2菱形プリズム133の入射面133aに入射する。
一方、ハーフミラー141を透過した分光LA2は、第1台形プリズム132の入射面132cに入射し、その内部をZ軸方向に沿って進み、出射面132dから出射する。出射面132dから出射した分光LA2は、第2菱形プリズム133の入射面133aに入射する。
本実施形態では、第1菱形プリズム131の分岐面131cから、第2菱形プリズム133の入射面133aに至るまでの両分光LA1,LA2の光路長が光学的に同一となるように、第1菱形プリズム131及び第1台形プリズム132の屈折率及び長さ(Z軸方向又はY軸方向の長さ)が任意に設定されている。
第2菱形プリズム133の入射面133aに入射した分光LA1,LA2は、分岐面133c(ハーフミラー143)にてそれぞれ2方向に分岐する。詳しくは、一方の分光LA1は、Z軸方向に沿ってハーフミラー143を透過する分光LB1と、X軸方向奥側に向け反射する分光LB2とに分岐する。他方の分光LA2は、Z軸方向に沿ってハーフミラー143を透過する分光LB3と、X軸方向奥側に向け反射する分光LB4とに分岐する。
このうち、ハーフミラー143で反射した分光LB2,LB4は、それぞれ第2菱形プリズム133内をX軸方向に沿って進み、反射面133d(全反射ミラー144)にてZ軸方向左側に向け反射し、出射面133bから出射する。出射面133aから出射した分光LB2,LB4は、それぞれZ軸方向に沿って空気中を進み、フィルタユニット126に入射する。
一方、ハーフミラー143を透過した分光LB1,LB3は、第2台形プリズム134の入射面134cに入射し、その内部をZ軸方向に沿って進み、出射面134dから出射する。出射面134dから出射した分光LB1,LB3は、それぞれフィルタユニット126に入射する。
本実施形態では、第2菱形プリズム133の分岐面133cから、フィルタユニット126に至るまでの4つの分光LB1〜LB4の光路長が光学的に同一となるように、第2菱形プリズム133及び第2台形プリズム134の屈折率及び長さ(Z軸方向又はX軸方向の長さ)が任意に設定されている。
フィルタユニット126は、X−Y平面視で同一矩形状をなす4つの偏光板126a,126b,126c,126dがX−Y平面に沿って2行2列のマトリクス状に配置されてなる(図6参照)。図6は、フィルタユニット126の概略構成を模式的に示す平面図である。
4つの偏光板126a〜126dは、Y軸方向に対する透過軸方向が45°ずつ異なる偏光板である。より詳しくは、透過軸方向が0°の第1偏光板126a、透過軸方向が45°の第2偏光板126b、透過軸方向が90°の第3偏光板126c、透過軸方向が135°の第4偏光板126dにより構成されている。
そして、分光光学系125から出射された4つの分光LB1〜LB4がそれぞれ各偏光板126a〜126dに入射するように配置されている。詳しくは、分光LB1が第1偏光板126aに入射し、分光LB2が第2偏光板126bに入射し、分光LB3が第3偏光板126cに入射し、分光LB4が第4偏光板126dに入射する。
これにより、フィルタユニット126を透過した4つの分光LB1〜LB4は、それぞれ位相を90°ずつ異ならせた干渉光となる。詳しくは、第1偏光板126aを透過した分光LB1は位相「0°」の干渉光となり、第2偏光板126bを透過した分光LB2は位相「90°」の干渉光となり、第3偏光板126cを透過した分光LB3は位相「180°」の干渉光となり、第4偏光板126dを透過した分光LB4は位相「270°」の干渉光となる。従って、フィルタユニット126は本実施形態における干渉手段を構成する。
本実施形態に係る第2カメラ33Bの撮像素子33Biは、その撮像領域が、フィルタユニット126(偏光板126a〜126d)に対応して、4つの撮像エリアH1,H2,H3,H4に区分けされている。詳しくは、X−Y平面視で同一矩形状をなす4つの撮像エリアH1,H2,H3,H4がX−Y平面に沿って2行2列のマトリクス状に並ぶように区分けされている(図7参照)。図7は、撮像素子33Biの撮像領域の概略構成を模式的に示す平面図である。
これにより、第1偏光板126aを透過した分光LB1が第1撮像エリアH1にて撮像され、第2偏光板126bを透過した分光LB2が第2撮像エリアH2にて撮像され、第3偏光板126cを透過した分光LB3が第3撮像エリアH3にて撮像され、第4偏光板126dを透過した分光LB4が第4撮像エリアH4にて撮像されることとなる。
つまり、第1撮像エリアH1にて位相「0°」の干渉縞画像が撮像され、第2撮像エリアH2にて位相「90°」の干渉縞画像が撮像され、第3撮像エリアH3にて位相「180°」の干渉縞画像が撮像され、第4撮像エリアH4にて位相「270°」の干渉縞画像が撮像されることとなる。
さらに、本実施形態に係る画像データ記憶装置54は、第2カメラ33Bの撮像素子33Biの第1撮像エリアH1にて撮像され取得された干渉縞画像データを記憶する第1画像メモリと、第2撮像エリアH2にて撮像され取得された干渉縞画像データを記憶する第2画像メモリと、第3撮像エリアH3にて撮像され取得された干渉縞画像データを記憶する第3画像メモリと、第4撮像エリアH4にて撮像され取得された干渉縞画像データを記憶する第4画像メモリとを備えている。
次に、本実施形態において実行される形状計測処理の手順について詳しく説明する。干渉光学系3から第2撮像系4Bに対し第2光に係る出力光である合成光L0が入射されると、該合成光L0は、1/4波長板31Bを経て、分光光学系125により4つの分光LB1〜LB4に分割される。
これら4つの分光LB1,LB2,LB3,LB4は、それぞれ第1偏光板126a,第2偏光板126b,第3偏光板126c,第4偏光板126dを介して、第2カメラ33B(撮像素子33Bi)により同時撮像される。
第2カメラ33Bは、撮像素子33Biの撮像エリアH1〜H4にて同時撮像され得られた4通りの干渉縞画像(4つの分光LB1〜LB4)を1つの画像データとして制御装置4へ出力する。
制御装置4は、入力した画像データを4通りの干渉縞画像データ(撮像素子33Biの撮像エリアH1〜H4に対応する範囲ごと)に分割して、画像データ記憶装置54内の第1〜第4画像メモリにそれぞれ記憶する。
そして、制御装置5は、第1カメラ33Aに係る第1〜第4画像メモリに記憶された第1光に係る4通りの干渉縞画像データ、及び、第2カメラ33Bに係る第1〜第4画像メモリに記憶された第2光に係る4通りの干渉縞画像データを基に、上記第1実施形態と同様に、位相シフト法によりワークWの表面形状を計測する。つまり、ワークWの表面上の各位置における高さ情報を算出する。
以上詳述したように、本実施形態では、上記第1実施形態の作用効果に加え、干渉光学系3から入射される合成光L0をマトリクス状に並ぶ4つの光LB1〜LB4に分光すると共に、該4つの光LB1〜LB4をフィルタユニット126(4つの偏光板126a〜126d)を介して単一の撮像素子により同時に撮像する構成となっている。そして、各カメラ33A,33Bによりそれぞれ撮像され取得された4通りの干渉縞画像を基に位相シフト法によりワークWの形状計測を行う。結果として、計測精度の向上や、計測時間の短縮、装置の大型化抑制等を図ることができる。
加えて、本実施形態によれば、撮像素子の撮像領域をマトリクス状に4等分した撮像エリアH1〜H4を、4つの光LB1〜LB4にそれぞれ割り当てることができるため、例えば3分光方式に比べ、撮像素子の撮像領域を有効活用することができる。ひいては、さらなる計測精度の向上を図ることができる。例えばアスペクト比が4:3の一般的な撮像素子の撮像領域を4等分した場合、各分割領域のアスペクト比は同じく4:3となるため、各分割領域内のより広範囲を利用可能となる。ひいては、さらなる計測精度の向上を図ることができる。
尚、仮に回折格子を分光手段として用いた場合には分解能が低下するおそれがあるが、本実施形態では、1つの光L0を平行する2つの光LA1,LA2に分割し、さらに該2つの光LA1,LA2をそれぞれ平行する2つの光に分割することにより、平行する4つの光LB1,LB2,LB3,LB4に分光する構成の分光光学系125を採用しているため、分解能の低下抑制を図ることができる。
さらに、本実施形態における分光光学系125は、菱形プリズム131,133を直進して通り抜ける一方の光と、クランク状に折れ曲がって通り抜ける他方の光との光路長を調整する(光学的に同一とする)光路調整手段として、直進して通り抜ける一方の光の光路上に台形プリズム132,134を配置するといった比較的簡単な構成となっており、構成の簡素化を図ることができる。
また、本実施形態では、フィルタユニット126が、透過軸方向が0°の第1偏光板126a、透過軸方向が45°の第2偏光板126b、透過軸方向が90°の第3偏光板126c、透過軸方向が135°の第4偏光板126dにより構成されており、一つの撮像素子による一回の撮像で、位相が90°ずつ異なる4通りの干渉縞画像を取得することができる。結果として、3通りの干渉縞画像を基に位相シフト法により形状計測を行う場合に比べて、より精度の高い計測を行うことができる。
〔第3実施形態〕
以下、第3実施形態について図面を参照しつつ説明する。図8は本実施形態に係る三次元計測装置の概略構成を示す模式図である。
以下、第3実施形態について図面を参照しつつ説明する。図8は本実施形態に係る三次元計測装置の概略構成を示す模式図である。
本実施形態は、第2実施形態とは異なる分光光学系を備えたものであり、マイケルソン干渉計の光学構成を採用した第1実施形態と第1撮像系4A及び第2撮像系4Bに関連する構成が異なる。従って、本実施形態では、第1,第2実施形態と異なる構成部分について詳しく説明し、同一構成部分については同一符号を付し、その詳細な説明を省略する。
本実施形態に係る第1撮像系4Aは、第1無偏光ビームスプリッタ13Aを透過した第1光に係る合成光(参照光成分及び計測光成分)を4つの分光に分割する分光手段としての分光光学系600Aと、該分光光学系600Aにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板610Aと、該1/4波長板610Aを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット615Aと、該フィルタユニット615Aを透過した4つの分光を同時に撮像するカメラ633Aとを備えている。
本実施形態に係る第2撮像系4Bは、第2無偏光ビームスプリッタ13Bを透過した第2光に係る合成光(参照光成分及び計測光成分)を4つの分光に分割する分光手段としての分光光学系600Bと、該分光光学系600Bにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板610Bと、該1/4波長板610Bを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット615Bと、該フィルタユニット615Bを透過した4つの分光を同時に撮像するカメラ633Bとを備えている。
尚、「1/4波長板610A」及び「1/4波長板610B」は、上記第1実施形態の「1/4波長板31A」及び「1/4波長板31B」と同様の構成を有するものであり、その詳細な説明は省略する。但し、4つの分光それぞれに対応して個別に1/4波長板を備える構成としてもよい。
「フィルタユニット615A」及び「フィルタユニット615B」は、本実施形態におけるフィルタ手段及び干渉手段を構成する。「フィルタユニット615A」及び「フィルタユニット615B」は、上記第2実施形態の「フィルタユニット126」と同様の構成を有するものであり、その詳細な説明は省略する。但し、4つの分光それぞれに対応して個別に透過軸方向が45°ずつ異なる4つの偏光板(偏光板126a,126b,126c,126d)を備えた構成としてもよい。
「カメラ633A」及び「カメラ633B」並びにこれらに関連する制御処理や画像データ記憶装置54等に係る構成は、上記第1,第2実施形態の「第1カメラ33A」及び「第2カメラ633B(撮像素子33Bi)」等に係る構成と同様の構成を有するものであり、その詳細な説明は省略する。
次に分光光学系600A及び分光光学系600Bの構成について図9〜図12を参照して詳しく説明する。尚、本実施形態における分光光学系600A及び分光光学系600Bは同一構成である。
以下、図9〜図12を参照して、分光光学系600A(600B)について説明する際には、便宜上、図9の紙面上下方向を「X´軸方向」とし、紙面前後方向を「Y´軸方向」とし、紙面左右方向を「Z´軸方向」として説明する。但し、分光光学系600A(600B)単体を説明するための座標系(X´,Y´,Z´)と、三次元計測装置1全体を説明するための座標系(X,Y,Z)は異なる座標系である。
分光光学系600A(600B)は、無偏光の2つの光学部材(プリズム)を貼り合せて一体とした1つの無偏光の光学部材である。
より詳しくは、分光光学系600A(600B)は、第1無偏光ビームスプリッタ13A(第2無偏光ビームスプリッタ13B)を透過した第1光に係る合成光(第2光に係る合成光)を2つの分光に分割する第1プリズム601と、該第1プリズム601により分割された2つの分光をそれぞれ2つの分光に分割して計4つの分光を出射する第2プリズム602とからなる。
第1プリズム601及び第2プリズム602は、それぞれ「ケスタープリズム」と称される公知の光学部材により構成されている。但し、本実施形態において、「ケスタープリズム」とは、「内角がそれぞれ30°、60°、90°となる直角三角形の断面形状を有する一対の光学部材(三角柱形状のプリズム)を貼り合せて一体とした正三角形の断面形状を有する正三角柱形状の光学部材であって、その接合面に無偏光のハーフミラーを有したもの」を指す。勿論、各プリズム601,602として用いられるケスタープリズムは、これに限定されるものではない。後述する分光光学系600A(600B)の機能を満たすものであれば、例えば正三角柱形状でないものなど、各プリズム601,602として本実施形態とは異なる光学部材(ケスタープリズム)を採用してもよい。
具体的に、第1の光学部材(第1のケスタープリズム)としての第1プリズム601は、平面視(X´−Z´平面)正三角形状をなすと共に、Y´軸方向に沿って延びる正三角柱形状をなす(図9参照)。「X´−Z´平面」が本実施形態における「第1の平面」に相当する。
第1プリズム601は、Y´軸方向に沿った長方形状の3つの面(第1面601a、第2面601b、第3面601c)のうち、第1面601aと第2面601bとの交線を通り第3面601cと直交する平面に沿ってハーフミラー601Mが形成されている。「ハーフミラー601M」が本実施形態における「第1分岐手段」を構成する。
第1プリズム601は、第3面601cがX´−Y´平面に沿ってZ´軸方向と直交するように配置されると共に、ハーフミラー601MがY´−Z´平面に沿ってX´軸方向と直交するように配置されている。従って、第1面601a及び第2面601bは、それぞれX´軸方向及びZ´軸方向に対し30°又は60°傾斜するように配置されている。
一方、第2の光学部材(第2のケスタープリズム)としての第2プリズム602は、正面視(Y´−Z´平面)正三角形状をなすと共に、X´軸方向に沿って延びる正三角柱形状をなす(図10参照)。「Y´−Z´平面」が本実施形態における「第2の平面」に相当する。
第2プリズム602は、X´軸方向に沿った正方形状の3つの面(第1面602a、第2面602b、第3面602c)のうち、第1面602aと第2面602bとの交線を通り第3面602cと直交する平面に沿ってハーフミラー602Mが形成されている。「ハーフミラー602M」が本実施形態における「第2分岐手段」を構成する。
第2プリズム602は、第1面602aがX´−Y´平面に沿ってZ´軸方向と直交するように配置されている。従って、第2面602b、第3面602c及びハーフミラー602Mは、それぞれY´軸方向及びZ´軸方向に対し30°又は60°傾斜するように配置されている。
そして、第1プリズム601の第3面601cと第2プリズム602の第1面602aとが接合されている。つまり、第1プリズム601と第2プリズム602は、ハーフミラー601Mを含む平面(Y´−Z´平面)と、ハーフミラー602Mを含む平面とが直交する向きで接合されている。
ここで、X´軸方向における第1プリズム601の第3面601cの長さと、X´軸方向における第2プリズム602の第1面602aの長さは同一となっている(図9参照)。一方、Y´軸方向における第1プリズム601の第3面601cの長さは、Y´軸方向における第2プリズム602の第1面602aの長さの半分となっている(図10、11参照)。そして、第1プリズム601の第3面601cは、第2プリズム602の第1面602aと第2面602bとの交線に沿って接合されている(図12等参照)。
両プリズム601,602は、それぞれ空気よりも屈折率の高い所定の屈折率を有する光学材料(例えばガラスやアクリル等)により形成されている。ここで、両プリズム601,602を同一材料により形成してもよいし、異なる材料により形成してもよい。後述する分光光学系600A(600B)の機能を満たすものであれば、各プリズム601,602の材質はそれぞれ任意に選択可能である。
続いて、分光光学系600A及び分光光学系600Bの作用について図面を参照しつつ詳しく説明する。但し、上述したとおり、第1撮像系4A及び第2撮像系4Bに用いられる分光光学系600A及び分光光学系600Bは同一構成であるため、以下、第1撮像系4Aに係る分光光学系600Aを例にして説明し、第2撮像系4Bに係る分光光学系600Bについては省略する。
分光光学系600Aは、第1無偏光ビームスプリッタ13Aを透過した第1光に係る合成光F0が第1プリズム601の第1面601aに対し垂直に入射するように配置されている(図8,9参照)。但し、図8においては、簡素化のため、分光光学系600Aの正面が手前側を向くように第1撮像系4Aを図示している。
第1面601aから第1プリズム601内に入射した合成光F0は、ハーフミラー601Mにて2方向に分岐する。詳しくは、第1面601a側に向けハーフミラー601Mで反射する分光FA1と、第2面601b側に向けハーフミラー601Mを透過する分光FA2とに分岐する。
このうち、ハーフミラー601Mで反射した分光FA1は、第1面601aにて第3面601c側に向け全反射し、第3面601cから垂直に出射する。一方、ハーフミラー601Mを透過した分光FA2は、第2面601bにて第3面601c側に向け全反射し、第3面601cから垂直に出射する。つまり、第1プリズム601の第3面601cから平行する2つの分光FA1,FA2が出射される。
第1プリズム601の第3面601cから出射した分光FA1,FA2は、それぞれ第2プリズム602の第1面602aに垂直に入射する(図10参照)。
第1面602aから第2プリズム602内に入射した分光FA1,FA2は、それぞれハーフミラー602Mにて2方向に分岐する。
詳しくは、一方の分光FA1は、第1面602a側に向けハーフミラー602Mで反射する分光FB1と、第2面602b側に向けハーフミラー602Mを透過する分光FB2とに分岐する。
他方の分光FA2は、第1面602a側に向けハーフミラー602Mで反射する分光FB3と、第2面602b側に向けハーフミラー602Mを透過する分光FB4とに分岐する。
このうち、ハーフミラー602Mで反射した分光FB1,FB3は、それぞれ第1面602aにて第3面602c側に向け全反射し、第3面602cから垂直に出射する。一方、ハーフミラー602Mを透過した分光FB2,FB4は、それぞれ第2面602bにて第3面602c側に向け全反射し、第3面602cから垂直に出射する。つまり、第2プリズム602の第3面602cから、2行2列のマトリクス状に並ぶ4つの光FB1〜FB4が平行して出射される。
分光光学系600A(第2プリズム602の第3面602c)から出射した4つの分光FB1〜FB4は、それぞれ1/4波長板610Aにより円偏光に変換された後、フィルタユニット615Aにマトリクス状に配置された各偏光板126a〜126dに入射する。
これにより、フィルタユニット615Aを透過した4つの分光FB1〜FB4は、それぞれ位相を90°ずつ異ならせた干渉光となる。そして、これらの4つの分光FB1〜FB4がカメラ633Aの撮像素子により同時に撮像される。結果として、位相が90°ずつ異なる4通りの干渉縞画像が得られる。
以上詳述したように、本実施形態によれば、上記第1,第2実施形態と同様の作用効果が奏される。
加えて、本実施形態では、分光光学系600A,600Bにおいて、1つの光を平行する2つの光に分割する手段として、ケスタープリズムであるプリズム601,602を採用しているため、分割された2つの光の光路長が光学的に等しくなる。結果として、上記第2実施形態のように、分割された2つの光の光路長を調整する光路調整手段を備える必要がなく、部品点数の削減を図ると共に、構成の簡素化や装置の小型化等を図ることができる。
また、分光光学系600A,600Bに対し1つの光F0が入射されてから、4つの光FB1〜FB4が出射されるまでの間、光が光学部材内のみを進み、空気中に出ない構成となるため、空気の揺らぎ等による影響を低減することができる。
〔第4実施形態〕
以下、第4実施形態について図面を参照しつつ説明する。図13は本実施形態に係る三次元計測装置の概略構成を示す模式図である。
以下、第4実施形態について図面を参照しつつ説明する。図13は本実施形態に係る三次元計測装置の概略構成を示す模式図である。
本実施形態は、第2実施形態や第3実施形態とは異なる分光光学系を備えたものであり、マイケルソン干渉計の光学構成を採用した第1実施形態と第1撮像系4A及び第2撮像系4Bに関連する構成が異なる。従って、本実施形態では、第1〜第3実施形態と異なる構成部分について詳しく説明し、同一構成部分については同一符号を付し、その詳細な説明を省略する。
本実施形態に係る第1撮像系4Aは、第1無偏光ビームスプリッタ13Aを透過した第1光に係る合成光(参照光成分及び計測光成分)を4つの分光に分割する分光手段としての分光光学系700Aを備えている。
分光光学系700Aは、第1無偏光ビームスプリッタ13Aを透過した第1光に係る合成光を2つの分光に分割する無偏光ビームスプリッタ701Aと、該無偏光ビームスプリッタ701Aにより分割された2つの分光のうちの一方の分光をさらに2つの分光に分割する第1プリズム702Aと、前記無偏光ビームスプリッタ701Aにより分割された2つの分光のうちの他方の分光をさらに2つの分光に分割する第2プリズム703Aとを備えている。
さらに、本実施形態に係る第1撮像系4Aは、第1プリズム702Aにより分割された2つの分光をそれぞれ円偏光に変換する1/4波長板704Aと、第2プリズム703Aにより分割された2つの分光をそれぞれ円偏光に変換する1/4波長板705Aと、前記1/4波長板704Aを透過した2つの分光の所定成分を選択的に透過させるフィルタユニット706Aと、前記1/4波長板705Aを透過した2つの光の所定成分を選択的に透過させるフィルタユニット707Aと、前記フィルタユニット706Aを透過した2つの分光を同時に撮像するカメラ708Aと、前記フィルタユニット707Aを透過した2つの分光を同時に撮像するカメラ709Aとを備えている。
一方、本実施形態に係る第2撮像系4Bは、第2無偏光ビームスプリッタ13Bを透過した第2光に係る合成光(参照光成分及び計測光成分)を4つの分光に分割する分光手段としての分光光学系700Bを備えている。
分光光学系700Bは、第2無偏光ビームスプリッタ13Bを透過した第2光に係る合成光を2つの分光に分割する無偏光ビームスプリッタ701Bと、該無偏光ビームスプリッタ701Bにより分割された2つの分光のうちの一方の分光をさらに2つの分光に分割する第1プリズム702Bと、前記無偏光ビームスプリッタ701Bにより分割された2つの分光のうちの他方の分光をさらに2つの分光に分割する第2プリズム703Bとを備えている。
さらに、本実施形態に係る第2撮像系4Bは、第1プリズム702Bにより分割された2つの分光をそれぞれ円偏光に変換する1/4波長板704Bと、第2プリズム703Bにより分割された2つの分光をそれぞれ円偏光に変換する1/4波長板705Bと、1/4波長板704Bを透過した2つの分光の所定成分を選択的に透過させるフィルタユニット706Bと、1/4波長板705Bを透過した2つの光の所定成分を選択的に透過させるフィルタユニット707Bと、フィルタユニット706Bを透過した2つの分光を同時に撮像するカメラ708Bと、フィルタユニット707Bを透過した2つの分光を同時に撮像するカメラ709Bとを備えている。
「無偏光ビームスプリッタ701A」及び「無偏光ビームスプリッタ701B」は、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面には無偏光のハーフミラーが設けられている。
第1撮像系4Aに係る「第1プリズム702A」及び「第2プリズム703A」、並びに、第2撮像系4Bに係る「第1プリズム702B」及び「第2プリズム703B」は、公知のケスタープリズムであって、上記第3実施形態に係る「第1プリズム601」及び「第2プリズム602」と同様の構成を有するものであり、その詳細な説明は省略する。
第1撮像系4Aに係る「1/4波長板704A」及び「1/4波長板705A」、並びに、第2撮像系4Bに係る「1/4波長板704B」及び「1/4波長板705B」は、上記第1実施形態の「1/4波長板31A」及び「1/4波長板31B」と同様の構成を有するものであり、その詳細な説明は省略する。但し、本実施形態に係る「1/4波長板704A」等は、それぞれ2つの分光に対応するものである。勿論、各分光それぞれに対応して個別に1/4波長板を備える構成としてもよい。
第1撮像系4Aに係る「フィルタユニット706A」及び「フィルタユニット707A」、並びに、第2撮像系4Bに係る「フィルタユニット706B」及び「フィルタユニット707B」は、上記第2実施形態の「フィルタユニット126」と同様の構成を有するものであり、その詳細な説明は省略する。但し、本実施形態に係る「フィルタユニット706A」等は、それぞれ2つの分光に対応するものである。例えば第1撮像系4Aに係る「フィルタユニット706A」が「偏光板126a,126b」を備え、「フィルタユニット707A」が「偏光板126c,126d」を備えた構成としてもよい(第2撮像系4Bについても同様)。勿論、4つの分光それぞれに対応して個別に透過軸方向が45°ずつ異なる4つの偏光板(偏光板126a,126b,126c,126d)を備えた構成としてもよい。
第1撮像系4Aに係る「カメラ708A」及び「カメラ709A」、第2撮像系4Bに係る「カメラ708B」及び「カメラ709B」、並びに、これらに関連する制御処理や画像データ記憶装置54等に係る構成は、上記第1実施形態の「第1カメラ33A」及び「第2カメラ33B」等に係る構成と同様の構成を有するものであり、その詳細な説明は省略する。但し、本実施形態に係る「カメラ708A(撮像素子)」等は、それぞれ2つの分光に対応するものである。例えば第1撮像系4Aに係る「カメラ708A(撮像素子)」の撮像領域が「フィルタユニット706A(偏光板126a,126b)」に対応して2つの撮像エリア(H1,H2)に区分けされ、「カメラ709A(撮像素子)」の撮像領域が「フィルタユニット707A(偏光板126c,126d)」に対応して2つの撮像エリア(H3,H4)に区分けされた構成としてもよい(第2撮像系4Bについても同様)。かかる場合、アスペクト比が2:1の撮像素子を備えることが好ましい。
続いて、分光光学系700A及び分光光学系700Bの作用について説明する。但し、上述したとおり、第1撮像系4A及び第2撮像系4Bに用いられる分光光学系700A及び分光光学系700Bは同一構成であるため、以下、第1撮像系4Aに係る分光光学系700Aを例にして説明し、第2撮像系4Bに係る分光光学系700Bについては省略する。
第1無偏光ビームスプリッタ13Aを透過した第1光に係る合成光は、まず分光光学系700Aの無偏光ビームスプリッタ701Aに入射し、ハーフミラーにて2方向に分岐する。このうち、ハーフミラーで反射した分光は第1プリズム702Aに入射する。一方、ハーフミラーを透過した分光は第2プリズム703Aに入射する。
第1プリズム702Aの第1面に入射した分光は、ハーフミラーにて2方向に分岐する。詳しくは、第1面側に向けハーフミラーで反射する分光と、第2面側に向けハーフミラーを透過する分光とに分岐する。
このうち、ハーフミラーで反射した分光は、第1面にて第3面側に向け全反射し、第3面から垂直に出射する。一方、ハーフミラーを透過した分光は、第2面にて第3面側に向け全反射し、第3面から垂直に出射する。つまり、第1プリズム702Aの第3面から平行する2つの分光が出射される。
同様に、第2プリズム703Aの第1面に入射した分光は、ハーフミラーにて2方向に分岐する。詳しくは、第1面側に向けハーフミラーで反射する分光と、第2面側に向けハーフミラーを透過する分光とに分岐する。
このうち、ハーフミラーで反射した分光は、第1面にて第3面側に向け全反射し、第3面から垂直に出射する。一方、ハーフミラーを透過した分光は、第2面にて第3面側に向け全反射し、第3面から垂直に出射する。つまり、第2プリズム703Aの第3面から平行する2つの分光が出射される。
そして、第1プリズム702Aから出射した2つの分光は、それぞれ1/4波長板704Aにより円偏光に変換された後、フィルタユニット706A(例えば偏光板126a,126b)に入射する。
フィルタユニット706Aを透過した2つの分光は、例えば位相「0°」の干渉光と位相「90°」の干渉光になる。そして、これらの2つの分光がカメラ708Aの2つの撮像エリアにて同時に撮像され、例えば位相「0°」の干渉縞画像と位相「90°」の干渉縞画像とが得られる。
同様に、第2プリズム703Aから出射した2つの分光は、それぞれ1/4波長板705Aにより円偏光に変換された後、フィルタユニット707A(例えば偏光板126c,126d)に入射する。
フィルタユニット707Aを透過した2つの分光は、例えば位相「180°」の干渉光と位相「270°」の干渉光になる。そして、これらの2つの分光がカメラ709Aの2つの撮像エリアにて同時に撮像され、例えば位相「180°」の干渉縞画像と位相「270°」の干渉縞画像とが得られる。
結果として、第1撮像系4A(カメラ708A及びカメラ709A)により、位相が90°ずつ異なる4通りの干渉縞画像が取得されることとなる。
以上詳述したように、本実施形態では、上記第3実施形態と同様の作用効果が奏される。
〔第5実施形態〕
以下、第5実施形態について説明する。本実施形態は、2つの光源から出射される波長の異なる2種類の光を重ね合わせた状態で干渉光学系へ入射させ、ここから出射される光を光学分離手段により波長分離し、上記各波長の光に係る干渉光を個別に撮像する構成を、マイケルソン干渉計の光学構成を採用した上記第1実施形態等に組み合わせ、波長の異なる4種類の光を利用した計測を可能としたものである。
以下、第5実施形態について説明する。本実施形態は、2つの光源から出射される波長の異なる2種類の光を重ね合わせた状態で干渉光学系へ入射させ、ここから出射される光を光学分離手段により波長分離し、上記各波長の光に係る干渉光を個別に撮像する構成を、マイケルソン干渉計の光学構成を採用した上記第1実施形態等に組み合わせ、波長の異なる4種類の光を利用した計測を可能としたものである。
以下、図面を参照しつつ詳しく説明する。図14は本実施形態に係る三次元計測装置の概略構成を示す模式図である。本実施形態は、上記第1実施形態等と、第1投光系2A及び第2投光系2B、並びに、第1撮像系4A及び第2撮像系4Bに関連する構成が異なる。従って、本実施形態では、上記第1実施形態等と異なる構成部分について詳しく説明し、同一構成部分については同一符号を付し、その詳細な説明を省略する。
本実施形態に係る第1投光系2Aは、2つの発光部751A,752A、発光部751Aに対応する光アイソレータ753A、発光部752Aに対応する光アイソレータ754A、ダイクロイックミラー755A、無偏光ビームスプリッタ756Aなどを備えている。
「発光部751A」及び「発光部752A」は、「第1発光部11A」と同様の構成を有するものであり、その詳細な説明は省略する。但し、発光部751Aは第1波長λc1(例えばλc1=491nm)の直線偏光を出射し、発光部752Aは第2波長λc2(例えばλc2=540nm)の直線偏光を出射するといったように、両発光部751A,752Aは波長の異なる光を出射する。
詳しくは、発光部751Aは、X軸方向及びZ軸方向に対し45°傾斜した方向を偏光方向とする第1波長λc1の直線偏光(以下、「第1波長光」という)をY軸方向下向きに出射する。また、発光部752Aは、X軸方向及びY軸方向に対し45°傾斜した方向を偏光方向とする第2波長λc2の直線偏光(以下、「第2波長光」という)をZ軸方向左向きに出射する。
「光アイソレータ753A」及び「光アイソレータ754A」は「第1光アイソレータ12A」と同様の構成を有するものであり、その詳細な説明は省略する。
かかる構成の下、発光部751AからY軸方向下向きに出射された第1波長光は、光アイソレータ753Aを介してダイクロイックミラー755Aに入射する。同様に、発光部752AからZ軸方向左向きに出射された第2波長光は、光アイソレータ754Aを介してダイクロイックミラー755Aに入射する。
ダイクロイックミラー755Aは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材(ダイクロイックプリズム)であって、その接合面755Ahに誘電体多層膜が形成されている。
ダイクロイックミラー755Aは、その接合面755Ahを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、ダイクロイックミラー755Aの接合面755AhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
本実施形態におけるダイクロイックミラー755Aは、少なくとも第1波長光を反射し、第2波長光を透過する特性を有する。これにより、図14に示す本実施形態の配置構成では、ダイクロイックミラー755Aに入射した第1波長光と第2波長光とが合成された上で、X軸方向及びY軸方向に対し45°傾斜した方向を偏光方向とする直線偏光として無偏光ビームスプリッタ756Aに向けZ軸方向左向きに出射されることとなる。
以降、発光部751Aから出射される第1波長光と、発光部752Aから出射される第2波長光とを合成した合成光を「第1光」という。つまり、「発光部751A,752A」や「ダイクロイックミラー755A」等により本実施形態における「第1照射手段」が構成されることとなる。特に「発光部751A」により「第1波長光出射部」が構成され、「発光部752A」により「第2波長光出射部」が構成され、「ダイクロイックミラー755A」により「第1合成手段」が構成される。
「無偏光ビームスプリッタ756A」は、「第1無偏光ビームスプリッタ13A」と同様の構成を有するものであり、その詳細な説明は省略する。本実施形態では、ダイクロイックミラー755AからZ軸方向左向きに入射する第1光の一部(半分)をZ軸方向左向きに透過させ、残り(半分)をY軸方向下向きに反射させる。
本実施形態に係る第2投光系2Bは、2つの発光部751B,752B、発光部751Bに対応する光アイソレータ753B、発光部752Bに対応する光アイソレータ754B、ダイクロイックミラー755B、無偏光ビームスプリッタ756Bなどを備えている。
「発光部751B」及び「発光部752B」は、「第2発光部11B」と同様の構成を有するものであり、その詳細な説明は省略する。但し、発光部751Bは第3波長λc3(例えばλc3=488nm)の直線偏光を出射し、発光部752Bは第4波長λc4(例えばλc4=532nm)の直線偏光を出射するといったように、両発光部751B,752Bは波長の異なる光を出射する。
詳しくは、発光部751Bは、X軸方向及びY軸方向に対し45°傾斜した方向を偏光方向とする第3波長λc3の直線偏光(以下、「第3波長光」という)をZ軸方向左向きに出射する。また、発光部752Bは、X軸方向及びZ軸方向に対し45°傾斜した方向を偏光方向とする第4波長λc4の直線偏光(以下、「第4波長光」という)をY軸方向上向きに出射する。
「光アイソレータ753B」及び「光アイソレータ754B」は「第2光アイソレータ12B」と同様の構成を有するものであり、その詳細な説明は省略する。
かかる構成の下、発光部751BからZ軸方向左向きに出射された第3波長光は、光アイソレータ753Bを介してダイクロイックミラー755Bに入射する。同様に、発光部752BからY軸方向上向きに出射された第4波長光は、光アイソレータ754Bを介してダイクロイックミラー755Bに入射する。
ダイクロイックミラー755Bは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材(ダイクロイックプリズム)であって、その接合面755Bhに誘電体多層膜が形成されている。
ダイクロイックミラー755Bは、その接合面755Bhを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、ダイクロイックミラー755Bの接合面755BhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
本実施形態におけるダイクロイックミラー755Bは、少なくとも第3波長光を反射し、第4波長光を透過する特性を有する。これにより、図14に示す本実施形態の配置構成では、ダイクロイックミラー755Bに入射した第3波長光と第4波長光とが合成された上で、X軸方向及びZ軸方向に対し45°傾斜した方向を偏光方向とする直線偏光として無偏光ビームスプリッタ756Bに向けY軸方向上向きに出射されることとなる。
以降、発光部751Bから出射される第3波長光と、発光部752Bから出射される第4波長光とを合成した合成光を「第2光」という。つまり、「発光部751B,752B」や「ダイクロイックミラー755B」等により本実施形態における「第2照射手段」が構成されることとなる。特に「発光部751B」により「第3波長光出射部」が構成され、「発光部752B」により「第4波長光出射部」が構成され、「ダイクロイックミラー755B」により「第2合成手段」が構成される。
「無偏光ビームスプリッタ756B」は、「第2無偏光ビームスプリッタ13B」と同様の構成を有するものであり、その詳細な説明は省略する。本実施形態では、ダイクロイックミラー755BからY軸方向上向きに入射する第2光の一部(半分)をY軸方向上向きに透過させ、残り(半分)をZ軸方向右向きに反射させる。
本実施形態に係る第1撮像系4Aは、無偏光ビームスプリッタ756Aを透過した第1光(第1波長光と第2波長光の2波長合成光)に係る参照光成分及び計測光成分の合成光を、第1波長光に係る合成光(参照光成分及び計測光成分)と、第2波長光に係る合成光(参照光成分及び計測光成分)とに分離するダイクロイックミラー800Aを備えている。以下、ダイクロイックミラー800Aについて詳しく説明する。
ダイクロイックミラー800Aは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材(ダイクロイックプリズム)であって、その接合面800Ahに誘電体多層膜が形成されている。「ダイクロイックミラー800A」が本実施形態における「第1分離手段」を構成する。
ダイクロイックミラー800Aは、その接合面800Ahを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、ダイクロイックミラー800Aの接合面800AhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
本実施形態におけるダイクロイックミラー800Aは、上記ダイクロイックミラー755Aと同様の特性を有するものである。すなわち、ダイクロイックミラー800Aは、少なくとも第1波長光を反射し、第2波長光を透過する特性を有する。
これにより、図14に示す本実施形態の配置構成では、ダイクロイックミラー800Aに入射した第1光に係る合成光は、Z軸方向左向きに出射される第1波長光に係る合成光と、Y軸方向上向きに出射される第2波長光に係る合成光とに分離されることとなる。
さらに、本実施形態に係る第1撮像系4Aは、ダイクロイックミラー800AからZ軸方向左向きに出射される第1波長光に係る合成光を4つの分光に分割する分光光学系801Aと、該分光光学系801Aにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板803Aと、該1/4波長板803Aを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット805Aと、該フィルタユニット805Aを透過した4つの分光を同時に撮像するカメラ807Aとを備えている。「カメラ807A」が本実施形態における「第1波長光撮像部」を構成する。
同様に、本実施形態に係る第1撮像系4Aは、ダイクロイックミラー800AからY軸方向上向きに出射される第2波長光に係る合成光を4つの分光に分割する分光光学系802Aと、該分光光学系802Aにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板804Aと、該1/4波長板804Aを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット806Aと、該フィルタユニット806Aを透過した4つの分光を同時に撮像するカメラ808Aとを備えている。「カメラ808A」が本実施形態における「第2波長光撮像部」を構成する。
尚、第1波長光に係る「分光光学系801A」、「1/4波長板803A」、「フィルタユニット805A」及び「カメラ807A」に係る構成、並びに、第2波長光に係る「分光光学系802A」、「1/4波長板804A」、「フィルタユニット806A」及び「カメラ808A」に係る構成は、それぞれ上記第3実施形態に係る「分光光学系600A」、「1/4波長板610A」、「フィルタユニット615A」及び「カメラ633A」に係る構成と同一であるため、その詳細な説明は省略する。
本実施形態に係る第2撮像系4Bは、無偏光ビームスプリッタ756Bを透過した第2光(第3波長光と第4波長光の2波長合成光)に係る参照光成分及び計測光成分の合成光を、第3波長光に係る合成光(参照光成分及び計測光成分)と、第4波長光に係る合成光(参照光成分及び計測光成分)とに分離するダイクロイックミラー800Bを備えている。以下、ダイクロイックミラー800Bについて詳しく説明する。
ダイクロイックミラー800Bは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材(ダイクロイックプリズム)であって、その接合面800Bhに誘電体多層膜が形成されている。「ダイクロイックミラー800B」が本実施形態における「第2分離手段」を構成する。
ダイクロイックミラー800Bは、その接合面800Bhを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、ダイクロイックミラー800Bの接合面800BhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
本実施形態におけるダイクロイックミラー800Bは、上記ダイクロイックミラー755Bと同様の特性を有するものである。すなわち、ダイクロイックミラー800Bは、少なくとも第3波長光を反射し、第4波長光を透過する特性を有する。
これにより、図14に示す本実施形態の配置構成では、ダイクロイックミラー800Bに入射した第2光に係る合成光は、Y軸方向下向きに出射される第3波長光に係る合成光と、Z軸方向左向きに出射される第4波長光に係る合成光とに分離されることとなる。
さらに、本実施形態に係る第2撮像系4Bは、ダイクロイックミラー800BからY軸方向下向きに出射される第3波長光に係る合成光を4つの分光に分割する分光光学系801Bと、該分光光学系801Bにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板803Bと、該1/4波長板803Bを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット805Bと、該フィルタユニット805Bを透過した4つの分光を同時に撮像するカメラ807Bとを備えている。「カメラ807B」が本実施形態における「第3波長光撮像部」を構成する。
同様に、本実施形態に係る第2撮像系4Bは、ダイクロイックミラー800BからZ軸方向左向きに出射される第4波長光に係る合成光を4つの分光に分割する分光光学系802Bと、該分光光学系802Bにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板804Bと、該1/4波長板804Bを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット806Bと、該フィルタユニット806Bを透過した4つの分光を同時に撮像するカメラ808Bとを備えている。「カメラ808B」が本実施形態における「第4波長光撮像部」を構成する。
尚、第3波長光に係る「分光光学系801B」、「1/4波長板803B」、「フィルタユニット805B」及び「カメラ807B」に係る構成、並びに、第4波長光に係る「分光光学系802B」、「1/4波長板804B」、「フィルタユニット806B」及び「カメラ808B」に係る構成は、それぞれ上記第3実施形態に係る「分光光学系600B」、「1/4波長板610B」、「フィルタユニット615B」及び「カメラ633B」に係る構成と同一であるため、その詳細な説明は省略する。
次に本実施形態において実行される形状計測処理の手順について説明する。まず制御装置5は、第1投光系2A及び第2投光系2Bを駆動制御し、発光部751Aからの第1波長光の照射、及び、発光部752Aからの第2波長光の照射、並びに、発光部751Bからの第3波長光の照射、及び、発光部752Bからの第4波長光の照射を同時に実行する。
これにより、偏光ビームスプリッタ20の第1面20aに対し第1波長光及び第2波長光の合成光である第1光が入射すると共に、偏光ビームスプリッタ20の第2面20bに対し第3波長光及び第4波長光の合成光である第2光が入射する。
その結果、偏光ビームスプリッタ20の第1面20aから第1光に係る合成光(参照光及び計測光)が出射されると共に、偏光ビームスプリッタ20の第2面20bから第2光に係る合成光(参照光及び計測光)が出射される。
偏光ビームスプリッタ20の第1面20aから出射した第1光に係る合成光の一部は、第1撮像系4Aに入射し、第1波長光に係る合成光(参照光及び計測光)と、第2波長光に係る合成光(参照光及び計測光)に分離される。このうち、第1波長光に係る合成光は、分光光学系801Aにより4つに分割された後、1/4波長板803A及びフィルタユニット805Aを介してカメラ807Aに入射する。同時に、第2波長光に係る合成光は、分光光学系802Aにより4つに分割された後、1/4波長板804A及びフィルタユニット806Aを介してカメラ808Aに入射する。
一方、偏光ビームスプリッタ20の第2面20bから出射した第2光に係る合成光の一部は、第2撮像系4Bに入射し、第3波長光に係る合成光(参照光及び計測光)と、第4波長光に係る合成光(参照光及び計測光)に分離される。このうち、第3波長光に係る合成光は、分光光学系801Bにより4つに分割された後、1/4波長板803B及びフィルタユニット805Bを介してカメラ807Bに入射する。同時に、第4波長光に係る合成光は、分光光学系802Bにより4つに分割された後、1/4波長板804B及びフィルタユニット806Bを介してカメラ808Bに入射する。
そして、制御装置5は、第1撮像系4A及び第2撮像系4Bを駆動制御して、カメラ807Aによる撮像、カメラ808Aによる撮像、カメラ807Bによる撮像、及び、カメラ808Bによる撮像を同時に実行する。
その結果、カメラ807A(撮像素子の撮像エリアH1〜H4)により、位相が90°ずつ異なる第1波長光に係る4通りの干渉縞画像が1つの画像データとして取得され、カメラ808A(撮像素子の撮像エリアH1〜H4)により、位相が90°ずつ異なる第2波長光に係る4通りの干渉縞画像が1つの画像データとして取得され、カメラ807B(撮像素子の撮像エリアH1〜H4)により、位相が90°ずつ異なる第3波長光に係る4通りの干渉縞画像が1つの画像データとして取得され、カメラ808B(撮像素子の撮像エリアH1〜H4)により、位相が90°ずつ異なる第4波長光に係る4通りの干渉縞画像が1つの画像データとして取得される。
そして、制御装置5は、カメラ807Aから取得した1つの画像データを4通りの干渉縞画像データ(撮像素子の撮像エリアH1〜H4に対応する範囲ごと)に分割して、画像データ記憶装置54内のカメラ807Aに対応する第1〜第4画像メモリにそれぞれ記憶する。
同時に、制御装置5は、カメラ808A、カメラ807B及びカメラ808Bからそれぞれ取得した画像データに関しても同様の処理を行い、各カメラ808A,807B,808Bに対応する第1〜第4画像メモリにそれぞれ干渉縞画像データを記憶する。
続いて、制御装置5は、画像データ記憶装置54に記憶された第1波長光に係る4通りの干渉縞画像データ、第2波長光に係る4通りの干渉縞画像データ、第3波長光に係る4通りの干渉縞画像データ、及び、第4波長光に係る4通りの干渉縞画像データを基に、位相シフト法によりワークWの表面形状を計測する。つまり、ワークWの表面上の各位置における高さ情報を算出する。
以上詳述したように、本実施形態では、第1波長光と第2波長光の合成光である第1光を偏光ビームスプリッタ20の第1面20aから入射させると共に、第3波長光と第4波長光の合成光である第2光を偏光ビームスプリッタ20の第2面20bから入射させることにより、第1光に係る参照光及び計測光と、第2光に係る参照光及び計測光がそれぞれ異なる偏光成分(P偏光又はS偏光)に分割されるため、偏光ビームスプリッタ20に入射した第1光と第2光は互いに干渉することなく、別々に偏光ビームスプリッタ20から出射されることとなる。
これにより、第1光に含まれる偏光(第1波長光及び/又は第2波長光)と、第2光に含まれる偏光(第3波長光及び/又は第4波長光)として波長の近い2種類の偏光を用いることができる。結果として、波長の近い2種類の偏光を利用して、三次元計測に係る計測レンジをより広げることができる。特に本実施形態では、最大で4種類の波長の異なる光を利用可能となるため、計測レンジを飛躍的に広げることも可能となる。
また、本実施形態では、干渉光学系3から出射される第1光に係る合成光(参照光成分及び計測光成分)を、第1波長光に係る合成光と、第2波長光に係る合成光とに分離すると共に、干渉光学系3から出射される第2光に係る合成光を、第3波長光に係る合成光と、第4波長光に係る合成光とに分離して、第1波長光に係る合成光の撮像、第2波長光に係る合成光の撮像、第3波長光に係る合成光の撮像、及び、第4波長光に係る合成光の撮像を個別かつ同時に行う構成となっている。これにより、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
加えて、本実施形態では、分光光学系801A等を用いて、各波長光に係る合成光をそれぞれ4つの光に分割すると共に、該4つの光をフィルタユニット805A等により位相が90°ずつ異なる4通りの干渉光を得る構成となっている。これにより、位相シフト法による三次元計測に必要なすべての干渉縞画像を同時に取得することができる。つまり、最大で4種類の偏光に係る計16通り(4×4通り)の干渉縞画像を同時に取得することができる。結果として、上記作用効果をさらに高めることができる。
さらに、本実施形態では、例えば第1波長光と第3波長光の2種類の偏光を用いた計測と、第2波長光と第4波長光の2種類の偏光を用いた計測をワークWの種類に応じて切替えることができる。つまり、本実施形態によれば、波長の近い2種類の偏光を用いて計測レンジの拡大を図りつつも、ワークWの種類に応じて光の種類(波長)を切替えることができる。結果として、利便性や汎用性の向上を図ることができる。
例えば赤系光が適さないウエハ基板などのワークWに対しては、第1波長光と第3波長光の2種類の偏光(例えば491nmと488nmの青系色の2光)を用いた計測を行う一方、青系光が適さない銅などのワークWに対しては、第2波長光と第4波長光の2種類の偏光(例えば540nmと532nmの緑系色の2光)を用いた計測を行うことができる。
尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
(a)上記各実施形態では、ワークWの具体例について特に言及していないが、被計測物としては、例えばプリント基板に印刷されたクリーム半田や、ウエハ基板に形成された半田バンプなどが挙げられる。
ここで半田バンプ等の高さ計測の原理について説明する。図15に示すように、電極501(基板500)に対するバンプ503の高さHBは、バンプ503の絶対高さhoから、該バンプ503周辺の電極501の絶対高さhrを減算することにより求めることができる〔HB=ho−hr〕。ここで、電極501の絶対高さhrとしては、例えば電極501上の任意の1点の絶対高さや、電極501上の所定範囲の絶対高さの平均値などを用いることができる。また、「バンプ503の絶対高さho」や、「電極501の絶対高さhr」は、上記各実施形態において高さ情報z(ξ,η)として求めることができる。
従って、予め設定された良否の判定基準に従いクリーム半田や半田バンプの良否を検査する検査手段を設けた半田印刷検査装置又は半田バンプ検査装置において、三次元計測装置1を備えた構成としても良い。
尚、マイケルソン干渉計の光学構成を採用した三次元計測装置1は、反射ワークに適している。また、位相シフト法を用いることで、0次光(透過光)を排除した計測が可能となる。
また、上記各実施形態においてワークWを設置する設置部24を変位可能に構成し、ワークWの表面を複数の計測エリアに分割し、各計測エリアを順次移動しつつ各エリアの形状計測を行っていき、複数回に分けてワークW全体の形状計測を行う構成としてもよい。
(b)干渉光学系(所定の光学系)の構成は上記各実施形態に限定されるものではない。例えば上記各実施形態では、干渉光学系3として、マイケルソン干渉計の光学構成を採用しているが、これに限らず、入射光を参照光と計測光に分割してワークWの形状計測を行う構成であれば、他の光学構成を採用してもよい。
また、上記各実施形態では、偏光ビームスプリッタ20として、直角プリズムを貼り合せて一体としたキューブ型を採用しているが、これに限定されるものではなく、例えばプレート型偏光ビームスプリッタを採用してもよい。
また、偏光ビームスプリッタ20は、P偏光成分を透過させ、S偏光成分を反射する構成となっているが、これに限らず、P偏光成分を反射させ、S偏光成分を透過する構成としてもよい。「S偏光」が「第1の偏光方向を有する偏光」に相当し、「P偏光」が「第2の偏光方向を有する偏光」に相当する構成としてもよい。
(c)投光系2A,2Bの構成は上記各実施形態に限定されるものではない。例えば投光系2A,2Bから出射される各光の波長は上記各実施形態に限定されるものではない。但し、計測レンジをより広げるためには、第1投光系2Aから照射される光と、第2投光系2Bから照射される光の波長差をより小さくすることが好ましい。
また、第5実施形態においては、第1投光系2Aから照射される第1波長光と第2波長光がダイクロイックミラー800Aで分離可能な程度に波長が離れた偏光であることが好ましい。同様に、第2投光系2Bから照射される第3波長光と第4波長光がダイクロイックミラー800Bで分離可能な程度に波長が離れた偏光であることが好ましい。
また、第1投光系2A及び第2投光系2Bから同一波長の光が照射される構成としてもよい。
上述したように、従来より、被計測物の形状を計測する三次元計測装置として、レーザ光などを利用した三次元計測装置(干渉計)が知られている。かかる三次元計測装置においては、レーザ光源からの出力光の揺らぎ等の影響により、計測精度が低下するおそれがある。
これに対し、例えば被計測物が比較的小さく、1つの光(1つの波長)でも計測レンジが不足しないような場合には、異なる2つの光源から同一波長の光を照射して、該2つの光でそれぞれ三次元計測を行うことにより、計測精度の向上を図ることができる。
しかしながら、2つの光で三次元計測を行おうとした場合、第1光に係る出力光の撮像と、第2光に係る出力光の撮像をそれぞれ異なるタイミングで行う必要があり、計測効率が低下するおそれがある。
例えば位相シフト法を利用した三次元計測において、位相を4段階に変化させる場合には、4通りの画像データを取得する必要があるため、2つの光を用いる場合には、それぞれ異なるタイミングで4回ずつ、計8回分の撮像時間が必要となる。
同一波長の2つの光を照射する本発明は、上記事情等に鑑みてなされたものであり、その目的は、2つの光を利用して、計測効率の向上を図ることのできる三次元計測装置を提供することにある。
本発明によれば、第1光に係る出力光の撮像と、第2光に係る出力光の撮像を同時に行うことができるため、計4回分(又は計3回分)の撮像時間で、2つの光に係る計8通り(又は6通り)の干渉縞画像を取得することができる。結果として、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
また、上記各実施形態では、投光系2A,2Bにおいて、光アイソレータ12A,12B等を備えた構成となっているが、光アイソレータ12A,12B等を省略した構成としてもよい。
また、上記各実施形態において、第1投光系2Aと第1撮像系4Aの両者の位置関係を第1無偏光ビームスプリッタ13A等を挟んで入れ替えた構成としてもよいし、第2投光系2Bと第2撮像系4Bの両者の位置関係を第2無偏光ビームスプリッタ13B等を挟んで入れ替えた構成としてもよい。
また、第5実施形態においては、第1投光系2Aに係る発光部751Aと発光部752Aの両者の位置関係をダイクロイックミラー755Aを挟んで入れ替えた構成としてもよいし、第2投光系2Bに係る発光部751Bと発光部752Bの両者の位置関係をダイクロイックミラー755Bを挟んで入れ替えた構成としてもよい。
また、導光手段の構成は、上記各実施形態に係る無偏光ビームスプリッタ13A,13B等に限定されるものではない。第1照射手段(第2照射手段)から出射される第1光(第2光)の少なくとも一部を第1入出力部(第2入出力部)に向け入射させると共に、第1入出力部(第2入出力部)から出射される第1光に係る出力光(第2光に係る出力光)の少なくとも一部を第1撮像手段(第2撮像手段)に向け入射させる構成であれば、他の構成を採用してもよい。
つまり、第1実施形態においては、第1投光系2A(第2投光系2B)から照射された第1光(第2光)を偏光ビームスプリッタ20の第1面20a(第2面20b)に入射させ、かつ、偏光ビームスプリッタ20の第1面20a(第2面20b)から出射された第1光に係る出力光(第2光に係る出力光)を第1撮像系4A(第2撮像系4B)に入射可能とする構成であれば、他の構成を採用してもよい。
また、上記各実施形態では、無偏光ビームスプリッタ13A,13B等として、直角プリズムを貼り合せて一体としたキューブ型を採用しているが、これに限定されるものではなく、例えばプレートタイプの所定のハーフミラーを採用してもよい。
また、第5実施形態では、ダイクロイックミラー755A及びダイクロイックミラー755B、並びに、ダイクロイックミラー800A及びダイクロイックミラー800Bとして、直角プリズムを貼り合せて一体としたキューブ型を採用しているが、これに限定されるものではなく、例えばプレートタイプの所定のダイクロイックミラーを採用してもよい。
(d)上記各実施形態では、位相の異なる4通りの干渉縞画像データを基に位相シフト法を行う構成となっているが、これに限らず、例えば位相の異なる2通り又は3通りの干渉縞画像データを基に位相シフト法を行う構成としてもよい。
また、例えばフーリエ変換法のように、位相シフト法とは異なる他の方法により三次元計測を行う構成としてもよい。
(e)上記第1実施形態では、位相シフト手段として、透過軸方向を変更可能に構成された偏光板32A,32Bを採用し、上記第2〜5実施形態においては、透過軸方向が異なる4つの偏光板からなるフィルタユニット126等を採用している。
位相シフト手段の構成は、これらに限定されるものではなく、例えば第1実施形態においてピエゾ素子等により参照面23を光軸に沿って移動させることで物理的に光路長を変化させる構成を採用してもよい。
但し、上述したような回転式の偏光板を位相シフト手段として用いる方法では、三次元計測を行う上で必要な全ての画像データを取得するために、複数のタイミングで撮像を行う必要がある。また、第5実施形態において、参照面23を移動させる構成を位相シフト手段として用いた場合には、波長の異なる複数の光ごとに参照面の動作量(位相シフト量)を異ならせる必要があるため、複数の光を同時に撮像することができない。従って、撮像時間を短くする点においては、上記第2実施形態等のように1回のタイミングで全ての画像データを撮像できるフィルタユニット126等を採用することがより好ましい。
(f)上記各実施形態では、2波長位相シフト法を行うにあたり、高さ情報z(ξ,η)を計算式により求める構成となっているが、これに限らず、例えば位相φ1,φ2、縞次数m1,m2、高さ情報zの対応関係を表した数表やテーブルデータを予め記憶しておき、これを参酌して高さ情報zを取得する構成としてもよい。かかる場合、必ずしも縞次数を特定する必要はない。
(g)分光手段の構成は上記第2〜5実施形態に限定されるものではない。例えば上記第2実施形態に係る分光光学系125等では、干渉光学系3から入射される光を4つに分光する構成となっているが、これに限らず、例えば3つに分光する構成など、少なくとも位相シフト法による計測に必要な数の光に分割可能な構成となっていればよい。
また、上記第2実施形態等では、入射される合成光L0等を、進行方向に直交する平面において光路がマトリクス状に並ぶ4つの光LB1〜LB4等に分割する構成となっているが、複数のカメラを用いて各分光LB1〜LB4等を撮像する構成であれば、必ずしもマトリクス状に並ぶように分光される必要はない。
また、上記第2実施形態等では、分光手段として、複数の光学部材(プリズム)を組み合わせて一体とした分光光学系125等を採用しているが、これに限らず、分光手段として回折格子を採用してもよい。
(h)フィルタ手段の構成は上記第2実施形態等に限定されるものではない。例えば上記第2実施形態では、フィルタユニット126が、透過軸方向が0°の第1偏光板126a、透過軸方向が45°の第2偏光板126b、透過軸方向が90°の第3偏光板126c、透過軸方向が135°の第4偏光板126dにより構成され、透過軸方向が45°ずつ異なるこれら4つの偏光板126a〜26dを用いて、位相が90°ずつ異なる4通りの干渉縞画像を取得し、該4通りの干渉縞画像を基に位相シフト法により形状計測を行う構成となっている。
これに代えて、位相が異なる3通りの干渉縞画像を基に位相シフト法により形状計測を行う場合には、以下のような構成としてもよい。例えば図16に示すように、フィルタユニット126の第1偏光板126a、第2偏光板126b、第3偏光板126c、第4偏光板126dをそれぞれ、透過軸方向が0°の偏光板、透過軸方向が60°(又は45°)の偏光板、透過軸方向が120°(又は90°)の偏光板、計測光(例えば右回りの円偏光)及び参照光(例えば左回りの円偏光)を直線偏光に変換する1/4波長板と、計測光の直線偏光を選択的に透過させる偏光板とを組み合わせたものとした構成としてもよい。ここで、「1/4波長板」及び「偏光板」の組を所謂「円偏光板」とした構成としてもよい。
かかる構成によれば、一つの撮像素子による一回の撮像で、120°(又は90°)ずつ位相が異なる3通りの干渉縞画像に加えて、ワークWの輝度画像を取得することができる。これにより、3通りの干渉縞画像を基に位相シフト法により行う形状計測に加え、輝度画像を基にした計測を組み合せて行うことが可能となる。例えば位相シフト法による形状計測により得られた三次元データに対しマッピングを行うことや、計測領域の抽出を行うこと等が可能となる。結果として、複数種類の計測を組み合せた総合的な判断を行うことができ、計測精度のさらなる向上を図ることができる。
尚、図16に示した例では、第4偏光板126dとして、円偏光を直線偏光に変換する1/4波長板と、計測光の直線偏光を選択的に透過させる偏光板とを組み合わせたものを採用しているが、これに限らず、計測光のみを選択的に透過させる構成であれば、他の構成を採用してもよい。
さらに、第4偏光板126dを省略した構成としてもよい。つまり、フィルタユニット126の第1偏光板126a、第2偏光板126b、第3偏光板126cをそれぞれ透過した3つの光と、フィルタユニット126(偏光板)を介することなく直接入射される1つの光を同時に一つの撮像素子により撮像する構成としてもよい。
かかる構成によれば、第4偏光板126dとして、「1/4波長板」及び「偏光板」の組を配置した上記構成と同様の作用効果が奏される。つまり、一つの撮像素子による一回の撮像で、120°(又は90°)ずつ位相が異なる3通りの干渉縞画像に加えて、ワークWの輝度画像を取得することができる。
尚、計測光(例えば右回りの円偏光)と参照光(例えば左回りの円偏光)とをそのまま撮像したとしても、参照光は既知(予め計測して得ることが可能)であり均一なので撮像後の処理により、この参照光分を取り除く処理や均一光を取り除く処理を行うことにより、計測光の信号を抽出することが可能となる。
第4偏光板126dを省略した構成の利点としては、「1/4波長板」及び「偏光板」の組を配置した構成と比較して、これら「1/4波長板」及び「偏光板」を省略することができるため、光学部品が減り、構成の簡素化や部品点数の増加抑制等を図ることができる。
(i)撮像系4A,4Bの構成は上記各実施形態に限定されるものではない。例えば上記各実施形態においては、レンズを備えたカメラを使用しているが、必ずしもレンズは必要なく、レンズのないカメラを使用しても上記[数6]の関係式を利用するなどしてピントの合った画像を計算により求めることにより行っても良い。
また、上記第5実施形態において、第1撮像系4Aに係る「分光光学系801A、1/4波長板803A、フィルタユニット805A及びカメラ807A」と「分光光学系802A、1/4波長板804A、フィルタユニット806A及びカメラ808A」の両者の位置関係をダイクロイックミラー800Aを挟んで入れ替えた構成としてもよいし、第2撮像系4Bに係る「分光光学系801B、1/4波長板803B、フィルタユニット805B及びカメラ807B」と「分光光学系802B、1/4波長板804B、フィルタユニット806B及びカメラ808B」の両者の位置関係をダイクロイックミラー800Bを挟んで入れ替えた構成としてもよい。
(j)上記第5実施形態では、「第1波長光」、「第2波長光」、「第3波長光」及び「第4波長光」の4つの波長光を同時に用いる構成となっている。つまり、4つの波長光を同時出射すると共に、これらに係る干渉縞画像を同時撮像して、該画像を基に三次元計測を行う構成となっている。これに限らず、他の構成を採用してもよい。
例えば「第1波長光」、「第2波長光」、「第3波長光」及び「第4波長光」の4つの波長光のうち、「第4波長光」を出射せず、「第1波長光」、「第2波長光」及び「第3波長光」の3つの波長光を同時出射すると共に、これらに係る干渉縞画像を同時撮像して、該画像を基に三次元計測を行う構成としてもよい。
同様に、「第1波長光」、「第2波長光」、「第3波長光」及び「第4波長光」の4つの波長光のうち、例えば「第2波長光」及び「第4波長光」を出射せず、「第1波長光」及び「第3波長光」の2つの波長光を同時出射すると共に、これらに係る干渉縞画像を同時撮像して、該画像を基に三次元計測を行う構成としてもよい。
少なくとも第1投光系2A及び第2投光系2Bから第1光(「第1波長光」及び/又は「第2波長光」)並びに第2光(「第3波長光」及び/又は「第4波長光」)が同時出射されると共に、これらに係る干渉縞画像を同時撮像する構成となっていれば、従来よりも総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
つまり、撮像時間の短縮を追及しないのであれば、必ずしも「第1波長光」、「第2波長光」、「第3波長光」及び「第4波長光」の4つの波長光を同時に用いる構成となっていなくともよい。例えば「第2波長光」及び「第4波長光」を出射せず、「第1波長光」及び「第3波長光」の2つの波長光を同時出射すると共に、これらに係る干渉縞画像を同時撮像した後、「第1波長光」及び「第3波長光」を出射せず、「第2波長光」及び「第4波長光」の2つの波長光を同時出射すると共に、これらに係る干渉縞画像を同時撮像する構成としてもよい。
(k)上記(j)で述べたように、最大で3つの波長光又は2つの波長光しか用いない場合には、使用しない波長光に係る出射機構や撮像機構を上記各実施形態から予め省略した構成の三次元計測装置1としてもよい。
例えば第2波長光を用いない場合においては、第1投光系2Aから、第2波長光を出射する出射機構(発光部752A、光アイソレータ754A)と、2つの波長光を合成する合成機構(ダイクロイックミラー755A)とを省略した構成としてもよい。同様に、第2波長光を用いない場合においては、第1撮像系4Aから、所定の出力光を波長分離する分離機構(ダイクロイックミラー800A)と、第2波長光に係る出力光を撮像する撮像機構(分光光学系802A、1/4波長板804A、フィルタユニット806A、カメラ808A)を省略した構成としてもよい。
(l)上記(j)で述べたように、第1投光系2A及び/又は第2投光系2Bにおいて、出射する波長光を常に切替えて使用する構成とした場合(例えば第1投光系2Aにおいて「第1波長光」又は「第2波長光」のいずれか一方のみを出射する構成とした場合)には、第1撮像系4Aにおいて、所定の出力光を波長分離する分離機構(ダイクロイックミラー800A)を省略すると共に、第1波長光に係る出力光を撮像する撮像機構又は第2波長光に係る出力光を撮像する撮像機構のうちいずれか一方を省略して、他方を共用する構成としてもよい。
1…三次元計測装置、2A…第1投光系、2B…第2投光系、3…干渉光学系、4A…第1撮像系、4B…第2撮像系、5…制御装置、11A…第1発光部、11B…第2発光部、12A…第1光アイソレータ、12B…第2光アイソレータ、13A…第1無偏光ビームスプリッタ、13B…第2無偏光ビームスプリッタ、20…偏光ビームスプリッタ、20a…第1面、20b…第2面、20c…第3面、20d…第4面、23…参照面、24…設置部、31A…1/4波長板、31B…1/4波長板、32A…第1偏光板、32B…第2偏光板、33A…第1カメラ、33B…第2カメラ、W…ワーク。
Claims (15)
- 入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系と、
前記所定の光学系の第1入出力部に対し入射させる、所定の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系の第2入出力部に対し入射させる、所定の偏光を含む第2光を出射可能な第2照射手段と、
前記所定の光学系の前記第1入出力部に対し前記第1光を入射することにより該第1入出力部から出射される前記第1光に係る出力光を入射可能な第1撮像手段と、
前記所定の光学系の前記第2入出力部に対し前記第2光を入射することにより該第2入出力部から出射される前記第2光に係る出力光を入射可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像し取得された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。 - 前記所定の光学系は、
入射する所定の光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を前記計測光として前記被計測物に照射しかつ他方の偏光を前記参照光として前記参照面に照射すると共に、これらを再び合成して出射可能な光学系であって、
前記第1入出力部から入射した前記第1光を、第1の偏光方向を有する偏光よりなる前記参照光と、第2の偏光方向を有する偏光よりなる前記計測光とに分割し、
前記第2入出力部から入射した前記第2光を、前記第2の偏光方向を有する偏光よりなる前記参照光と、前記第1の偏光方向を有する偏光よりなる前記計測光とに分割可能な光学系であることを特徴とする請求項1に記載の三次元計測装置。 - 入射する所定の光を偏光方向が互いに直交する2つの偏光に分割する境界面を有し、該分割した一方の偏光を計測光として被計測物に照射しかつ他方の偏光を参照光として参照面に照射すると共に、これらを再び合成して出射可能な偏光ビームスプリッタと、
前記境界面を挟んで隣り合う前記偏光ビームスプリッタの第1面及び第2面のうち第1入出力部となる前記第1面に対し入射させる、所定の偏光を含む第1光を出射可能な第1照射手段と、
前記偏光ビームスプリッタの第2入出力部となる前記第2面に対し入射させる、所定の偏光を含む第2光を出射可能な第2照射手段と、
前記偏光ビームスプリッタの前記第1面に対し前記第1光を入射することにより該第1面から出射される前記第1光に係る出力光を入射可能な第1撮像手段と、
前記偏光ビームスプリッタの前記第2面に対し前記第2光を入射することにより該第2面から出射される前記第2光に係る出力光を入射可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像し取得された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。 - 前記第1照射手段から出射される第1光の少なくとも一部を前記第1入出力部に向け入射させると共に、前記第1入出力部から出射される前記第1光に係る出力光の少なくとも一部を前記第1撮像手段に向け入射させる第1導光手段と、
前記第2照射手段から出射される第2光の少なくとも一部を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第2光に係る出力光の少なくとも一部を前記第2撮像手段に向け入射させる第2導光手段とを備えたことを特徴とする請求項1乃至3のいずれかに記載の三次元計測装置。 - 前記照射手段は、自身が有する所定の発光部から出射される一方向の光のみを透過しかつ逆方向の光を遮断する光アイソレータを備えていることを特徴とする請求項4に記載の三次元計測装置。
- 前記第1照射手段は、
第1波長の偏光を含む第1波長光を出射可能な第1波長光出射部、及び/又は、第2波長の偏光を含む第2波長光を出射可能な第2波長光出射部を備え、
前記第1波長の偏光、及び/又は、前記第2波長の偏光を含む前記第1光を出射可能に構成され、
前記第2照射手段は、
第3波長の偏光を含む第3波長光を出射可能な第3波長光出射部、及び/又は、第4波長の偏光を含む第4波長光を出射可能な第4波長光出射部を備え、
前記第3波長の偏光、及び/又は、前記第4波長の偏光を含む前記第2光を出射可能に構成され、
前記第1撮像手段は、
前記第1入出力部に対し前記第1波長の偏光を含む前記第1光が入射された場合に、前記第1入出力部から出射される前記第1光に係る出力光に含まれる前記第1波長の偏光に係る出力光を撮像可能な第1波長光撮像部、
及び/又は、
前記第1入出力部に対し前記第2波長の偏光を含む前記第1光が入射された場合に、前記第1入出力部から出射される前記第1光に係る出力光に含まれる前記第2波長の偏光に係る出力光を撮像可能な第2波長光撮像部を備え、
前記第2撮像手段は、
前記第2入出力部に対し前記第3波長の偏光を含む前記第2光が入射された場合に、前記第2入出力部から出射される前記第2光に係る出力光に含まれる前記第3波長の偏光に係る出力光を撮像可能な第3波長光撮像部、
及び/又は、
前記第2入出力部に対し前記第4波長の偏光を含む前記第2光が入射された場合に、前記第2入出力部から出射される前記第2光に係る出力光に含まれる前記第4波長の偏光に係る出力光を撮像可能な第4波長光撮像部を備えていることを特徴とする請求項1乃至5のいずれかに記載の三次元計測装置。 - 前記第1照射手段は、
前記第1波長光出射部から出射される前記第1波長光、及び、前記第2波長光出射部から出射される前記第2波長光を、前記第1光として合成可能な第1合成手段を備え、
前記第2照射手段は、
前記第3波長光出射部から出射される前記第3波長光、及び、前記第4波長光出射部から出射される前記第4波長光を、前記第2光として合成可能な第2合成手段を備え、
前記第1撮像手段は、
前記第1波長の偏光及び前記第2波長の偏光を含む前記第1光が前記第1照射手段から出射された場合に、前記第1入出力部から出射される前記第1光に係る出力光を、前記第1波長の偏光に係る出力光、及び、前記第2波長の偏光に係る出力光に分離可能な第1分離手段を備え、
前記第2撮像手段は、
前記第3波長の偏光及び前記第4波長の偏光を含む前記第2光が前記第2照射手段から出射された場合に、前記第2入出力部から出射される前記第2光に係る出力光を、前記第3波長の偏光に係る出力光、及び、前記第4波長の偏光に係る出力光に分離可能な第2分離手段を備えていることを特徴とする請求項6に記載の三次元計測装置。 - 前記被計測物を前記参照面と同一の平面とした場合において、前記第1入出力部に対し入射させる前記第1光に含まれる偏光の偏光方向と、該第1入出力部から出射される前記第1光に係る出力光に含まれる偏光の偏光方向とが同一となり、かつ、前記第2入出力部に対し入射させる前記第2光に含まれる偏光の偏光方向と、該第2入出力部から出射される前記第2光に係る出力光に含まれる偏光の偏光方向とが同一となることを特徴とする請求項1乃至7のいずれかに記載の三次元計測装置。
- 前記第1入出力部に対し前記第1光を入射する入射方向と、前記第2入出力部に対し前記第2光を入射する入射方向とを該両入射方向を含む平面上において一致させた場合において、前記第1光に含まれる偏光の偏光方向と、前記第2光に含まれる偏光の偏光方向とが90°異なることを特徴とする請求項1乃至8のいずれかに記載の三次元計測装置。
- 同一軸線上を同一方向に向かう前記第1光に含まれる偏光又はその計測光若しくは参照光の偏光方向と、前記第2光に含まれる偏光又はその計測光若しくは参照光の偏光方向とが90°異なることを特徴とする請求項1乃至9のいずれかに記載の三次元計測装置。
- 前記参照光と前記計測光との間に相対的な位相差を付与する位相シフト手段を備え、
前記画像処理手段は、
前記位相シフト手段により複数通りに位相シフトされた前記出力光を撮像し取得された複数通りの干渉縞画像を基に、位相シフト法により前記被計測物の三次元計測を実行可能に構成されていることを特徴とする請求項1乃至10のいずれかに記載の三次元計測装置。 - 前記出力光を複数の光に分割する分光手段と、
前記位相シフト手段として、前記分光手段により分割された複数の分割光のうち、少なくとも前記位相シフト法による計測に必要な数の分割光に対してそれぞれ異なる位相差を付与するフィルタ手段とを備え、
前記撮像手段は、少なくとも前記フィルタ手段を透過する前記複数の分割光を同時に撮像可能に構成されていることを特徴とする請求項11に記載の三次元計測装置。 - 前記分光手段は、
第1の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第1の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第1分岐手段を有する第1の光学部材と、
前記第1の平面と直交する第2の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第2の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第2分岐手段を有する第2の光学部材とを備え、
前記第1の光学部材の第3面と前記第2の光学部材の第1面とを相対向するように配置することにより、
前記第1の光学部材の前記第1面に対し入射される光を前記第1分岐手段にて2方向に分岐させ、このうち前記第1分岐手段にて反射した分割光を前記第1面にて前記第3面側に向け反射させ、前記第1分岐手段を透過した分割光を前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する2つの分割光として出射させ、
前記第1の光学部材の第3面から出射された2つの分割光を前記第2の光学部材の第1面に対し入射させ、該2つの分割光をそれぞれ前記第2分岐手段にて2方向に分岐させ、このうち前記第2分岐手段にて反射した2つの分割光をそれぞれ前記第1面にて前記第3面側に向け反射させ、前記第2分岐手段を透過した2つの分割光をそれぞれ前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する4つの分割光として出射させることを特徴とする請求項12に記載の三次元計測装置。 - 前記撮像手段は、少なくとも前記フィルタ手段を透過する前記複数の分割光を単一の撮像素子により同時に撮像可能に構成されていることを特徴とする請求項12又は13に記載の三次元計測装置。
- 前記被計測物が、プリント基板に印刷されたクリーム半田、又は、ウエハ基板に形成された半田バンプであることを特徴とする請求項1乃至14のいずれかに記載の三次元計測装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016189281A JP6513619B2 (ja) | 2016-09-28 | 2016-09-28 | 三次元計測装置 |
KR1020197000562A KR102137568B1 (ko) | 2016-09-28 | 2017-04-19 | 3차원 계측 장치 |
PCT/JP2017/015696 WO2018061274A1 (ja) | 2016-09-28 | 2017-04-19 | 三次元計測装置 |
CN201780053363.3A CN109690236B (zh) | 2016-09-28 | 2017-04-19 | 三维测量装置 |
EP17855233.7A EP3521749B1 (en) | 2016-09-28 | 2017-04-19 | Three-dimensional measuring device |
TW106117096A TWI630367B (zh) | 2016-09-28 | 2017-05-24 | Three-dimensional measuring device |
US16/363,975 US11054241B2 (en) | 2016-09-28 | 2019-03-25 | Three-dimensional measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016189281A JP6513619B2 (ja) | 2016-09-28 | 2016-09-28 | 三次元計測装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018054406A JP2018054406A (ja) | 2018-04-05 |
JP6513619B2 true JP6513619B2 (ja) | 2019-05-15 |
Family
ID=61759439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016189281A Active JP6513619B2 (ja) | 2016-09-28 | 2016-09-28 | 三次元計測装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11054241B2 (ja) |
EP (1) | EP3521749B1 (ja) |
JP (1) | JP6513619B2 (ja) |
KR (1) | KR102137568B1 (ja) |
CN (1) | CN109690236B (ja) |
TW (1) | TWI630367B (ja) |
WO (1) | WO2018061274A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6279013B2 (ja) * | 2016-05-26 | 2018-02-14 | Ckd株式会社 | 三次元計測装置 |
CN115576166A (zh) | 2020-03-12 | 2023-01-06 | 中强光电股份有限公司 | 照明系统及投影装置 |
CN113589635B (zh) | 2020-04-30 | 2023-03-31 | 中强光电股份有限公司 | 照明系统及投影装置 |
KR102430925B1 (ko) * | 2020-07-31 | 2022-08-09 | 서울대학교산학협력단 | 공간 광 변조기를 이용한 박막의 두께 및 물성 측정 시스템 |
CN112327107B (zh) * | 2020-09-17 | 2022-09-16 | 国网天津市电力公司电力科学研究院 | 一种适用于气体绝缘设备内部故障弧光探测和定位的方法 |
JP7300432B2 (ja) * | 2020-10-27 | 2023-06-29 | Ckd株式会社 | 三次元計測装置 |
WO2023059618A1 (en) | 2021-10-07 | 2023-04-13 | Additive Monitoring Systems, Llc | Structured light part quality monitoring for additive manufacturing and methods of use |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH678108A5 (ja) * | 1987-04-28 | 1991-07-31 | Wild Leitz Ag | |
JPH03157843A (ja) * | 1989-11-16 | 1991-07-05 | Sony Corp | 光学ピックアップ装置 |
FR2712978B1 (fr) * | 1993-11-24 | 1996-02-02 | Onera (Off Nat Aerospatiale) | Interféromètre optique achromatique, du type à décalage trilatéral. |
JPH0894317A (ja) * | 1994-09-28 | 1996-04-12 | Nikon Corp | 変位計 |
JP2000074618A (ja) * | 1998-08-27 | 2000-03-14 | Fuji Xerox Co Ltd | 干渉計測方法および干渉計測装置 |
JP4115624B2 (ja) * | 1999-04-27 | 2008-07-09 | オリンパス株式会社 | 3次元形状測定装置 |
US6304330B1 (en) * | 1999-10-06 | 2001-10-16 | Metrolaser, Inc. | Methods and apparatus for splitting, imaging, and measuring wavefronts in interferometry |
JP3426552B2 (ja) * | 2000-02-18 | 2003-07-14 | 株式会社ミツトヨ | 形状計測装置 |
JP2002202108A (ja) * | 2000-12-28 | 2002-07-19 | Hitachi Electronics Eng Co Ltd | 板厚測定装置 |
US6850329B2 (en) * | 2002-10-15 | 2005-02-01 | Mitutoyo Corporation | Interferometer using integrated imaging array and high-density polarizer array |
US7315381B2 (en) * | 2004-10-26 | 2008-01-01 | Mitutoyo Corporation | Monolithic quadrature detector |
CN100552376C (zh) * | 2007-04-13 | 2009-10-21 | 南京师范大学 | 光学干涉测量中分光、成像及同步移相的方法和装置 |
KR20090076605A (ko) * | 2008-01-09 | 2009-07-13 | 삼성전자주식회사 | 홀로그래픽 정보 기록/재생장치 |
JP2010112768A (ja) * | 2008-11-04 | 2010-05-20 | Canon Inc | 計測装置 |
JP5213730B2 (ja) * | 2009-01-14 | 2013-06-19 | キヤノン株式会社 | 調整方法 |
JP5199141B2 (ja) * | 2009-02-02 | 2013-05-15 | 株式会社神戸製鋼所 | 形状測定装置 |
JP5504068B2 (ja) * | 2010-06-23 | 2014-05-28 | Dmg森精機株式会社 | 変位検出装置 |
JP5627321B2 (ja) * | 2010-07-09 | 2014-11-19 | キヤノン株式会社 | 光断層画像撮像装置及びその撮像方法 |
WO2012012355A1 (en) * | 2010-07-19 | 2012-01-26 | Lumetrics, Inc. | Fiber-based interferometric device for measuring axial dimensions of a human eye |
CN102221342B (zh) * | 2011-04-02 | 2013-04-24 | 北京交通大学 | 一种时域多波长外差散斑干涉测量物体变形的方法 |
CN102425998B (zh) * | 2011-09-23 | 2013-07-10 | 西安工业大学 | 光学元件抛光表面质量全参数检测装置和检测方法 |
JP5954979B2 (ja) * | 2011-12-15 | 2016-07-20 | キヤノン株式会社 | 多波長干渉計を有する計測装置 |
JP2013152191A (ja) * | 2012-01-26 | 2013-08-08 | Canon Inc | 多波長干渉計 |
WO2014054446A1 (ja) * | 2012-10-05 | 2014-04-10 | 国立大学法人京都工芸繊維大学 | デジタルホログラフィ装置 |
CN104089573B (zh) * | 2014-07-03 | 2017-03-15 | 佛山市南海区欧谱曼迪科技有限责任公司 | 基于正交偏振光的多通道白光共路干涉显微层析系统 |
TW201616092A (zh) * | 2014-10-22 | 2016-05-01 | 中原大學 | 物體三維形貌之量測方法 |
WO2016154780A1 (zh) * | 2015-03-27 | 2016-10-06 | 浙江理工大学 | 激光干涉波长杠杆式绝对距离测量装置与方法 |
JP6271493B2 (ja) * | 2015-05-25 | 2018-01-31 | Ckd株式会社 | 三次元計測装置 |
CN104913732B (zh) * | 2015-06-10 | 2017-11-03 | 中国计量科学研究院 | 基于复合激光干涉的法线跟踪式非球面测量方法与系统 |
KR102436474B1 (ko) * | 2015-08-07 | 2022-08-29 | 에스케이하이닉스 주식회사 | 반도체 패턴 계측 장치, 이를 이용한 반도체 패턴 계측 시스템 및 방법 |
WO2017163233A1 (en) * | 2016-03-22 | 2017-09-28 | B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University | Frequency modulated multiple wavelength parallel phase shift interferometry |
JP6279013B2 (ja) * | 2016-05-26 | 2018-02-14 | Ckd株式会社 | 三次元計測装置 |
JP6246875B1 (ja) * | 2016-08-24 | 2017-12-13 | Ckd株式会社 | 計測装置 |
-
2016
- 2016-09-28 JP JP2016189281A patent/JP6513619B2/ja active Active
-
2017
- 2017-04-19 CN CN201780053363.3A patent/CN109690236B/zh active Active
- 2017-04-19 KR KR1020197000562A patent/KR102137568B1/ko active IP Right Grant
- 2017-04-19 EP EP17855233.7A patent/EP3521749B1/en active Active
- 2017-04-19 WO PCT/JP2017/015696 patent/WO2018061274A1/ja unknown
- 2017-05-24 TW TW106117096A patent/TWI630367B/zh active
-
2019
- 2019-03-25 US US16/363,975 patent/US11054241B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
TW201814243A (zh) | 2018-04-16 |
KR20190058444A (ko) | 2019-05-29 |
CN109690236B (zh) | 2021-03-02 |
EP3521749A1 (en) | 2019-08-07 |
WO2018061274A1 (ja) | 2018-04-05 |
TWI630367B (zh) | 2018-07-21 |
EP3521749B1 (en) | 2024-09-25 |
KR102137568B1 (ko) | 2020-07-24 |
CN109690236A (zh) | 2019-04-26 |
US11054241B2 (en) | 2021-07-06 |
US20190219379A1 (en) | 2019-07-18 |
EP3521749A4 (en) | 2020-05-20 |
JP2018054406A (ja) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6271493B2 (ja) | 三次元計測装置 | |
JP6513619B2 (ja) | 三次元計測装置 | |
JP6279013B2 (ja) | 三次元計測装置 | |
CN109564089B (zh) | 测量装置 | |
TWI686585B (zh) | 三維測量裝置 | |
WO2016190151A1 (ja) | 三次元計測装置 | |
WO2022091508A1 (ja) | 三次元計測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180613 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6513619 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |