WO2016190151A1 - 三次元計測装置 - Google Patents
三次元計測装置 Download PDFInfo
- Publication number
- WO2016190151A1 WO2016190151A1 PCT/JP2016/064465 JP2016064465W WO2016190151A1 WO 2016190151 A1 WO2016190151 A1 WO 2016190151A1 JP 2016064465 W JP2016064465 W JP 2016064465W WO 2016190151 A1 WO2016190151 A1 WO 2016190151A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- beam splitter
- incident
- imaging
- axis direction
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
Definitions
- the present invention relates to a three-dimensional measurement apparatus that measures the shape of an object to be measured.
- a three-dimensional measurement device for measuring the shape of an object to be measured a three-dimensional measurement device using an interferometer is known.
- half (for example, 750 nm) of the wavelength (for example, 1500 nm) of the measurement light is a measurable measurement range (dynamic range).
- the measurement range may be insufficient, and the shape of the measurement object may not be measured properly.
- the wavelength of the measurement light is increased, the resolution becomes coarse and the measurement accuracy may be deteriorated.
- the first wavelength light and the second wavelength light are combined and incident on an interference optical system (such as a polarization beam splitter), and interference light emitted therefrom is subjected to a predetermined optical separation means (dichroic).
- a predetermined optical separation means dichroic
- the wavelength separation is performed by a mirror or the like to obtain interference light of the first wavelength light and interference light of the second wavelength light.
- shape measurement of a to-be-measured object is performed.
- the wavelength difference between the two types of light may be made smaller. The closer the two light wavelengths are, the wider the measurement range can be.
- imaging of the interference light related to the first wavelength light and imaging of the interference light related to the second wavelength light are performed at different timings. It may be necessary to reduce the measurement efficiency.
- phase shift method For example, in three-dimensional measurement using the phase shift method, four phases of image data need to be acquired in the case of changing the phase in four steps, so when two types of light are used, they are each at different timings. A total of eight imaging times are required four times each.
- the present invention has been made in view of the above circumstances and the like, and an object thereof is to expand the measurement range by using two types of light having different wavelengths, and to improve the measurement efficiency. It is in providing a source measuring device.
- a predetermined incident light is divided into two lights, one of which can be irradiated to the object as measurement light and the other of which can be irradiated on the reference surface as reference light, and these are combined again
- a predetermined optical system (specific optical system) capable of emitting light;
- First irradiation means capable of emitting first light including polarized light of a first wavelength to be incident on the predetermined optical system;
- a second irradiation unit capable of emitting second light including polarized light of a second wavelength to be incident on the predetermined optical system;
- a first imaging unit capable of imaging output light relating to the first light emitted from the predetermined optical system;
- a second imaging unit capable of imaging output light relating to the second light emitted from the predetermined optical system;
- image processing means capable of performing three-dimensional measurement of the object based on the interference fringe image picked up by the first image pickup means and the second image pickup means, Causing the first light and the second light to be incident on different positions of the predetermined optical system,
- the first light and the second light by causing the first light and the second light to be incident from different positions of the predetermined optical system, respectively, the first light and the second light do not interfere with each other, and separately from the predetermined optical system. It will be emitted from a different position. That is, it is not necessary to separate the light emitted from the predetermined optical system into the first light and the second light using the predetermined separation means.
- the “output light related to the first light” output from the “predetermined optical system (specific optical system)” is “combined light of the reference light related to the first light and the measurement light, or And the interference light which interfered with the combined light is included, and “the output light according to the second light” includes “combined light of the reference light and measurement light according to the second light, or the combined light.
- Interference light is included. That is, the "predetermined optical system” includes not only “an optical system that causes reference light and measurement light to interfere internally and then outputs as interference light", but also "without causing reference light and measurement light to interfere internally. An optical system that simply outputs as combined light is also included.
- the “output light” output from the “predetermined optical system” is the “combined light”, at least before the imaging by the “imaging device” to capture the “interference fringe image”, It will be converted into “interference light” via a predetermined interference means.
- the predetermined light to be incident is divided into two lights, and one of the lights can be irradiated on the object to be measured as measurement light, and An optical system capable of emitting the other light as a reference light to the reference surface and combining these again can be referred to as an “interference optical system”. Therefore, in the above means 1 (the same applies to the following means), "predetermined optical system (specific optical system)" may be replaced with “interference optical system”.
- the measurement range related to three-dimensional measurement can be further expanded.
- the imaging of the output light related to the first light and the imaging of the output light related to the second light can be performed simultaneously, the overall imaging time can be shortened, and the measurement efficiency can be improved.
- standard becomes each interference optical system
- the optical path section causing the optical path difference between the reference light and the measurement light is different between the two lights, and therefore, the measurement accuracy may be reduced.
- the present means is configured to use two lights for one interference optical system (predetermined optical system) provided with one reference surface serving as a reference, the optical path for the reference light and the measurement light The optical path sections that cause the difference are the same for the two lights. As a result, it is possible to prevent the occurrence of various defects caused by providing two interference optical systems.
- the "first light” emitted from the “first irradiation means” is preferably light including at least "polarization of the first wavelength (first polarization)". However, it may be light (for example, “non-polarization” or “circular polarization”) including other extra components to be cut in the "predetermined optical system”.
- the "second light” emitted from the “second irradiating means” may be light including at least “polarization of the second wavelength (second polarization)", and then in the "predetermined optical system” It may be light including other extra components to be cut (for example, “non-polarization” or “circular polarization”).
- a predetermined incident light is divided into two lights, one of which can be irradiated to the object as measurement light and the other of which can be irradiated on the reference surface as reference light, and these are combined again
- a predetermined optical system (specific optical system) capable of emitting light;
- First irradiation means capable of emitting first light including polarized light of a first wavelength to be incident on a first input / output unit of the predetermined optical system;
- a second irradiation unit capable of emitting second light including polarized light of a second wavelength to be incident on a second input / output unit of the predetermined optical system;
- First imaging means capable of imaging output light related to the first light emitted from the second input / output unit by causing the first light to be incident on the first input / output unit;
- a second imaging unit capable of capturing an output light related to the second light emitted from the first input / output unit by inputting the second light to the second input / output unit;
- What is claimed is:
- the first light and the second light are incident by the first light and the second light being incident from different positions (a first input / output unit and a second input / output unit) of the predetermined optical system.
- the same optical paths are traced in the opposite directions, and the light beams are separately emitted from different positions (first and second input / output units) of the predetermined optical system without interfering with each other. That is, it is not necessary to separate the light emitted from the predetermined optical system into the first light and the second light using the predetermined separation means.
- the same function and effect as those of the above-mentioned means 1 are exhibited.
- the polarization direction of the first light and the polarization direction of the second light differ by 90 °” when they coincide with each other.
- the polarization direction of the first light (or its measurement light or reference light) directed in the same direction (for example, toward the object to be measured or the reference surface), and the second More preferably, the polarization direction of light (or its measurement light or reference light) differs by 90 °.
- Means 3 It has an interface that splits predetermined incident light into two polarized lights whose polarization directions are orthogonal to each other, irradiates one of the split polarized lights as measurement light onto the object to be measured, and uses the other polarized light as a reference light as a reference plane And a polarization beam splitter that can be synthesized again and emitted.
- the first light including the polarized light of the first wavelength to be incident on the first surface to be the first input / output portion among the first surface and the second surface of the polarization beam splitter adjacent to each other across the boundary surface is emitted.
- a second irradiation unit capable of emitting second light including polarized light of a second wavelength, which is incident on the second surface which is a second input / output unit of the polarization beam splitter;
- a first quarter wave plate disposed between the reference surface and the third surface of the polarization beam splitter from which the reference light is emitted and incident;
- a second quarter-wave plate disposed between the fourth surface of the polarization beam splitter from which the measurement light is incident and incident and the object to be measured;
- First imaging means capable of imaging output light relating to the first light emitted from the second surface by causing the first light to be incident on the first surface of the polarization beam splitter;
- a second imaging unit capable of imaging output light relating to the second light emitted from the first surface by causing the second light to be incident on the second surface of the polarization beam splitter;
- a three-dimensional measuring apparatus comprising: image processing means capable of performing three-dimensional measurement of the object based on the interference fringe image picked up
- the structures according to the above means 1 and 2 can be realized with a relatively simple structure based on the principle of the Michelson interferometer.
- the “polarization beam splitter” transmits the first polarized light (for example, P polarized light) having the first polarization direction at its interface, and the second polarized light having the second polarization direction. It has a function of reflecting (for example, S-polarized light). Therefore, the first light incident from the first surface of the polarization beam splitter is split into, for example, the reference light of the first polarization and the measurement light of the second polarization, and the first light incident from the second surface of the polarization beam splitter The two lights are split into, for example, reference light consisting of the second polarization and measurement light consisting of the first polarization.
- the reference light and the measurement light related to the first light, and the second light Since the reference light and the measurement light are divided into different polarization components (P-polarization or S-polarization), the first light and the second light are separately emitted from the predetermined optical system without interference with each other. .
- the “1 ⁇ 4 wavelength plate” commonly used for both lights does not function properly as the wavelength difference between the two lights increases. Also in this respect, it is more preferable to use two types of light having a small wavelength difference.
- First irradiation means capable of emitting first light including polarized light of a first wavelength
- Second irradiating means capable of emitting second light including polarized light of a second wavelength
- the first light incident from the first irradiating means is divided into two polarized lights whose polarization directions are orthogonal to each other, and one polarized light can be irradiated as a measuring light to an object to be measured and the other polarized light is used as a reference light It is possible to irradiate the reference surface, and combine the measurement light of the second light incident through the object and the reference light of the second light incident through the reference surface.
- a first polarization beam splitter as a first input / output unit capable of emitting light;
- the second light incident from the second irradiating means is divided into two polarized lights whose polarization directions are orthogonal to each other, and one polarized light can be irradiated as a measuring light to the object to be measured and the other polarized light is used as a reference light It is possible to irradiate the reference surface, and combine the measurement light of the first light incident through the object and the reference light of the first light incident through the reference surface.
- a second polarization beam splitter as a second input / output unit capable of emitting light; A first quarter wave plate disposed between the first polarization beam splitter and the reference surface; A second quarter wave plate disposed between the first polarization beam splitter and the object to be measured; A third quarter wave plate disposed between the second polarization beam splitter and the reference surface; A fourth quarter wave plate disposed between the second polarization beam splitter and the object to be measured; First imaging means capable of imaging output light relating to the first light emitted from the second polarization beam splitter by causing the first light to be incident on the first polarization beam splitter; A second imaging unit capable of imaging output light of the second light emitted from the first polarization beam splitter by causing the second light to be incident on the second polarization beam splitter; What is claimed is: 1.
- a three-dimensional measuring apparatus comprising: image processing means capable of performing three-dimensional measurement of the object based on the interference fringe image picked up by the first image pickup means and the second image pickup means.
- the structures according to the above means 1 and 2 can be realized with a relatively simple structure based on the principle of the Mach-Zehnder interferometer.
- a polarization beam splitter having an interface that transmits a first polarization (for example, P polarization) that is polarization having a first polarization direction and reflects a second polarization (for example, S polarization) that is a polarization that has a second polarization direction
- First irradiating means capable of emitting light
- a second irradiation unit capable of emitting second light including the second polarized light of the second wavelength, which is incident on the second surface which is a second input / output unit of the polarization beam splitter
- a quarter-wave plate disposed to face the third surface of the polarizing beam splitter from which the first light transmitted through the boundary surface and the second light reflected from the boundary surface are emitted; It is disposed opposite to the quarter
- First imaging means capable of imaging output light relating to the first light emitted from the second surface by causing the first light to be incident on the first surface of the polarization beam splitter
- a second imaging unit capable of imaging output light relating to the second light emitted from the first surface by causing the second light to be incident on the second surface of the polarization beam splitter
- the structure concerning the above-mentioned means 1 and 2 can be realized with a comparatively simple composition based on the principle of Fizeau interferometer.
- Means 6 At least a part of the first light emitted from the first irradiation unit is directed to the first input / output unit, and at least one of the output light of the second light emitted from the first input / output unit A first light guiding means for causing the light source to be directed toward the second imaging means; At least a portion of the second light emitted from the second irradiating means is directed to the second input / output portion, and at least a portion of the output light related to the first light emitted from the second input / output portion And a second light guiding means for directing the light toward the first imaging means.
- the three-dimensional measuring device according to any one of the means 2 to 5.
- the structure according to the means 2 or the like can be realized with a relatively simple structure.
- “part of the first light emitted from the first irradiation unit is transmitted and the other is reflected, and the transmitted light or the reflected light of the first light is directed to the first input / output unit, and A part of the output light relating to the second light emitted from the first input / output unit is transmitted and the rest is reflected, and the transmitted light or the reflected light of the second light is directed to the second imaging means.
- Non-polarization beam splitter half mirror etc
- a part of the second light emitted from the second irradiating means is transmitted and the rest is reflected, and the transmitted light or the reflected light of the second light is directed to the second input / output unit, and the second light is transmitted.
- a second non-polarized light which transmits part of the output light relating to the first light emitted from the input / output unit and reflects the rest and makes the transmitted light or the reflected light of the first light directed to the first imaging means
- a configuration provided with a beam splitter (a half mirror or the like) is given as an example.
- Means 7 Between the first irradiating means and the first light guiding means, there is provided a first optical isolator which transmits only light in one direction emitted from the first irradiating means and blocks light in the opposite direction, Between the second irradiating means and the second light guiding means, there is provided a second optical isolator which transmits only light in one direction emitted from the second irradiating means and blocks light in the opposite direction.
- the three-dimensional measurement device according to the means 6, characterized in that
- the non-polarization beam splitter transmits a part of the light emitted from the input / output unit and reflects the remaining light.
- the other light not entering the imaging means is directed to the irradiating means. If such light is incident on the irradiating means, the irradiating means may be damaged or the operation may become unstable.
- the present means 7 by providing the optical isolator, it is possible to prevent damage or destabilization of the irradiation means.
- a predetermined incident light is divided into two polarized lights whose polarization directions are orthogonal to each other, one polarized light is irradiated as a measuring light to an object to be measured, and the other polarized light is irradiated as a reference light to a reference surface, and these are again made
- a predetermined optical system interference optical system
- a first irradiating unit capable of emitting a first light having a first wavelength to be incident on the predetermined optical system
- a second irradiation unit capable of emitting second light having a second wavelength different from the first wavelength, which is incident on the predetermined optical system
- a first imaging unit capable of imaging output light relating to the first light emitted from the predetermined optical system
- a second imaging unit capable of imaging output light relating to the second light emitted from the predetermined optical system
- image processing means capable of performing three-dimensional measurement of the object based on the interference fringe image picked up by the first image pickup means and the second image pickup means
- the means 8 by causing the first light and the second light to be incident from different positions of the predetermined optical system, the reference light and the measurement light according to the first light, and the reference light and the measurement according to the second light Since the light is split into different polarization components (P polarized light or S polarized light), the first light and the second light incident on the predetermined optical system are separately emitted from the predetermined optical system without interfering with each other. It will be.
- the structure according to the means 1 can be realized with a relatively simple structure based on the principle of the Michelson interferometer or the Mach-Zehnder interferometer.
- Means 9 First phase shift means for giving a relative phase difference between the reference light and the measurement light according to the first light; And second phase shift means for providing a relative phase difference between the reference light and the measurement light according to the second light.
- the image processing means A phase shift is performed based on a plurality of interference fringe images captured by the first imaging unit, with respect to the output light related to the first light phase-shifted in a plurality of ways (for example, 3 or 4 ways) by the first phase shift unit.
- a first measurement value acquiring unit capable of measuring the shape of the object to be measured by a method and acquiring the measurement value as a first measurement value;
- a phase shift is performed based on a plurality of interference fringe images captured by the second imaging unit with the output light related to the second light phase-shifted in a plurality (for example, 3 or 4) by the second phase shift unit.
- Second measurement value acquiring means capable of measuring the shape of the object to be measured by a method and acquiring the measurement value as a second measurement value;
- the height information specified from the first measurement value and the second measurement value may be acquired as height information of the object to be measured in any one of the means 1 to 8 including: height information acquisition means Three-dimensional measuring device.
- the present means 9 since it is possible to simultaneously perform imaging of the output light related to the first light and imaging of the output light related to the second light, imaging for a total of four times (or three times in total) In time, a total of eight (or six) interference fringe images relating to two types of light can be acquired. As a result, the overall imaging time can be shortened, and the measurement efficiency can be improved.
- First splitting means for splitting the output light relating to the first light into a plurality of lights; Among the plurality of split lights split by the first spectral means as the first phase shift means, at least the number of split lights (for example, three or four) necessary for measurement by the phase shift method
- First filter means for applying different phase differences to each other
- Second splitting means for splitting the output light relating to the second light into a plurality of lights; Among the plurality of split lights split by the second spectroscopic means as the second phase shift means, at least the number of split lights (for example, three or four) necessary for measurement by the phase shift method
- second filter means for providing different phase differences,
- the first imaging unit is configured to be capable of simultaneously imaging the plurality of divided lights transmitted through at least the first filter unit,
- the three-dimensional measurement device according to the means 9, wherein the second imaging means is configured to be able to simultaneously image at least the plurality of divided lights passing through the second filter means.
- phase shift means for example, a configuration in which the optical path length is physically changed by moving the reference surface along the optical axis can be considered.
- it takes a certain time to acquire all the interference fringe images necessary for measurement which not only increases the measurement time but also receives the influence of air fluctuations and vibrations, etc. May decrease.
- the present means 10 it is possible to simultaneously acquire all interference fringe images necessary for measurement. That is, a total of eight (or six) interference fringe images relating to two types of light can be acquired simultaneously. As a result, it is possible to improve the measurement accuracy, significantly reduce the overall imaging time, and dramatically improve the measurement efficiency.
- spectroscopic means for example, "a spectral means for dividing incident light into four lights whose optical path lengths are arranged in a matrix on a plane having the same optical path length and orthogonal to the traveling direction" can be mentioned.
- a configuration such as the following means 11 may be mentioned as an example.
- the said spectroscopic means (a first spectroscopic means and a second spectroscopic means)
- the cross section along the first plane has a triangular prism shape with a triangular shape, and it passes through the intersection line of the first and second planes of the three planes along the direction orthogonal to the first plane.
- a first optical member having first branching means (first half mirror) along a plane orthogonal to the third surface;
- the first cross-section has a triangular prism shape in which the cross-sectional shape along the second plane orthogonal to the first plane is a triangle, and the first and third of the three planes along the direction orthogonal to the second plane
- a second optical member having a second branching means (second half mirror) along a plane passing through a line of intersection with the second plane and orthogonal to the third plane;
- Two split lights emitted from the third surface of the first optical member are made to be incident (perpendicularly) to the first surface of the second optical member, and the two split lights are respectively divided by the second splitting means
- the two split lights reflected by the second splitting means are respectively reflected by the first surface toward the third face side, and are transmitted through the second splitting means.
- Three-dimensional measurement according to the means 10 characterized in that four split beams are emitted from the third surface as four split beams parallel to each other by reflecting them toward the third surface side on the second surface respectively. apparatus.
- the light emitted from a predetermined optical system can be split into four lights arranged in a matrix of two rows and two columns.
- the divided areas obtained by equally dividing the imaging area of the imaging element into a matrix are divided into four split lights. Since each can be assigned, the imaging area of the imaging device can be used effectively. For example, when the imaging area of a general imaging device having an aspect ratio of 4: 3 is divided into four equal parts, the aspect ratio of each divided area is also 4: 3 and therefore, a wider range in each divided area can be used. . As a result, the measurement accuracy can be further improved.
- a diffraction grating is used as a spectral separation means, there is a possibility that the resolution may be reduced.
- one light is divided into two parallel light beams, and the two light beams are further parallelized. Since the light is split into four beams, the light is split into four parallel beams, so that the reduction in resolution can be suppressed.
- the optical member (Koster prism) having the above configuration is adopted as means for dividing one light into two parallel light, the optical path lengths of the two divided lights become optically equal.
- the optical path adjusting means for adjusting the optical path lengths of the two split lights there is no need to provide an optical path adjusting means for adjusting the optical path lengths of the two split lights, and the number of parts can be reduced, and the configuration can be simplified and the apparatus can be miniaturized.
- the third surface of the first optical member and the first surface of the second optical member are in contact with each other, one light is incident on the light separating means and then four lights are emitted. During this time, light travels only in the optical member and does not go out into the air, so the influence of air fluctuations etc. can be reduced.
- the first imaging means comprises a single imaging element capable of simultaneously imaging the plurality of divided lights transmitted through at least the first filter means
- the three-dimensional camera according to the means 10 or 11 wherein the second imaging means comprises a single imaging element capable of simultaneously imaging at least the plurality of divided lights transmitted through the second filter means. Measuring device.
- each split light is imaged by a plurality of cameras (imaging elements) constituting an imaging unit
- each camera (imaging element) Measurement errors may occur due to differences in
- the present means since a plurality of split lights are simultaneously imaged by a single imaging element, it is possible to suppress the occurrence of a measurement error or the like and improve the measurement accuracy.
- Means 13 The three-dimensional measurement device according to any one of the means 1 to 12, wherein the object to be measured is a cream solder printed on a printed circuit board or a solder bump formed on a wafer substrate.
- height measurement etc. of cream solder printed on a printed circuit board or solder bumps formed on a wafer substrate can be performed.
- the quality determination of the cream solder or the solder bump can be performed based on the measured value. Therefore, in the inspection, the operation and effect of each of the above-described means are exhibited, and the quality determination can be performed with high accuracy. As a result, the inspection accuracy in the solder printing inspection apparatus or the solder bump inspection apparatus can be improved.
- FIG. 1 is a schematic view showing a schematic configuration of a three-dimensional measurement device 1 according to the present embodiment
- FIG. 2 is a block diagram showing an electrical configuration of the three-dimensional measurement device 1.
- X-axis direction the front and back direction of the paper surface of FIG. 1
- Y-axis direction the up and down direction of the paper surface
- Z-axis direction the left and right direction on the paper surface
- the three-dimensional measurement device 1 is configured based on the principle of a Michelson interferometer, and two light projection systems 2A and 2B (a first light projection system 2A and a second light projection that can output light of a specific wavelength) System 2B), an interference optical system 3 into which light emitted from the light projection systems 2A and 2B is incident, and two imaging systems 4A and 4B capable of imaging the light emitted from the interference optical system 3
- control device 5 constitutes the “image processing means” in the present embodiment
- the “interference optical system 3” constitutes the “predetermined optical system (specific optical system)” in the present embodiment.
- a predetermined incident light is divided into two lights (measurement light and reference light) for the purpose of causing light interference (picking up an interference fringe image).
- An optical system in which an optical path difference is generated between the two lights, and which is synthesized again and output is referred to as an “interference optical system”. That is, not only an optical system that internally interferes two lights but then outputs interference light, but also an optical system that simply outputs combined light without interfering two lights internally, “interference optical system” It is called.
- the first light projection system 2A includes a first light emitting unit 11A, a first optical isolator 12A, a first non-polarization beam splitter 13A, and the like.
- the "first light emitting unit 11A” constitutes the "first irradiation unit” in the present embodiment.
- the first light emitting unit 11A is a laser light source capable of outputting linear polarized light of a specific wavelength ⁇ 1 , a beam expander that expands the linear polarized light output from the laser light source and emits it as parallel light
- a polarizing plate for performing adjustment, a half-wave plate for adjusting the polarization direction, and the like are provided.
- the light is emitted leftward in the Z-axis direction.
- the “wavelength ⁇ 1 ” corresponds to the “first wavelength” in the present embodiment.
- the light of the wavelength lambda 1 emitted from the first light emitting portion 11A referred to as "first light”.
- the first optical isolator 12A is an optical element that transmits only light traveling in one direction (left direction in the Z-axis direction in this embodiment) and blocks light in the opposite direction (right direction in the Z-axis direction in this embodiment). As a result, only the first light emitted from the first light emitting unit 11A is transmitted, and damage or destabilization of the first light emitting unit 11A due to the return light can be prevented.
- the first non-polarizing beam splitter 13A is a known cube-shaped optical member in which a right-angle prism (a triangular prism having a bottom of a right-angled isosceles triangle as a base, and the same applies hereinafter) is integrated. For example, a coating such as a metal film is applied to 13 Ah.
- the "first non-polarization beam splitter 13A" constitutes the "first light guiding means" in the present embodiment.
- the non-polarization beam splitter divides incident light into transmitted light and reflected light at a predetermined ratio, including the polarization state.
- a so-called half mirror having a division ratio of 1: 1 is employed. That is, the P polarization component and the S polarization component of the transmitted light, and the P polarization component and the S polarization component of the reflected light are all divided at the same ratio, and the polarization states of the transmitted light and the reflected light are the polarization states of the incident light Will be the same.
- linearly polarized light whose polarization direction is a direction parallel to the paper surface of FIG. 1 is called P polarization (P polarization component)
- X perpendicular to the paper surface of FIG.
- Linearly polarized light whose polarization direction is the axial direction is called S-polarization (S-polarization component).
- P-polarization corresponds to "first polarization having a first polarization direction”
- S-polarization corresponds to "second polarization having a second polarization direction”.
- the first non-polarization beam splitter 13A is disposed such that one of two adjacent surfaces sandwiching the junction surface 13Ah is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 13Ah of the first non-polarization beam splitter 13A is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction. More specifically, a portion (half) of the first light incident from the first light emitting unit 11A in the Z-axis direction left direction is transmitted leftward in the Z-axis direction via the first optical isolator 12A, and the remaining (half) is Y It is arranged to reflect axially downward.
- the second light projection system 2B includes a second light emitting unit 11B, a second optical isolator 12B, a second non-polarization beam splitter 13B, and the like.
- the "second light emitting unit 11B” constitutes the “second irradiation unit” in the present embodiment.
- the second light emitting unit 11B is a laser light source capable of outputting linearly polarized light of a specific wavelength ⁇ 2 or a beam extract that expands the linearly polarized light outputted from the laser light source and emits it as parallel light.
- a panda, a polarizing plate for adjusting the intensity, a half-wave plate for adjusting the polarization direction, and the like are provided.
- the “wavelength ⁇ 2 ” corresponds to the “second wavelength” in the present embodiment.
- the light of the wavelength lambda 2 emitted from the second light emitting portion 11B referred to as "second light”.
- the second optical isolator 12B transmits only light traveling in one direction (upward in the Y-axis direction in this embodiment) and blocks light in the reverse direction (downward in the Y-axis direction in this embodiment) Optical element. As a result, only the second light emitted from the second light emitting unit 11B is transmitted, and damage or destabilization of the second light emitting unit 11B due to the return light can be prevented.
- the second non-polarization beam splitter 13B is a known cube-shaped optical member in which right angle prisms are bonded and integrated, and a bonding film such as a metal film is formed on the bonding surface 13Bh. It is coated.
- the "second non-polarization beam splitter 13B" constitutes the "second light guiding means" in the present embodiment.
- the second non-polarizing beam splitter 13B is disposed such that one of two adjacent surfaces sandwiching the junction surface 13Bh is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 13Bh of the second non-polarization beam splitter 13B is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction. More specifically, a part (half) of the second light incident upward from the second light emitting unit 11B in the Y-axis direction is transmitted upward in the Y-axis direction through the second optical isolator 12B, and the other (half) is transmitted as Z It is arranged to reflect in the axial right direction.
- the interference optical system 3 includes a polarization beam splitter (PBS) 20, quarter wavelength plates 21 and 22, a reference surface 23, an installation unit 24, and the like.
- PBS polarization beam splitter
- the polarization beam splitter 20 is a known cube-shaped optical member in which right-angle prisms are bonded and integrated, and a bonding surface (boundary surface) 20h is coated with, for example, a dielectric multilayer film.
- the polarization beam splitter 20 is for dividing linearly polarized incident light into two polarization components (P polarization component and S polarization component) whose polarization directions are orthogonal to each other.
- the polarization beam splitter 20 in the present embodiment is configured to transmit the P-polarization component and reflect the S-polarization component.
- the polarization beam splitter 20 in this embodiment constitutes a “splitter” that splits the incident predetermined light into two lights, and also constitutes a “synthesizer” that combines these again.
- the polarization beam splitter 20 is disposed such that one of two adjacent surfaces sandwiching the bonding surface 20 h is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 20 h of the polarization beam splitter 20 is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction.
- the first surface (upper surface in the Y-axis direction) 20a of the polarization beam splitter 20 to which the first light reflected downward in the Y-axis direction from the first non-polarization beam splitter 13A is incident, and the first surface 20a And a third surface (lower side surface in the Y-axis direction) 20c facing each other are disposed to be orthogonal to the Y-axis direction.
- the “first surface 20 a of the polarization beam splitter 20” corresponds to the “first input / output unit” in the present embodiment.
- the second surface of the polarization beam splitter 20 which is adjacent to the first surface 20a with the bonding surface 20h interposed therebetween and into which the second light reflected to the right in the Z-axis direction from the second non-polarization beam splitter 13B is incident.
- a (left side surface in the Z-axis direction) 20b and a fourth surface (right side surface in the Z-axis direction) 20d opposite to the second surface 20b are disposed to be orthogonal to the Z-axis direction.
- the “second surface 20 b of the polarization beam splitter 20” corresponds to the “second input / output unit” in the present embodiment.
- the quarter wavelength plate 21 is disposed so as to face the third surface 20 c of the polarization beam splitter 20 in the Y axis direction, and the reference plane so as to face the quarter wavelength plate 21 in the Y axis direction. 23 are arranged.
- the 1 ⁇ 4 wavelength plate 21 corresponds to the “first 1 ⁇ 4 wavelength plate” in the present embodiment, and has a function of converting linearly polarized light into circularly polarized light and converting circularly polarized light into linearly polarized light. That is, linearly polarized light (reference light) emitted from the third surface 20 c of the polarization beam splitter 20 is converted to circularly polarized light through the 1 ⁇ 4 wavelength plate 21 and then irradiated to the reference surface 23. The reference light reflected by the reference surface 23 is converted from circularly polarized light into linearly polarized light again through the 1 ⁇ 4 wavelength plate 21, and then enters the third surface 20 c of the polarization beam splitter 20.
- the quarter wavelength plate 22 is disposed so as to face the fourth surface 20 d of the polarization beam splitter 20 in the Z axis direction, and the installation portion so as to face the quarter wavelength plate 22 in the Z axis direction. 24 are arranged.
- the 1 ⁇ 4 wavelength plate 22 corresponds to the “second 1 ⁇ 4 wavelength plate” in the present embodiment, and has a function of converting linearly polarized light into circularly polarized light and converting circularly polarized light into linearly polarized light. That is, linearly polarized light (measurement light) emitted from the fourth surface 20 d of the polarization beam splitter 20 is converted into circularly polarized light through the 1 ⁇ 4 wavelength plate 22 and then placed as an object to be measured placed on the installation portion 24. It is irradiated to work W of this. The measurement light reflected by the work W is again converted from circularly polarized light into linearly polarized light through the 1 ⁇ 4 wavelength plate 22 and then enters the fourth surface 20 d of the polarization beam splitter 20.
- the first imaging system 4A includes a 1 ⁇ 4 wavelength plate 31A, a first polarizing plate 32A, and a first camera 33A constituting a first imaging unit.
- the 1 ⁇ 4 wavelength plate 31A is for converting linearly polarized light (reference light component of the first light and measurement light component) transmitted through the second non-polarization beam splitter 13B in the Z-axis direction to the left into circularly polarized light, respectively. is there.
- the first polarizing plate 32A selectively transmits each component of the first light converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 31A. Thereby, it is possible to cause the reference light component of the first light and the measurement light component in different rotational directions to interfere with each other for a specific phase.
- the “first polarizing plate 32A” constitutes the “first phase shift means” and the “interference means” in the present embodiment.
- the first polarizing plate 32A is configured to be rotatable about the Z-axis direction, and is controlled so that the transmission axis direction changes by 45 °. Specifically, the transmission axis direction changes so as to be “0 °”, “45 °”, “90 °”, and “135 °” with respect to the Y-axis direction.
- the reference light component and the measurement light component of the first light transmitted through the first polarizing plate 32A can be interfered with each other in four phases. That is, it is possible to generate interference light whose phase differs by 90 °. Specifically, interference light with a phase of "0 °”, interference light with a phase of "90 °”, interference light with a phase of "180 °”, and interference light with a phase of "270 °” can be generated. .
- the first camera 33A is a known camera provided with a lens, an imaging device, and the like.
- a CCD area sensor is employed as an imaging element of the first camera 33A.
- the imaging device is not limited to this, and, for example, a CMOS area sensor or the like may be adopted.
- the image data captured by the first camera 33A is converted into a digital signal in the first camera 33A and then input to the control device 5 (image data storage device 54) in the form of a digital signal. There is.
- an interference fringe image of phase “0 °”, an interference fringe image of phase “90 °”, an interference fringe image of phase “180 °”, and an interference fringe image of phase “270 °” related to the first light An image is taken by the first camera 33A.
- the second imaging system 4B includes a 1 ⁇ 4 wavelength plate 31B, a second polarizing plate 32B, and a second camera 33B constituting a second imaging means.
- the 1 ⁇ 4 wavelength plate 31B is for converting linearly polarized light (reference light component and measurement light component of the second light) transmitted through the first non-polarization beam splitter 13A upward in the Y-axis direction into circularly polarized light. is there.
- the second polarizing plate 32B selectively transmits each component of the second light converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 31B. Thereby, it is possible to cause the reference light component and the measurement light component of the second light in different rotational directions to interfere with each other in a specific phase.
- the "second polarizing plate 32B" constitutes the “second phase shift means” and the “interference means” in the present embodiment.
- the second polarizing plate 32B is configured to be rotatable with the Y axis direction as an axis, and is controlled so that the transmission axis direction changes by 45 °. Specifically, the transmission axis direction changes so as to be “0 °”, “45 °”, “90 °”, and “135 °” with respect to the X-axis direction.
- interference light with a phase of "0 °”, interference light with a phase of "90 °”, interference light with a phase of "180 °”, and interference light with a phase of "270 °” can be generated. .
- the second camera 33B is a known camera provided with a lens, an imaging device, and the like.
- a CCD area sensor is adopted as an imaging element of the second camera 33B.
- the imaging device is not limited to this, and, for example, a CMOS area sensor or the like may be adopted.
- the image data captured by the second camera 33B is converted to a digital signal in the second camera 33B, and then converted to a digital signal in the control device 5 (image data storage device 54). It is supposed to be input.
- an interference fringe image of phase "0 °”, an interference fringe image of phase "90 °”, an interference fringe image of phase "180 °”, and an interference fringe image of phase "270 °” related to the second light An image is taken by the second camera 33B.
- the control device 5 includes a CPU and an input / output interface 51 that controls the entire three-dimensional measurement device 1, an input device 52 as an “input unit” configured of a keyboard, a mouse, or a touch panel Display device 53 as a "display means" having a display screen such as a liquid crystal screen, an image data storage device 54 for sequentially storing image data etc. captured by the cameras 33A and 33B, computation for storing various computation results
- the result storage device 55 includes a setting data storage device 56 for storing various information in advance.
- the respective devices 52 to 56 are electrically connected to the CPU and the input / output interface 51.
- the optical path of the first light will be described with reference to FIG.
- the first light wavelength lambda 1 polarization direction linearly polarized light inclined by 45 ° with respect to the X-axis direction and the Y-axis direction
- the first light wavelength lambda 1 is emitted in the Z-axis direction leftward from the first light emitting portion 11A.
- the first light emitted from the first light emitting unit 11A passes through the first optical isolator 12A and enters the first non-polarization beam splitter 13A. Part of the first light incident on the first non-polarization beam splitter 13A is transmitted leftward in the Z-axis direction, and the rest is reflected downward in the Y-axis direction.
- the first light reflected downward in the Y-axis direction (linearly polarized light whose polarization direction is inclined 45 ° with respect to the X-axis direction and the Z-axis direction) is incident on the first surface 20 a of the polarization beam splitter 20.
- the first light transmitted leftward in the Z-axis direction becomes abandoned light without entering any optical system or the like.
- the measurement accuracy can be improved according to the stabilization of the light source (the same applies hereinafter).
- the first light incident downward from the first surface 20a of the polarization beam splitter 20 in the Y-axis direction has its P-polarization component transmitted downward in the Y-axis direction and emitted from the third surface 20c as reference light, while its S The polarized light component is reflected rightward in the Z-axis direction and emitted from the fourth surface 20d as measurement light.
- the reference light (P-polarized light) related to the first light emitted from the third surface 20 c of the polarization beam splitter 20 is converted into clockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 21, and then the reference surface 23. To reflect. Here, the rotational direction with respect to the light traveling direction is maintained. Thereafter, the reference light relating to the first light passes through the quarter-wave plate 21 again, so that the clockwise circularly polarized light is converted to S-polarized light, and then re-converted to the third surface 20 c of the polarization beam splitter 20. It will be incident.
- the measurement light (S-polarized light) related to the first light emitted from the fourth surface 20 d of the polarization beam splitter 20 is converted into counterclockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 22, Reflect at W.
- the rotational direction with respect to the light traveling direction is maintained.
- the measurement light relating to the first light passes through the 1 ⁇ 4 wavelength plate 22 again, so that the left-handed circularly polarized light is converted to P-polarized light, and then retransmitted to the fourth surface 20d of the polarization beam splitter 20. It will be incident.
- the reference light (S-polarized light) related to the first light re-incident from the third surface 20 c of the polarization beam splitter 20 is reflected leftward in the Z-axis direction by the junction surface 20 h and re-incident from the fourth surface 20 d
- the measurement light (P-polarized light) related to the first light transmits the bonding surface 20 h leftward in the Z-axis direction. Then, combined light in a state in which the reference light and measurement light related to the first light are combined is emitted from the second surface 20 b of the polarization beam splitter 20 as output light.
- the combined light (reference light and measurement light) related to the first light emitted from the second surface 20 b of the polarization beam splitter 20 is incident on the second non-polarization beam splitter 13 B.
- Part of the combined light relating to the first light incident on the second non-polarizing beam splitter 13B in the left Z direction is transmitted left in the Z direction, and the rest is reflected downward in the Y direction.
- the combined light (reference light and measurement light) transmitted leftward in the Z-axis direction is incident on the first imaging system 4A.
- the combined light reflected downward in the Y-axis direction is blocked by the second optical isolator 12B and becomes abandoned light.
- the combined light (reference light and measurement light) of the first light incident on the first imaging system 4A is first converted by the 1 ⁇ 4 wavelength plate 31A to a counterclockwise circularly polarized light of the reference light component (S polarization component) And the measurement light component (P polarization component) is converted to clockwise circular polarization.
- the counterclockwise circularly polarized light and the clockwise circularly polarized light do not interfere with each other because the rotational directions are different.
- the synthetic light according to the first light subsequently passes through the first polarizing plate 32A, so that the reference light component and the measurement light component interfere with each other in a phase according to the angle of the first polarizing plate 32A. Then, the interference light relating to the first light is imaged by the first camera 33A.
- second light of wavelength ⁇ 2 (linearly polarized light whose polarization direction is inclined 45 ° with respect to the X-axis direction and the Z-axis direction) is emitted upward from the second light emitting unit 11B in the Y-axis direction.
- the second light emitted from the second light emitting unit 11B passes through the second optical isolator 12B and enters the second non-polarizing beam splitter 13B.
- Part of the second light incident on the second non-polarizing beam splitter 13B is transmitted upward in the Y-axis direction, and the other part is reflected rightward in the Z-axis direction.
- the second light (linearly polarized light whose polarization direction is inclined 45 ° with respect to the X-axis direction and the Y-axis direction) reflected to the right in the Z-axis direction is incident on the second surface 20 b of the polarization beam splitter 20.
- the second light transmitted upward in the Y-axis direction becomes abandoned light without entering any optical system or the like.
- the second light incident from the second surface 20b of the polarization beam splitter 20 rightward in the Z-axis direction has its S-polarization component reflected downward in the Y-axis direction and emitted from the third surface 20c as reference light, while its P
- the polarized light component is transmitted rightward in the Z-axis direction and emitted from the fourth surface 20d as measurement light.
- the reference light (S-polarized light) related to the second light emitted from the third surface 20 c of the polarization beam splitter 20 is converted into counterclockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 21, and then the reference surface 23. To reflect. Here, the rotational direction with respect to the light traveling direction is maintained. Thereafter, the reference light relating to the second light passes through the 1 ⁇ 4 wavelength plate 21 again, so that the left-handed circularly polarized light is converted to P-polarized light and then re-transmitted to the third surface 20 c of the polarization beam splitter 20. It will be incident.
- measurement light (P-polarized light) related to the second light emitted from the fourth surface 20 d of the polarization beam splitter 20 is converted into clockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 22, Reflect at W.
- the rotational direction with respect to the light traveling direction is maintained.
- the measurement light relating to the second light passes through the 1 ⁇ 4 wavelength plate 22 again, so that it is converted from clockwise circularly polarized light to S polarized light and then re-converted to the fourth surface 20d of the polarization beam splitter 20. It will be incident.
- the reference light (P polarized light) related to the second light re-incident from the third surface 20 c of the polarization beam splitter 20 transmits the bonding surface 20 h upward in the Y-axis direction, and re-incidents from the fourth surface 20 d
- the measurement light (S-polarized light) relating to the two lights is reflected upward in the Y-axis direction at the bonding surface 20 h.
- combined light in a state in which the reference light and measurement light related to the second light are combined is emitted from the first surface 20 a of the polarization beam splitter 20 as output light.
- the combined light (reference light and measurement light) related to the second light emitted from the first surface 20a of the polarization beam splitter 20 is incident on the first non-polarization beam splitter 13A.
- Part of the combined light of the second light incident upward in the Y-axis direction with respect to the first non-polarization beam splitter 13A is transmitted upward in the Y-axis direction, and the rest is reflected rightward in the Z-axis direction.
- the combined light (reference light and measurement light) transmitted upward in the Y-axis direction is incident on the second imaging system 4B.
- the combined light reflected to the right in the Z-axis direction is blocked by the first optical isolator 12A to be discarded light.
- the combined light (reference light and measurement light) of the second light incident on the second imaging system 4B is first converted by the 1 ⁇ 4 wavelength plate 31B into a circularly polarized light whose reference light component (P polarization component) is clockwise. And the measurement light component (S polarization component) is converted to counterclockwise circularly polarized light.
- the counterclockwise circularly polarized light and the clockwise circularly polarized light do not interfere with each other because the rotational directions are different.
- the combined light according to the second light subsequently passes through the second polarizing plate 32B, so that the reference light component and the measurement light component interfere with each other in a phase according to the angle of the second polarizing plate 32B. Then, the interference light relating to the second light is imaged by the second camera 33B.
- the transmission axis direction of the first polarizing plate 32A of the first imaging system 4A is set to a predetermined reference position (for example, "0 °"), and the second imaging system 4B
- the transmission axis direction of the second polarizing plate 32B is set to a predetermined reference position (for example, "0.degree.”).
- the second light is emitted from the second light projecting system 2B.
- combined light (reference light and measurement light) relating to the first light is emitted from the second surface 20 b of the polarization beam splitter 20 of the interference optical system 3, and at the same time, the first surface 20 a of the polarization beam splitter 20
- the combined light (reference light and measurement light) relating to 2 light is emitted.
- the combined light related to the first light emitted from the second surface 20b of the polarization beam splitter 20 is imaged by the first imaging system 4A, and at the same time, the second light emitted from the first surface 20a of the polarization beam splitter 20
- the combined light is imaged by the second imaging system 4B.
- the transmission axis directions of the first polarizing plate 32A and the second polarizing plate 32B are respectively set to "0 °"
- the interference fringes of the phase "0 °” related to the first light in the first camera 33A An image is captured, and the second camera 33B captures an interference fringe image of the phase “0 °” related to the second light.
- image data captured by each of the cameras 33A and 33B is output to the control device 5.
- the control device 5 stores the input image data in the image data storage device 54.
- the control device 5 performs switching processing of the first polarizing plate 32A of the first imaging system 4A and the second polarizing plate 32B of the second imaging system 4B. Specifically, the first polarizing plate 32A and the second polarizing plate 32B are each rotationally displaced to a position where the transmission axis direction is "45 °".
- the control device 5 performs a second imaging process similar to the above-described series of first imaging processes. That is, the control device 5 irradiates the first light from the first light projection system 2A and at the same time irradiates the second light from the second light projection system 2B, and the first light emitted from the second surface 20b of the polarization beam splitter 20 Simultaneously with imaging the combined light of the first light by the first imaging system 4A, the combined light of the second light emitted from the first surface 20a of the polarization beam splitter 20 is imaged by the second imaging system 4B.
- the interference fringe image of the phase "90 °" related to the first light is acquired, and the interference fringe image of the phase "90 °" related to the second light is captured.
- the same imaging process as the first and second imaging processes is repeated twice. That is, the third imaging process is performed with the transmission axis direction of the first polarizing plate 32A and the second polarizing plate 32B set to "90 °", and the interference fringe image of the phase "180 °” related to the first light is While acquiring, the interference-fringe image of the phase "180 degree” concerning 2nd light is acquired.
- the fourth imaging process is performed with the transmission axis direction of the first polarizing plate 32A and the second polarizing plate 32B set to "135 °", and the interference fringe image of the phase "270 °” relating to the first light is While acquiring, the interference-fringe image of the phase "270 degree” which concerns on 2nd light is acquired.
- control device 5 performs a phase shift method based on the four interference fringe image data of the first light stored in the image data storage device 54 and the four interference fringe image data of the second light.
- the surface shape of the workpiece W is measured by That is, height information at each position on the surface of the workpiece W is calculated.
- Interference fringe intensity at the same coordinate position (x, y) of four kinds of interference fringe image data relating to the first light or the second light that is, luminance I 1 (x, y), I 2 (x, y), I 3 (X, y) and I 4 (x, y) can be expressed by the following equation [Equation 1].
- ⁇ (x, y) represents the phase difference based on the optical path difference between the measurement light and the reference light at the coordinates (x, y).
- a (x, y) represents the amplitude of the interference light
- B (x, y) represents a bias.
- ⁇ (x, y) represents “phase of measurement light”
- a (x, y) represents “amplitude of measurement light” when viewed as a reference.
- phase ⁇ (x, y) of the measurement light can be obtained by the following equation [2] based on the above equation [1].
- the amplitude A (x, y) of the measurement light can be obtained by the following equation [3] based on the above equation [1].
- Equation 4 the complex amplitude Eo (x, y) on the image pickup device surface is calculated from the phase ⁇ (x, y) and the amplitude A (x, y) based on the following equation [Equation 4].
- i represents an imaginary unit.
- Equation 5 the complex amplitude Eo (x, y) is Fresnel-transformed as shown in the following [Equation 5].
- ⁇ represents a wavelength.
- the phase ⁇ ( ⁇ ,)) of the measurement light and the amplitude A ( ⁇ ,)) of the measurement light are calculated based on the following relational expression calculate.
- phase ⁇ ( ⁇ ,)) of the measurement light can be obtained by the following equation [8].
- the amplitude A ( ⁇ ,)) of the measurement light can be obtained by the following equation [9].
- phase-height conversion processing is performed to calculate height information z ( ⁇ ,)) that three-dimensionally indicates the concavo-convex shape of the surface of the workpiece W.
- the height information z ( ⁇ ,)) can be calculated by the following equation [Equation 10].
- the measurement range can be expanded by using two types of light having different wavelengths.
- the synthetic wavelength ⁇ 0 can be represented by the following formula (M1).
- ⁇ 0 ( ⁇ 1 ⁇ ⁇ 2 ) / ( ⁇ 2 - ⁇ 1 ) (M1) However, it is assumed that ⁇ 2 > ⁇ 1 .
- the luminances I 1 (x, y), I 2 (x, y), I 3 (x) of the four interference fringe image data related to the first light of wavelength ⁇ 1 , Y) and I 4 (x, y) (see the above [Equation 1])
- the phase ⁇ 1 ( ⁇ , ⁇ ) of the measurement light related to the first light at the coordinates ( ⁇ ,)) on the work W surface ) Is calculated (see [Equation 8] above).
- the phase ⁇ 1 ( ⁇ ,)) obtained here corresponds to the “first measurement value” in the present embodiment, and the “first measurement value acquisition means” is configured by the processing function of calculating this.
- the height information z ( ⁇ , ⁇ ⁇ ) at the coordinates ((,)) can be expressed by the following equation (M2).
- d 1 ( ⁇ ,)) represents the optical path difference between the measurement light related to the first light and the reference light
- m 1 ( ⁇ ,)) represents the fringe order related to the first light.
- phase ⁇ 1 ( ⁇ ,)) can be expressed by the following equation (M2 ′).
- ⁇ 1 ( ⁇ ,)) (4 ⁇ / ⁇ 1 ) ⁇ z ( ⁇ ,)) ⁇ 2 ⁇ m 1 ( ⁇ ,)) (M 2 ′)
- the intensities I 1 (x, y), I 2 (x, y), I 3 (x, y), I 4 (x, I) of the four interference fringe image data related to the second light of wavelength ⁇ 2 Based on y) (see the above [Equation 1]), calculate the phase ⁇ 2 ( ⁇ ,)) of the measurement light related to the second light at the coordinates ( ⁇ ⁇ ,)) on the work W surface (the above ]reference).
- the phase ⁇ 2 ( ⁇ ,)) obtained here corresponds to the “second measurement value” in the present embodiment, and the “second measurement value acquisition means” is configured by the processing function of calculating this.
- the height information z ( ⁇ , ⁇ ) at the coordinates ( ⁇ ,)) can be expressed by the following formula (M3) under the measurement according to the second light.
- d 2 ( ⁇ ,)) represents the optical path difference between the measurement light related to the second light and the reference light
- m 2 ( ⁇ ,)) represents the fringe order related to the second light.
- phase ⁇ 2 ( ⁇ ,)) can be expressed by the following equation (M3 ′).
- ⁇ 2 ( ⁇ ,)) (4 ⁇ / ⁇ 2 ) ⁇ z ( ⁇ ,))-2 ⁇ m 2 ( ⁇ ,)) (M3 ')
- the fringe order m 1 ( ⁇ ,)) of the first light of the wavelength ⁇ 1 or the fringe order m 2 ( ⁇ ,)) of the second light of the wavelength ⁇ 2 is determined.
- the fringe orders m 1 and m 2 can be obtained based on the optical path difference ⁇ d and the wavelength difference ⁇ of two types of light (wavelengths ⁇ 1 and ⁇ 2 ).
- the optical path difference ⁇ d and the wavelength difference ⁇ can be expressed as the following formulas (M4) and (M5), respectively.
- the relationship between the fringe orders m 1 and m 2 can be divided into the following three cases within the measurement range of the synthetic wavelength ⁇ 0 of two wavelengths, and the fringe orders m 1 ( ⁇ ,)) and m for each case 2 Formulas for determining ( ⁇ ,)) are different.
- the case of determining the fringe order m 1 ( ⁇ ,)) will be described.
- the stripe order m 2 ( ⁇ ,)) can also be obtained by the same method.
- m 1 can be expressed as the following formula (M6).
- m 1 can be expressed as the following formula (M7).
- m 1 + 1” is obtained, and in this case, m 1 can be expressed as the following formula (M8).
- the height information z ( ⁇ ,)) is obtained from the above formulas (M 2) and (M 3) You can get it.
- Such processing functions constitute "height information acquisition means". Then, the measurement result (height information) of the workpiece W thus obtained is stored in the calculation result storage device 55 of the control device 5.
- the first light of wavelength ⁇ 1 is made incident from the first surface 20 a of the polarization beam splitter 20, and the second light of wavelength ⁇ 2 is the second surface of the polarization beam splitter 20. Since the reference light and measurement light related to the first light, and the reference light and measurement light related to the second light are split into different polarization components (P-polarized light or S-polarized light) by entering from 20b, a polarization beam splitter The first light and the second light incident on 20 are separately emitted from the polarization beam splitter 20 without interfering with each other. That is, it is not necessary to separate the light emitted from the polarization beam splitter 20 into the first light and the second light using a predetermined separation means.
- P-polarized light or S-polarized light polarization components
- the first light and the second light two types of light having near wavelengths can be used as the first light and the second light, and the measurement range related to three-dimensional measurement can be further expanded.
- the imaging of the output light related to the first light and the imaging of the output light related to the second light can be performed simultaneously, the overall imaging time can be shortened, and the measurement efficiency can be improved.
- two types of light are used for one interference optical system 3 provided with one reference surface 23 serving as a reference, so an optical path difference occurs between the reference light and the measurement light.
- the optical path section to be made is the same for the two types of light. For this reason, as compared with the configuration using two interference optical systems (interferometer modules), the measurement accuracy is improved, and it is not necessary to perform the difficult task of accurately matching the optical path lengths of the two interference optical systems.
- the first imaging system 4A is a spectroscope as a spectroscope that splits the combined light (reference light component and measurement light component) related to the first light transmitted through the 1 ⁇ 4 wavelength plate 31A into four lights.
- a filter unit 126 as filter means for selectively transmitting predetermined components of the four lights emitted from the spectroscopic optical system 125, instead of the first polarizing plate 32A. The four lights transmitted through 126 are simultaneously imaged by the first camera 33A.
- the second imaging system 4B is a spectroscopic unit that splits the combined light (reference light component and measurement light component) related to the second light transmitted through the 1 ⁇ 4 wavelength plate 31B into four lights.
- a filter unit 126 as filter means for selectively transmitting predetermined components of the four lights emitted from the spectral optical system 125, instead of the second polarizing plate 32B. The four lights transmitted through the filter unit 126 are simultaneously imaged by the second camera 33B.
- the spectroscopic optical system 125 and the filter unit 126 used in the first imaging system 4A and the second imaging system 4B in the present embodiment have the same configuration, hereinafter, referring to the first imaging system 4A as an example, refer to FIG. While explaining.
- the optical axis direction of the first camera 33A is set to be parallel to the incident direction (traveling direction) of the combined light L0 related to the first light incident on the first imaging system 4A. That is, in the present embodiment, it is set along the Z-axis direction which is the incident direction of the combined light L0 related to the first light.
- the spectroscopic optical system 125 is configured as one optical member in which four non-polarization type optical members (prisms) are combined and integrated. More specifically, the spectroscopic optical system 125 includes the first prism 131, the second prism 132, and the third prism in order from the side closer to the interference optical system 3 along the traveling direction (Z-axis direction) of the combined light L0. 133 and the fourth prism 134 are arranged.
- Each of the prisms 131 to 134 is formed of an optical material (such as glass or acrylic) having a predetermined refractive index higher than that of air. Therefore, the optical path length of the light traveling in each of the prisms 131 to 134 is optically longer than the optical path length of the light traveling in the air.
- all four prisms 131 to 134 may be formed of the same material, or at least one may be formed of different materials.
- the material of each of the prisms 131 to 134 can be arbitrarily selected, as long as the function of the spectroscopic optical system 125 described later is satisfied.
- the first prism 131 is a prism of a quadrangular prism shape which has a parallelogram shape in a front view (ZY plane) and extends along the X-axis direction.
- first prism 131 will be referred to as the “first rhombus prism 131”.
- the first rhombus prism 131 is a surface 131a (hereinafter referred to as "incident surface 131a") located on the right side in the Z-axis direction on the side of the interference optical system 3 and the Z-axis
- the surface 131b located on the left side in the direction (hereinafter referred to as “the exit surface 131b") is disposed orthogonal to the Z-axis direction
- the surface 131c located on the lower side in the Y-axis direction and the surface 131d located on the upper side in the Y-axis direction Are arranged to be inclined 45 ° with respect to the Z-axis direction and the Y-axis direction, respectively.
- the non-polarization half mirror 141 is provided on the surface 131c located on the lower side in the Y-axis direction, and the surface 131d located on the upper side in the Y-axis direction is totally reflected inward.
- a non-polarizing total reflection mirror 142 is provided.
- the surface 131c on which the half mirror 141 is provided is referred to as a “split surface 131c”
- the surface 131d on which the total reflection mirror 142 is provided is referred to as a “reflection surface 131d”.
- FIG. 5 for the sake of convenience, portions corresponding to the branching surface 131 c (half mirror 141) and the reflecting surface 131 d (total reflection mirror 142) are shown with a dot pattern.
- the "half mirror 141" constitutes the “first branching means” in the present embodiment
- the “total reflection mirror 142” constitutes the "first reflecting means”. That is, the "first rhombus prism 131" constitutes the "first light splitting means” in the present embodiment.
- the second prism 132 is a prism of a quadrangular prism shape extending in the X-axis direction and in a trapezoidal shape in a front view (ZY plane).
- the “second prism 132” is referred to as the “first trapezoidal prism 132”.
- a surface 132a located on the upper side in the Y-axis direction and a surface 132b located on the lower side in the Y-axis direction of the four rectangular surfaces along the X-axis direction are orthogonal to the Y-axis direction
- the surface 132c located on the right side in the Z-axis direction is arranged to be inclined 45.degree.
- the surface 132d located on the left side in the Z-axis direction is orthogonal to the Z-axis direction It is arranged.
- the surface 132 c positioned on the right side in the Z-axis direction is in close contact with the branch surface 131 c (half mirror 141) of the first rhombus prism 131.
- the surface 132c located on the right side in the Z-axis direction will be referred to as "incident surface 132c”
- the surface 132d located on the left side in the Z-axis direction will be referred to as “emission surface 132d”.
- the “first trapezoidal prism 132" constitutes the "first optical path adjusting means" in the present embodiment.
- the third prism 133 is a prism of a quadrangular prism shape which has a parallelogram shape in a plan view (XZ plane) and extends along the Y-axis direction.
- the “third prism 133” is referred to as the “second rhombus prism 133”.
- the second rhombus prism 133 is such that the surface 133a located on the right side in the Z-axis direction and the surface 133b located on the left side in the Z-axis direction are orthogonal to the Z-axis direction
- the surface 133c disposed on the front side in the X-axis direction and the surface 133d positioned on the rear side in the X-axis direction are arranged to be inclined 45 ° with respect to the Z-axis direction and the X-axis direction.
- the non-polarized half mirror 143 is provided on the surface 133c located on the near side in the X-axis direction, and the surface 133d located on the far side in the X-axis direction is directed inward.
- a non-polarizing total reflection mirror 144 is provided to reflect light.
- the surface 133c on which the half mirror 143 is provided will be referred to as "branching surface 133c”
- the surface 133d on which the total reflection mirror 144 is provided will be referred to as "reflection surface 133d”.
- FIG. 5 for the sake of convenience, portions corresponding to the branching surface 133 c (half mirror 143) and the reflecting surface 133 d (total reflection mirror 144) are shown with a dispersed dot pattern.
- the “half mirror 143” constitutes the “second branching means” and the “third branching means” in the present embodiment
- the “total reflection mirror 144” constitutes the “second reflection means” and the “third reflection means”.
- the “second rhombus prism 133" constitutes the “second light splitting means” and the "third light splitting means” in the present embodiment.
- the lower half in the Y-axis direction is in close contact with the exit surface 132d of the first trapezoidal prism 132, and the upper half in the Y-axis direction is the first rhombus prism It is in a state of facing the emission surface 131 b of 131.
- the surface 133a located on the right side in the Z-axis direction is referred to as "incident surface 133a”
- the surface 133b located on the left side in the Z-axis direction is referred to as "emission surface 133b”.
- the fourth prism 134 is a quadrangular prism-shaped prism which has a trapezoidal shape in a plan view (XZ plane) and extends along the Y-axis direction.
- the "fourth prism 134" will be referred to as the "second trapezoidal prism 134".
- the surface 134a located on the back side in the X-axis direction and the surface 134b located on the front side in the X-axis direction are orthogonal to the X-axis direction
- the surface 134c located on the right side in the Z-axis direction is inclined 45.degree.
- the surface 134d located on the left side in the Z-axis direction is orthogonal to the Z-axis direction Is located in
- the surface 134 c located on the right side in the Z-axis direction is in close contact with the branched surface 133 c (half mirror 143) of the second rhombus prism 133.
- the surface 134c located on the right side in the Z-axis direction is referred to as "incident surface 134c”
- the surface 134d located on the left side in the Z-axis direction is referred to as “emission surface 134d”.
- the “second trapezoidal prism 134" constitutes the “second optical path adjusting means” and the "third optical path adjusting means” in the present embodiment.
- the exit surface 133b of the second rhombus prism 133 and the exit surface 134d of the second trapezoidal prism 134 are disposed to face the filter unit 126, respectively.
- the combined light L 0 transmitted through the 1 ⁇ 4 wavelength plate 31 A is incident on the incident surface 131 a of the first rhombus prism 131.
- the combined light L0 incident from the incident surface 131a is branched into two directions at the branching surface 131c (half mirror 141). Specifically, the light beam is branched into a spectrum LA1 reflected upward in the Y-axis direction and a spectrum LA2 transmitted through the half mirror 141 along the Z-axis direction.
- the spectrum LA1 reflected by the half mirror 141 travels in the first rhombic prism 131 along the Y-axis direction, and is reflected to the left in the Z-axis direction by the reflecting surface 131 d (total reflection mirror 142). Emit from 131b.
- the spectrum LA1 emitted from the emission surface 131a travels in the air along the Z-axis direction, and is incident on the incident surface 133a of the second rhombus prism 133.
- the spectrum LA2 transmitted through the half mirror 141 is incident on the incident surface 132c of the first trapezoidal prism 132, travels along the inside along the Z-axis direction, and exits from the emission surface 132d.
- the spectrum LA 2 emitted from the emission surface 132 d is incident on the incident surface 133 a of the second rhombus prism 133.
- the first rhombus is made so that the optical path lengths of the two light beams LA1 and LA2 from the branch surface 131c of the first rhombus prism 131 to the incident surface 133a of the second rhombus prism 133 are optically the same.
- the refractive index and the length (the length in the Z-axis direction or the Y-axis direction) of the prism 131 and the first trapezoidal prism 132 are arbitrarily set.
- the spectra LA1 and LA2 incident on the incident surface 133a of the second rhombus prism 133 are branched in two directions at the branching surface 133c (half mirror 143). Specifically, one spectrum LA1 branches into a spectrum LB1 which transmits the half mirror 143 along the Z-axis direction and a spectrum LB2 which reflects toward the back side in the X-axis direction. The other spectrum LA2 branches into a spectrum LB3 which transmits the half mirror 143 along the Z-axis direction and a spectrum LB4 which reflects toward the back side in the X-axis direction.
- the spectra LB2 and LB4 reflected by the half mirror 143 respectively travel along the X axis direction in the second rhombus prism 133 and are reflected to the left in the Z axis direction by the reflecting surface 133 d (total reflection mirror 144) , And exit from the exit surface 133b.
- the spectrums LB 2 and LB 4 emitted from the emission surface 133 a travel in the air along the Z-axis direction and enter the filter unit 126.
- the spectra LB1 and LB3 transmitted through the half mirror 143 are incident on the incident surface 134c of the second trapezoidal prism 134, travel along the inside along the Z-axis direction, and exit from the output surface 134d.
- the spectra LB1 and LB3 emitted from the emission surface 134d enter the filter unit 126, respectively.
- the second rhombus prism 133 and the second rhombus prism 133 are configured such that the optical path lengths of the four light beams LB1 to LB4 from the branch surface 133c of the second rhombus prism 133 to the filter unit 126 are optically the same.
- the refractive index and the length (length in the Z-axis direction or the X-axis direction) of the trapezoidal prism 134 are arbitrarily set.
- FIG. 6 is a plan view schematically showing a schematic configuration of the filter unit 126. As shown in FIG.
- the four polarizing plates 126a to 126d are polarizing plates whose transmission axis directions with respect to the Y-axis direction are different by 45 °. More specifically, the first polarizing plate 126a having a transmission axis direction of 0 °, the second polarizing plate 126b having a transmission axis direction of 45 °, the third polarizing plate 126c having a transmission axis direction of 90 °, and a transmission axis direction of 135 ° It is comprised by the 4th polarizing plate 126d.
- the four light beams LB1 to LB4 emitted from the spectroscopic optical system 125 are disposed to be incident on the respective polarizing plates 126a to 126d.
- the spectrum LB1 is incident on the first polarizing plate 126a
- the spectrum LB2 is incident on the second polarizing plate 126b
- the spectrum LB3 is incident on the third polarizing plate 126c
- the spectrum LB4 is incident on the fourth polarizing plate 126d.
- the filter unit 126 constitutes the interference means in the present embodiment.
- the imaging area of the imaging element 33Ai of the first camera 33A is divided into four imaging areas H1, H2, H3 and H4 corresponding to the filter units 126 (polarizing plates 126a to 126d). There is. Specifically, four imaging areas H1, H2, H3, and H4 having the same rectangular shape in the XY plane view are divided into a matrix of two rows and two columns along the XY plane (see FIG. 7).
- FIG. 7 is a plan view schematically showing a schematic configuration of an imaging region of the imaging element 33Ai.
- the spectrum LB1 transmitted through the first polarizing plate 126a is imaged in the first imaging area H1
- the spectrum LB2 transmitted through the second polarizing plate 126b is imaged in the second imaging area H2
- the third polarizing plate 126c Is transmitted through the fourth polarizing plate 126d
- the spectral LB3 transmitted through the fourth polarizing plate 126d is imaged in the fourth imaging area H4.
- an interference fringe image of phase "0 °” is imaged in the first imaging area H1
- an interference fringe image of phase "90 °” is imaged in the second imaging area H2
- a phase is imaged in the third imaging area H3.
- the interference fringe image of “180 °” is captured, and the interference fringe image of the phase “270 °” is captured in the fourth imaging area H4.
- the image data storage device 54 includes a first image memory for storing interference fringe image data captured in the first imaging area H1 of the imaging element 33Ai of the first camera 33A, and a second imaging area A second image memory for storing interference fringe image data captured in H2, a third image memory for storing interference fringe image data captured in the third imaging area H3, and imaging in a fourth imaging area H4 And a fourth image memory for storing the interference fringe image data.
- the combined light L0 which is the output light related to the first light
- the combined light L0 passes through the 1 ⁇ 4 wavelength plate 31A, and is separated by It is divided into four spectra LB1 to LB4.
- the first camera 33A outputs four interference fringe images (four spectra LB1 to LB4) simultaneously imaged in the imaging areas H1 to H4 of the imaging element 33Ai to the control device 4 as one image data.
- the control device 4 divides the input image data into four types of interference fringe image data (each of the ranges corresponding to the imaging areas H1 to H4 of the imaging device 33Ai), and the first to fourth in the image data storage device 54. Each is stored in the image memory.
- control device 5 performs four kinds of interference fringe image data of the first light stored in the first to fourth image memories of the first camera 33A, and the first to fourth of the second camera 33B.
- the surface shape of the workpiece W is measured by the phase shift method based on the four interference fringe image data of the second light stored in the image memory, as in the first embodiment. That is, height information at each position on the surface of the workpiece W is calculated.
- the combined light L0 incident from the interference optical system 3 is split into four lights LB1 to LB4 arranged in a matrix, and The four light beams LB1 to LB4 are simultaneously imaged by a single imaging element through the filter unit 126 (four polarizing plates 126a to 126d). Then, the shape measurement of the workpiece W is performed by the phase shift method based on the four interference fringe images captured by the respective cameras 33A and 33B. As a result, measurement accuracy can be improved, measurement time can be shortened, and enlargement of the apparatus can be suppressed.
- the imaging areas H1 to H4 obtained by equally dividing the imaging area of the imaging device into four in a matrix can be allocated to the four light beams LB1 to LB4, for example, compared to the three-spectral system.
- the imaging area of the imaging device can be effectively used.
- the measurement accuracy can be further improved.
- the imaging area of a general imaging device having an aspect ratio of 4: 3 is divided into four equal parts, the aspect ratio of each divided area is also 4: 3 and therefore, a wider range in each divided area can be used. .
- the measurement accuracy can be further improved.
- a diffraction grating is used as a spectral separation means, there is a possibility that the resolution may be reduced, but in the present embodiment, one light L0 is split into two parallel light beams LA1 and LA2, and the two light beams are further separated. Since the spectroscopic optical system 125 configured to split the four parallel light beams LB1, LB2, LB3, and LB4 by dividing the light beams LA1 and LA2 into two parallel light beams is employed, reduction in resolution is suppressed. be able to.
- the spectroscopic optical system 125 in the present embodiment adjusts the optical path lengths of one light passing straight through the rhombic prisms 131 and 133 and the other light bending and passing in a crank shape (optically identical)
- the light path adjustment means has a relatively simple structure in which the first trapezoidal prisms 132 and 134 are disposed on the light path of one of the light passing straight through and passing through, and the structure can be simplified.
- the filter unit 126 includes the first polarizing plate 126a having a transmission axis direction of 0 °, the second polarizing plate 126b having a transmission axis direction of 45 °, and the third polarizing plate 126c having a transmission axis direction of 90 °.
- the fourth polarizing plate 126 d having a transmission axis direction of 135 ° can obtain four interference fringe images different in phase by 90 ° in one imaging by one imaging element. As a result, it is possible to perform measurement with higher accuracy than in the case of performing shape measurement by the phase shift method based on three interference fringe images.
- the third embodiment will be described below with reference to the drawings.
- the third embodiment is different from the first embodiment in the configuration relating to the interference optical system.
- the same components as those of the first embodiment are designated by the same reference numerals and their detailed description will be omitted.
- FIG. 8 is a schematic view showing a schematic configuration of a three-dimensional measurement apparatus 200 according to the present embodiment.
- X-axis direction the front and back direction of the drawing of FIG. 8
- Y-axis direction the up and down direction of the drawing
- Z-axis direction the left and right direction of the drawing
- the three-dimensional measurement apparatus 200 is configured based on the principle of a Mach-Zehnder interferometer, and two light projection systems 2A and 2B (a first light projection system 2A and a second An optical system 2B), an interference optical system 203 to which light emitted from the light projection systems 2A and 2B is incident, and two imaging systems 4A and 4B capable of imaging the light emitted from the interference optical system 203
- the control device 5 performs various controls, image processing, arithmetic processing, etc. related to the first imaging system 4A and the second imaging system 4B, the light projection systems 2A and 2B, the interference optical system 203, and the imaging systems 4A and 4B. Is equipped.
- the “control device 5” constitutes the “image processing means” in the present embodiment
- the “interference optical system 203” constitutes the “predetermined optical system” in the present embodiment.
- the first light projection system 2A includes a first light emitting unit 11A, a first optical isolator 12A, a first non-polarization beam splitter 13A, and the like.
- the "first light emitting unit 11A” constitutes the “first irradiating means” in the present embodiment
- the “first non-polarization beam splitter 13A” constitutes the "first light guiding means” in the present embodiment.
- the “wavelength ⁇ 1 ” corresponds to the “first wavelength” in the present embodiment.
- the light of the wavelength lambda 1 emitted from the first light emitting portion 11A referred to as "first light”.
- the first optical isolator 12A is an optical element that transmits only light traveling in one direction (upward in the Y-axis direction in this embodiment) and blocks light in the opposite direction (downward in the Y-axis direction in this embodiment). As a result, only the first light emitted from the first light emitting unit 11A is transmitted, and damage or destabilization of the first light emitting unit 11A due to the return light can be prevented.
- linearly polarized light whose polarization direction is a direction (Y-axis direction or Z-axis direction) parallel to the sheet of FIG. 8 is referred to as P polarization (P-polarization component).
- P-polarization corresponds to "first polarization having a first polarization direction”
- S-polarization corresponds to "second polarization having a second polarization direction”.
- the first non-polarization beam splitter 13A is disposed such that one of two adjacent surfaces sandwiching the junction surface 13Ah is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 13Ah of the first non-polarization beam splitter 13A is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction. More specifically, a portion (half) of the first light incident upward from the first light emitting unit 11A in the Y-axis direction is transmitted upward in the Y-axis direction through the first optical isolator 12A, and the other (half) is transmitted as Z It is arranged to reflect in the axial right direction.
- the second light projection system 2B includes a second light emitting unit 11B, a second optical isolator 12B, a second non-polarization beam splitter 13B, and the like.
- the "second light emitting unit 11B” constitutes the “second irradiating means” in the present embodiment
- the “second non-polarization beam splitter 13B” constitutes the “second light guiding means” in the present embodiment.
- the “wavelength ⁇ 2 ” corresponds to the “second wavelength” in the present embodiment.
- the light of the wavelength lambda 2 emitted from the second light emitting portion 11B referred to as "second light”.
- the second optical isolator 12B is an optical element that transmits only light traveling in one direction (downward in the Y-axis direction in this embodiment) and blocks light in the opposite direction (upward in the Y-axis direction in this embodiment). As a result, only the second light emitted from the second light emitting unit 11B is transmitted, and damage or destabilization of the second light emitting unit 11B due to the return light can be prevented.
- the second non-polarization beam splitter 13B is disposed such that one of two adjacent surfaces sandwiching the junction surface 13Bh is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 13Bh of the second non-polarization beam splitter 13B is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction. More specifically, a portion (half) of the second light incident downward from the second light emitting unit 11B in the Y-axis direction is transmitted downward in the Y-axis direction through the second optical isolator 12B, and the other (half) is transmitted as Z It is disposed so as to be reflected leftward in the axial direction.
- the interference optical system 203 includes two polarization beam splitters 211 and 212 (first polarization beam splitter 211 and second polarization beam splitter 212), four quarter-wave plates 215, 216, 217, and 218 (first 1/1 plate). Four-wave plate 215, second quarter-wave plate 216, third quarter-wave plate 217, fourth quarter-wave plate 218), two total reflection mirrors 221, 222 (first total reflection mirror 221, a second total reflection mirror 222), an installation unit 224 and the like.
- the polarization beam splitters 211 and 212 are known cube-shaped optical members in which right-angle prisms are bonded and integrated, and the bonding surfaces (interfaces) 211 h and 212 h are coated with a coating such as a dielectric multilayer film. It is done.
- the polarization beam splitters 211 and 212 divide the incident linear polarization into two polarization components (P polarization component and S polarization component) whose polarization directions are orthogonal to each other.
- the polarization beam splitters 211 and 212 in the present embodiment transmit P-polarization components and reflect S-polarization components.
- the polarization beam splitters 211 and 212 in the present embodiment constitute “splitting means” that splits the predetermined incident light into two lights, and “combining means” that combines the predetermined two incident lights. It will be configured.
- the first polarization beam splitter 211 is disposed such that one of two adjacent surfaces sandwiching the bonding surface 211 h is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 211 h of the first polarization beam splitter 211 is arranged to be inclined 45 ° with respect to the Y axis direction and the Z axis direction.
- a third surface (right side surface in the Z-axis direction) 211c opposite to the surface 211a is disposed to be orthogonal to the Z-axis direction.
- the “first polarization beam splitter 211 (first surface 211 a)” corresponds to the “first input / output unit” in the present embodiment.
- the second surface (upper surface in the Y-axis direction) 211b of the first polarization beam splitter 211 which is the surface adjacent to the first surface 211a with the bonding surface 211h interposed therebetween, and the fourth surface facing the second surface 211b.
- the surface (lower side surface in the Y-axis direction) 211 d is disposed to be orthogonal to the Y-axis direction.
- the second polarization beam splitter 212 is disposed such that one of two adjacent surfaces sandwiching the junction surface 212 h is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 212 h of the second polarization beam splitter 212 is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction.
- a third surface (left surface in the Z-axis direction) 212c opposite to the surface 212a is disposed to be orthogonal to the Z-axis direction.
- the “second polarization beam splitter 212 (first surface 212 a)” corresponds to the “second input / output unit” in the present embodiment.
- the second surface (lower surface in the Y-axis direction) 212b of the second polarization beam splitter 212 which is a surface adjacent to the first surface 212a with the bonding surface 212h interposed therebetween, and the fourth surface facing the second surface 212b.
- the surface (upper surface in the Y-axis direction) 212 d is disposed to be orthogonal to the Y-axis direction.
- the quarter-wave plates 215, 216, 217, and 218 are optical members having a function of converting linearly polarized light into circularly polarized light and converting circularly polarized light into linearly polarized light.
- the first quarter-wave plate 215 is disposed so as to face the third surface 211 c of the first polarizing beam splitter 211 in the Z-axis direction. That is, the first quarter-wave plate 215 converts linearly polarized light emitted from the third surface 211 c of the first polarization beam splitter 211 into circularly polarized light and emits it in the right Z-axis direction. Further, the first quarter-wave plate 215 converts circularly polarized light incident leftward in the Z-axis direction into linearly polarized light, and then emits leftward in the Z-axis direction toward the third surface 211 c of the first polarizing beam splitter 211. Do.
- the second quarter-wave plate 216 is disposed to face the fourth surface 211 d of the first polarizing beam splitter 211 in the Y-axis direction. That is, the second 1 ⁇ 4 wavelength plate 216 converts linearly polarized light emitted from the fourth surface 211 d of the first polarization beam splitter 211 into circularly polarized light and emits the circularly polarized light downward in the Y-axis direction.
- the second quarter-wave plate 216 converts circularly polarized light incident upward in the Y-axis direction into linearly polarized light, and emits the light upward in the Y-axis direction toward the fourth surface 211 d of the first polarizing beam splitter 211. Do.
- the third quarter wave plate 217 is disposed to face the fourth surface 212 d of the second polarizing beam splitter 212 in the Y-axis direction. That is, the third quarter-wave plate 217 converts linearly polarized light emitted from the fourth surface 212 d of the second polarization beam splitter 212 into circularly polarized light and emits the circularly polarized light upward in the Y-axis direction.
- the third quarter-wave plate 217 converts circularly polarized light incident downward in the Y-axis direction into linearly polarized light, and emits the light downward in the Y-axis direction toward the fourth surface 212 d of the second polarizing beam splitter 212. Do.
- the fourth quarter wave plate 218 is disposed to face the third surface 212 c of the second polarizing beam splitter 212 in the Z-axis direction. That is, the fourth quarter-wave plate 218 converts linearly polarized light emitted from the third surface 212 c of the second polarization beam splitter 212 into circularly polarized light and emits the circularly polarized light in the left Z-axis direction. Further, the fourth quarter-wave plate 218 converts circularly polarized light incident to the right in the Z-axis direction into linearly polarized light, and emits the light toward the third surface 212 c of the second polarizing beam splitter 212 in the Z-axis direction to the right. Do.
- the total reflection mirrors 221 and 222 are optical members that totally reflect incident light.
- the first total reflection mirror 221 constituting the reference surface in the present embodiment has an axis extending in the Z-axis direction through the first polarization beam splitter 211 and the first quarter wavelength plate 215, and a second polarization beam.
- the axis extending in the Y-axis direction passes through the splitter 212 and the third quarter wave plate 217, it is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction.
- the first total reflection mirror 221 emits light, which is emitted rightward in the Z-axis direction from the third surface 211 c of the first polarization beam splitter 211 (via the first quarter-wave plate 215), to the Y-axis.
- the light may be reflected downward and may be incident on the fourth surface 212 d of the second polarizing beam splitter 212 (via the third quarter wave plate 217).
- the first total reflection mirror 221 is configured to convert the light emitted upward from the fourth surface 212 d of the second polarization beam splitter 212 (through the third quarter-wave plate 217) in the Y-axis direction into Z The light can be reflected leftward in the axial direction, and can be incident on the third surface 211 c of the first polarizing beam splitter 211 (via the first quarter wavelength plate 215).
- the second total reflection mirror 222 has an axis extending in the Y-axis direction through the first polarization beam splitter 211 and the second quarter wavelength plate 216, the second polarization beam splitter 212, and the fourth quarter wavelength. It is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction at a position where it intersects with an axis extending in the Z-axis direction through the plate 218.
- the second total reflection mirror 222 emits the light emitted downward from the fourth surface 211 d of the first polarization beam splitter 211 (through the second quarter-wave plate 216) in the Y-axis direction along the Z-axis. It can be reflected rightward and be incident on the third surface 212 c of the second polarizing beam splitter 212 (via the fourth quarter wave plate 218).
- the second total reflection mirror 222 outputs the light emitted leftward in the Z-axis direction from the third surface 212 c of the second polarization beam splitter 212 (through the fourth quarter wavelength plate 218) as Y
- the light can be reflected upward in the axial direction and can be incident on the fourth surface 211 d of the first polarization beam splitter 211 (via the second quarter-wave plate 216).
- the installation unit 224 is for installing a workpiece W as an object to be measured.
- the work W has a light transmitting property such as a film.
- the setting unit 224 is disposed between the fourth quarter-wave plate 218 and the second total reflection mirror 222 on an axis extending in the Z-axis direction through the second polarization beam splitter 212 and the second total reflection mirror 222. It is done.
- the first imaging system 4A includes a 1 ⁇ 4 wavelength plate 31A, a first polarizing plate 32A, and a first camera 33A constituting a first imaging unit.
- the 1 ⁇ 4 wavelength plate 31A is for converting linearly polarized light (reference light component and measurement light component of the first light described later) transmitted through the second non-polarization beam splitter 13B to the right in the Z-axis direction into circularly polarized light. It is a thing.
- the first polarizing plate 32A selectively transmits each component of the first light converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 31A. Thereby, it is possible to cause the reference light component of the first light and the measurement light component in different rotational directions to interfere with each other for a specific phase.
- the “first polarizing plate 32A” constitutes the “first phase shift means” and the “interference means” in the present embodiment.
- the first polarizing plate 32A is configured to be rotatable about the Z-axis direction, and is controlled so that the transmission axis direction changes by 45 °. Specifically, the transmission axis direction changes so as to be “0 °”, “45 °”, “90 °”, and “135 °” with respect to the Y-axis direction.
- the reference light component and the measurement light component of the first light transmitted through the first polarizing plate 32A can be interfered with each other in four phases. That is, it is possible to generate interference light whose phase differs by 90 °. Specifically, interference light with a phase of "0 °”, interference light with a phase of "90 °”, interference light with a phase of "180 °”, and interference light with a phase of "270 °” can be generated. .
- An interference fringe image is to be captured.
- the image data picked up by the first camera 33A is converted into a digital signal in the first camera 33A and then input to the control device 5 (image data storage device 54) in the form of a digital signal.
- the second imaging system 4B includes a 1 ⁇ 4 wavelength plate 31B, a second polarizing plate 32B, and a second camera 33B constituting a second imaging unit.
- the 1 ⁇ 4 wavelength plate 31 B is for converting linearly polarized light (reference light component and measurement light component of second light described later) transmitted through the first non-polarization beam splitter 13 A in the Z-axis direction left into circularly polarized light, respectively. It is a thing.
- the second polarizing plate 32B selectively transmits each component of the second light converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 31B. Thereby, it is possible to cause the reference light component and the measurement light component of the second light in different rotational directions to interfere with each other in a specific phase.
- the "second polarizing plate 32B" constitutes the “second phase shift means” and the “interference means” in the present embodiment.
- the second polarizing plate 32B is configured to be rotatable with the Z axis direction as an axis, and is controlled so that the transmission axis direction changes by 45 °. Specifically, the transmission axis direction changes so as to be “0 °”, “45 °”, “90 °”, and “135 °” with respect to the Y-axis direction.
- interference light with a phase of "0 °”, interference light with a phase of "90 °”, interference light with a phase of "180 °”, and interference light with a phase of "270 °” can be generated. .
- the interference fringe image of phase “0 °”, the interference fringe image of phase “90 °”, the interference fringe image of phase “180 °”, and the phase “270 °” of the second light is to be captured.
- the image data picked up by the second camera 33B is converted into a digital signal in the second camera 33B and then input to the control device 5 (image data storage device 54) in the form of a digital signal.
- the optical path of the first light will be described with reference to FIG.
- the first light wavelength lambda 1 polarization direction linearly polarized light inclined by 45 ° with respect to the X-axis direction and the Z-axis direction
- the first light wavelength lambda 1 is emitted in the Y axis upward direction from the first light emitting portion 11A.
- the first light emitted from the first light emitting unit 11A passes through the first optical isolator 12A and enters the first non-polarization beam splitter 13A. Part of the first light incident on the first non-polarization beam splitter 13A is transmitted upward in the Y-axis direction, and the rest is reflected rightward in the Z-axis direction.
- the first light (linearly polarized light whose polarization direction is inclined 45 ° with respect to the X-axis direction and the Y-axis direction) reflected to the right in the Z-axis direction enters the first surface 211 a of the first polarization beam splitter 211.
- the first light transmitted upward in the Y-axis direction becomes abandoned light without entering any optical system or the like.
- the first light incident from the first surface 211a of the first polarization beam splitter 211 in the Z-axis direction to the right has its P-polarized light component transmitted in the Z-axis direction to the right and emitted from the third surface 211c as reference light
- the S-polarized light component is reflected downward in the Y-axis direction and emitted from the fourth surface 211 d as measurement light.
- the reference light (P-polarized light) related to the first light emitted from the third surface 211 c of the first polarization beam splitter 211 is converted into clockwise light by passing through the first quarter-wave plate 215. After that, the light is reflected downward in the Y-axis direction by the first total reflection mirror 221. Here, the rotational direction with respect to the light traveling direction is maintained.
- the reference light relating to the first light passes through the third quarter-wave plate 217 to convert clockwise circularly polarized light into S-polarized light, and then the fourth surface of the second polarizing beam splitter 212 Incident on 212 d.
- the measurement light (S polarized light) related to the first light emitted from the fourth surface 211 d of the first polarization beam splitter 211 is converted into counterclockwise circularly polarized light by passing through the second quarter wave plate 216 Then, the light is reflected rightward in the Z-axis direction by the second total reflection mirror 222. Here, the rotational direction with respect to the light traveling direction is maintained.
- the measurement light related to the first light passes through the work W installed in the installation section 224, and then passes through the fourth quarter-wave plate 218 to convert the counterclockwise circularly polarized light into P-polarized light. Then, the light is incident on the third surface 212 c of the second polarizing beam splitter 212.
- the reference light (S-polarized light) related to the first light incident from the fourth surface 212 d of the second polarizing beam splitter 212 is reflected rightward in the Z-axis direction by the bonding surface 212 h, while the second polarizing beam splitter 212
- the measurement light (P-polarized light) according to the first light incident from the three surfaces 212c transmits the bonding surface 212h rightward in the Z-axis direction.
- combined light in a state where the reference light and measurement light related to the first light are combined is output from the first surface 212 a of the second polarization beam splitter 212 as output light.
- the combined light (reference light and measurement light) related to the first light emitted from the first surface 212a of the second polarization beam splitter 212 is incident on the second non-polarization beam splitter 13B.
- Part of the combined light relating to the first light that has entered the second non-polarization beam splitter 13B in the Z-axis direction to the right is partially transmitted to the right in the Z-axis direction, and the rest is reflected upward in the Y-axis direction.
- the combined light (reference light and measurement light) transmitted to the right in the Z-axis direction is incident on the first imaging system 4A.
- the combined light reflected upward in the Y-axis direction is blocked by the second optical isolator 12B and becomes abandoned light.
- the combined light (reference light and measurement light) of the first light incident on the first imaging system 4A is first converted by the 1 ⁇ 4 wavelength plate 31A to a counterclockwise circularly polarized light of the reference light component (S polarization component) And the measurement light component (P polarization component) is converted to clockwise circular polarization.
- the counterclockwise circularly polarized light and the clockwise circularly polarized light do not interfere with each other because the rotational directions are different.
- the synthetic light according to the first light subsequently passes through the first polarizing plate 32A, so that the reference light component and the measurement light component interfere with each other in a phase according to the angle of the first polarizing plate 32A. Then, the interference light relating to the first light is imaged by the first camera 33A.
- the second light wavelength lambda 2 (the polarization direction is linearly polarized light inclined by 45 ° with respect to the X-axis direction and the Z-axis direction) is emitted in the Y axis direction downward from the second light emitting section 11B.
- the second light emitted from the second light emitting unit 11B passes through the second optical isolator 12B and enters the second non-polarizing beam splitter 13B. Part of the second light incident on the second non-polarization beam splitter 13B is transmitted downward in the Y-axis direction, and the rest is reflected leftward in the Z-axis direction.
- the second light (linearly polarized light whose polarization direction is inclined 45 ° with respect to the X-axis direction and the Y-axis direction) reflected leftward in the Z-axis direction is incident on the first surface 212 a of the second polarization beam splitter 212.
- the second light transmitted downward in the Y-axis direction becomes abandoned light without entering any optical system or the like.
- the second light incident from the first surface 212a of the second polarization beam splitter 212 leftward in the Z-axis direction has its S-polarization component reflected upward in the Y-axis direction and emitted from the fourth surface 212d as reference light,
- the P-polarized light component is transmitted leftward in the Z-axis direction and emitted from the third surface 212c as measurement light.
- the reference light (S polarized light) relating to the second light emitted from the fourth surface 212 d of the second polarizing beam splitter 212 is converted into counterclockwise circularly polarized light by passing through the third quarter wave plate 217
- the light is then reflected leftward in the Z-axis direction by the first total reflection mirror 221.
- the rotational direction with respect to the light traveling direction is maintained.
- the reference light relating to the second light is converted from counterclockwise circularly polarized light to P-polarized light by passing through the first quarter-wave plate 215 and then the third surface of the first polarizing beam splitter 211 It is incident on 211c.
- measurement light (P-polarized light) relating to the second light emitted from the third surface 212 c of the second polarization beam splitter 212 is converted into clockwise light by passing through the fourth quarter-wave plate 218. Then, the workpiece W installed in the installation unit 224 is transmitted. Thereafter, the measurement light relating to the second light is reflected upward in the Y-axis direction by the second total reflection mirror 222. Here, the rotational direction with respect to the light traveling direction is maintained.
- the measurement light related to the first light reflected by the second total reflection mirror 222 is converted from clockwise circularly polarized light to S-polarized light by passing through the second quarter-wave plate 216, and then the first The light is incident on the fourth surface 211 d of the polarization beam splitter 211.
- the reference light (P polarization) concerning the 2nd light which entered from the 3rd surface 211c of the 1st polarization beam splitter 211 transmits junction surface 211h to the Z-axis direction left direction
- the 4th of the 1st polarization beam splitter 211 The measurement light (S-polarized light) related to the second light incident from the surface 211 d is reflected leftward in the Z-axis direction by the bonding surface 211 h.
- combined light in a state where the reference light and measurement light related to the second light are combined is output from the first surface 211 a of the first polarization beam splitter 211 as output light.
- the combined light (reference light and measurement light) related to the second light emitted from the first surface 211 a of the first polarization beam splitter 211 is incident on the first non-polarization beam splitter 13A.
- Part of the combined light relating to the second light incident on the first non-polarization beam splitter 13A in the Z-axis direction left is transmitted in the Z-axis direction left, and the rest is reflected downward in the Y-axis direction.
- the combined light (reference light and measurement light) transmitted leftward in the Z-axis direction is incident on the second imaging system 4B.
- the combined light reflected downward in the Y-axis direction is blocked by the first optical isolator 12A and becomes abandoned light.
- the combined light (reference light and measurement light) of the second light incident on the second imaging system 4B is first converted by the 1 ⁇ 4 wavelength plate 31B into a circularly polarized light whose reference light component (P polarization component) is clockwise. And the measurement light component (S polarization component) is converted to counterclockwise circularly polarized light.
- the counterclockwise circularly polarized light and the clockwise circularly polarized light do not interfere with each other because the rotational directions are different.
- the combined light according to the second light subsequently passes through the second polarizing plate 32B, so that the reference light component and the measurement light component interfere with each other in a phase according to the angle of the second polarizing plate 32B. Then, the interference light relating to the second light is imaged by the second camera 33B.
- the transmission axis direction of the first polarizing plate 32A of the first imaging system 4A is set to a predetermined reference position (for example, "0 °")
- the second imaging system 4B The transmission axis direction of the second polarizing plate 32B is set to a predetermined reference position (for example, "0.degree.”).
- the second light is emitted from the second light projecting system 2B.
- combined light (reference light and measurement light) relating to the first light is emitted from the first surface 212 a of the second polarization beam splitter 212 of the interference optical system 203, and at the same time, the first light of the first polarization beam splitter 211 is The combined light (reference light and measurement light) related to the second light is emitted from the surface 211a.
- the combined light related to the first light emitted from the first surface 212a of the second polarization beam splitter 212 is imaged by the first imaging system 4A, and at the same time emitted from the first surface 211a of the first polarization beam splitter 211
- the combined light relating to the second light is imaged by the second imaging system 4B.
- the transmission axis directions of the first polarizing plate 32A and the second polarizing plate 32B are respectively set to "0 °"
- the interference fringes of the phase "0 °” related to the first light in the first camera 33A An image is captured, and the second camera 33B captures an interference fringe image of the phase “0 °” related to the second light.
- image data captured by each of the cameras 33A and 33B is output to the control device 5.
- the control device 5 stores the input image data in the image data storage device 54.
- the control device 5 performs switching processing of the first polarizing plate 32A of the first imaging system 4A and the second polarizing plate 32B of the second imaging system 4B. Specifically, the first polarizing plate 32A and the second polarizing plate 32B are each rotationally displaced to a position where the transmission axis direction is "45 °".
- the control device 5 performs a second imaging process similar to the above-described series of first imaging processes. That is, the control device 5 irradiates the first light from the first light projection system 2A, simultaneously irradiates the second light from the second light projection system 2B, and is emitted from the first surface 212a of the second polarization beam splitter 212
- the combined light of the first light is imaged by the first imaging system 4A, and at the same time, the combined light of the second light emitted from the first surface 211a of the first polarizing beam splitter 211 is imaged by the second imaging system 4B.
- the interference fringe image of the phase "90 °" related to the first light is acquired, and the interference fringe image of the phase "90 °" related to the second light is captured.
- the same imaging process as the first and second imaging processes is repeated twice. That is, the third imaging process is performed with the transmission axis direction of the first polarizing plate 32A and the second polarizing plate 32B set to "90 °", and the interference fringe image of the phase "180 °” related to the first light is While acquiring, the interference-fringe image of the phase "180 degree” concerning 2nd light is acquired.
- the fourth imaging process is performed with the transmission axis direction of the first polarizing plate 32A and the second polarizing plate 32B set to "135 °", and the interference fringe image of the phase "270 °” relating to the first light is While acquiring, the interference-fringe image of the phase "270 degree” which concerns on 2nd light is acquired.
- control device 5 performs a phase shift method based on the four interference fringe image data of the first light stored in the image data storage device 54 and the four interference fringe image data of the second light.
- the surface shape of the workpiece W is measured by That is, height information at each position on the surface of the workpiece W is calculated.
- FIG. 11 is a schematic view showing a schematic configuration of a three-dimensional measurement apparatus 300 according to the present embodiment.
- X axis direction the front and back direction of the drawing of FIG. 11
- Y axis direction the up and down direction of the drawing
- Z direction the left and right direction of the drawing
- the three-dimensional measurement apparatus 300 is configured based on the principle of the Fizeau interferometer, and two light projection systems 302A and 302B (a first light projection system 302A and a second light projection system capable of outputting light of a specific wavelength) 302B), an interference optical system 303 into which light emitted from each of the light projection systems 302A and 302B is incident, and two imaging systems 304A and 304B capable of imaging the light emitted from the interference optical system 303 (1)
- the imaging system 304A, the second imaging system 304B), and the control device 5 that performs various controls, image processing, arithmetic processing, etc.
- control device 5 constitutes the “image processing means” in the present embodiment
- the “interference optical system 303” constitutes the “predetermined optical system” in the present embodiment.
- the first light projection system 302A includes a first light emitting unit 311A, a first optical isolator 312A, a first non-polarization beam splitter 313A, and the like.
- the "first light emitting unit 311A” constitutes the "first irradiation unit” in the present embodiment.
- the first light emitting unit 311A is a laser light source capable of outputting linear polarized light of a specific wavelength ⁇ 1 , a beam expander that expands linear polarized light output from the laser light source and emits parallel light.
- a polarizing plate for performing adjustment, a half-wave plate for adjusting the polarization direction, and the like are provided.
- the “wavelength ⁇ 1 ” corresponds to the “first wavelength” in the present embodiment.
- the light of the wavelength lambda 1 emitted from the first light emitting portion 311A as "first light”.
- the first optical isolator 312A is an optical element that transmits only light traveling in one direction (right direction in the Z-axis direction in this embodiment) and blocks light in the reverse direction (left direction in the Z-axis direction in this embodiment). As a result, only the first light emitted from the first light emitting unit 311A is transmitted, and damage or destabilization of the first light emitting unit 311A due to return light can be prevented.
- the first non-polarization beam splitter 313A is a known cube-shaped optical member in which right-angle prisms are bonded and integrated, and a bonding surface, for example, a coating such as a metal film is applied to the bonding surface 313Ah.
- the "first non-polarization beam splitter 313A" constitutes the "first light guiding means" in the present embodiment.
- linearly polarized light whose polarization direction is a direction (Y-axis direction or Z-axis direction) parallel to the sheet of FIG. 11 is referred to as P-polarization (P-polarization component).
- Linearly polarized light whose polarization direction is the axial direction is called S-polarization (S-polarization component).
- P-polarization corresponds to "first polarization having a first polarization direction”
- S-polarization corresponds to "second polarization having a second polarization direction”.
- the first non-polarization beam splitter 313A is disposed such that one of two adjacent surfaces sandwiching the bonding surface 313Ah is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 313Ah of the first non-polarization beam splitter 313A is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction. More specifically, a part (half) of the first light incident from the first light emitting part 311A to the right in the Z-axis direction is transmitted to the right in the Z-axis direction through the first optical isolator 312A, and the other part (half) is Y It is arranged to reflect axially downward.
- the second light projection system 302B includes a second light emitting unit 311B, a second optical isolator 312B, a second non-polarization beam splitter 313B, and the like.
- the "second light emitting unit 311B” constitutes the “second irradiation unit” in the present embodiment.
- the second light emitting unit 311B is a laser light source capable of outputting linear polarized light of a specific wavelength ⁇ 2 or a beam extract that expands the linearly polarized light output from the laser light source and emits it as parallel light.
- a panda, a polarizing plate for adjusting the intensity, a half-wave plate for adjusting the polarization direction, and the like are provided.
- the “wavelength ⁇ 2 ” corresponds to the “second wavelength” in the present embodiment.
- the second optical isolator 312B is an optical element that transmits only light traveling in one direction (right direction in the Z-axis direction in this embodiment) and blocks light in the reverse direction (left direction in the Z-axis direction in this embodiment). As a result, only the second light emitted from the second light emitting unit 311B is transmitted, and damage or instability of the second light emitting unit 311B due to return light can be prevented.
- the second non-polarization beam splitter 313B is a known cube-shaped optical member in which right-angle prisms are bonded and integrated, and a coating such as a metal film is applied to the bonding surface 313Bh.
- the "second non-polarization beam splitter 313B" constitutes the "second light guiding means" in the present embodiment.
- the second non-polarization beam splitter 313B is disposed such that one of two adjacent surfaces sandwiching the junction surface 313Bh is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 313Bh of the second non-polarization beam splitter 313B is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction. More specifically, a portion (half) of the second light incident from the second light emitting portion 311B rightward in the Z-axis direction is transmitted rightward in the Z-axis direction through the second optical isolator 312B, and the remaining (half) is Y It is arranged to reflect axially upward.
- the interference optical system 303 includes a polarization beam splitter 320, a quarter wavelength plate 321, a half mirror 323, an installation unit 324, and the like.
- the polarization beam splitter 320 is a known cube-shaped optical member in which right-angle prisms are bonded and integrated, and a bonding surface (interface) 320 h is coated with a coating such as a dielectric multilayer film.
- the polarization beam splitter 320 in this embodiment is configured to transmit the P-polarization component and reflect the S-polarization component.
- the polarization beam splitter 320 is disposed such that one of two adjacent surfaces sandwiching the bonding surface 320 h is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 320 h of the polarization beam splitter 320 is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction.
- the “first surface 320 a of the polarization beam splitter 320” corresponds to the “first input / output unit” in the present embodiment.
- the second surface of the polarization beam splitter 320 which is adjacent to the first surface 320a with the bonding surface 320h interposed, and into which the second light reflected upward in the Y-axis direction from the second non-polarization beam splitter 313B is incident.
- a (Y-axis direction lower side surface) 320b and a fourth surface (Y-axis direction upper side surface) 320d opposite to the second surface 320b are disposed to be orthogonal to the Y-axis direction.
- the “second surface 320 b of the polarization beam splitter 320” corresponds to the “second input / output unit” in the present embodiment.
- the quarter wavelength plate 321 is disposed to face the third surface 320 c of the polarization beam splitter 320 in the Z axis direction, and the quarter wavelength plate 321 and the Z axis are further on the right side in the Z axis direction.
- a half mirror 323 is disposed to face in the direction, and an installation portion 324 is disposed on the right side in the Z-axis direction to face the half mirror 323 in the Z-axis direction.
- the half mirror 323 is strictly placed in a slightly inclined state with respect to the Z-axis direction in order to generate periodic interference fringes (carriers).
- the 1 ⁇ 4 wavelength plate 321 has a function of converting linearly polarized light into circularly polarized light and converting circularly polarized light into linearly polarized light. That is, linearly polarized light (P-polarized light or S-polarized light) emitted from the third surface 320 c of the polarization beam splitter 320 is converted to circularly polarized light through the 1 ⁇ 4 wavelength plate 321 and then irradiated to the half mirror 323. .
- linearly polarized light P-polarized light or S-polarized light
- the half mirror 323 divides incident light into transmitted light and reflected light at a ratio of 1: 1. Specifically, a part (half) of circularly polarized light entering from the quarter-wave plate 321 in the Z-axis direction to the right is transmitted as the measurement light to the right in the Z-axis direction, and the other (half) as the reference light in the Z-axis direction Reflect to the left. Then, the circularly polarized light (measurement light) transmitted through the half mirror 323 is irradiated on the workpiece W as the object to be measured placed on the installation unit 324. That is, the “half mirror 323” constitutes the “reference surface” in the present embodiment. Further, the “half mirror 323” constitutes “splitting means” for splitting the predetermined light to be incident into two lights, and constitutes “combination means” for combining these again.
- the first imaging system 304A includes a first camera 333A constituting a first imaging unit
- the second imaging system 304B includes a second camera 333B constituting a second imaging unit.
- Each of the cameras 333A and 333B is a known camera provided with a lens, an imaging device, and the like.
- a CCD area sensor is employed as an imaging element of the cameras 333A and 333B.
- the imaging device is not limited to this, and, for example, a CMOS area sensor or the like may be adopted.
- Image data captured by each of the cameras 333A and 333B is converted into digital signals in each of the cameras 333A and 333B and then input to the control device 5 (image data storage device 54) in the form of digital signals. It has become.
- the optical path of the first light will be described with reference to FIG.
- the first light wavelength lambda 1 P-polarized light and Y-axis direction is a polarization direction
- the first light wavelength lambda 1 is emitted in the Z-axis direction rightward from the first light emitting portion 311A.
- the first light emitted from the first light emitting unit 311A passes through the first optical isolator 312A and enters the first non-polarization beam splitter 313A. Part of the first light incident on the first non-polarization beam splitter 313A is transmitted rightward in the Z-axis direction, and the rest is reflected downward in the Y-axis direction.
- the first light transmitted to the right in the Z-axis direction enters the first surface 320 a of the polarization beam splitter 320.
- the first light reflected downward in the Y-axis direction becomes abandoned light without entering any optical system or the like.
- the first light (P-polarized light) incident from the first surface 320a of the polarization beam splitter 320 in the Z-axis direction to the right transmits the bonding surface 320h in the Z-axis direction to the right, and is emitted from the third surface 320c.
- the first light emitted from the third surface 320 c of the polarization beam splitter 320 is converted from P-polarized light whose polarization direction is Y-axis direction to clockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 321. And the half mirror 323 is irradiated.
- a part (half) of the first light irradiated to the half mirror 323 transmits the half mirror 323 rightward as measurement light in the Z axis direction, and the rest is reflected leftward as the reference light in the Z axis direction.
- the rotation direction clockwise with respect to the traveling direction of the light is maintained.
- the measurement light (circularly polarized light in the clockwise direction) related to the first light transmitted through the half mirror 323 rightward in the Z-axis direction is irradiated to and reflected by the work W placed on the installation portion 324. Again, the direction of rotation (clockwise) with respect to the direction of travel of the light is maintained.
- the measurement light related to the first light reflected by the work W again passes through the half mirror 323 leftward in the Z-axis direction, and is reflected by the half mirror 323 leftward in the Z-axis direction.
- Reference light related to the first light ( Clockwise circularly polarized light).
- the measurement light and the reference light which are clockwise circularly polarized light having the same rotational direction, interfere with each other.
- the interference light relating to the first light passes through the 1 ⁇ 4 wavelength plate 321 to be converted from counterclockwise circularly polarized light to s-polarized light having the X-axis direction as the polarization direction and then to be a polarized beam. Re-incident on the third surface 320 c of the splitter 320.
- the interference light (S-polarized light) related to the first light re-incident from the third surface 320 c of the polarization beam splitter 320 is reflected downward in the Y-axis direction at the bonding surface 320 h and is output light It is emitted from the second surface 320b.
- the interference light related to the first light emitted from the second surface 320 b of the polarization beam splitter 320 enters the second non-polarization beam splitter 313 B.
- Part of the interference light relating to the first light incident downward in the Y-axis direction with respect to the second non-polarizing beam splitter 313B is transmitted downward in the Y-axis direction, and the rest is reflected leftward in the Z-axis direction.
- the interference light transmitted downward in the Y-axis direction is incident on the first imaging system 304A (first camera 333A) and imaged.
- the interference light reflected to the left in the Z-axis direction is blocked by the second optical isolator 312B to become abandoned light.
- second light of wavelength ⁇ 2 (S-polarized light whose polarization direction is the X-axis direction) is emitted rightward in the Z-axis direction from the second light emitting unit 311B.
- the second light emitted from the second light emitting unit 311B passes through the second optical isolator 312B and enters the second non-polarizing beam splitter 313B. Part of the second light incident on the second non-polarization beam splitter 313B is transmitted rightward in the Z-axis direction, and the other part is reflected upward in the Y-axis direction.
- the second light reflected upward in the Y-axis direction is incident on the second surface 320 b of the polarization beam splitter 320.
- the second light transmitted to the right in the Z-axis direction becomes discarded light without entering any optical system or the like.
- the second light (S-polarized light) incident upward in the Y-axis direction from the second surface 320b of the polarization beam splitter 320 is reflected rightward in the Z-axis direction at the bonding surface 320h and emitted from the third surface 320c.
- the second light emitted from the third surface 320 c of the polarization beam splitter 320 is converted from s-polarized light whose polarization direction is the x-axis direction to counterclockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 321.
- the half mirror 323 is irradiated at the top.
- a part (half) of the second light irradiated to the half mirror 323 transmits the half mirror 323 rightward as measurement light in the Z-axis direction, and the rest is reflected leftward as the reference light in the Z-axis direction.
- the rotational direction (counterclockwise) with respect to the traveling direction of the light is maintained.
- the measurement light (circularly polarized light in the counterclockwise direction) relating to the second light transmitted through the half mirror 323 rightward in the Z-axis direction is irradiated to and reflected by the work W placed on the installation portion 324. Again, the direction of rotation (counterclockwise) with respect to the direction of travel of the light is maintained.
- the measurement light related to the second light reflected by the work W passes through the half mirror 323 leftward again in the Z-axis direction, and the reference light related to the second light reflected leftward in the Z-axis direction by the half mirror 323 ( And counterclockwise circularly polarized light).
- the measurement light and the reference light which are counterclockwise circularly polarized light having the same rotational direction, interfere with each other.
- the interference light relating to the second light passes through the 1 ⁇ 4 wavelength plate 321 to be converted from counterclockwise circularly polarized light to p-polarized light whose polarization direction is the Y-axis direction and then to be a polarized beam. Re-incident on the third surface 320 c of the splitter 320.
- the interference light (P-polarized light) related to the second light re-incident from the third surface 320 c of the polarization beam splitter 320 is transmitted leftward in the Z-axis direction of the bonding surface 320 h and is output light. It is emitted from the first surface 320a.
- the interference light related to the second light emitted from the first surface 320 a of the polarization beam splitter 320 enters the first non-polarization beam splitter 313 A.
- a part of the interference light relating to the second light incident to the first non-polarization beam splitter 313A in the Z-axis direction left is transmitted in the Z-axis direction left, and the rest is reflected in the Y-axis direction upward.
- the interference light reflected upward in the Y-axis direction enters the second imaging system 304B (second camera 333B) and is imaged.
- the interference light transmitted leftward in the Z-axis direction is blocked by the first optical isolator 312A to become abandoned light.
- the procedure of the shape measurement process executed by the control device 5 will be described in detail.
- the first light is emitted from the first light projection system 302A, and at the same time, the second light is emitted from the second light projection system 302B.
- the interference light related to the first light is emitted from the second surface 320 b of the polarization beam splitter 320 of the interference optical system 303, and the interference light related to the second light from the first surface 320 a of the polarization beam splitter 320 simultaneously It is emitted.
- the interference light related to the first light emitted from the second surface 320 b of the polarization beam splitter 320 is imaged by the first imaging system 304 A, and at the same time, the second light emitted from the first surface 320 a of the polarization beam splitter 320
- the interference light is imaged by the second imaging system 304B.
- the control device 5 stores the input image data in the image data storage device 54.
- control device 5 performs the surface shape of the work W by the Fourier transform method based on the interference fringe image data of the first light stored in the image data storage device 54 and the interference fringe image data of the second light. Measure That is, height information at each position on the surface of the workpiece W is calculated.
- the interference fringe intensity at the same coordinate position (x, y) of the interference fringe image data related to the first light or the second light, that is, the luminance g (x, y) can be expressed by the following relational expression of [Equation 11] .
- a (x, y) is an offset
- b (x, y) is an amplitude
- ⁇ (x, y) is a phase
- fx0 is a carrier frequency in the x direction
- fy0 is a carrier frequency in the y direction.
- the luminance g (x, y) is two-dimensionally Fourier transformed to obtain a two-dimensional spatial frequency spectrum. Leave one of the left and right spectra, shift to the center, and then inverse Fourier transform.
- phase of each coordinate can be determined by solving for phase ⁇ .
- the phase ⁇ 2 related to the second light at the coordinates ( ⁇ ,)) on the work W surface Calculate ⁇ ,)).
- the coordinates ( ⁇ , ⁇ , The height information z ( ⁇ ,)) in ⁇ ) is calculated. Then, the measurement result (height information) of the workpiece W thus obtained is stored in the calculation result storage device 55 of the control device 5.
- FIG. 14 is a schematic view showing a schematic configuration of a three-dimensional measurement apparatus according to the present embodiment.
- the present embodiment is provided with a spectroscopic optical system different from the second embodiment, and relates to the first embodiment adopting the optical configuration of the Michelson interferometer, the first imaging system 4A, and the second imaging system 4B. Configuration is different. Therefore, in the present embodiment, constituent parts different from the first and second embodiments will be described in detail, and the same constituent parts will be denoted by the same reference numerals, and the detailed description thereof will be omitted.
- the first imaging system 4A is a first spectroscopic means that splits the combined light (reference light component and measurement light component) related to the first light transmitted through the second non-polarization beam splitter 13B into four splits.
- a quarter-wave plate 610A for converting the four spectra divided by the spectroscopy optical system 600A into circularly polarized light, and predetermined four spectra transmitted through the quarter-wave plate 610A.
- a filter unit 615A for selectively transmitting components, and a camera 633A for simultaneously imaging four spectra transmitted through the filter unit 615A.
- the second imaging system 4B divides the combined light (reference light component and measurement light component) related to the second light transmitted through the first non-polarization beam splitter 13A into four split light sources.
- a quarter-wave plate 610B for converting the four spectra divided by the spectroscopy optical system 600B into circularly polarized light, and predetermined four spectra transmitted through the quarter-wave plate 610B.
- the “1 ⁇ 4 wavelength plate 610A” and the “1 ⁇ 4 wavelength plate 610B” have the same configuration as the “1 ⁇ 4 wavelength plate 31A” and the “1 ⁇ 4 wavelength plate 31B” in the first embodiment. The detailed description is omitted. However, a quarter wavelength plate may be individually provided corresponding to each of the four spectra.
- the "filter unit 615A” and the “filter unit 615B” constitute the filter means and the interference means in the present embodiment.
- the “filter unit 615A” and the “filter unit 615B” have the same configuration as the “filter unit 126” of the second embodiment, and the detailed description thereof is omitted.
- four polarizing plates polarizing plates 126a, 126b, 126c, 126d
- polarizing plates 126a, 126b, 126c, 126d whose transmission axis directions are individually different by 45 ° may be provided individually corresponding to the four spectra.
- the configurations relating to “camera 633A” and “camera 633B” and control processing related thereto, the image data storage device 54, etc. are the “first camera 33A (image sensor 33Ai)” and “the first and second embodiments described above. It has the same configuration as that relating to the camera 633B "and the like, and the detailed description thereof will be omitted.
- the spectroscopic optical system 600A and the spectroscopic optical system 600B have the same configuration.
- the vertical direction of the paper surface of FIG. The axial direction is referred to as “axial direction”, and the left-right direction in the drawing is referred to as “Z ′ axial direction”.
- the coordinate system (X ', Y', Z ') for describing the single spectroscopic optical system 600A (600B) and the coordinate system (X, Y, Z) for describing the whole three-dimensional measurement apparatus 1 are It is a different coordinate system.
- Spectroscopic optical system 600A is one non-polarized optical member in which two non-polarized optical members (prisms) are bonded together.
- the spectroscopic optical system 600A (600B) combines the combined light (combined light of the second light) of the first light transmitted through the second non-polarization beam splitter 13B (the first non-polarization beam splitter 13A). It consists of a first prism 601 for splitting into one spectrum and a second prism 602 for splitting the two spectra split by the first prism 601 into two spectra and emitting a total of 4 spectra.
- Each of the first prism 601 and the second prism 602 is formed of a known optical member called a "Kester prism".
- “Koster prism” refers to “a pair of optical members (triangular prism-shaped prisms) having a cross-sectional shape of a right triangle having“ inner angles of 30 °, 60 ° and 90 ° respectively ”. These optical members have an equilateral triangular cross-sectional shape, and have a non-polarizing half mirror on the bonding surface.
- the Kester prisms used as the respective prisms 601 and 602 are not limited to this.
- each prism 601, 602 such as non-regular triangular prism shape.
- the first prism 601 as the first optical member has a regular triangular shape in a plan view (X′-Z ′ plane) and extends along the Y ′ axis direction. It has a triangular prism shape (see FIG. 15).
- the “X′-Z ′ plane” corresponds to the “first plane” in the present embodiment.
- the first prism 601 is the intersection of the first surface 601 a and the second surface 601 b among the three rectangular surfaces (the first surface 601 a, the second surface 601 b, and the third surface 601 c) along the Y ′ axis direction.
- a half mirror 601M is formed along a plane passing through the line and orthogonal to the third surface 601c.
- the "half mirror 601M" constitutes the "first branching means" in the present embodiment.
- the first prism 601 is disposed such that the third surface 601c is orthogonal to the Z 'axis direction along the X'-Y' plane, and the half mirror 601M is along the X 'axis along the Y'-Z' plane. It is arranged to be orthogonal to the direction. Therefore, the first surface 601 a and the second surface 601 b are arranged to be inclined by 30 ° or 60 ° with respect to the X ′ axial direction and the Z ′ axial direction, respectively.
- the second prism 602 as the second optical member has an equilateral triangular shape in a front view (Y'-Z 'plane) and extends in the X' axis direction. (See FIG. 16).
- the “Y′-Z ′ plane” corresponds to the “second plane” in the present embodiment.
- the second prism 602 is an intersection of the first surface 602 a and the second surface 602 b among the three square surfaces (the first surface 602 a, the second surface 602 b, and the third surface 602 c) along the X ′ axis direction.
- a half mirror 602M is formed along a plane passing through the line and orthogonal to the third surface 602c.
- the "half mirror 602M" constitutes the "second branching means" in the present embodiment.
- the second prism 602 is disposed such that the first surface 602 a is orthogonal to the Z ′ axis direction along the X′-Y ′ plane. Therefore, the second surface 602b, the third surface 602c, and the half mirror 602M are arranged to be inclined by 30 ° or 60 ° with respect to the Y ′ axis direction and the Z ′ axis direction, respectively.
- the third surface 601 c of the first prism 601 and the first surface 602 a of the second prism 602 are joined. That is, the first prism 601 and the second prism 602 are joined in a direction in which a plane (Y′-Z ′ plane) including the half mirror 601M and a plane including the half mirror 602M are orthogonal to each other.
- the length of the third surface 601c of the first prism 601 in the X ′ axis direction and the length of the first surface 602a of the second prism 602 in the X ′ axis direction are the same (see FIG. 15).
- the length of the third surface 601c of the first prism 601 in the Y ′ axis direction is half the length of the first surface 602a of the second prism 602 in the Y ′ axis direction (see FIGS. 16 and 17). ).
- the third surface 601c of the first prism 601 is joined along the line of intersection between the first surface 602a and the second surface 602b of the second prism 602 (see FIG. 18 and the like).
- the two prisms 601 and 602 are each formed of an optical material (for example, glass or acrylic) having a predetermined refractive index higher than that of air.
- both prisms 601 and 602 may be formed of the same material, or may be formed of different materials.
- the material of each of the prisms 601 and 602 can be arbitrarily selected as long as it satisfies the function of the spectroscopic optical system 600A (600B) described later.
- the operation of the spectroscopic optical system 600A and the spectroscopic optical system 600B will be described in detail with reference to the drawings.
- the spectroscopic optical system 600A and the spectroscopic optical system 600B used for the first imaging system 4A and the second imaging system 4B have the same configuration, hereinafter, the spectroscopic optical system 600A related to the first imaging system 4A is An example will be described, and the spectroscopic optical system 600B related to the second imaging system 4B is omitted.
- the spectral optical system 600A is disposed such that the combined light F0 related to the first light transmitted through the second non-polarization beam splitter 13B is perpendicularly incident on the first surface 601a of the first prism 601 (FIG. 14, 15).
- the first imaging system 4A is illustrated so that the front of the spectral optical system 600A faces the near side.
- the combined light F0 incident from the first surface 601a into the first prism 601 is branched into two directions by the half mirror 601M. More specifically, it branches into a spectrum FA1 reflected by the half mirror 601M toward the first surface 601a and a spectrum FA2 transmitted through the half mirror 601M toward the second surface 601b.
- the spectrum FA1 reflected by the half mirror 601M is totally reflected toward the third surface 601c side on the first surface 601a, and is emitted perpendicularly from the third surface 601c.
- the spectrum FA2 transmitted through the half mirror 601M is totally reflected toward the third surface 601c side on the second surface 601b, and vertically emitted from the third surface 601c. That is, two parallel light beams FA1 and FA2 are emitted from the third surface 601c of the first prism 601.
- the spectra FA1 and FA2 emitted from the third surface 601c of the first prism 601 are vertically incident on the first surface 602a of the second prism 602, respectively (see FIG. 16).
- the splits FA1 and FA2 incident from the first surface 602a into the second prism 602 are branched in two directions by the half mirror 602M.
- one spectrum FA1 branches into a spectrum FB1 directed to the first surface 602a and reflected by the half mirror 602M, and a spectrum FB2 directed to the second surface 602b and transmitted through the half mirror 602M.
- the other spectrum FA2 is branched into a spectrum FB3 reflected by the half mirror 602M toward the first surface 602a and a spectrum FB4 transmitted through the half mirror 602M toward the second surface 602b.
- the spectrums FB1 and FB3 reflected by the half mirror 602M are totally reflected toward the third surface 602c side on the first surface 602a, respectively, and are emitted perpendicularly from the third surface 602c.
- the spectral components FB2 and FB4 transmitted through the half mirror 602M are totally reflected toward the third surface 602c on the second surface 602b, respectively, and are emitted perpendicularly from the third surface 602c. That is, four lights FB1 to FB4 arranged in a matrix of two rows and two columns are emitted in parallel from the third surface 602c of the second prism 602.
- the four split light beams FB1 to FB4 emitted from the spectroscopic optical system 600A are converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 610A and arranged in a matrix in the filter unit 615A.
- the light is incident on each of the polarizing plates 126a to 126d.
- the four split light beams FB1 to FB4 transmitted through the filter unit 615A become interference light whose phase is different by 90 °.
- these four spectra FB1 to FB4 are simultaneously imaged by the imaging device 33Ai of the camera 633A.
- four interference fringe images different in phase by 90 ° are obtained.
- the split optical system 600A, 600B adopts the prisms 601, 602, which are Koster prisms, as means for splitting one light into two parallel light beams.
- the optical path lengths of the two lights are optically equal.
- the configuration is such that the light travels only in the optical member and does not go out into the air from the time when one light F0 is incident on the spectroscopic optical systems 600A and 600B until the four lights FB1 to FB4 are emitted. Therefore, the influence of air fluctuation etc. can be reduced.
- FIG. 19 is a schematic view showing a schematic configuration of a three-dimensional measurement apparatus according to the present embodiment.
- the present embodiment is provided with a spectroscopic optical system different from the second embodiment and the fifth embodiment, and the first embodiment and the first imaging system 4A and the second employing the optical configuration of the Michelson interferometer
- the configuration related to the imaging system 4B is different. Therefore, in the present embodiment, components different from the first, second, and fifth embodiments will be described in detail, and the same components will be denoted by the same reference numerals and detailed description thereof will be omitted.
- the first imaging system 4A is a first spectroscopic means that splits the combined light (reference light component and measurement light component) related to the first light transmitted through the second non-polarization beam splitter 13B into four splits. Is provided with a spectro-optical system 700A.
- Spectroscopic optical system 700A includes a non-polarizing beam splitter 701A that splits combined light of the first light transmitted through the second non-polarizing beam splitter 13B into two splits, and two splits by the non-polarizing beam splitter 701A.
- a first prism 702A that splits one of the two spectra into two
- a second prism that splits the other of the two spectra split by the non-polarization beam splitter 701A into two.
- 703A is a non-polarizing beam splitter 701A that splits combined light of the first light transmitted through the second non-polarizing beam splitter 13B into two splits, and two splits by the non-polarizing beam splitter 701A.
- the first imaging system 4A includes a quarter-wave plate 704A for converting the two spectra split by the first prism 702A into circularly polarized light, and two splits by the second prism 703A.
- a quarter-wave plate 705A for converting the spectrum into circularly polarized light
- a filter unit 706A for selectively transmitting predetermined components of the two spectra transmitted through the quarter-wave plate 704A
- the quarter-wave plate 705A A filter unit 707A for selectively transmitting predetermined components of two lights transmitted through the camera
- a camera 708A for simultaneously imaging two spectra transmitted through the filter unit 706A, and two spectra transmitted through the filter unit 707A simultaneously And an imaging camera 709A.
- the second imaging system 4B divides the combined light (reference light component and measurement light component) related to the second light transmitted through the first non-polarization beam splitter 13A into four split light.
- a spectroscopic optical system 700B as a spectroscopic means is provided.
- Spectroscopic optical system 700B includes: a non-polarization beam splitter 701B that splits combined light of the second light transmitted through the first non-polarization beam splitter 13A into two spectra; and two spectra split by the non-polarization beam splitter 701B.
- a first prism 702B that splits one of the two spectra into two, and a second prism that splits the other of the two splits separated by the non-polarization beam splitter 701B into two.
- 703 B is Spectroscopic optical system 700B.
- the second imaging system 4B includes a quarter wavelength plate 704B for converting the two spectra split by the first prism 702B into circularly polarized light, and two splits by the second prism 703B.
- a quarter-wave plate 705B for converting the spectrum into circularly polarized light
- a filter unit 706B for selectively transmitting predetermined components of two spectra transmitted through the quarter-wave plate 704B
- a quarter-wave plate 705B A filter unit 707B selectively transmitting predetermined two components of the light, a camera 708B simultaneously imaging the two spectra transmitted through the filter unit 706B, and a camera 709B imaging the two spectra transmitted through the filter unit 707B simultaneously And have.
- the “non-polarizing beam splitter 701A” and the “non-polarizing beam splitter 701B” are cube-shaped known optical members in which right-angle prisms are bonded and integrated, and a non-polarizing half mirror is provided on the bonding surface ing.
- first prism 702A and the “second prism 703A” related to the first imaging system 4A, and the “first prism 702B” and the “second prism 703B” related to the second imaging system 4B are known Koster prisms. There is a configuration similar to that of the “first prism 601” and the “second prism 602” according to the fifth embodiment, and the detailed description thereof will be omitted.
- the “filter unit 706A” and the “filter unit 707A” related to the first imaging system 4A, and the “filter unit 706B” and the “filter unit 707B” related to the second imaging system 4B are the “filter units” of the second embodiment. 126 "and the detailed description thereof is omitted. However, the “filter unit 706A” and the like according to the present embodiment correspond to two spectra, respectively.
- the “filter unit 706A” related to the first imaging system 4A may include “polarizing plates 126a and 126b”, and the “filter unit 707A” may include “polarizing plates 126c and 126d” (second imaging system 4b).
- the configuration is the same as the configuration according to the “first camera 33A” and the “second camera 633B” and the like in the first and second embodiments, and the detailed description thereof will be omitted.
- the "camera 708A (imaging device)” and the like according to the present embodiment correspond to two spectra, respectively.
- the imaging area of the “camera 708A (imaging element)” related to the first imaging system 4A is divided into two imaging areas (H1 and H2) corresponding to the “filter unit 706A (polarizing plates 126a and 126b)”.
- the imaging area of the camera 709A (imaging element) may be divided into two imaging areas (H3 and H4) corresponding to the “filter unit 707A (polarizing plates 126c and 126d)” (second imaging system 4B
- the operation of the spectroscopic optical system 700A and the spectroscopic optical system 700B will be described.
- the spectroscopic optical system 700A and the spectroscopic optical system 700B used for the first imaging system 4A and the second imaging system 4B have the same configuration, hereinafter, the spectroscopic optical system 700A related to the first imaging system 4A is An example will be described, and the spectroscopic optical system 700B related to the second imaging system 4B is omitted.
- the combined light relating to the first light transmitted through the second non-polarizing beam splitter 13B first enters the non-polarizing beam splitter 701A of the spectral optical system 700A, and is branched into two directions by the half mirror. Among these, the spectrum reflected by the half mirror enters the first prism 702A. On the other hand, the spectrum transmitted through the half mirror enters the second prism 703A.
- the spectrum incident on the first surface of the first prism 702A branches in two directions by the half mirror. Specifically, the light beam is split into a spectrum reflected by the half mirror toward the first surface and a spectrum transmitted through the half mirror toward the second surface.
- the spectrum reflected by the half mirror is totally reflected toward the third surface side on the first surface, and vertically emitted from the third surface.
- the spectrum transmitted through the half mirror is totally reflected toward the third surface side on the second surface and emitted perpendicularly from the third surface. That is, two parallel light beams are emitted from the third surface of the first prism 702A.
- the spectrum incident on the first surface of the second prism 703A branches in two directions by the half mirror. Specifically, the light beam is split into a spectrum reflected by the half mirror toward the first surface and a spectrum transmitted through the half mirror toward the second surface.
- the spectrum reflected by the half mirror is totally reflected toward the third surface side on the first surface, and vertically emitted from the third surface.
- the spectrum transmitted through the half mirror is totally reflected toward the third surface side on the second surface and emitted perpendicularly from the third surface. That is, two parallel light beams are emitted from the third surface of the second prism 703A.
- the two spectra emitted from the first prism 702A are converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 704A, respectively, and then enter the filter unit 706A (for example, the polarizing plates 126a and 126b).
- the two spectra transmitted through the filter unit 706A become, for example, interference light of phase “0 °” and interference light of phase “90 °”. Then, these two spectra are simultaneously imaged in two imaging areas of the camera 708A, and for example, an interference fringe image of phase “0 °” and an interference fringe image of phase “90 °” are obtained.
- the two spectra emitted from the second prism 703A are converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 705A, respectively, and then enter the filter unit 707A (for example, the polarizing plates 126c and 126d).
- the two spectra transmitted through the filter unit 707A become, for example, interference light of phase “180 °” and interference light of phase “270 °”. Then, these two spectra are simultaneously imaged in two imaging areas of the camera 709A, and for example, an interference fringe image of phase "180 °” and an interference fringe image of phase "270 °” are obtained.
- the seventh embodiment will be described below.
- two types of light of different wavelengths emitted from two light sources are made to be incident on an interference optical system in a superimposed state, the light emitted therefrom is wavelength separated by the optical separating means, and each wavelength is
- the configuration for individually capturing the interference light relating to the light is combined with the first embodiment and the like (including the fifth embodiment and the like) adopting the optical configuration of the Michelson interferometer, and four types of light having different wavelengths are It is possible to use the measurement.
- FIG. 20 is a schematic view showing a schematic configuration of a three-dimensional measurement apparatus according to the present embodiment.
- the present embodiment is different from the first embodiment etc. in the configuration related to the first light projection system 2A and the second light projection system 2B, and the first imaging system 4A and the second imaging system 4B. Therefore, in the present embodiment, components different from those of the above-described embodiments will be described in detail, and the same components will be denoted by the same reference numerals, and the detailed description thereof will be omitted.
- the first light projection system 2A includes two light emitting units 751A and 752A, an optical isolator 753A corresponding to the light emitting unit 751A, an optical isolator 754A corresponding to the light emitting unit 752A, a dichroic mirror 755A, and a nonpolarizing beam splitter 756A. And so on.
- the “light emitting unit 751A” and the “light emitting unit 752A” have the same configuration as the “first light emitting unit 11A”, and the detailed description thereof is omitted. However, the light emitting unit 751A emits linearly polarized light of a first wavelength (for example, 491 nm) and the light emitting unit 752A emits linearly polarized light of a second wavelength (for example, 540 nm). It emits light of different wavelengths.
- a first wavelength for example, 491 nm
- a second wavelength for example, 540 nm
- optical isolator 753A and the “optical isolator 754A” have the same configuration as the “first optical isolator 12A”, and the detailed description thereof will be omitted.
- first wavelength light linearly polarized light of a first wavelength (hereinafter, referred to as “first wavelength light”) emitted downward in the Y-axis direction from the light emitting unit 751A enters the dichroic mirror 755A via the optical isolator 753A.
- linearly polarized light of the second wavelength (hereinafter, referred to as “second wavelength light”) emitted leftward in the Z-axis direction from the light emitting portion 752A enters the dichroic mirror 755A via the optical isolator 754A.
- the dichroic mirror 755A is a cube-type known optical member (dichroic prism) in which right-angle prisms are bonded and integrated, and a dielectric multilayer film is formed on the bonding surface 755Ah.
- the dichroic mirror 755A is disposed such that one of two adjacent surfaces sandwiching the bonding surface 755Ah is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 755Ah of the dichroic mirror 755A is disposed to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction.
- the dichroic mirror 755A in the present embodiment has a characteristic of reflecting at least the first wavelength light and transmitting the second wavelength light. Thereby, in the arrangement configuration of the present embodiment shown in FIG. 20, the first wavelength light and the second wavelength light incident on the dichroic mirror 755A are combined and then emitted toward the non-polarization beam splitter 756A in the left Z direction. It will be done.
- first light combined light obtained by combining the first wavelength light emitted from the light emitting unit 751A and the second wavelength light emitted from the light emitting unit 752A is referred to as "first light”. That is, the “first irradiation unit” in the present embodiment is configured by the “light emitting units 751A, 752A”, the “dichroic mirror 755A”, and the like.
- the “non-polarization beam splitter 756A” has the same configuration as the “first non-polarization beam splitter 13A”, and the detailed description thereof is omitted.
- a part (half) of the first light incident from the dichroic mirror 755A in the Z-axis direction left is transmitted left in the Z-axis direction, and the other (half) is reflected downward in the Y-axis direction.
- the second light projection system 2B includes two light emitting units 751B and 752B, an optical isolator 753B corresponding to the light emitting unit 751B, an optical isolator 754B corresponding to the light emitting unit 752B, a dichroic mirror 755B, and a nonpolarizing beam splitter 756B. And so on.
- the “light emitting unit 751 B” and the “light emitting unit 752 B” have the same configuration as the “second light emitting unit 11 B”, and the detailed description thereof is omitted. However, the light emitting unit 751B emits linearly polarized light of a third wavelength (for example, 488 nm), and the light emitting unit 752B emits linearly polarized light of a fourth wavelength (for example, 532 nm). It emits light of different wavelengths.
- a third wavelength for example, 488 nm
- a fourth wavelength for example, 532 nm
- optical isolator 753 B and the “optical isolator 754 B” have the same configuration as the “second optical isolator 12 B”, and the detailed description thereof will be omitted.
- linearly polarized light of a third wavelength (hereinafter, referred to as “third wavelength light”) emitted leftward in the Z-axis direction from the light emitting unit 751B enters the dichroic mirror 755B via the optical isolator 753B.
- linearly polarized light of a fourth wavelength (hereinafter, referred to as “fourth wavelength light”) emitted upward in the Y-axis direction from the light emitting portion 752 B enters the dichroic mirror 755 B via the optical isolator 754 B.
- the dichroic mirror 755B is a known cube-shaped optical member (dichroic prism) in which right-angle prisms are bonded and integrated, and a dielectric multilayer film is formed on the bonding surface 755Bh.
- the dichroic mirror 755B is disposed such that one of two adjacent surfaces sandwiching the junction surface 755Bh is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the cemented surface 755Bh of the dichroic mirror 755B is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction.
- the dichroic mirror 755B in the present embodiment has a characteristic of reflecting at least the third wavelength light and transmitting the fourth wavelength light. Thereby, in the arrangement configuration of the present embodiment shown in FIG. 20, the third wavelength light and the fourth wavelength light incident on the dichroic mirror 755B are combined and then emitted upward in the Y-axis direction toward the non-polarization beam splitter 756B. It will be done.
- second light combined light obtained by combining the third wavelength light emitted from the light emitting unit 751 B and the fourth wavelength light emitted from the light emitting unit 752 B is referred to as “second light”. That is, the "second irradiation unit” in the present embodiment is configured by the “light emitting units 751B and 752B", the “dichroic mirror 755B", and the like.
- the “non-polarizing beam splitter 756B” has the same configuration as the "second non-polarizing beam splitter 13B", and the detailed description thereof will be omitted.
- a part (half) of the second light incident upward from the dichroic mirror 755B in the Y-axis direction is transmitted upward in the Y-axis direction, and the other half (half) is reflected to the right in the Z-axis direction.
- the first imaging system 4A combines the combined light of the reference light component and the measurement light component related to the first light (two-wavelength combined light) transmitted through the non-polarization beam splitter 756B according to the first wavelength light.
- the dichroic mirror 800A is provided to separate light (reference light component and measurement light component) into combined light (reference light component and measurement light component) related to the second wavelength light.
- the dichroic mirror 800A will be described in detail below.
- the dichroic mirror 800A is a known cube-shaped optical member (dichroic prism) in which right-angle prisms are bonded and integrated, and a dielectric multilayer film is formed on the bonding surface 800Ah.
- the dichroic mirror 800A is disposed such that one of two adjacent surfaces sandwiching the cemented surface 800Ah is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the cemented surface 800Ah of the dichroic mirror 800A is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction.
- the dichroic mirror 800A in the present embodiment has the same characteristics as the dichroic mirror 755A. That is, the dichroic mirror 800A has a characteristic of reflecting at least the first wavelength light and transmitting the second wavelength light.
- the combined light of the first light incident on the dichroic mirror 800A is the combined light of the first wavelength light (for example, 491 nm) emitted downward in the Y-axis direction.
- the combined light of the second wavelength light for example, 540 nm
- the first imaging system 4A includes: a spectral optical system 801A that splits the combined light related to the first wavelength light emitted downward from the dichroic mirror 800A in the Y-axis direction; A quarter wavelength plate 803A for converting the four spectra divided by the system 801A into circularly polarized light, and a filter unit 805A for selectively transmitting predetermined components of the four spectra transmitted through the quarter wavelength plate 803A And a camera 807A for simultaneously imaging the four spectra transmitted through the filter unit 805A.
- a spectral optical system 801A that splits the combined light related to the first wavelength light emitted downward from the dichroic mirror 800A in the Y-axis direction
- a quarter wavelength plate 803A for converting the four spectra divided by the system 801A into circularly polarized light
- a filter unit 805A for selectively transmitting predetermined components of the four spectra transmitted through the quarter wavelength plate 803A
- a camera 807A for simultaneously imaging
- the first imaging system 4A includes a spectral optical system 802A that splits the combined light of the second wavelength light emitted from the dichroic mirror 800A in the Z-axis direction to the left into four spectra; Quarter-wave plate 804A for converting the four spectra divided by optical system 802A into circularly polarized light, and filter unit 806A for selectively transmitting predetermined components of the four spectra transmitted through quarter-wave plate 804A. And a camera 808A that simultaneously images four spectra transmitted through the filter unit 806A.
- the configurations relating to the 802A, the quarter wavelength plate 804A, the filter unit 806A, and the camera 808A are the “spectroscopic optical system 600A” and the quarter wavelength plate 610A according to the fifth embodiment, respectively. Since the configuration is the same as that of the “filter unit 615A” and the “camera 633A”, the detailed description is omitted.
- the second imaging system 4B combines the combined light of the reference light component and the measurement light component related to the second light (2-wavelength combined light) transmitted through the non-polarization beam splitter 756A according to the third wavelength light.
- the dichroic mirror 800B is provided to separate light (reference light component and measurement light component) into combined light (reference light component and measurement light component) related to the fourth wavelength light.
- the dichroic mirror 800B will be described in detail below.
- the dichroic mirror 800B is a known cube-shaped optical member (dichroic prism) in which right-angle prisms are bonded and integrated, and a dielectric multilayer film is formed on the bonding surface 800Bh.
- the dichroic mirror 800B is disposed such that one of two adjacent surfaces sandwiching the junction surface 800Bh is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the cemented surface 800Bh of the dichroic mirror 800B is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction.
- the dichroic mirror 800B in the present embodiment has the same characteristics as the dichroic mirror 755B. That is, the dichroic mirror 800B has a characteristic of reflecting at least the third wavelength light and transmitting the fourth wavelength light.
- the combined light related to the third light entering the dichroic mirror 800B is the combined light related to the third wavelength light (for example, 488 nm) emitted leftward in the Z-axis direction.
- the combined light relating to the fourth wavelength light for example, 532 nm
- the second imaging system 4B includes a spectroscopic optical system 801B that splits the combined light of the third wavelength light emitted from the dichroic mirror 800B in the Z-axis direction to the left into four spectra; A quarter wavelength plate 803B for converting the four spectra divided by the system 801B into circularly polarized light, and a filter unit 805B for selectively transmitting predetermined components of the four spectra transmitted through the quarter wavelength plate 803B And a camera 807B for simultaneously imaging the four spectra transmitted through the filter unit 805B.
- a spectroscopic optical system 801B that splits the combined light of the third wavelength light emitted from the dichroic mirror 800B in the Z-axis direction to the left into four spectra
- a quarter wavelength plate 803B for converting the four spectra divided by the system 801B into circularly polarized light
- a filter unit 805B for selectively transmitting predetermined components of the four spectra transmitted through the quarter wavelength plate 803
- the second imaging system 4B includes: a spectral optical system 802B that splits the combined light related to the fourth wavelength light emitted upward from the dichroic mirror 800B in the Y-axis direction; A quarter wavelength plate 804B for converting the four spectra divided by the optical system 802B into circularly polarized light, and a filter unit 806B for selectively transmitting predetermined components of the four spectra transmitted through the quarter wavelength plate 804B. And a camera 808B that simultaneously images four spectra transmitted through the filter unit 806B.
- the configuration according to “spectroscopic optical system 801B”, “1 ⁇ 4 wavelength plate 803B”, “filter unit 805B” and “camera 807B” related to the third wavelength light, and “spectroscopic optical system related to the fourth wavelength light” The configurations relating to the 802B, the quarter wavelength plate 804B, the filter unit 806B, and the camera 808B are the “spectroscopic optical system 600B” and the quarter wavelength plate 610B according to the fifth embodiment, respectively. Since the configuration is the same as that of the “filter unit 615B” and the “camera 633B”, the detailed description is omitted.
- the same effects as those of the fifth embodiment can be obtained. Furthermore, according to the present embodiment, by using four types of light having different wavelengths, the measurement range can be further expanded, and the measurement efficiency can be further improved.
- measurement using two lights of the first wavelength light and the third wavelength light for example, bluish light of 491 nm and 488 nm
- the second wavelength light and the fourth wavelength light for example, greenish color of 540 nm and 532 nm
- a workpiece W such as a wafer substrate for which red light is not suitable
- measurement is performed using two lights of a first wavelength light and a third wavelength light (for example, blue light of 491 nm and 488 nm)
- a third wavelength light for example, blue light of 491 nm and 488 nm
- the fourth wavelength light for example, green light of 540 nm and 532 nm
- the wavelength of each light is not limited to the example of the present embodiment, and light of other wavelengths may be adopted.
- the absolute height hr of the electrode 501 for example, the absolute height of any one point on the electrode 501, the average value of the absolute height of a predetermined range on the electrode 501, or the like can be used.
- the “absolute height ho of the bump 503” and the “absolute height hr of the electrode 501” can be obtained as the height information z ( ⁇ , ⁇ ) in each of the above embodiments.
- the three-dimensional measuring device 1 (200, 300) is provided in the solder printing inspection apparatus or the solder bump inspection apparatus provided with an inspection means for inspecting the quality of the cream solder and the solder bumps in accordance with the preset quality judgment criteria. It is good also as composition.
- the three-dimensional measurement apparatus 1 according to the first embodiment and the like adopting the optical configuration of the Michelson interferometer and the three-dimensional measurement apparatus 300 according to the fourth embodiment employing the optical configuration of the Fizeau interferometer are as follows.
- the three-dimensional measurement apparatus 200 according to the third embodiment, which is suitable for the reflective work and adopts the optical configuration of the Mach-Zehnder interferometer, is suitable for the transmissive work.
- the measurement which excluded zero-order light (transmission light) is attained by using the phase shift method.
- the second total reflection mirror 222 and the installation portion 224 may be omitted, and the work W may be installed at the position of the second total reflection mirror 222 so that the reflection work can be measured.
- the installation unit 24 (224, 324) for installing the work W is configured to be displaceable, the surface of the work W is divided into a plurality of measurement areas, and each area is sequentially moved while moving each measurement area.
- the shape of the workpiece W may be measured, and the shape measurement of the entire workpiece W may be divided into plural times.
- the configuration of the interference optical system is not limited to the above embodiments.
- the optical configuration of a Michelson interferometer is adopted as the interference optical system
- the optical configuration of the Mach-Zehnder interferometer is adopted in the third embodiment
- the Fizeau interferometer is used in the fourth embodiment.
- the optical configuration is adopted, the present invention is not limited to this, and any other optical configuration may be adopted as long as it is a configuration in which incident light is divided into reference light and measurement light to measure the shape of the workpiece W.
- the configuration of the light projection systems 2A and 2B (302A and 302B) is not limited to the above embodiments.
- the wavelength of each light is not limited to this. However, in order to widen the measurement range, it is preferable to make the wavelength difference between the two lights smaller.
- light of the same wavelength may be emitted from the first light projection system 2A (302A) and the second light projection system 2B (302B).
- a three-dimensional measurement apparatus for measuring the shape of an object to be measured
- a three-dimensional measurement apparatus using a laser beam or the like
- the measurement accuracy may be reduced due to the influence of fluctuation or the like of the output light from the laser light source.
- phase shift method For example, in three-dimensional measurement using the phase shift method, four phases of image data need to be acquired when the phase is changed in four steps, so when two lights are used, four times at different timings. A total of eight imaging times are required each time.
- the present invention for irradiating two lights of the same wavelength is made in view of the above circumstances and the like, and an object thereof is a three-dimensional measuring device capable of improving measurement efficiency by using two lights. To provide.
- the present invention it is possible to simultaneously perform imaging of output light related to the first light and imaging of output light related to the second light, so that two imaging times for a total of four times (or three times in total) can be obtained. A total of eight (or six) interference fringe images relating to light can be acquired. As a result, the overall imaging time can be shortened, and the measurement efficiency can be improved.
- two lights can be irradiated to one work W from different directions. Therefore, it is possible to more accurately measure the entire image of, for example, a work having a complicated shape.
- the light projecting systems 2A and 2B (302A and 302B) are configured to include the optical isolators 12A and 12B (312A and 312B) and the like, but the optical isolators 12A and 12B (312A, The configuration may be such that 312B) and the like are omitted.
- the positional relationship between the first light projection system 2A (302A) and the second imaging system 4B (304B) is replaced with the first non-polarization beam splitter 13A (313A) or the like interposed therebetween.
- the positional relationship between the second light projection system 2B (302B) and the first imaging system 4A (304A) may be interchanged with the second non-polarization beam splitter 13B (313B) or the like interposed therebetween.
- the configuration of the light guiding means is not limited to the non-polarization beam splitters 13A and 13B (313A and 313B) and the like according to the above embodiments. At least a part of the first light (second light) emitted from the first irradiation means (second irradiation means) is directed to the first input / output unit (second input / output unit) and the first input / output unit If at least a part of the output light (output light related to the first light) related to the second light emitted from the (second input / output unit) is directed to the second imaging means (the first imaging means) Other configurations may be adopted.
- the first light (second light) emitted from the first light projection system 2A (second light projection system 2B) is transmitted to the first surface 20a (second surface 20b) of the polarization beam splitter 20.
- the output light (the output light related to the first light) related to the second light emitted from the first surface 20a (the second surface 20b) of the polarization beam splitter 20 as the second imaging system 4B (the first Other configurations may be adopted as long as the configuration allows imaging by the imaging system 4A).
- a cube type in which right-angle prisms are bonded and integrated is adopted as the first non-polarization beam splitter 13A (313A) and the second non-polarization beam splitter 13B (313B) etc.
- the invention is not limited to this, and for example, a plate-type predetermined half mirror may be adopted.
- polarization beam splitter 20 211, 212, 320
- a plate type polarization beam splitter may be employed.
- phase shift method is performed based on four types of interference fringe image data having different phases.
- the phase shift method may be performed based on two or three different interference fringe image data.
- the three-dimensional measurement apparatus 1 according to the first embodiment and the like, and the three-dimensional measurement apparatus 200 according to the third embodiment are other than the phase shift method, for example, the Fourier transform method of the fourth embodiment. It can apply also to the composition which performs three-dimensional measurement by a method.
- the three-dimensional measurement apparatus 300 according to the fourth embodiment can also be applied to a configuration in which three-dimensional measurement is performed by another method such as the phase shift method, which is different from the Fourier transform method.
- the polarizing plates 32A and 32B configured to be able to change the transmission axis direction are adopted as phase shift means, and in the second embodiment etc., the transmission axis direction is different.
- a filter unit 126 consisting of four polarizers is employed.
- the configuration of the phase shift means is not limited to these, and, for example, in the first embodiment, a configuration is used in which the optical path length is physically changed by moving the reference surface 23 along the optical axis with a piezoelectric element or the like. You may
- the configuration (filter unit 126 or the like) according to the second embodiment or the like may be employed as the phase shift means.
- the phase shift means while maintaining the state in which the total reflection mirror 221 (reference surface) is inclined 45 ° with respect to the Y-axis direction and the Z-axis direction, physical properties can be obtained by moving along the direction orthogonal to the inclined direction A configuration in which the optical path length is changed may be adopted as the phase shift means.
- the optical path length is physically changed by moving the half mirror 323 (reference surface) along the optical axis by, for example, a piezoelectric element or the like. It may be adopted.
- the height information z ( ⁇ , ⁇ ⁇ ⁇ ) is obtained by a calculation formula when performing the two-wavelength phase shift method, but the present invention is limited thereto
- a table or table data representing the correspondence relationship between the phases ⁇ 1 and ⁇ 2 , the fringe orders m 1 and m 2 , and the height information z is stored in advance, and the height information z is calculated with reference to this. It is good also as composition to acquire. In such a case, it is not necessary to specify the fringe order.
- the configuration of the light separating means is not limited to that of the second embodiment.
- the light incident from the interference optical system 3 is split into four, but the configuration is not limited to this. It may be configured to be divisible into at least the number of lights necessary for measurement by the phase shift method.
- the combined light L0 and the like to be incident are divided into four light beams LB1 to LB4 and the like in which light paths are arranged in a matrix on a plane orthogonal to the traveling direction.
- the light need not necessarily be arranged in a matrix.
- the spectroscopic optical system 125 in which a plurality of optical members (prisms) are combined and integrated is adopted as the spectroscopic means, but the invention is not limited thereto. You may
- the filter unit 126 includes the first polarizing plate 126a having a transmission axis direction of 0 °, the second polarizing plate 126b having a transmission axis direction of 45 °, and a third polarizing plate having a transmission axis direction of 90 °.
- 126c the fourth polarizing plate 126d having a transmission axis direction of 135 ° and the transmission axis directions of which are different by 45 °, using four polarizing plates 126a to 26d, four interference fringe images different in phase by 90 °
- the shape measurement is performed by the phase shift method based on the four interference fringe images.
- the first polarizing plate 126a, the second polarizing plate 126b, the third polarizing plate 126c, and the fourth polarizing plate 126d of the filter unit 126 respectively have a transmission axis direction of 0 °, a transmission axis Polarizer with a direction of 60 ° (or 45 °), Polarizer with a transmission axis direction of 120 ° (or 90 °), measurement light (eg clockwise circularly polarized light) and reference light (eg counterclockwise circularly polarized light)
- the configuration may be a combination of a 1 ⁇ 4 wavelength plate that converts light into linearly polarized light and a polarizing plate that selectively transmits linearly polarized light of measurement light.
- the combination of the “1 ⁇ 4 wavelength plate” and the “polarizing plate” may be a so-called “circular
- this configuration it is possible to acquire the luminance image of the work W in addition to the three interference fringe images different in phase by 120 ° (or 90 °) in one imaging by one imaging element.
- the shape measurement performed by the phase shift method based on the three interference fringe images it is possible to perform the measurement based on the luminance image in combination.
- mapping can be performed on three-dimensional data obtained by shape measurement using the phase shift method, or a measurement region can be extracted. As a result, it is possible to make an overall judgment combining a plurality of types of measurement, and to further improve the measurement accuracy.
- a fourth polarizing plate 126d is a combination of a quarter-wave plate that converts circularly polarized light into linearly polarized light and a polarizing plate that selectively transmits linearly polarized light of measurement light.
- the present invention is not limited to this, and any other configuration may be employed as long as it selectively transmits only measurement light.
- the fourth polarizing plate 126d may be omitted. That is, three lights transmitted through the first polarizing plate 126a, the second polarizing plate 126b, and the third polarizing plate 126c of the filter unit 126 and one light directly incident without passing through the filter unit 126 (polarizing plate)
- the image pickup device may be configured to pick up an image by one image pickup element simultaneously.
- the reference light is known (can be obtained by measurement in advance) and is uniform. It is possible to extract the signal of the measurement light by performing processing of removing the reference light component and processing of removing uniform light by the later processing.
- SYMBOLS 1 Three-dimensional measurement apparatus, 2A ... 1st light projection system, 2B ... 2nd light projection system, 3 ... Interference optical system, 4A ... 1st imaging system, 4B ... 2nd imaging system, 5 ... Control apparatus, 11A ... 11 First light emitter, 11B: second light emitter, 12A: first optical isolator, 12B: second optical isolator, 13A: first nonpolarizing beam splitter, 13B: second nonpolarizing beam splitter, 20: polarizing beam splitter, 20a ... 1st surface, 20c ... 3rd surface, 20b ... 2nd surface, 20d ... 4th surface, 21, 22 ... 1/4 wavelength plate, 23 ... Reference surface, 24 ... Installation part, 31A ... 1/4 wavelength Plate, 31B: 1 ⁇ 4 wavelength plate, 32A: first polarizing plate, 32B: second polarizing plate, 33A: first camera, 33B: second camera, W: work.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
波長の異なる2種類の光を利用して、計測レンジの拡大を図ると共に、計測効率の向上を図ることのできる三次元計測装置を提供する。三次元計測装置1は、入射する所定の光を偏光方向が互いに直交する2つの偏光に分割し一方を計測光としてワークWに照射しかつ他方を参照光として参照面23に照射すると共に、これらを再び合成して出射可能な偏光ビームスプリッタ20と、この偏光ビームスプリッタ20の第1面20aに対し、第1波長を有する第1光を入射させる第1投光系2Aと、偏光ビームスプリッタ20の第2面20bに対し、第2波長を有する第2光を入射させる第2投光系2Bと、偏光ビームスプリッタ20の第2面20bから出射される前記第1光を撮像可能な第1撮像系4Aと、偏光ビームスプリッタ20の第1面20aから出射される前記第2光を撮像可能な第2撮像系4Bとを備えている。
Description
本発明は、被計測物の形状を計測する三次元計測装置に関するものである。
従来より、被計測物の形状を計測する三次元計測装置として、干渉計を利用した三次元計測装置が知られている。
かかる三次元計測装置においては、計測光の波長(例えば1500nm)の半分(例えば750nm)が計測可能な計測レンジ(ダイナミックレンジ)となる。
そのため、仮に被計測物上に計測光の波長の半分以上の高低差がある場合には、計測レンジが不足し、被計測物の形状を適正に計測できないおそれがある。これに対し、計測光の波長を長くした場合には、分解能が粗くなり、計測精度が悪化するおそれがある。
これに鑑み、近年では、レンジ不足を解消するため、波長の異なる2種類の光を利用して計測を行う三次元計測装置も提案されている(例えば、特許文献1参照)。
かかる三次元計測装置においては、第1波長光と第2波長光を合成した状態で干渉光学系(偏光ビームスプリッタ等)へ入射させ、ここから出射される干渉光を所定の光学分離手段(ダイクロイックミラー等)により波長分離し、第1波長光に係る干渉光と、第2波長光に係る干渉光とを得る。そして、各波長光に係る干渉光を個別に撮像した干渉縞画像を基に被計測物の形状計測を行う。
波長の異なる2種類の光を利用して、三次元計測に係る計測レンジをより広げるためには、2種類の光の波長差をより小さくすればよい。2種類の光の波長が近ければ近いほど、計測レンジを広げることができる。
しかしながら、2種類の光の波長が近ければ近いほど、2種類の光の波長を適切に分離することが困難となる。
換言すれば、波長差が小さい2種類の光で三次元計測を行おうとした場合、第1波長光に係る干渉光の撮像と、第2波長光に係る干渉光の撮像をそれぞれ異なるタイミングで行う必要があり、計測効率が低下するおそれがある。
例えば位相シフト法を利用した三次元計測において、位相を4段階に変化させる場合には、4通りの画像データを取得する必要があるため、2種類の光を用いる場合には、それぞれ異なるタイミングで4回ずつ、計8回分の撮像時間が必要となる。
本発明は、上記事情等に鑑みてなされたものであり、その目的は、波長の異なる2種類の光を利用して、計測レンジの拡大を図ると共に、計測効率の向上を図ることのできる三次元計測装置を提供することにある。
以下、上記課題を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。
手段1.入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系(特定光学系)と、
前記所定の光学系に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記所定の光学系から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記所定の光学系から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
前記第1光と前記第2光をそれぞれ前記所定の光学系の異なる位置に入射させ、
前記第1光に係る出力光と前記第2光に係る出力光をそれぞれ前記所定の光学系の異なる位置から出射させることを特徴とする三次元計測装置。
前記所定の光学系に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記所定の光学系から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記所定の光学系から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
前記第1光と前記第2光をそれぞれ前記所定の光学系の異なる位置に入射させ、
前記第1光に係る出力光と前記第2光に係る出力光をそれぞれ前記所定の光学系の異なる位置から出射させることを特徴とする三次元計測装置。
上記手段1によれば、第1光と第2光をそれぞれ所定の光学系の異なる位置から入射することにより、第1光と第2光は互いに干渉することなく、別々に所定の光学系の異なる位置から出射されることとなる。つまり、所定の光学系から出射される光を所定の分離手段を用いて第1光と第2光とに分離する必要がない。
尚、以下同様であるが、「所定の光学系(特定光学系)」から出力される「第1光に係る出力光」には「第1光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれ、「第2光に係る出力光」には「第2光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれる。つまり「所定の光学系」には、「参照光及び計測光を内部で干渉させた上で干渉光として出力する光学系」のみならず、「参照光及び計測光を内部で干渉させることなく、単に合成光として出力する光学系」も含まれる。但し、「所定の光学系」から出力される「出力光」が「合成光」の場合には、「干渉縞画像」を撮像するために、少なくとも「撮像手段」により撮像される前段階において、所定の干渉手段を介して「干渉光」に変換することとなる。
つまり、光の干渉を生じさせること(干渉縞画像を撮像すること)を目的として、入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な光学系を「干渉光学系」と称することができる。従って、上記手段1において(以下の各手段においても同様)、「所定の光学系(特定光学系)」を「干渉光学系」と換言してもよい。
その結果、第1光及び第2光として波長の近い2種類の光を用いることができ、三次元計測に係る計測レンジをより広げることができる。
加えて、第1光に係る出力光の撮像と、第2光に係る出力光の撮像を同時に行うことができるため、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
尚、2つの光を用いる場合には、2つの干渉光学系(干渉計モジュール)を用いて被計測物を計測する構成も考えられるが、かかる構成では、基準となる参照面が各干渉光学系ごとに異なり、参照光と計測光とに光路差を生じさせる光路区間が2つの光で異なることとなるため、計測精度が低下するおそれがある。また、2つの干渉光学系の光路長を正確に一致させることは難しく、その調整作業も非常に困難な作業となる。
この点、本手段は、基準となる参照面を1つ備えた1つの干渉光学系(所定の光学系)に対し2つの光を用いる構成となっているため、参照光と計測光とに光路差を生じさせる光路区間が2つの光で同一となる。結果として、2つの干渉光学系を備えることに起因した種々の不具合の発生を防止することができる。
尚、以下の手段においても同様であるが、「第1照射手段」から照射される「第1光」は、少なくとも「第1波長の偏光(第1偏光)」を含んだ光であればよく、その後「所定の光学系」においてカットされる他の余分な成分を含んだ光(例えば「無偏光」や「円偏光」)であってもよい。
同様に、「第2照射手段」から照射される「第2光」は、少なくとも「第2波長の偏光(第2偏光)」を含んだ光であればよく、その後「所定の光学系」においてカットされる他の余分な成分を含んだ光(例えば「無偏光」や「円偏光」)であってもよい。
手段2.入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系(特定光学系)と、
前記所定の光学系の第1入出力部に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系の第2入出力部に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記第1入出力部に対し前記第1光を入射することにより前記第2入出力部から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記第2入出力部に対し前記第2光を入射することにより前記第1入出力部から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
前記所定の光学系の第1入出力部に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系の第2入出力部に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記第1入出力部に対し前記第1光を入射することにより前記第2入出力部から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記第2入出力部に対し前記第2光を入射することにより前記第1入出力部から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
上記手段2によれば、第1光と第2光をそれぞれ所定の光学系の異なる位置(第1入出力部及び第2入出力部)から入射することにより、第1光と第2光がそれぞれ同一の光路を逆方向に辿り、互いに干渉することなく、別々に所定の光学系の異なる位置(第1入出力部及び第2入出力部)から出射されることとなる。つまり、所定の光学系から出射される光を所定の分離手段を用いて第1光と第2光とに分離する必要がない。結果として、上記手段1と同様の作用効果が奏される。
尚、以下の手段においても同様であるが、上記手段2に係る構成をより適正に機能させるためには、「前記被計測物を前記参照面と同一の平面とした場合において、前記第1入出力部に対し入射させる前記第1光の偏光方向と、該第1入出力部から出射される前記第2光に係る出力光の偏光方向とが同一となり、かつ、前記第2入出力部に対し入射させる前記第2光の偏光方向と、該第2入出力部から出射される前記第1光に係る出力光の偏光方向とが同一となること」がより好ましい。
同様に、「前記第1入出力部に対し前記第1光を入射する入射方向と、前記第2入出力部に対し前記第2光を入射する入射方向とを該両入射方向を含む平面上において一致させた場合において、前記第1光の偏光方向と、前記第2光の偏光方向とが90°異なること」がより好ましい。
また、「前記所定の光学系において、(例えば被計測物や参照面に向け)同一軸線上を同一方向に向かう前記第1光(又はその計測光若しくは参照光)の偏光方向と、前記第2光(又はその計測光若しくは参照光)の偏光方向とが90°異なること」がより好ましい。
手段3.入射する所定の光を偏光方向が互いに直交する2つの偏光に分割する境界面を有し、該分割した一方の偏光を計測光として被計測物に照射しかつ他方の偏光を参照光として参照面に照射すると共に、これらを再び合成して出射可能な偏光ビームスプリッタと、
前記境界面を挟んで隣り合う前記偏光ビームスプリッタの第1面及び第2面のうち第1入出力部となる前記第1面に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記偏光ビームスプリッタの第2入出力部となる前記第2面に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記参照光が出入射される前記偏光ビームスプリッタの第3面と前記参照面との間に配置された第1の1/4波長板と、
前記計測光が出入射される前記偏光ビームスプリッタの第4面と前記被計測物との間に配置される第2の1/4波長板と、
前記偏光ビームスプリッタの前記第1面に対し前記第1光を入射することにより前記第2面から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記偏光ビームスプリッタの前記第2面に対し前記第2光を入射することにより前記第1面から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
前記境界面を挟んで隣り合う前記偏光ビームスプリッタの第1面及び第2面のうち第1入出力部となる前記第1面に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記偏光ビームスプリッタの第2入出力部となる前記第2面に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記参照光が出入射される前記偏光ビームスプリッタの第3面と前記参照面との間に配置された第1の1/4波長板と、
前記計測光が出入射される前記偏光ビームスプリッタの第4面と前記被計測物との間に配置される第2の1/4波長板と、
前記偏光ビームスプリッタの前記第1面に対し前記第1光を入射することにより前記第2面から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記偏光ビームスプリッタの前記第2面に対し前記第2光を入射することにより前記第1面から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
上記手段3によれば、マイケルソン干渉計の原理に基づいた比較的簡素な構成で、上記手段1,2に係る構成を実現することができる。
以下の手段でも同様であるが、「偏光ビームスプリッタ」は、その境界面において、第1の偏光方向を有する第1偏光(例えばP偏光)を透過させ、第2の偏光方向を有する第2偏光(例えばS偏光)を反射する機能を有する。従って、偏光ビームスプリッタの第1面から入射した第1光は、例えば第1偏光よりなる参照光と、第2偏光よりなる計測光とに分割され、偏光ビームスプリッタの第2面から入射した第2光は、例えば第2偏光よりなる参照光と、第1偏光よりなる計測光とに分割されることとなる。
つまり、第1光と第2光をそれぞれ所定の光学系の異なる位置(第1面及び第2面)から入射することにより、第1光に係る参照光及び計測光と、第2光に係る参照光及び計測光がそれぞれ異なる偏光成分(P偏光又はS偏光)に分割されるため、第1光と第2光は互いに干渉することなく、別々に所定の光学系から出射されることとなる。
尚、波長の異なる2種類の光を用いる場合、両光に共通して用いられる上記「1/4波長板」は、両光の波長差が大きくなればなるほど、適正に機能しなくなる。かかる点においても、波長差が小さい2種類の光を用いることがより好ましい。
手段4.第1波長の偏光を含む第1光を出射可能な第1照射手段と、
第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記第1照射手段から入射される前記第1光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を計測光として被計測物に対し照射可能としかつ他方の偏光を参照光として参照面に対し照射可能とすると共に、前記被計測物を介して入射した前記第2光に係る計測光と、前記参照面を介して入射した前記第2光に係る参照光とを合成して出射可能な第1入出力部としての第1偏光ビームスプリッタと、
前記第2照射手段から入射される前記第2光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を計測光として被計測物に対し照射可能としかつ他方の偏光を参照光として参照面に対し照射可能とすると共に、前記被計測物を介して入射した前記第1光に係る計測光と、前記参照面を介して入射した前記第1光に係る参照光とを合成して出射可能な第2入出力部としての第2偏光ビームスプリッタと、
前記第1偏光ビームスプリッタと前記参照面との間に配置された第1の1/4波長板と、
前記第1偏光ビームスプリッタと前記被計測物との間に配置された第2の1/4波長板と、
前記第2偏光ビームスプリッタと前記参照面との間に配置された第3の1/4波長板と、
前記第2偏光ビームスプリッタと前記被計測物との間に配置された第4の1/4波長板と、
前記第1偏光ビームスプリッタに対し前記第1光を入射することにより前記第2偏光ビームスプリッタから出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記第2偏光ビームスプリッタに対し前記第2光を入射することにより前記第1偏光ビームスプリッタから出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記第1照射手段から入射される前記第1光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を計測光として被計測物に対し照射可能としかつ他方の偏光を参照光として参照面に対し照射可能とすると共に、前記被計測物を介して入射した前記第2光に係る計測光と、前記参照面を介して入射した前記第2光に係る参照光とを合成して出射可能な第1入出力部としての第1偏光ビームスプリッタと、
前記第2照射手段から入射される前記第2光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を計測光として被計測物に対し照射可能としかつ他方の偏光を参照光として参照面に対し照射可能とすると共に、前記被計測物を介して入射した前記第1光に係る計測光と、前記参照面を介して入射した前記第1光に係る参照光とを合成して出射可能な第2入出力部としての第2偏光ビームスプリッタと、
前記第1偏光ビームスプリッタと前記参照面との間に配置された第1の1/4波長板と、
前記第1偏光ビームスプリッタと前記被計測物との間に配置された第2の1/4波長板と、
前記第2偏光ビームスプリッタと前記参照面との間に配置された第3の1/4波長板と、
前記第2偏光ビームスプリッタと前記被計測物との間に配置された第4の1/4波長板と、
前記第1偏光ビームスプリッタに対し前記第1光を入射することにより前記第2偏光ビームスプリッタから出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記第2偏光ビームスプリッタに対し前記第2光を入射することにより前記第1偏光ビームスプリッタから出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
上記手段4によれば、マッハ・ツェンダー干渉計の原理に基づいた比較的簡素な構成で、上記手段1,2に係る構成を実現することができる。
手段5.第1の偏光方向を有する偏光である第1偏光(例えばP偏光)を透過させ、第2の偏光方向を有する偏光である第2偏光(例えばS偏光)を反射する境界面を有する偏光ビームスプリッタと、
前記境界面を挟んで隣り合う前記偏光ビームスプリッタの第1面及び第2面のうち第1入出力部となる前記第1面に対し入射させる、第1波長の前記第1偏光を含む第1光を出射可能な第1照射手段と、
前記偏光ビームスプリッタの第2入出力部となる前記第2面に対し入射させる、第2波長の前記第2偏光を含む第2光を出射可能な第2照射手段と、
前記境界面を透過した第1光及び前記境界面に反射した第2光が出射される前記偏光ビームスプリッタの第3面と相対向するように配置された1/4波長板と、
前記偏光ビームスプリッタとは反対側にて前記1/4波長板と相対向するように配置され、前記1/4波長板を介して照射された光の一部を計測光として透過して被計測物に照射しかつ残りの光を参照光として反射するハーフミラー(参照面)と、
前記偏光ビームスプリッタの前記第1面に対し前記第1光を入射することにより前記第2面から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記偏光ビームスプリッタの前記第2面に対し前記第2光を入射することにより前記第1面から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
前記境界面を挟んで隣り合う前記偏光ビームスプリッタの第1面及び第2面のうち第1入出力部となる前記第1面に対し入射させる、第1波長の前記第1偏光を含む第1光を出射可能な第1照射手段と、
前記偏光ビームスプリッタの第2入出力部となる前記第2面に対し入射させる、第2波長の前記第2偏光を含む第2光を出射可能な第2照射手段と、
前記境界面を透過した第1光及び前記境界面に反射した第2光が出射される前記偏光ビームスプリッタの第3面と相対向するように配置された1/4波長板と、
前記偏光ビームスプリッタとは反対側にて前記1/4波長板と相対向するように配置され、前記1/4波長板を介して照射された光の一部を計測光として透過して被計測物に照射しかつ残りの光を参照光として反射するハーフミラー(参照面)と、
前記偏光ビームスプリッタの前記第1面に対し前記第1光を入射することにより前記第2面から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記偏光ビームスプリッタの前記第2面に対し前記第2光を入射することにより前記第1面から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
上記手段5によれば、フィゾー干渉計の原理に基づいた比較的簡素な構成で、上記手段1,2に係る構成を実現することができる。
手段6.前記第1照射手段から出射される第1光の少なくとも一部を前記第1入出力部に向け入射させると共に、前記第1入出力部から出射される前記第2光に係る出力光の少なくとも一部を前記第2撮像手段に向け入射させる第1導光手段と、
前記第2照射手段から出射される第2光の少なくとも一部を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第1光に係る出力光の少なくとも一部を前記第1撮像手段に向け入射させる第2導光手段とを備えたことを特徴とする手段2乃至5のいずれかに記載の三次元計測装置。
前記第2照射手段から出射される第2光の少なくとも一部を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第1光に係る出力光の少なくとも一部を前記第1撮像手段に向け入射させる第2導光手段とを備えたことを特徴とする手段2乃至5のいずれかに記載の三次元計測装置。
上記手段6によれば、比較的簡素な構成で、上記手段2等に係る構成を実現することができる。
例えば「前記第1照射手段から出射される第1光の一部を透過させかつ残りを反射させ、該第1光の透過光又は反射光を前記第1入出力部に向け入射させると共に、前記第1入出力部から出射される第2光に係る出力光の一部を透過させかつ残りを反射させ、該第2光の透過光又は反射光を前記第2撮像手段に向け入射させる第1無偏光ビームスプリッタ(ハーフミラー等)と、
前記第2照射手段から出射される第2光の一部を透過させかつ残りを反射させ、該第2光の透過光又は反射光を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第1光に係る出力光の一部を透過させかつ残りを反射させ、該第1光の透過光又は反射光を前記第1撮像手段に向け入射させる第2無偏光ビームスプリッタ(ハーフミラー等)とを備えた」構成が一例に挙げられる。
前記第2照射手段から出射される第2光の一部を透過させかつ残りを反射させ、該第2光の透過光又は反射光を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第1光に係る出力光の一部を透過させかつ残りを反射させ、該第1光の透過光又は反射光を前記第1撮像手段に向け入射させる第2無偏光ビームスプリッタ(ハーフミラー等)とを備えた」構成が一例に挙げられる。
手段7.前記第1照射手段と前記第1導光手段との間に、前記第1照射手段から出射される一方向の光のみを透過しかつ逆方向の光を遮断する第1光アイソレータを備えると共に、
前記第2照射手段と前記第2導光手段との間に、前記第2照射手段から出射される一方向の光のみを透過しかつ逆方向の光を遮断する第2光アイソレータを備えたことを特徴とする手段6に記載の三次元計測装置。
前記第2照射手段と前記第2導光手段との間に、前記第2照射手段から出射される一方向の光のみを透過しかつ逆方向の光を遮断する第2光アイソレータを備えたことを特徴とする手段6に記載の三次元計測装置。
上記手段6の導光手段として、例えば無偏光ビームスプリッタを備えた場合には、該無偏光ビームスプリッタが、入出力部から出射された光の一部を透過させかつ残りを反射させ、該光の透過光又は反射光の一方を撮像手段に向け入射させる際に、該撮像手段に入射しない他方の光が照射手段に向かうこととなる。仮に、かかる光が照射手段に入射した場合には、照射手段が損傷したり動作が不安定となるおそれがある。
これに対し、本手段7によれば、光アイソレータを備えることにより、照射手段の損傷や不安定化などを防止することができる。
手段8.入射する所定の光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を計測光として被計測物に照射しかつ他方の偏光を参照光として参照面に照射すると共に、これらを再び合成して出射可能な所定の光学系(干渉光学系)と、
前記所定の光学系に対し入射させる、第1波長を有する第1光を出射可能な第1照射手段と、
前記所定の光学系に対し入射させる、前記第1波長とは異なる第2波長を有する第2光を出射可能な第2照射手段と、
前記所定の光学系から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記所定の光学系から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
前記第1光と前記第2光をそれぞれ前記所定の光学系の異なる位置に入射させ、
前記所定の光学系が、
前記第1光を、第1の偏光方向を有する第1偏光(例えばP偏光)よりなる前記参照光と、第2の偏光方向を有する第2偏光(例えばS偏光)よりなる前記計測光とに分割し、
前記第2光を、前記第2偏光よりなる前記参照光と、前記第1偏光よりなる前記計測光とに分割し、
これらを再び合成した前記第1光に係る出力光と前記第2光に係る出力光をそれぞれ前記所定の光学系の異なる位置から出射させることを特徴とする三次元計測装置。
前記所定の光学系に対し入射させる、第1波長を有する第1光を出射可能な第1照射手段と、
前記所定の光学系に対し入射させる、前記第1波長とは異なる第2波長を有する第2光を出射可能な第2照射手段と、
前記所定の光学系から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記所定の光学系から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
前記第1光と前記第2光をそれぞれ前記所定の光学系の異なる位置に入射させ、
前記所定の光学系が、
前記第1光を、第1の偏光方向を有する第1偏光(例えばP偏光)よりなる前記参照光と、第2の偏光方向を有する第2偏光(例えばS偏光)よりなる前記計測光とに分割し、
前記第2光を、前記第2偏光よりなる前記参照光と、前記第1偏光よりなる前記計測光とに分割し、
これらを再び合成した前記第1光に係る出力光と前記第2光に係る出力光をそれぞれ前記所定の光学系の異なる位置から出射させることを特徴とする三次元計測装置。
上記手段8によれば、第1光と第2光をそれぞれ所定の光学系の異なる位置から入射させることにより、第1光に係る参照光及び計測光と、第2光に係る参照光及び計測光がそれぞれ異なる偏光成分(P偏光又はS偏光)に分割されるため、所定の光学系に入射した第1光と第2光は互いに干渉することなく、別々に所定の光学系から出射されることとなる。
従って、上記手段8によれば、マイケルソン干渉計やマッハ・ツェンダー干渉計の原理に基づいた比較的簡素な構成で、上記手段1に係る構成を実現することができる。
手段9.前記第1光に係る前記参照光と前記計測光との間に相対的な位相差を付与する第1位相シフト手段と、
前記第2光に係る前記参照光と前記計測光との間に相対的な位相差を付与する第2位相シフト手段とを備え、
前記画像処理手段は、
前記第1位相シフト手段により複数通り(例えば3又は4通り)に位相シフトされた前記第1光に係る出力光を前記第1撮像手段により撮像した複数通りの干渉縞画像を基に、位相シフト法により前記被計測物の形状計測を行い、当該計測値を第1計測値として取得可能な第1計測値取得手段と、
前記第2位相シフト手段により複数通り(例えば3又は4通り)に位相シフトされた前記第2光に係る出力光を前記第2撮像手段により撮像した複数通りの干渉縞画像を基に、位相シフト法により前記被計測物の形状計測を行い、当該計測値を第2計測値として取得可能な第2計測値取得手段と、
前記第1計測値及び前記第2計測値から特定される高さ情報を、前記被計測物の高さ情報として取得可能な高さ情報取得手段とを備えた手段1乃至8のいずれかに記載の三次元計測装置。
前記第2光に係る前記参照光と前記計測光との間に相対的な位相差を付与する第2位相シフト手段とを備え、
前記画像処理手段は、
前記第1位相シフト手段により複数通り(例えば3又は4通り)に位相シフトされた前記第1光に係る出力光を前記第1撮像手段により撮像した複数通りの干渉縞画像を基に、位相シフト法により前記被計測物の形状計測を行い、当該計測値を第1計測値として取得可能な第1計測値取得手段と、
前記第2位相シフト手段により複数通り(例えば3又は4通り)に位相シフトされた前記第2光に係る出力光を前記第2撮像手段により撮像した複数通りの干渉縞画像を基に、位相シフト法により前記被計測物の形状計測を行い、当該計測値を第2計測値として取得可能な第2計測値取得手段と、
前記第1計測値及び前記第2計測値から特定される高さ情報を、前記被計測物の高さ情報として取得可能な高さ情報取得手段とを備えた手段1乃至8のいずれかに記載の三次元計測装置。
位相シフト法を利用した従来の三次元計測装置においては、位相を4段階又は3段階に変化させ、これらに対応する4通り又は3通りの干渉縞画像を撮像する必要があった。そのため、計測レンジ向上のため、波長差が小さい2種類の光を用いる場合には、それぞれ異なるタイミングで4回ずつ(又は3回ずつ)、計8回分(又は計6回分)の撮像時間が必要であった。
これに対し、本手段9によれば、第1光に係る出力光の撮像と、第2光に係る出力光の撮像を同時に行うことができるため、計4回分(又は計3回分)の撮像時間で、2種類の光に係る計8通り(又は6通り)の干渉縞画像を取得することができる。結果として、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
手段10.前記第1光に係る出力光を複数の光に分割する第1の分光手段と、
前記第1位相シフト手段として、前記第1の分光手段により分割された複数の分割光のうち、少なくとも前記位相シフト法による計測に必要な数(例えば3つ又は4つ)の分割光に対してそれぞれ異なる位相差を付与する第1のフィルタ手段と、
前記第2光に係る出力光を複数の光に分割する第2の分光手段と、
前記第2位相シフト手段として、前記第2の分光手段により分割された複数の分割光のうち、少なくとも前記位相シフト法による計測に必要な数(例えば3つ又は4つ)の分割光に対してそれぞれ異なる位相差を付与する第2のフィルタ手段とを備え、
前記第1撮像手段は、少なくとも前記第1のフィルタ手段を透過する前記複数の分割光を同時に撮像可能に構成され、
前記第2撮像手段は、少なくとも前記第2のフィルタ手段を透過する前記複数の分割光を同時に撮像可能に構成されていることを特徴とする手段9に記載の三次元計測装置。
前記第1位相シフト手段として、前記第1の分光手段により分割された複数の分割光のうち、少なくとも前記位相シフト法による計測に必要な数(例えば3つ又は4つ)の分割光に対してそれぞれ異なる位相差を付与する第1のフィルタ手段と、
前記第2光に係る出力光を複数の光に分割する第2の分光手段と、
前記第2位相シフト手段として、前記第2の分光手段により分割された複数の分割光のうち、少なくとも前記位相シフト法による計測に必要な数(例えば3つ又は4つ)の分割光に対してそれぞれ異なる位相差を付与する第2のフィルタ手段とを備え、
前記第1撮像手段は、少なくとも前記第1のフィルタ手段を透過する前記複数の分割光を同時に撮像可能に構成され、
前記第2撮像手段は、少なくとも前記第2のフィルタ手段を透過する前記複数の分割光を同時に撮像可能に構成されていることを特徴とする手段9に記載の三次元計測装置。
上記位相シフト手段としては、例えば参照面を光軸に沿って移動させることにより物理的に光路長を変化させる構成が考えられる。しかしながら、かかる構成では、計測に必要なすべての干渉縞画像を取得するまでに一定時間を要するため、計測時間が長くなるばかりでなく、その空気の揺らぎや振動等の影響を受けるため、計測精度が低下するおそれがある。
この点、本手段10によれば、計測に必要なすべての干渉縞画像を同時に取得することができる。つまり、2種類の光に係る計8通り(又は6通り)の干渉縞画像を同時に取得することができる。結果として、計測精度の向上を図ると共に、総体的な撮像時間を大幅に短縮でき、計測効率の飛躍的な向上を図ることができる。
尚、「分光手段」としては、例えば「入射される光を、それぞれ光路長が等しくかつ進行方向に直交する平面において光路がマトリクス状に並ぶ4つの光に分割する分光手段」などが挙げられる。例えば、下記の手段11のような構成が一例に挙げられる。
手段11.前記分光手段(第1の分光手段及び第2の分光手段)は、
第1の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第1の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第1分岐手段(第1のハーフミラー)を有する第1の光学部材(第1のケスタープリズム)と、
前記第1の平面と直交する第2の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第2の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第2分岐手段(第2のハーフミラー)を有する第2の光学部材(第2のケスタープリズム)とを備え、
前記第1の光学部材の第3面と前記第2の光学部材の第1面とを相対向するように配置することにより、
前記第1の光学部材の前記第1面に対し(垂直に)入射される光を前記第1分岐手段にて2方向に分岐させ、このうち前記第1分岐手段にて反射した分割光を前記第1面にて前記第3面側に向け反射させ、前記第1分岐手段を透過した分割光を前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する2つの分割光として出射させ、
前記第1の光学部材の第3面から出射された2つの分割光を前記第2の光学部材の第1面に対し(垂直に)入射させ、該2つの分割光をそれぞれ前記第2分岐手段にて2方向に分岐させ、このうち前記第2分岐手段にて反射した2つの分割光をそれぞれ前記第1面にて前記第3面側に向け反射させ、前記第2分岐手段を透過した2つの分割光をそれぞれ前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する4つの分割光として出射させることを特徴とする手段10に記載の三次元計測装置。
第1の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第1の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第1分岐手段(第1のハーフミラー)を有する第1の光学部材(第1のケスタープリズム)と、
前記第1の平面と直交する第2の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第2の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第2分岐手段(第2のハーフミラー)を有する第2の光学部材(第2のケスタープリズム)とを備え、
前記第1の光学部材の第3面と前記第2の光学部材の第1面とを相対向するように配置することにより、
前記第1の光学部材の前記第1面に対し(垂直に)入射される光を前記第1分岐手段にて2方向に分岐させ、このうち前記第1分岐手段にて反射した分割光を前記第1面にて前記第3面側に向け反射させ、前記第1分岐手段を透過した分割光を前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する2つの分割光として出射させ、
前記第1の光学部材の第3面から出射された2つの分割光を前記第2の光学部材の第1面に対し(垂直に)入射させ、該2つの分割光をそれぞれ前記第2分岐手段にて2方向に分岐させ、このうち前記第2分岐手段にて反射した2つの分割光をそれぞれ前記第1面にて前記第3面側に向け反射させ、前記第2分岐手段を透過した2つの分割光をそれぞれ前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する4つの分割光として出射させることを特徴とする手段10に記載の三次元計測装置。
上記手段11によれば、所定の光学系(干渉光学系)から出射される光を2行2列のマトリクス状に並ぶ4つの光に分光することができる。これにより、例えば下記の手段12のように複数の分割光を単一の撮像素子により同時撮像する構成において、撮像素子の撮像領域をマトリクス状に4等分した分割領域を、4つの分割光にそれぞれ割り当てることができるため、撮像素子の撮像領域を有効活用することができる。例えばアスペクト比が4:3の一般的な撮像素子の撮像領域を4等分した場合、各分割領域のアスペクト比は同じく4:3となるため、各分割領域内のより広範囲を利用可能となる。ひいては、さらなる計測精度の向上を図ることができる。
また、仮に回折格子を分光手段として用いた場合には分解能が低下するおそれがあるが、本手段では、1つの光を平行する2つの光に分割し、さらに該2つの光をそれぞれ平行する2つの光に分割することにより、平行する4つの光に分光する構成となっているため、分解能の低下抑制を図ることができる。
さらに、1つの光を平行する2つの光に分割する手段として、上記構成を有する光学部材(ケスタープリズム)を採用しているため、分割された2つの光の光路長が光学的に等しくなる。結果として、分割された2つの光の光路長を調整する光路調整手段を備える必要がなく、部品点数の削減を図ると共に、構成の簡素化や装置の小型化等を図ることができる。
また、第1の光学部材の第3面と第2の光学部材の第1面とが当接していれば、分光手段に対し1つの光が入射されてから、4つの光が出射されるまでの間、光が光学部材内のみを進み、空気中に出ない構成となるため、空気の揺らぎ等による影響を低減することができる。
手段12.前記第1撮像手段は、少なくとも前記第1のフィルタ手段を透過する前記複数の分割光を同時に撮像可能な単一の撮像素子を備え、
前記第2撮像手段は、少なくとも前記第2のフィルタ手段を透過する前記複数の分割光を同時に撮像可能な単一の撮像素子を備えていることを特徴とする手段10又は11に記載の三次元計測装置。
前記第2撮像手段は、少なくとも前記第2のフィルタ手段を透過する前記複数の分割光を同時に撮像可能な単一の撮像素子を備えていることを特徴とする手段10又は11に記載の三次元計測装置。
尚、複数の分割光を同時に撮像する場合には、撮像手段を構成する複数のカメラ(撮像素子)により各分割光をそれぞれ撮像する構成も考えられるが、かかる構成では、各カメラ(撮像素子)の違い等により、計測誤差が生じるおそれがある。
この点、本手段によれば、複数の分割光を単一の撮像素子により同時撮像する構成となっているため、計測誤差等の発生を抑制し、計測精度の向上を図ることができる。
手段13.前記被計測物が、プリント基板に印刷されたクリーム半田、又は、ウエハ基板に形成された半田バンプであることを特徴とする手段1乃至12のいずれかに記載の三次元計測装置。
上記手段13によれば、プリント基板に印刷されたクリーム半田、又は、ウエハ基板に形成された半田バンプの高さ計測等を行うことができる。ひいては、クリーム半田又は半田バンプの検査において、その計測値に基づいてクリーム半田又は半田バンプの良否判定を行うことができる。従って、かかる検査において、上記各手段の作用効果が奏されることとなり、精度よく良否判定を行うことができる。結果として、半田印刷検査装置又は半田バンプ検査装置における検査精度の向上を図ることができる。
〔第1実施形態〕
以下、三次元計測装置の一実施形態について図面を参照しつつ説明する。図1は本実施形態に係る三次元計測装置1の概略構成を示す模式図であり、図2は三次元計測装置1の電気的構成を示すブロック図である。以下、便宜上、図1の紙面前後方向を「X軸方向」とし、紙面上下方向を「Y軸方向」とし、紙面左右方向を「Z軸方向」として説明する。
以下、三次元計測装置の一実施形態について図面を参照しつつ説明する。図1は本実施形態に係る三次元計測装置1の概略構成を示す模式図であり、図2は三次元計測装置1の電気的構成を示すブロック図である。以下、便宜上、図1の紙面前後方向を「X軸方向」とし、紙面上下方向を「Y軸方向」とし、紙面左右方向を「Z軸方向」として説明する。
三次元計測装置1は、マイケルソン干渉計の原理に基づき構成されたものであり、特定波長の光を出力可能な2つの投光系2A,2B(第1投光系2A,第2投光系2B)と、該投光系2A,2Bからそれぞれ出射される光が入射される干渉光学系3と、該干渉光学系3から出射される光を撮像可能な2つの撮像系4A,4B(第1撮像系4A,第2撮像系4B)と、投光系2A,2Bや干渉光学系3、撮像系4A,4Bなどに係る各種制御や画像処理、演算処理等を行う制御装置5とを備えている。
ここで、「制御装置5」が本実施形態における「画像処理手段」を構成し、「干渉光学系3」が本実施形態における「所定の光学系(特定光学系)」を構成する。尚、本願に係る各実施形態においては、光の干渉を生じさせること(干渉縞画像を撮像すること)を目的として、入射する所定の光を2つの光(計測光及び参照光)に分割し、該2つの光に光路差を生じさせた上で、再度合成して出力する光学系を「干渉光学系」という。つまり、2つの光を内部で干渉させた上で干渉光として出力する光学系のみならず、2つの光を内部で干渉させることなく、単に合成光として出力する光学系についても「干渉光学系」と称している。従って、本実施形態にて後述するように、「干渉光学系」から、2つの光(計測光及び参照光)が干渉することなく合成光として出力される場合には、少なくとも撮像される前段階(例えば撮像系の内部など)において、所定の干渉手段を介して干渉光に変換することとなる。
まず、2つの投光系2A,2B(第1投光系2A,第2投光系2B)の構成について詳しく説明する。第1投光系2Aは、第1発光部11A、第1光アイソレータ12A、第1無偏光ビームスプリッタ13Aなどを備えている。ここで「第1発光部11A」が本実施形態における「第1照射手段」を構成する。
図示は省略するが、第1発光部11Aは、特定波長λ1の直線偏光を出力可能なレーザ光源や、該レーザ光源から出力される直線偏光を拡大し平行光として出射するビームエキスパンダ、強度調整を行うための偏光板、偏光方向を調整するための1/2波長板などを備えている。
かかる構成の下、本実施形態では、第1発光部11Aから、X軸方向及びY軸方向に対し45°傾斜した方向を偏光方向とする波長λ1(例えばλ1=1500nm)の直線偏光がZ軸方向左向きに出射される。ここで「波長λ1」が本実施形態における「第1波長」に相当する。以降、第1発光部11Aから出射される波長λ1の光を「第1光」という。
第1光アイソレータ12Aは、一方向(本実施形態ではZ軸方向左向き)に進む光のみを透過し逆方向(本実施形態ではZ軸方向右向き)の光を遮断する光学素子である。これにより、第1発光部11Aから出射された第1光のみを透過することとなり、戻り光による第1発光部11Aの損傷や不安定化などを防止することができる。
第1無偏光ビームスプリッタ13Aは、直角プリズム(直角二等辺三角形を底面とする三角柱状のプリズム。以下同様。)を貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面13Ahには例えば金属膜などのコーティングが施されている。「第1無偏光ビームスプリッタ13A」が本実施形態における「第1導光手段」を構成する。
以下同様であるが、無偏光ビームスプリッタは、偏光状態も含め、入射光を所定の比率で透過光と反射光とに分割するものである。本実施形態では、1:1の分割比を持った所謂ハーフミラーを採用している。つまり、透過光のP偏光成分及びS偏光成分、並びに、反射光のP偏光成分及びS偏光成分が全て同じ比率で分割されると共に、透過光と反射光の各偏光状態は入射光の偏光状態と同じとなる。
尚、本実施形態では、図1の紙面に平行な方向(Y軸方向又はZ軸方向)を偏光方向とする直線偏光をP偏光(P偏光成分)といい、図1の紙面に垂直なX軸方向を偏光方向とする直線偏光をS偏光(S偏光成分)という。「P偏光」が「第1の偏光方向を有する第1偏光」に相当し、「S偏光」が「第2の偏光方向を有する第2偏光」に相当する。
また、第1無偏光ビームスプリッタ13Aは、その接合面13Ahを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第1無偏光ビームスプリッタ13Aの接合面13AhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第1光アイソレータ12Aを介して、第1発光部11AからZ軸方向左向きに入射する第1光の一部(半分)をZ軸方向左向きに透過させ、残り(半分)をY軸方向下向きに反射させるように配置されている。
第2投光系2Bは、上記第1投光系2Aと同様、第2発光部11B、第2光アイソレータ12B、第2無偏光ビームスプリッタ13Bなどを備えている。ここで「第2発光部11B」が本実施形態における「第2照射手段」を構成する。
第2発光部11Bは、上記第1発光部11Aと同様、特定波長λ2の直線偏光を出力可能なレーザ光源や、該レーザ光源から出力される直線偏光を拡大し平行光として出射するビームエキスパンダ、強度調整を行うための偏光板、偏光方向を調整するための1/2波長板などを備えている。
かかる構成の下、本実施形態では、第2発光部11Bから、X軸方向及びZ軸方向に対し45°傾斜した方向を偏光方向とする波長λ2(例えばλ2=1503nm)の直線偏光がY軸方向上向きに出射される。ここで「波長λ2」が本実施形態における「第2波長」に相当する。以降、第2発光部11Bから出射される波長λ2の光を「第2光」という。
第2光アイソレータ12Bは、第1光アイソレータ12Aと同様、一方向(本実施形態ではY軸方向上向き)に進む光のみを透過し逆方向(本実施形態ではY軸方向下向き)の光を遮断する光学素子である。これにより、第2発光部11Bから出射された第2光のみを透過することとなり、戻り光による第2発光部11Bの損傷や不安定化などを防止することができる。
第2無偏光ビームスプリッタ13Bは、第1無偏光ビームスプリッタ13Aと同様、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面13Bhには例えば金属膜などのコーティングが施されている。「第2無偏光ビームスプリッタ13B」が本実施形態における「第2導光手段」を構成する。
また、第2無偏光ビームスプリッタ13Bは、その接合面13Bhを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第2無偏光ビームスプリッタ13Bの接合面13BhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第2光アイソレータ12Bを介して、第2発光部11BからY軸方向上向きに入射する第2光の一部(半分)をY軸方向上向きに透過させ、残り(半分)をZ軸方向右向きに反射させるように配置されている。
次に干渉光学系3の構成について詳しく説明する。干渉光学系3は、偏光ビームスプリッタ(PBS)20、1/4波長板21,22、参照面23、設置部24などを備えている。
偏光ビームスプリッタ20は、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面(境界面)20hには例えば誘電体多層膜などのコーティングが施されている。
偏光ビームスプリッタ20は、入射される直線偏光を偏光方向が互いに直交する2つの偏光成分(P偏光成分とS偏光成分)に分割するものである。本実施形態における偏光ビームスプリッタ20は、P偏光成分を透過させ、S偏光成分を反射する構成となっている。また、本実施形態における偏光ビームスプリッタ20は、入射する所定の光を2つの光に分割する「分割手段」を構成すると共に、これらを再び合成する「合成手段」を構成することとなる。
偏光ビームスプリッタ20は、その接合面20hを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、偏光ビームスプリッタ20の接合面20hがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
より詳しくは、上記第1無偏光ビームスプリッタ13AからY軸方向下向きに反射した第1光が入射する偏光ビームスプリッタ20の第1面(Y軸方向上側面)20a、並びに、該第1面20aと相対向する第3面(Y軸方向下側面)20cがY軸方向と直交するように配置されている。「偏光ビームスプリッタ20の第1面20a」が本実施形態における「第1入出力部」に相当する。
一方、第1面20aと接合面20hを挟んで隣り合う面であって、上記第2無偏光ビームスプリッタ13BからZ軸方向右向きに反射した第2光が入射する偏光ビームスプリッタ20の第2面(Z軸方向左側面)20b、並びに、該第2面20bと相対向する第4面(Z軸方向右側面)20dがZ軸方向と直交するように配置されている。「偏光ビームスプリッタ20の第2面20b」が本実施形態における「第2入出力部」に相当する。
また、偏光ビームスプリッタ20の第3面20cとY軸方向に相対向するように1/4波長板21が配置され、該1/4波長板21とY軸方向に相対向するように参照面23が配置されている。
1/4波長板21は、本実施形態における「第1の1/4波長板」に相当するものであり、直線偏光を円偏光に変換しかつ円偏光を直線偏光に変換する機能を有する。つまり、偏光ビームスプリッタ20の第3面20cから出射される直線偏光(参照光)は1/4波長板21を介して円偏光に変換された上で参照面23に対し照射される。また、参照面23で反射した参照光は、再度、1/4波長板21を介して円偏光から直線偏光に変換された上で偏光ビームスプリッタ20の第3面20cに入射する。
一方、偏光ビームスプリッタ20の第4面20dとZ軸方向に相対向するように1/4波長板22が配置され、該1/4波長板22とZ軸方向に相対向するように設置部24が配置されている。
1/4波長板22は、本実施形態における「第2の1/4波長板」に相当するものであり、直線偏光を円偏光に変換しかつ円偏光を直線偏光に変換する機能を有する。つまり、偏光ビームスプリッタ20の第4面20dから出射される直線偏光(計測光)は1/4波長板22を介して円偏光に変換された上で設置部24に置かれた被計測物としてのワークWに対し照射される。また、ワークWにて反射した計測光は、再度、1/4波長板22を介して円偏光から直線偏光に変換された上で偏光ビームスプリッタ20の第4面20dに入射する。
次に2つの撮像系4A,4B(第1撮像系4A,第2撮像系4B)の構成について詳しく説明する。第1撮像系4Aは、1/4波長板31A、第1偏光板32A、第1撮像手段を構成する第1カメラ33Aなどを備えている。
1/4波長板31Aは、第2無偏光ビームスプリッタ13BをZ軸方向左向きに透過してきた直線偏光(第1光の参照光成分及び計測光成分)をそれぞれ円偏光に変換するためのものである。
第1偏光板32Aは、1/4波長板31Aにより円偏光に変換された第1光の各成分を選択的に透過させるものである。これにより、回転方向の異なる第1光の参照光成分と計測光成分とを特定の位相について干渉させることができる。「第1偏光板32A」が本実施形態における「第1位相シフト手段」及び「干渉手段」を構成する。
本実施形態に係る第1偏光板32Aは、Z軸方向を軸心として回転可能に構成されると共に、その透過軸方向が45°ずつ変化するように制御される。具体的には、透過軸方向がY軸方向に対し「0°」、「45°」、「90°」、「135°」となるように変化する。
これにより、第1偏光板32Aを透過する第1光の参照光成分及び計測光成分を4通りの位相で干渉させることができる。つまり、位相が90°ずつ異なる干渉光を生成することができる。具体的には、位相が「0°」の干渉光、位相が「90°」の干渉光、位相が「180°」の干渉光、位相が「270°」の干渉光を生成することができる。
第1カメラ33Aは、レンズや撮像素子等を備えてなる公知のものである。本実施形態では、第1カメラ33Aの撮像素子として、CCDエリアセンサを採用している。勿論、撮像素子は、これに限定されるものではなく、例えばCMOSエリアセンサ等を採用してもよい。
第1カメラ33Aによって撮像された画像データは、第1カメラ33A内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置5(画像データ記憶装置54)に入力されるようになっている。
具体的には、第1光に係る位相「0°」の干渉縞画像、位相「90°」の干渉縞画像、位相「180°」の干渉縞画像、位相「270°」の干渉縞画像が第1カメラ33Aにより撮像されることとなる。
第2撮像系4Bは、第1撮像系4Aと同様、1/4波長板31B、第2偏光板32B、第2撮像手段を構成する第2カメラ33Bなどを備えている。
1/4波長板31Bは、第1無偏光ビームスプリッタ13AをY軸方向上向きに透過してきた直線偏光(第2光の参照光成分及び計測光成分)をそれぞれ円偏光に変換するためのものである。
第2偏光板32Bは、第1偏光板32Aと同様、1/4波長板31Bにより円偏光に変換された第2光の各成分を選択的に透過させるものである。これにより、回転方向の異なる第2光の参照光成分と計測光成分とを特定の位相について干渉させることができる。「第2偏光板32B」が本実施形態における「第2位相シフト手段」及び「干渉手段」を構成する。
本実施形態に係る第2偏光板32Bは、Y軸方向を軸心として回転可能に構成されると共に、その透過軸方向が45°ずつ変化するように制御される。具体的には、透過軸方向がX軸方向に対し「0°」、「45°」、「90°」、「135°」となるように変化する。
これにより、第2偏光板32Bを透過する第2光の参照光成分及び計測光成分を4通りの位相で干渉させることができる。つまり、位相が90°ずつ異なる干渉光を生成することができる。具体的には、位相が「0°」の干渉光、位相が「90°」の干渉光、位相が「180°」の干渉光、位相が「270°」の干渉光を生成することができる。
第2カメラ33Bは、第1カメラ33Aと同様、レンズや撮像素子等を備えてなる公知のものである。本実施形態では、第1カメラ33Aと同様、第2カメラ33Bの撮像素子として、CCDエリアセンサを採用している。勿論、撮像素子は、これに限定されるものではなく、例えばCMOSエリアセンサ等を採用してもよい。
第1カメラ33Aと同様、第2カメラ33Bによって撮像された画像データは、第2カメラ33B内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置5(画像データ記憶装置54)に入力されるようになっている。
具体的には、第2光に係る位相「0°」の干渉縞画像、位相「90°」の干渉縞画像、位相「180°」の干渉縞画像、位相「270°」の干渉縞画像が第2カメラ33Bにより撮像されることとなる。
ここで制御装置5の電気的構成について説明する。図2に示すように、制御装置5は、三次元計測装置1全体の制御を司るCPU及び入出力インターフェース51、キーボードやマウス、あるいは、タッチパネルで構成される「入力手段」としての入力装置52、液晶画面などの表示画面を有する「表示手段」としての表示装置53、カメラ33A,33Bにより撮像された画像データ等を順次記憶するための画像データ記憶装置54、各種演算結果を記憶するための演算結果記憶装置55、各種情報を予め記憶しておく設定データ記憶装置56を備えている。なお、これら各装置52~56は、CPU及び入出力インターフェース51に対し電気的に接続されている。
次に三次元計測装置1の作用について説明する。尚、後述するように、本実施形態における第1光及び第2光の照射は同時に行われるものであり、第1光の光路と第2光の光路が一部で重なることとなるが、ここでは、より分かりやすくするため、第1光及び第2光の光路ごとに異なる図面を用いて個別に説明する。
まず第1光の光路について図3を参照して説明する。図3に示すように、波長λ1の第1光(偏光方向がX軸方向及びY軸方向に対し45°傾斜した直線偏光)が第1発光部11AからZ軸方向左向きに出射される。
第1発光部11Aから出射された第1光は、第1光アイソレータ12Aを通過し、第1無偏光ビームスプリッタ13Aに入射する。第1無偏光ビームスプリッタ13Aに入射した第1光の一部はZ軸方向左向きに透過し、残りはY軸方向下向きに反射する。
このうち、Y軸方向下向きに反射した第1光(偏光方向がX軸方向及びZ軸方向に対し45°傾斜した直線偏光)は、偏光ビームスプリッタ20の第1面20aに入射する。一方、Z軸方向左向きに透過した第1光は、何らかの光学系等に入射することなく、捨て光となる。
ここで、捨て光となる光を、必要に応じて波長計測あるいは光のパワー計測に利用すれば、光源を安定化させ如いては計測精度の向上を図ることができる(以下同様)。
偏光ビームスプリッタ20の第1面20aからY軸方向下向きに入射した第1光は、そのP偏光成分がY軸方向下向きに透過して第3面20cから参照光として出射される一方、そのS偏光成分がZ軸方向右向きに反射して第4面20dから計測光として出射される。
偏光ビームスプリッタ20の第3面20cから出射した第1光に係る参照光(P偏光)は、1/4波長板21を通過することにより右回りの円偏光に変換された後、参照面23で反射する。ここで、光の進行方向に対する回転方向は維持される。その後、第1光に係る参照光は、再度、1/4波長板21を通過することで、右回りの円偏光からS偏光に変換された上で偏光ビームスプリッタ20の第3面20cに再入射する。
一方、偏光ビームスプリッタ20の第4面20dから出射した第1光に係る計測光(S偏光)は、1/4波長板22を通過することにより左回りの円偏光に変換された後、ワークWで反射する。ここで、光の進行方向に対する回転方向は維持される。その後、第1光に係る計測光は、再度、1/4波長板22を通過することで、左回りの円偏光からP偏光に変換された上で偏光ビームスプリッタ20の第4面20dに再入射する。
ここで、偏光ビームスプリッタ20の第3面20cから再入射した第1光に係る参照光(S偏光)が接合面20hにてZ軸方向左向きに反射する一方、第4面20dから再入射した第1光に係る計測光(P偏光)は接合面20hをZ軸方向左向きに透過する。そして、第1光に係る参照光及び計測光が合成された状態の合成光が出力光として偏光ビームスプリッタ20の第2面20bから出射される。
偏光ビームスプリッタ20の第2面20bから出射された第1光に係る合成光(参照光及び計測光)は、第2無偏光ビームスプリッタ13Bに入射する。第2無偏光ビームスプリッタ13Bに対しZ軸方向左向きに入射した第1光に係る合成光は、その一部がZ軸方向左向きに透過し、残りがY軸方向下向きに反射する。このうち、Z軸方向左向きに透過した合成光(参照光及び計測光)は第1撮像系4Aに入射することとなる。一方、Y軸方向下向きに反射した合成光は、第2光アイソレータ12Bによりその進行を遮断され、捨て光となる。
第1撮像系4Aに入射した第1光に係る合成光(参照光及び計測光)は、まず1/4波長板31Aにより、その参照光成分(S偏光成分)が左回りの円偏光に変換され、その計測光成分(P偏光成分)が右回りの円偏光に変換される。ここで、左回りの円偏光と右回りの円偏光は回転方向が異なるので干渉しない。
第1光に係る合成光は、続いて第1偏光板32Aを通過することにより、その参照光成分と計測光成分とが第1偏光板32Aの角度に応じた位相で干渉する。そして、かかる第1光に係る干渉光が第1カメラ33Aにより撮像される。
次に第2光の光路について図4を参照して説明する。図4に示すように、波長λ2の第2光(偏光方向がX軸方向及びZ軸方向に対し45°傾斜した直線偏光)が第2発光部11BからY軸方向上向きに出射される。
第2発光部11Bから出射された第2光は、第2光アイソレータ12Bを通過し、第2無偏光ビームスプリッタ13Bに入射する。第2無偏光ビームスプリッタ13Bに入射した第2光の一部はY軸方向上向きに透過し、残りはZ軸方向右向きに反射する。
このうち、Z軸方向右向きに反射した第2光(偏光方向がX軸方向及びY軸方向に対し45°傾斜した直線偏光)は、偏光ビームスプリッタ20の第2面20bに入射する。一方、Y軸方向上向きに透過した第2光は、何らかの光学系等に入射することなく、捨て光となる。
偏光ビームスプリッタ20の第2面20bからZ軸方向右向きに入射した第2光は、そのS偏光成分がY軸方向下向きに反射して第3面20cから参照光として出射される一方、そのP偏光成分がZ軸方向右向きに透過して第4面20dから計測光として出射される。
偏光ビームスプリッタ20の第3面20cから出射した第2光に係る参照光(S偏光)は、1/4波長板21を通過することにより左回りの円偏光に変換された後、参照面23で反射する。ここで、光の進行方向に対する回転方向は維持される。その後、第2光に係る参照光は、再度、1/4波長板21を通過することで、左回りの円偏光からP偏光に変換された上で偏光ビームスプリッタ20の第3面20cに再入射する。
一方、偏光ビームスプリッタ20の第4面20dから出射した第2光に係る計測光(P偏光)は、1/4波長板22を通過することにより右回りの円偏光に変換された後、ワークWで反射する。ここで、光の進行方向に対する回転方向は維持される。その後、第2光に係る計測光は、再度、1/4波長板22を通過することで、右回りの円偏光からS偏光に変換された上で偏光ビームスプリッタ20の第4面20dに再入射する。
ここで、偏光ビームスプリッタ20の第3面20cから再入射した第2光に係る参照光(P偏光)は接合面20hをY軸方向上向きに透過する一方、第4面20dから再入射した第2光に係る計測光(S偏光)は接合面20hにてY軸方向上向きに反射する。そして、第2光に係る参照光及び計測光が合成された状態の合成光が出力光として偏光ビームスプリッタ20の第1面20aから出射される。
偏光ビームスプリッタ20の第1面20aから出射された第2光に係る合成光(参照光及び計測光)は、第1無偏光ビームスプリッタ13Aに入射する。第1無偏光ビームスプリッタ13Aに対しY軸方向上向きに入射した第2光に係る合成光は、その一部がY軸方向上向きに透過し、残りがZ軸方向右向きに反射する。このうち、Y軸方向上向きに透過した合成光(参照光及び計測光)は第2撮像系4Bに入射することとなる。一方、Z軸方向右向きに反射した合成光は、第1光アイソレータ12Aによりその進行を遮断され、捨て光となる。
第2撮像系4Bに入射した第2光に係る合成光(参照光及び計測光)は、まず1/4波長板31Bにより、その参照光成分(P偏光成分)が右回りの円偏光に変換され、その計測光成分(S偏光成分)が左回りの円偏光に変換される。ここで、左回りの円偏光と右回りの円偏光は回転方向が異なるので干渉しない。
第2光に係る合成光は、続いて第2偏光板32Bを通過することにより、その参照光成分と計測光成分とが第2偏光板32Bの角度に応じた位相で干渉する。そして、かかる第2光に係る干渉光が第2カメラ33Bにより撮像される。
次に、制御装置5によって実行される形状計測処理の手順について詳しく説明する。まずは、設置部24へワークWを設置した後、第1撮像系4Aの第1偏光板32Aの透過軸方向を所定の基準位置(例えば「0°」)に設定すると共に、第2撮像系4Bの第2偏光板32Bの透過軸方向を所定の基準位置(例えば「0°」)に設定する。
続いて、第1投光系2Aから第1光を照射すると同時に、第2投光系2Bから第2光を照射する。その結果、干渉光学系3の偏光ビームスプリッタ20の第2面20bから第1光に係る合成光(参照光及び計測光)が出射されると同時に、偏光ビームスプリッタ20の第1面20aから第2光に係る合成光(参照光及び計測光)が出射される。
そして、偏光ビームスプリッタ20の第2面20bから出射された第1光に係る合成光を第1撮像系4Aにより撮像すると同時に、偏光ビームスプリッタ20の第1面20aから出射された第2光に係る合成光を第2撮像系4Bにより撮像する。
尚、ここでは第1偏光板32A及び第2偏光板32Bの透過軸方向がそれぞれ「0°」に設定されているため、第1カメラ33Aでは第1光に係る位相「0°」の干渉縞画像が撮像され、第2カメラ33Bでは第2光に係る位相「0°」の干渉縞画像が撮像されることとなる。
そして、各カメラ33A,33Bからそれぞれ撮像された画像データが制御装置5へ出力される。制御装置5は、入力した画像データを画像データ記憶装置54に記憶する。
次に制御装置5は、第1撮像系4Aの第1偏光板32A、及び、第2撮像系4Bの第2偏光板32Bの切替処理を行う。具体的には、第1偏光板32A及び第2偏光板32Bをそれぞれ透過軸方向が「45°」となる位置まで回動変位させる。
該切替処理が終了すると、制御装置5は、上記一連の1回目の撮像処理と同様の2回目の撮像処理を行う。つまり、制御装置5は、第1投光系2Aから第1光を照射すると同時に、第2投光系2Bから第2光を照射し、偏光ビームスプリッタ20の第2面20bから出射された第1光に係る合成光を第1撮像系4Aにより撮像すると同時に、偏光ビームスプリッタ20の第1面20aから出射された第2光に係る合成光を第2撮像系4Bにより撮像する。これにより、第1光に係る位相「90°」の干渉縞画像が取得されると共に、第2光に係る位相「90°」の干渉縞画像が撮像されることとなる。
以降、上記1回目及び2回目の撮像処理と同様の撮像処理が2回繰り返し行われる。つまり、第1偏光板32A及び第2偏光板32Bの透過軸方向を「90°」に設定した状態で3回目の撮像処理を行い、第1光に係る位相「180°」の干渉縞画像を取得すると共に、第2光に係る位相「180°」の干渉縞画像を取得する。
その後、第1偏光板32A及び第2偏光板32Bの透過軸方向を「135°」に設定した状態で4回目の撮像処理を行い、第1光に係る位相「270°」の干渉縞画像を取得すると共に、第2光に係る位相「270°」の干渉縞画像を取得する。
このように、4回の撮像処理を行うことにより、三次元計測を行う上で必要な全ての画像データ(第1光に係る4通りの干渉縞画像データ、及び、第2光に係る4通りの干渉縞画像データからなる計8つの干渉縞画像データ)を取得することができる。
そして、制御装置5は、画像データ記憶装置54に記憶された第1光に係る4通りの干渉縞画像データ、及び、第2光に係る4通りの干渉縞画像データを基に、位相シフト法によりワークWの表面形状を計測する。つまり、ワークWの表面上の各位置における高さ情報を算出する。
まずは一般的な位相シフト法による高さ計測の原理について説明する。第1光又は第2光に係る4通りの干渉縞画像データの同一座標位置(x,y)における干渉縞強度、すなわち輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)は、下記[数1]の関係式で表すことができる。
ここで、Δφ(x,y)は、座標(x,y)における計測光と参照光との光路差に基づく位相差を表している。また、A(x,y)は干渉光の振幅、B(x,y)はバイアスを表している。但し、参照光は均一であるため、これを基準として見ると、Δφ(x,y)は「計測光の位相」を表し、A(x,y)は「計測光の振幅」を表すこととなる。
従って、計測光の位相Δφ(x,y)は、上記[数1]の関係式を基に、下記[数2]の関係式で求めることができる。
また、計測光の振幅A(x,y)は、上記[数1]の関係式を基に、下記[数3]の関係式で求めることができる。
次に、上記位相Δφ(x,y)と振幅A(x,y)から、下記[数4]の関係式を基に撮像素子面上における複素振幅Eo(x,y)を算出する。ここで、iは虚数単位を表している。
続いて、複素振幅Eo(x,y)を基に、ワークW面上の座標(ξ,η)における複素振幅Eo(ξ,η)を算出する。
まずは、下記[数5]に示すように、上記複素振幅Eo(x,y)をフレネル変換する。ここで、λは波長を表す。
これをEo(ξ,η)について解くと、下記[数6]のようになる。
さらに、得られた複素振幅Eo(ξ,η)から、下記[数7]の関係式を基に、計測光の位相φ(ξ,η)と、計測光の振幅A(ξ,η)を算出する。
計測光の位相φ(ξ,η)は、下記[数8]の関係式により求めることができる。
計測光の振幅A(ξ,η)は、下記[数9]の関係式により求めることができる。
その後、位相-高さ変換処理を行い、ワークWの表面の凹凸形状を3次元的に示す高さ情報z(ξ,η)を算出する。
高さ情報z(ξ,η)は、下記[数10]の関係式により算出することができる。
次に2波長位相シフト法の原理について説明する。波長の異なる2種類の光を用いることで計測レンジを広げることができる。
波長の異なる2種類の光(波長λ1,λ2)を用いて計測を行った場合には、その合成波長λ0の光で計測を行ったことと同じこととなる。そして、その計測レンジはλ0/2に拡大することとなる。合成波長λ0は、下記式(M1)で表すことができる。
λ0=(λ1×λ2)/(λ2-λ1) ・・・(M1)
但し、λ2>λ1とする。
但し、λ2>λ1とする。
ここで、例えばλ1=1500nm、λ2=1503nmとすると、上記式(M1)から、λ0=751.500μmとなり、計測レンジはλ0/2=375.750μmとなる。
2波長位相シフト法を行う際には、まず波長λ1の第1光に係る4通りの干渉縞画像データの輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)を基に(上記[数1]参照)、ワークW面上の座標(ξ,η)における第1光に係る計測光の位相φ1(ξ,η)を算出する(上記[数8]参照)。ここで求められる位相φ1(ξ,η)が本実施形態における「第1計測値」に相当し、これを算出する処理機能により「第1計測値取得手段」が構成される。
尚、第1光に係る計測の下、座標(ξ,η)における高さ情報z(ξ,η)は、下記式(M2)で表すことができる。
z(ξ,η)=d1(ξ,η)/2
=[λ1×φ1(ξ,η)/4π]+[m1(ξ,η)×λ1/2] ・・・(M2)
但し、d1(ξ,η)は、第1光に係る計測光と参照光との光路差を表し、m1(ξ,η)は、第1光に係る縞次数を表す。
=[λ1×φ1(ξ,η)/4π]+[m1(ξ,η)×λ1/2] ・・・(M2)
但し、d1(ξ,η)は、第1光に係る計測光と参照光との光路差を表し、m1(ξ,η)は、第1光に係る縞次数を表す。
よって、位相φ1(ξ,η)は下記式(M2´)で表すことができる。
φ1(ξ,η)=(4π/λ1)×z(ξ,η)-2πm1(ξ,η) ・・・(M2´)
同様に、波長λ2の第2光に係る4通りの干渉縞画像データの輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)を基に(上記[数1]参照)、ワークW面上の座標(ξ,η)における第2光に係る計測光の位相φ2(ξ,η)を算出する(上記[数8]参照)。ここで求められる位相φ2(ξ,η)が本実施形態における「第2計測値」に相当し、これを算出する処理機能により「第2計測値取得手段」が構成される。
同様に、波長λ2の第2光に係る4通りの干渉縞画像データの輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)を基に(上記[数1]参照)、ワークW面上の座標(ξ,η)における第2光に係る計測光の位相φ2(ξ,η)を算出する(上記[数8]参照)。ここで求められる位相φ2(ξ,η)が本実施形態における「第2計測値」に相当し、これを算出する処理機能により「第2計測値取得手段」が構成される。
尚、第2光に係る計測の下、座標(ξ,η)における高さ情報z(ξ,η)は、下記式(M3)で表すことができる。
z(ξ,η)=d2(ξ,η)/2
=[λ2×φ2(ξ,η)/4π]+[m2(ξ,η)×λ2/2] ・・・(M3)
但し、d2(ξ,η)は、第2光に係る計測光と参照光との光路差を表し、m2(ξ,η)は、第2光に係る縞次数を表す。
=[λ2×φ2(ξ,η)/4π]+[m2(ξ,η)×λ2/2] ・・・(M3)
但し、d2(ξ,η)は、第2光に係る計測光と参照光との光路差を表し、m2(ξ,η)は、第2光に係る縞次数を表す。
よって、位相φ2(ξ,η)は下記式(M3´)で表すことができる。
φ2(ξ,η)=(4π/λ2)×z(ξ,η)-2πm2(ξ,η) ・・・(M3´)
続いて、波長λ1の第1光に係る縞次数m1(ξ,η)、又は、波長λ2の第2光に係る縞次数m2(ξ,η)を決定する。縞次数m1,m2は、2種類の光(波長λ1,λ2)の光路差Δd及び波長差Δλを基に求めることができる。ここで光路差Δd及び波長差Δλは、それぞれ下記式(M4),(M5)のように表すことができる。
続いて、波長λ1の第1光に係る縞次数m1(ξ,η)、又は、波長λ2の第2光に係る縞次数m2(ξ,η)を決定する。縞次数m1,m2は、2種類の光(波長λ1,λ2)の光路差Δd及び波長差Δλを基に求めることができる。ここで光路差Δd及び波長差Δλは、それぞれ下記式(M4),(M5)のように表すことができる。
Δd=(λ1×φ1-λ2×φ2)/2π ・・・(M4)
Δλ=λ2-λ1 ・・・(M5)
但し、λ2>λ1とする。
Δλ=λ2-λ1 ・・・(M5)
但し、λ2>λ1とする。
尚、2波長の合成波長λ0の計測レンジ内において、縞次数m1,m2の関係は、以下の3つの場合に分けられ、各場合ごとに縞次数m1(ξ,η)、m2(ξ,η)を決定する計算式が異なる。ここで、例えば縞次数m1(ξ,η)を決定する場合について説明する。勿論、縞次数m2(ξ,η)についても、同様の手法により求めることができる。
例えば「φ1-φ2<-π」の場合には「m1-m2=-1」となり、かかる場合、m1は下記式(M6)のように表すことができる。
m1=(Δd/Δλ)-(λ2/Δλ)
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)-λ2/(λ2-λ1)・・・(M6)
「-π<φ1-φ2<π」の場合には「m1-m2=0」となり、かかる場合、m1は下記式(M7)のように表すことができる。
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)-λ2/(λ2-λ1)・・・(M6)
「-π<φ1-φ2<π」の場合には「m1-m2=0」となり、かかる場合、m1は下記式(M7)のように表すことができる。
m1=Δd/Δλ
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)・・・(M7)
「φ1-φ2>π」の場合には「m1-m2=+1」となり、かかる場合、m1は下記式(M8)のように表すことができる。
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)・・・(M7)
「φ1-φ2>π」の場合には「m1-m2=+1」となり、かかる場合、m1は下記式(M8)のように表すことができる。
m1=(Δd/Δλ)+(λ2/Δλ)
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)+λ2/(λ2-λ1)・・・(M8)
そして、このようにして得られた縞次数m1(ξ,η)又はm2(ξ,η)を基に、上記式(M2),(M3)から高さ情報z(ξ,η)を得ることができる。かかる処理機能により「高さ情報取得手段」が構成される。そして、このように求められたワークWの計測結果(高さ情報)は、制御装置5の演算結果記憶装置55に格納される。
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)+λ2/(λ2-λ1)・・・(M8)
そして、このようにして得られた縞次数m1(ξ,η)又はm2(ξ,η)を基に、上記式(M2),(M3)から高さ情報z(ξ,η)を得ることができる。かかる処理機能により「高さ情報取得手段」が構成される。そして、このように求められたワークWの計測結果(高さ情報)は、制御装置5の演算結果記憶装置55に格納される。
以上詳述したように、本実施形態では、波長λ1の第1光を偏光ビームスプリッタ20の第1面20aから入射させると共に、波長λ2の第2光を偏光ビームスプリッタ20の第2面20bから入射させることにより、第1光に係る参照光及び計測光と、第2光に係る参照光及び計測光がそれぞれ異なる偏光成分(P偏光又はS偏光)に分割されるため、偏光ビームスプリッタ20に入射した第1光と第2光は互いに干渉することなく、別々に偏光ビームスプリッタ20から出射されることとなる。つまり、偏光ビームスプリッタ20から出射される光を所定の分離手段を用いて第1光と第2光とに分離する必要がない。
その結果、第1光及び第2光として波長の近い2種類の光を用いることができ、三次元計測に係る計測レンジをより広げることができる。加えて、第1光に係る出力光の撮像と、第2光に係る出力光の撮像を同時に行うことができるため、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
さらに、本実施形態では、基準となる参照面23を1つ備えた1つの干渉光学系3に対し2種類の光を用いる構成となっているため、参照光と計測光とに光路差を生じさせる光路区間が2種類の光で同一となる。このため、2つの干渉光学系(干渉計モジュール)を用いる構成に比べて、計測精度が向上すると共に、2つの干渉光学系の光路長を正確に一致させる困難な作業を行う必要もない。
〔第2実施形態〕
以下、第2実施形態について図面を参照しつつ説明する。尚、第1実施形態と同一構成部分については、同一符号を付し、その詳細な説明を省略する。第2実施形態では、第1撮像系4A及び第2撮像系4Bに関連する構成が第1実施形態と異なる。
以下、第2実施形態について図面を参照しつつ説明する。尚、第1実施形態と同一構成部分については、同一符号を付し、その詳細な説明を省略する。第2実施形態では、第1撮像系4A及び第2撮像系4Bに関連する構成が第1実施形態と異なる。
本実施形態に係る第1撮像系4Aは、1/4波長板31Aを透過した第1光に係る合成光(参照光成分及び計測光成分)を4つの光に分割する分光手段としての分光光学系125を備えると共に、第1偏光板32Aに代えて、前記分光光学系125から出射された4つの光の所定成分を選択的に透過させるフィルタ手段としてのフィルタユニット126とを備え、該フィルタユニット126を透過した4つの光を第1カメラ33Aにより同時撮像する構成となっている。
第1撮像系4Aと同様、第2撮像系4Bは、1/4波長板31Bを透過した第2光に係る合成光(参照光成分及び計測光成分)を4つの光に分割する分光手段としての分光光学系125を備えると共に、第2偏光板32Bに代えて、前記分光光学系125から出射された4つの光の所定成分を選択的に透過させるフィルタ手段としてのフィルタユニット126とを備え、該フィルタユニット126を透過した4つの光を第2カメラ33Bにより同時撮像する構成となっている。
尚、本実施形態における第1撮像系4A及び第2撮像系4Bに用いられる分光光学系125及びフィルタユニット126は同一構成であるため、以下、第1撮像系4Aを例にして図5を参照しつつ説明する。
本実施形態では、第1カメラ33Aの光軸方向が、第1撮像系4Aに入射する第1光に係る合成光L0の入射方向(進行方向)と平行するように設定されている。つまり、本実施形態では、第1光に係る合成光L0の入射方向であるZ軸方向に沿って設定されている。
分光光学系125は、無偏光型の4つの光学部材(プリズム)を組み合わせて一体とした1つの光学部材として構成されている。より詳しくは、分光光学系125は、合成光L0の進行方向(Z軸方向)に沿って、干渉光学系3に近い側より順に第1のプリズム131、第2のプリズム132、第3のプリズム133、第4のプリズム134が配置された構成となっている。
尚、上記各プリズム131~134は、それぞれ空気よりも屈折率の高い所定の屈折率を有する光学材料(例えばガラスやアクリル等)により形成されている。従って、各プリズム131~134内を進む光の光路長は、空気中を進む光の光路長よりも光学的に長くなる。ここで、例えば4つのプリズム131~134をすべて同じ材料により形成してもよいし、少なくとも1つを異なる材料により形成してもよい。後述する分光光学系125の機能を満たすものであれば、各プリズム131~134の材質はそれぞれ任意に選択可能である。
第1のプリズム131は、正面視(Z-Y平面)平行四辺形状をなし、X軸方向に沿って延びる四角柱形状のプリズムである。以下、「第1のプリズム131」を「第1菱形プリズム131」という。
第1菱形プリズム131は、X軸方向に沿った長方形状の4面のうち、干渉光学系3側となるZ軸方向右側に位置する面131a(以下、「入射面131a」という)及びZ軸方向左側に位置する面131b(以下、「出射面131b」という)がそれぞれZ軸方向と直交するように配置され、Y軸方向下側に位置する面131c及びY軸方向上側に位置する面131dがそれぞれZ軸方向及びY軸方向に対し45°傾斜するように配置されている。
この2つの傾斜した面131c,131dのうち、Y軸方向下側に位置する面131cには無偏光のハーフミラー141が設けられ、Y軸方向上側に位置する面131dには内側に向け全反射する無偏光の全反射ミラー142が設けられている。以下、ハーフミラー141が設けられた面131cを「分岐面131c」といい、全反射ミラー142が設けられた面131dを「反射面131d」という。
尚、図5においては、便宜上、分岐面131c(ハーフミラー141)及び反射面131d(全反射ミラー142)にあたる部位に散点模様を付して示している。「ハーフミラー141」が本実施形態における「第1分岐手段」を構成し、「全反射ミラー142」が「第1反射手段」を構成する。つまり、「第1菱形プリズム131」が本実施形態における「第1光分割手段」を構成する。
第2のプリズム132は、正面視(Z-Y平面)台形状をなし、X軸方向に沿って延びる四角柱形状のプリズムである。以下、「第2のプリズム132」を「第1台形プリズム132」という。
第1台形プリズム132は、X軸方向に沿った長方形状の4面のうち、Y軸方向上側に位置する面132a及びY軸方向下側に位置する面132bがそれぞれY軸方向と直交するように配置され、Z軸方向右側に位置する面132cがZ軸方向及びY軸方向に対し45°傾斜するように配置され、Z軸方向左側に位置する面132dがZ軸方向と直交するように配置されている。
このうち、Z軸方向右側に位置する面132cは、第1菱形プリズム131の分岐面131c(ハーフミラー141)に密着している。以下、Z軸方向右側に位置する面132cを「入射面132c」といい、Z軸方向左側に位置する面132dを「出射面132d」という。「第1台形プリズム132」が本実施形態における「第1光路調整手段」を構成する。
第3のプリズム133は、平面視(X-Z平面)平行四辺形状をなし、Y軸方向に沿って延びる四角柱形状のプリズムである。以下、「第3のプリズム133」を「第2菱形プリズム133」という。
第2菱形プリズム133は、Y軸方向に沿った長方形状の4面のうち、Z軸方向右側に位置する面133a及びZ軸方向左側に位置する面133bがそれぞれZ軸方向と直交するように配置され、X軸方向手前側に位置する面133c及びX軸方向奥側に位置する面133dがそれぞれZ軸方向及びX軸方向に対し45°傾斜するように配置されている。
この2つの傾斜した面133c,133dのうち、X軸方向手前側に位置する面133cには無偏光のハーフミラー143が設けられ、X軸方向奥側に位置する面133dには内側に向け全反射する無偏光の全反射ミラー144が設けられている。以下、ハーフミラー143が設けられた面133cを「分岐面133c」といい、全反射ミラー144が設けられた面133dを「反射面133d」という。
尚、図5においては、便宜上、分岐面133c(ハーフミラー143)及び反射面133d(全反射ミラー144)にあたる部位に散点模様を付して示している。「ハーフミラー143」が本実施形態における「第2分岐手段」及び「第3分岐手段」を構成し、「全反射ミラー144」が「第2反射手段」及び「第3反射手段」を構成する。つまり、「第2菱形プリズム133」が本実施形態における「第2光分割手段」及び「第3光分割手段」を構成する。
第2菱形プリズム133のZ軸方向右側に位置する面133aのうち、Y軸方向下側半分は、第1台形プリズム132の出射面132dに密着し、Y軸方向上側半分は、第1菱形プリズム131の出射面131bと相対向した状態となっている。以下、Z軸方向右側に位置する面133aを「入射面133a」といい、Z軸方向左側に位置する面133bを「出射面133b」という。
第4のプリズム134は、平面視(X-Z平面)台形状をなし、Y軸方向に沿って延びる四角柱形状のプリズムである。以下、「第4のプリズム134」を「第2台形プリズム134」という。
第2台形プリズム134は、Y軸方向に沿った長方形状の4面のうち、X軸方向奥側に位置する面134a及びX軸方向手前側に位置する面134bがそれぞれX軸方向と直交するように配置され、Z軸方向右側に位置する面134cがZ軸方向及びX軸方向に対し45°傾斜するように配置され、Z軸方向左側に位置する面134dがZ軸方向と直交するように配置されている。
このうち、Z軸方向右側に位置する面134cは、第2菱形プリズム133の分岐面133c(ハーフミラー143)に密着している。以下、Z軸方向右側に位置する面134cを「入射面134c」といい、Z軸方向左側に位置する面134dを「出射面134d」という。「第2台形プリズム134」が本実施形態における「第2光路調整手段」及び「第3光路調整手段」を構成する。
第2菱形プリズム133の出射面133b及び第2台形プリズム134の出射面134dは、それぞれフィルタユニット126と相対向するように配置されている。
ここで、分光光学系125の作用について図5を参照しつつ詳しく説明する。1/4波長板31Aを透過した合成光L0は、第1菱形プリズム131の入射面131aに入射する。
入射面131aから入射した合成光L0は、分岐面131c(ハーフミラー141)にて2方向に分岐する。詳しくは、Y軸方向上側に向け反射する分光LA1と、Z軸方向に沿ってハーフミラー141を透過する分光LA2とに分岐する。
このうち、ハーフミラー141で反射した分光LA1は、第1菱形プリズム131内をY軸方向に沿って進み、反射面131d(全反射ミラー142)にてZ軸方向左側に向け反射し、出射面131bから出射する。出射面131aから出射した分光LA1は、Z軸方向に沿って空気中を進み、第2菱形プリズム133の入射面133aに入射する。
一方、ハーフミラー141を透過した分光LA2は、第1台形プリズム132の入射面132cに入射し、その内部をZ軸方向に沿って進み、出射面132dから出射する。出射面132dから出射した分光LA2は、第2菱形プリズム133の入射面133aに入射する。
本実施形態では、第1菱形プリズム131の分岐面131cから、第2菱形プリズム133の入射面133aに至るまでの両分光LA1,LA2の光路長が光学的に同一となるように、第1菱形プリズム131及び第1台形プリズム132の屈折率及び長さ(Z軸方向又はY軸方向の長さ)が任意に設定されている。
第2菱形プリズム133の入射面133aに入射した分光LA1,LA2は、分岐面133c(ハーフミラー143)にてそれぞれ2方向に分岐する。詳しくは、一方の分光LA1は、Z軸方向に沿ってハーフミラー143を透過する分光LB1と、X軸方向奥側に向け反射する分光LB2とに分岐する。他方の分光LA2は、Z軸方向に沿ってハーフミラー143を透過する分光LB3と、X軸方向奥側に向け反射する分光LB4とに分岐する。
このうち、ハーフミラー143で反射した分光LB2,LB4は、それぞれ第2菱形プリズム133内をX軸方向に沿って進み、反射面133d(全反射ミラー144)にてZ軸方向左側に向け反射し、出射面133bから出射する。出射面133aから出射した分光LB2,LB4は、それぞれZ軸方向に沿って空気中を進み、フィルタユニット126に入射する。
一方、ハーフミラー143を透過した分光LB1,LB3は、第2台形プリズム134の入射面134cに入射し、その内部をZ軸方向に沿って進み、出射面134dから出射する。出射面134dから出射した分光LB1,LB3は、それぞれフィルタユニット126に入射する。
本実施形態では、第2菱形プリズム133の分岐面133cから、フィルタユニット126に至るまでの4つの分光LB1~LB4の光路長が光学的に同一となるように、第2菱形プリズム133及び第2台形プリズム134の屈折率及び長さ(Z軸方向又はX軸方向の長さ)が任意に設定されている。
フィルタユニット126は、X-Y平面視で同一矩形状をなす4つの偏光板126a,126b,126c,126dがX-Y平面に沿って2行2列のマトリクス状に配置されてなる(図6参照)。図6は、フィルタユニット126の概略構成を模式的に示す平面図である。
4つの偏光板126a~126dは、Y軸方向に対する透過軸方向が45°ずつ異なる偏光板である。より詳しくは、透過軸方向が0°の第1偏光板126a、透過軸方向が45°の第2偏光板126b、透過軸方向が90°の第3偏光板126c、透過軸方向が135°の第4偏光板126dにより構成されている。
そして、分光光学系125から出射された4つの分光LB1~LB4がそれぞれ各偏光板126a~126dに入射するように配置されている。詳しくは、分光LB1が第1偏光板126aに入射し、分光LB2が第2偏光板126bに入射し、分光LB3が第3偏光板126cに入射し、分光LB4が第4偏光板126dに入射する。
これにより、フィルタユニット126を透過した4つの分光LB1~LB4は、それぞれ位相を90°ずつ異ならせた干渉光となる。詳しくは、第1偏光板126aを透過した分光LB1は位相「0°」の干渉光となり、第2偏光板126bを透過した分光LB2は位相「90°」の干渉光となり、第3偏光板126cを透過した分光LB3は位相「180°」の干渉光となり、第4偏光板126dを透過した分光LB4は位相「270°」の干渉光となる。従って、フィルタユニット126は本実施形態における干渉手段を構成する。
本実施形態に係る第1カメラ33Aの撮像素子33Aiは、その撮像領域が、フィルタユニット126(偏光板126a~126d)に対応して、4つの撮像エリアH1,H2,H3,H4に区分けされている。詳しくは、X-Y平面視で同一矩形状をなす4つの撮像エリアH1,H2,H3,H4がX-Y平面に沿って2行2列のマトリクス状に並ぶように区分けされている(図7参照)。図7は、撮像素子33Aiの撮像領域の概略構成を模式的に示す平面図である。
これにより、第1偏光板126aを透過した分光LB1が第1撮像エリアH1にて撮像され、第2偏光板126bを透過した分光LB2が第2撮像エリアH2にて撮像され、第3偏光板126cを透過した分光LB3が第3撮像エリアH3にて撮像され、第4偏光板126dを透過した分光LB4が第4撮像エリアH4にて撮像されることとなる。
つまり、第1撮像エリアH1にて位相「0°」の干渉縞画像が撮像され、第2撮像エリアH2にて位相「90°」の干渉縞画像が撮像され、第3撮像エリアH3にて位相「180°」の干渉縞画像が撮像され、第4撮像エリアH4にて位相「270°」の干渉縞画像が撮像されることとなる。
さらに、本実施形態に係る画像データ記憶装置54は、第1カメラ33Aの撮像素子33Aiの第1撮像エリアH1にて撮像された干渉縞画像データを記憶する第1画像メモリと、第2撮像エリアH2にて撮像された干渉縞画像データを記憶する第2画像メモリと、第3撮像エリアH3にて撮像された干渉縞画像データを記憶する第3画像メモリと、第4撮像エリアH4にて撮像された干渉縞画像データを記憶する第4画像メモリとを備えている。
次に、本実施形態において実行される形状計測処理の手順について詳しく説明する。干渉光学系3から第1撮像系4Aに対し第1光に係る出力光である合成光L0が入射されると、該合成光L0は、1/4波長板31Aを経て、分光光学系125により4つの分光LB1~LB4に分割される。
これら4つの分光LB1,LB2,LB3,LB4は、それぞれ第1偏光板126a,第2偏光板126b,第3偏光板126c,第4偏光板126dを介して、第1カメラ33A(撮像素子33Ai)により同時撮像される。
第1カメラ33Aは、撮像素子33Aiの撮像エリアH1~H4にて同時撮像された4通りの干渉縞画像(4つの分光LB1~LB4)を1つの画像データとして制御装置4へ出力する。
制御装置4は、入力した画像データを4通りの干渉縞画像データ(撮像素子33Aiの撮像エリアH1~H4に対応する範囲ごと)に分割して、画像データ記憶装置54内の第1~第4画像メモリにそれぞれ記憶する。
そして、制御装置5は、第1カメラ33Aに係る第1~第4画像メモリに記憶された第1光に係る4通りの干渉縞画像データ、及び、第2カメラ33Bに係る第1~第4画像メモリに記憶された第2光に係る4通りの干渉縞画像データを基に、上記第1実施形態と同様に、位相シフト法によりワークWの表面形状を計測する。つまり、ワークWの表面上の各位置における高さ情報を算出する。
以上詳述したように、本実施形態では、上記第1実施形態の作用効果に加え、干渉光学系3から入射される合成光L0をマトリクス状に並ぶ4つの光LB1~LB4に分光すると共に、該4つの光LB1~LB4をフィルタユニット126(4つの偏光板126a~126d)を介して単一の撮像素子により同時に撮像する構成となっている。そして、各カメラ33A,33Bによりそれぞれ撮像された4通りの干渉縞画像を基に位相シフト法によりワークWの形状計測を行う。結果として、計測精度の向上や、計測時間の短縮、装置の大型化抑制等を図ることができる。
加えて、本実施形態によれば、撮像素子の撮像領域をマトリクス状に4等分した撮像エリアH1~H4を、4つの光LB1~LB4にそれぞれ割り当てることができるため、例えば3分光方式に比べ、撮像素子の撮像領域を有効活用することができる。ひいては、さらなる計測精度の向上を図ることができる。例えばアスペクト比が4:3の一般的な撮像素子の撮像領域を4等分した場合、各分割領域のアスペクト比は同じく4:3となるため、各分割領域内のより広範囲を利用可能となる。ひいては、さらなる計測精度の向上を図ることができる。
尚、仮に回折格子を分光手段として用いた場合には分解能が低下するおそれがあるが、本実施形態では、1つの光L0を平行する2つの光LA1,LA2に分割し、さらに該2つの光LA1,LA2をそれぞれ平行する2つの光に分割することにより、平行する4つの光LB1,LB2,LB3,LB4に分光する構成の分光光学系125を採用しているため、分解能の低下抑制を図ることができる。
さらに、本実施形態における分光光学系125は、菱形プリズム131,133を直進して通り抜ける一方の光と、クランク状に折れ曲がって通り抜ける他方の光との光路長を調整する(光学的に同一とする)光路調整手段として、直進して通り抜ける一方の光の光路上に第1台形プリズム132,134を配置するといった比較的簡単な構成となっており、構成の簡素化を図ることができる。
また、本実施形態では、フィルタユニット126が、透過軸方向が0°の第1偏光板126a、透過軸方向が45°の第2偏光板126b、透過軸方向が90°の第3偏光板126c、透過軸方向が135°の第4偏光板126dにより構成されており、一つの撮像素子による一回の撮像で、位相が90°ずつ異なる4通りの干渉縞画像を取得することができる。結果として、3通りの干渉縞画像を基に位相シフト法により形状計測を行う場合に比べて、より精度の高い計測を行うことができる。
〔第3実施形態〕
以下、第3実施形態について図面を参照しつつ説明する。第3実施形態では、干渉光学系に関連する構成が第1実施形態と異なる。尚、第1実施形態と同一構成部分については、同一符号を付し、その詳細な説明を省略する。
以下、第3実施形態について図面を参照しつつ説明する。第3実施形態では、干渉光学系に関連する構成が第1実施形態と異なる。尚、第1実施形態と同一構成部分については、同一符号を付し、その詳細な説明を省略する。
図8は本実施形態に係る三次元計測装置200の概略構成を示す模式図である。以下、便宜上、図8の紙面前後方向を「X軸方向」とし、紙面上下方向を「Y軸方向」とし、紙面左右方向を「Z軸方向」として説明する。
三次元計測装置200は、マッハ・ツェンダー干渉計の原理に基づき構成されたものであり、特定波長の光を出力可能な2つの投光系2A,2B(第1投光系2A,第2投光系2B)と、該投光系2A,2Bからそれぞれ出射される光が入射される干渉光学系203と、該干渉光学系203から出射される光を撮像可能な2つの撮像系4A,4B(第1撮像系4A,第2撮像系4B)と、投光系2A,2Bや干渉光学系203、撮像系4A,4Bなどに係る各種制御や画像処理、演算処理等を行う制御装置5とを備えている。「制御装置5」が本実施形態における「画像処理手段」を構成し、「干渉光学系203」が本実施形態における「所定の光学系」を構成する。
まず、2つの投光系2A,2B(第1投光系2A,第2投光系2B)の構成について詳しく説明する。第1投光系2Aは、第1発光部11A、第1光アイソレータ12A、第1無偏光ビームスプリッタ13Aなどを備えている。ここで「第1発光部11A」が本実施形態における「第1照射手段」を構成し、「第1無偏光ビームスプリッタ13A」が本実施形態における「第1導光手段」を構成する。
かかる構成の下、本実施形態では、第1発光部11Aから、X軸方向及びZ軸方向に対し45°傾斜した方向を偏光方向とする波長λ1(例えばλ1=1500nm)の直線偏光がY軸方向上向きに出射される。ここで「波長λ1」が本実施形態における「第1波長」に相当する。以降、第1発光部11Aから出射される波長λ1の光を「第1光」という。
第1光アイソレータ12Aは、一方向(本実施形態ではY軸方向上向き)に進む光のみを透過し逆方向(本実施形態ではY軸方向下向き)の光を遮断する光学素子である。これにより、第1発光部11Aから出射された第1光のみを透過することとなり、戻り光による第1発光部11Aの損傷や不安定化などを防止することができる。
本実施形態では、図8の紙面に平行な方向(Y軸方向又はZ軸方向)を偏光方向とする直線偏光をP偏光(P偏光成分)といい、図8の紙面に垂直なX軸方向を偏光方向とする直線偏光をS偏光(S偏光成分)という。「P偏光」が「第1の偏光方向を有する第1偏光」に相当し、「S偏光」が「第2の偏光方向を有する第2偏光」に相当する。
第1無偏光ビームスプリッタ13Aは、その接合面13Ahを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第1無偏光ビームスプリッタ13Aの接合面13AhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第1光アイソレータ12Aを介して、第1発光部11AからY軸方向上向きに入射する第1光の一部(半分)をY軸方向上向きに透過させ、残り(半分)をZ軸方向右向きに反射させるように配置されている。
第2投光系2Bは、第2発光部11B、第2光アイソレータ12B、第2無偏光ビームスプリッタ13Bなどを備えている。ここで「第2発光部11B」が本実施形態における「第2照射手段」を構成し、「第2無偏光ビームスプリッタ13B」が本実施形態における「第2導光手段」を構成する。
かかる構成の下、本実施形態では、第2発光部11Bから、X軸方向及びZ軸方向に対し45°傾斜した方向を偏光方向とする波長λ2(例えばλ2=1503nm)の直線偏光がY軸方向下向きに出射される。ここで「波長λ2」が本実施形態における「第2波長」に相当する。以降、第2発光部11Bから出射される波長λ2の光を「第2光」という。
第2光アイソレータ12Bは、一方向(本実施形態ではY軸方向下向き)に進む光のみを透過し逆方向(本実施形態ではY軸方向上向き)の光を遮断する光学素子である。これにより、第2発光部11Bから出射された第2光のみを透過することとなり、戻り光による第2発光部11Bの損傷や不安定化などを防止することができる。
第2無偏光ビームスプリッタ13Bは、その接合面13Bhを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第2無偏光ビームスプリッタ13Bの接合面13BhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第2光アイソレータ12Bを介して、第2発光部11BからY軸方向下向きに入射する第2光の一部(半分)をY軸方向下向きに透過させ、残り(半分)をZ軸方向左向きに反射させるように配置されている。
次に干渉光学系203の構成について詳しく説明する。干渉光学系203は、2つの偏光ビームスプリッタ211,212(第1偏光ビームスプリッタ211,第2偏光ビームスプリッタ212)、4つの1/4波長板215,216,217,218(第1の1/4波長板215,第2の1/4波長板216,第3の1/4波長板217,第4の1/4波長板218)、2つの全反射ミラー221,222(第1全反射ミラー221,第2全反射ミラー222)、設置部224などを備えている。
偏光ビームスプリッタ211,212は、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面(境界面)211h,212hには例えば誘電体多層膜などのコーティングが施されている。
偏光ビームスプリッタ211,212は、入射される直線偏光を偏光方向が互いに直交する2つの偏光成分(P偏光成分とS偏光成分)に分割するものである。本実施形態における偏光ビームスプリッタ211,212は、P偏光成分を透過させ、S偏光成分を反射する構成となっている。また、本実施形態における偏光ビームスプリッタ211,212は、入射する所定の光を2つの光に分割する「分割手段」を構成すると共に、入射する所定の2つの光を合成する「合成手段」を構成することとなる。
第1偏光ビームスプリッタ211は、その接合面211hを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第1偏光ビームスプリッタ211の接合面211hがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
より詳しくは、上記第1無偏光ビームスプリッタ13AからZ軸方向右向きに反射した第1光が入射する第1偏光ビームスプリッタ211の第1面(Z軸方向左側面)211a、並びに、該第1面211aと相対向する第3面(Z軸方向右側面)211cがZ軸方向と直交するように配置されている。「第1偏光ビームスプリッタ211(第1面211a)」が本実施形態における「第1入出力部」に相当する。
一方、第1面211aと接合面211hを挟んで隣り合う面である第1偏光ビームスプリッタ211の第2面(Y軸方向上側面)211b、並びに、該第2面211bと相対向する第4面(Y軸方向下側面)211dがY軸方向と直交するように配置されている。
第2偏光ビームスプリッタ212は、その接合面212hを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第2偏光ビームスプリッタ212の接合面212hがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
より詳しくは、上記第2無偏光ビームスプリッタ13BからZ軸方向左向きに反射した第2光が入射する第2偏光ビームスプリッタ212の第1面(Z軸方向右側面)212a、並びに、該第1面212aと相対向する第3面(Z軸方向左側面)212cがZ軸方向と直交するように配置されている。「第2偏光ビームスプリッタ212(第1面212a)」が本実施形態における「第2入出力部」に相当する。
一方、第1面212aと接合面212hを挟んで隣り合う面である第2偏光ビームスプリッタ212の第2面(Y軸方向下側面)212b、並びに、該第2面212bと相対向する第4面(Y軸方向上側面)212dがY軸方向と直交するように配置されている。
1/4波長板215,216,217,218は、直線偏光を円偏光に変換しかつ円偏光を直線偏光に変換する機能を有する光学部材である。
第1の1/4波長板215は、第1偏光ビームスプリッタ211の第3面211cとZ軸方向に相対向するように配置されている。つまり、第1の1/4波長板215は、第1偏光ビームスプリッタ211の第3面211cから出射される直線偏光を円偏光に変換してZ軸方向右向きに出射する。また、第1の1/4波長板215は、Z軸方向左向きに入射する円偏光を直線偏光に変換した上で、第1偏光ビームスプリッタ211の第3面211cに向けZ軸方向左向きに出射する。
第2の1/4波長板216は、第1偏光ビームスプリッタ211の第4面211dとY軸方向に相対向するように配置されている。つまり、第2の1/4波長板216は、第1偏光ビームスプリッタ211の第4面211dから出射される直線偏光を円偏光に変換してY軸方向下向きに出射する。また、第2の1/4波長板216は、Y軸方向上向きに入射する円偏光を直線偏光に変換した上で、第1偏光ビームスプリッタ211の第4面211dに向けY軸方向上向きに出射する。
第3の1/4波長板217は、第2偏光ビームスプリッタ212の第4面212dとY軸方向に相対向するように配置されている。つまり、第3の1/4波長板217は、第2偏光ビームスプリッタ212の第4面212dから出射される直線偏光を円偏光に変換してY軸方向上向きに出射する。また、第3の1/4波長板217は、Y軸方向下向きに入射する円偏光を直線偏光に変換した上で、第2偏光ビームスプリッタ212の第4面212dに向けY軸方向下向きに出射する。
第4の1/4波長板218は、第2偏光ビームスプリッタ212の第3面212cとZ軸方向に相対向するように配置されている。つまり、第4の1/4波長板218は、第2偏光ビームスプリッタ212の第3面212cから出射される直線偏光を円偏光に変換してZ軸方向左向きに出射する。また、第4の1/4波長板218は、Z軸方向右向きに入射する円偏光を直線偏光に変換した上で、第2偏光ビームスプリッタ212の第3面212cに向けZ軸方向右向きに出射する。
全反射ミラー221,222は、入射光を全反射させる光学部材である。このうち、本実施形態における参照面を構成する第1全反射ミラー221は、第1偏光ビームスプリッタ211及び第1の1/4波長板215を通りZ軸方向に延びる軸線と、第2偏光ビームスプリッタ212及び第3の1/4波長板217を通りY軸方向に延びる軸線とが交差する位置において、Y軸方向及びZ軸方向に対し45°傾斜するように配置されている。
これにより、第1全反射ミラー221は、第1偏光ビームスプリッタ211の第3面211cから(第1の1/4波長板215を介して)Z軸方向右向きに出射された光を、Y軸方向下向きに反射させ、第2偏光ビームスプリッタ212の第4面212dに(第3の1/4波長板217を介して)入射させることができる。また逆に、第1全反射ミラー221は、第2偏光ビームスプリッタ212の第4面212dから(第3の1/4波長板217を介して)Y軸方向上向きに出射された光を、Z軸方向左向きに反射させ、第1偏光ビームスプリッタ211の第3面211cに(第1の1/4波長板215を介して)入射させることができる。
一方、第2全反射ミラー222は、第1偏光ビームスプリッタ211及び第2の1/4波長板216を通りY軸方向に延びる軸線と、第2偏光ビームスプリッタ212及び第4の1/4波長板218を通りZ軸方向に延びる軸線とが交差する位置において、Y軸方向及びZ軸方向に対し45°傾斜するように配置されている。
これにより、第2全反射ミラー222は、第1偏光ビームスプリッタ211の第4面211dから(第2の1/4波長板216を介して)Y軸方向下向きに出射された光を、Z軸方向右向きに反射させ、第2偏光ビームスプリッタ212の第3面212cに(第4の1/4波長板218を介して)入射させることができる。また逆に、第2全反射ミラー222は、第2偏光ビームスプリッタ212の第3面212cから(第4の1/4波長板218を介して)Z軸方向左向きに出射された光を、Y軸方向上向きに反射させ、第1偏光ビームスプリッタ211の第4面211dに(第2の1/4波長板216を介して)入射させることができる。
設置部224は、被計測物としてのワークWを設置するためのものである。本実施形態ではワークWとして、フィルムなどの透光性を有するものを想定している。設置部224は、第2偏光ビームスプリッタ212及び第2全反射ミラー222を通りZ軸方向に延びる軸線上において、第4の1/4波長板218と第2全反射ミラー222との間に配置されている。
次に2つの撮像系4A,4B(第1撮像系4A,第2撮像系4B)の構成について詳しく説明する。第1撮像系4Aは、1/4波長板31A、第1偏光板32A、第1撮像手段を構成する第1カメラ33Aなどを備えている。
1/4波長板31Aは、第2無偏光ビームスプリッタ13BをZ軸方向右向きに透過してきた直線偏光(後述する第1光の参照光成分及び計測光成分)をそれぞれ円偏光に変換するためのものである。
第1偏光板32Aは、1/4波長板31Aにより円偏光に変換された第1光の各成分を選択的に透過させるものである。これにより、回転方向の異なる第1光の参照光成分と計測光成分とを特定の位相について干渉させることができる。「第1偏光板32A」が本実施形態における「第1位相シフト手段」及び「干渉手段」を構成する。
本実施形態に係る第1偏光板32Aは、Z軸方向を軸心として回転可能に構成されると共に、その透過軸方向が45°ずつ変化するように制御される。具体的には、透過軸方向がY軸方向に対し「0°」、「45°」、「90°」、「135°」となるように変化する。
これにより、第1偏光板32Aを透過する第1光の参照光成分及び計測光成分を4通りの位相で干渉させることができる。つまり、位相が90°ずつ異なる干渉光を生成することができる。具体的には、位相が「0°」の干渉光、位相が「90°」の干渉光、位相が「180°」の干渉光、位相が「270°」の干渉光を生成することができる。
結果として、第1カメラ33Aにより、第1光に係る位相「0°」の干渉縞画像、位相「90°」の干渉縞画像、位相「180°」の干渉縞画像、位相「270°」の干渉縞画像が撮像されることとなる。尚、第1カメラ33Aによって撮像された画像データは、第1カメラ33A内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置5(画像データ記憶装置54)に入力される。
第2撮像系4Bは、1/4波長板31B、第2偏光板32B、第2撮像手段を構成する第2カメラ33Bなどを備えている。
1/4波長板31Bは、第1無偏光ビームスプリッタ13AをZ軸方向左向きに透過してきた直線偏光(後述する第2光の参照光成分及び計測光成分)をそれぞれ円偏光に変換するためのものである。
第2偏光板32Bは、1/4波長板31Bにより円偏光に変換された第2光の各成分を選択的に透過させるものである。これにより、回転方向の異なる第2光の参照光成分と計測光成分とを特定の位相について干渉させることができる。「第2偏光板32B」が本実施形態における「第2位相シフト手段」及び「干渉手段」を構成する。
本実施形態に係る第2偏光板32Bは、Z軸方向を軸心として回転可能に構成されると共に、その透過軸方向が45°ずつ変化するように制御される。具体的には、透過軸方向がY軸方向に対し「0°」、「45°」、「90°」、「135°」となるように変化する。
これにより、第2偏光板32Bを透過する第2光の参照光成分及び計測光成分を4通りの位相で干渉させることができる。つまり、位相が90°ずつ異なる干渉光を生成することができる。具体的には、位相が「0°」の干渉光、位相が「90°」の干渉光、位相が「180°」の干渉光、位相が「270°」の干渉光を生成することができる。
結果として、第2カメラ33Bにより、第2光に係る位相「0°」の干渉縞画像、位相「90°」の干渉縞画像、位相「180°」の干渉縞画像、位相「270°」の干渉縞画像が撮像されることとなる。尚、第2カメラ33Bによって撮像された画像データは、第2カメラ33B内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置5(画像データ記憶装置54)に入力される。
次に三次元計測装置200の作用について説明する。尚、後述するように、本実施形態における第1光及び第2光の照射は同時に行われるものであり、第1光の光路と第2光の光路が一部で重なることとなるが、ここでは、より分かりやすくするため、第1光及び第2光の光路ごとに異なる図面を用いて個別に説明する。
まず第1光の光路について図9を参照して説明する。図9に示すように、波長λ1の第1光(偏光方向がX軸方向及びZ軸方向に対し45°傾斜した直線偏光)が第1発光部11AからY軸方向上向きに出射される。
第1発光部11Aから出射された第1光は、第1光アイソレータ12Aを通過し、第1無偏光ビームスプリッタ13Aに入射する。第1無偏光ビームスプリッタ13Aに入射した第1光の一部はY軸方向上向きに透過し、残りはZ軸方向右向きに反射する。
このうち、Z軸方向右向きに反射した第1光(偏光方向がX軸方向及びY軸方向に対し45°傾斜した直線偏光)は、第1偏光ビームスプリッタ211の第1面211aに入射する。一方、Y軸方向上向きに透過した第1光は、何らかの光学系等に入射することなく、捨て光となる。
第1偏光ビームスプリッタ211の第1面211aからZ軸方向右向きに入射した第1光は、そのP偏光成分がZ軸方向右向きに透過して第3面211cから参照光として出射される一方、そのS偏光成分がY軸方向下向きに反射して第4面211dから計測光として出射される。
第1偏光ビームスプリッタ211の第3面211cから出射した第1光に係る参照光(P偏光)は、第1の1/4波長板215を通過することにより右回りの円偏光に変換された後、第1全反射ミラー221にてY軸方向下向きに反射する。ここで、光の進行方向に対する回転方向は維持される。
その後、第1光に係る参照光は、第3の1/4波長板217を通過することで、右回りの円偏光からS偏光に変換された上で第2偏光ビームスプリッタ212の第4面212dに入射する。
一方、第1偏光ビームスプリッタ211の第4面211dから出射した第1光に係る計測光(S偏光)は、第2の1/4波長板216を通過することにより左回りの円偏光に変換された後、第2全反射ミラー222にてZ軸方向右向きに反射する。ここで、光の進行方向に対する回転方向は維持される。
その後、第1光に係る計測光は、設置部224に設置されたワークWを透過した後、第4の1/4波長板218を通過することで、左回りの円偏光からP偏光に変換された上で第2偏光ビームスプリッタ212の第3面212cに入射する。
そして、第2偏光ビームスプリッタ212の第4面212dから入射した第1光に係る参照光(S偏光)が接合面212hにてZ軸方向右向きに反射する一方、第2偏光ビームスプリッタ212の第3面212cから入射した第1光に係る計測光(P偏光)は接合面212hをZ軸方向右向きに透過する。そして、第1光に係る参照光及び計測光が合成された状態の合成光が出力光として第2偏光ビームスプリッタ212の第1面212aから出射される。
第2偏光ビームスプリッタ212の第1面212aから出射された第1光に係る合成光(参照光及び計測光)は、第2無偏光ビームスプリッタ13Bに入射する。第2無偏光ビームスプリッタ13Bに対しZ軸方向右向きに入射した第1光に係る合成光は、その一部がZ軸方向右向きに透過し、残りがY軸方向上向きに反射する。このうち、Z軸方向右向きに透過した合成光(参照光及び計測光)は第1撮像系4Aに入射することとなる。一方、Y軸方向上向きに反射した合成光は、第2光アイソレータ12Bによりその進行を遮断され、捨て光となる。
第1撮像系4Aに入射した第1光に係る合成光(参照光及び計測光)は、まず1/4波長板31Aにより、その参照光成分(S偏光成分)が左回りの円偏光に変換され、その計測光成分(P偏光成分)が右回りの円偏光に変換される。ここで、左回りの円偏光と右回りの円偏光は回転方向が異なるので干渉しない。
第1光に係る合成光は、続いて第1偏光板32Aを通過することにより、その参照光成分と計測光成分とが第1偏光板32Aの角度に応じた位相で干渉する。そして、かかる第1光に係る干渉光が第1カメラ33Aにより撮像される。
次に第2光の光路について図10を参照して説明する。図10に示すように、波長λ2の第2光(偏光方向がX軸方向及びZ軸方向に対し45°傾斜した直線偏光)が第2発光部11BからY軸方向下向きに出射される。
第2発光部11Bから出射された第2光は、第2光アイソレータ12Bを通過し、第2無偏光ビームスプリッタ13Bに入射する。第2無偏光ビームスプリッタ13Bに入射した第2光の一部はY軸方向下向きに透過し、残りはZ軸方向左向きに反射する。
このうち、Z軸方向左向きに反射した第2光(偏光方向がX軸方向及びY軸方向に対し45°傾斜した直線偏光)は、第2偏光ビームスプリッタ212の第1面212aに入射する。一方、Y軸方向下向きに透過した第2光は、何らかの光学系等に入射することなく、捨て光となる。
第2偏光ビームスプリッタ212の第1面212aからZ軸方向左向きに入射した第2光は、そのS偏光成分がY軸方向上向きに反射して第4面212dから参照光として出射される一方、そのP偏光成分がZ軸方向左向きに透過して第3面212cから計測光として出射される。
第2偏光ビームスプリッタ212の第4面212dから出射した第2光に係る参照光(S偏光)は、第3の1/4波長板217を通過することにより左回りの円偏光に変換された後、第1全反射ミラー221にてZ軸方向左向きに反射する。ここで、光の進行方向に対する回転方向は維持される。
その後、第2光に係る参照光は、第1の1/4波長板215を通過することで、左回りの円偏光からP偏光に変換された上で第1偏光ビームスプリッタ211の第3面211cに入射する。
一方、第2偏光ビームスプリッタ212の第3面212cから出射した第2光に係る計測光(P偏光)は、第4の1/4波長板218を通過することにより右回りの円偏光に変換された後、設置部224に設置されたワークWを透過する。その後、第2光に係る計測光は、第2全反射ミラー222にてY軸方向上向きに反射する。ここで、光の進行方向に対する回転方向は維持される。
第2全反射ミラー222にて反射した第1光に係る計測光は、第2の1/4波長板216を通過することで、右回りの円偏光からS偏光に変換された上で第1偏光ビームスプリッタ211の第4面211dに入射する。
そして、第1偏光ビームスプリッタ211の第3面211cから入射した第2光に係る参照光(P偏光)が接合面211hをZ軸方向左向きに透過する一方、第1偏光ビームスプリッタ211の第4面211dから入射した第2光に係る計測光(S偏光)は接合面211hにてZ軸方向左向きに反射する。そして、第2光に係る参照光及び計測光が合成された状態の合成光が出力光として第1偏光ビームスプリッタ211の第1面211aから出射される。
第1偏光ビームスプリッタ211の第1面211aから出射された第2光に係る合成光(参照光及び計測光)は、第1無偏光ビームスプリッタ13Aに入射する。第1無偏光ビームスプリッタ13Aに対しZ軸方向左向きに入射した第2光に係る合成光は、その一部がZ軸方向左向きに透過し、残りがY軸方向下向きに反射する。このうち、Z軸方向左向きに透過した合成光(参照光及び計測光)は第2撮像系4Bに入射することとなる。一方、Y軸方向下向きに反射した合成光は、第1光アイソレータ12Aによりその進行を遮断され、捨て光となる。
第2撮像系4Bに入射した第2光に係る合成光(参照光及び計測光)は、まず1/4波長板31Bにより、その参照光成分(P偏光成分)が右回りの円偏光に変換され、その計測光成分(S偏光成分)が左回りの円偏光に変換される。ここで、左回りの円偏光と右回りの円偏光は回転方向が異なるので干渉しない。
第2光に係る合成光は、続いて第2偏光板32Bを通過することにより、その参照光成分と計測光成分とが第2偏光板32Bの角度に応じた位相で干渉する。そして、かかる第2光に係る干渉光が第2カメラ33Bにより撮像される。
次に、制御装置5によって実行される形状計測処理の手順について詳しく説明する。まずは、設置部224へワークWを設置した後、第1撮像系4Aの第1偏光板32Aの透過軸方向を所定の基準位置(例えば「0°」)に設定すると共に、第2撮像系4Bの第2偏光板32Bの透過軸方向を所定の基準位置(例えば「0°」)に設定する。
続いて、第1投光系2Aから第1光を照射すると同時に、第2投光系2Bから第2光を照射する。その結果、干渉光学系203の第2偏光ビームスプリッタ212の第1面212aから第1光に係る合成光(参照光及び計測光)が出射されると同時に、第1偏光ビームスプリッタ211の第1面211aから第2光に係る合成光(参照光及び計測光)が出射される。
そして、第2偏光ビームスプリッタ212の第1面212aから出射された第1光に係る合成光を第1撮像系4Aにより撮像すると同時に、第1偏光ビームスプリッタ211の第1面211aから出射された第2光に係る合成光を第2撮像系4Bにより撮像する。
尚、ここでは第1偏光板32A及び第2偏光板32Bの透過軸方向がそれぞれ「0°」に設定されているため、第1カメラ33Aでは第1光に係る位相「0°」の干渉縞画像が撮像され、第2カメラ33Bでは第2光に係る位相「0°」の干渉縞画像が撮像されることとなる。
そして、各カメラ33A,33Bからそれぞれ撮像された画像データが制御装置5へ出力される。制御装置5は、入力した画像データを画像データ記憶装置54に記憶する。
次に制御装置5は、第1撮像系4Aの第1偏光板32A、及び、第2撮像系4Bの第2偏光板32Bの切替処理を行う。具体的には、第1偏光板32A及び第2偏光板32Bをそれぞれ透過軸方向が「45°」となる位置まで回動変位させる。
該切替処理が終了すると、制御装置5は、上記一連の1回目の撮像処理と同様の2回目の撮像処理を行う。つまり、制御装置5は、第1投光系2Aから第1光を照射すると同時に、第2投光系2Bから第2光を照射し、第2偏光ビームスプリッタ212の第1面212aから出射された第1光に係る合成光を第1撮像系4Aにより撮像すると同時に、第1偏光ビームスプリッタ211の第1面211aから出射された第2光に係る合成光を第2撮像系4Bにより撮像する。これにより、第1光に係る位相「90°」の干渉縞画像が取得されると共に、第2光に係る位相「90°」の干渉縞画像が撮像されることとなる。
以降、上記1回目及び2回目の撮像処理と同様の撮像処理が2回繰り返し行われる。つまり、第1偏光板32A及び第2偏光板32Bの透過軸方向を「90°」に設定した状態で3回目の撮像処理を行い、第1光に係る位相「180°」の干渉縞画像を取得すると共に、第2光に係る位相「180°」の干渉縞画像を取得する。
その後、第1偏光板32A及び第2偏光板32Bの透過軸方向を「135°」に設定した状態で4回目の撮像処理を行い、第1光に係る位相「270°」の干渉縞画像を取得すると共に、第2光に係る位相「270°」の干渉縞画像を取得する。
このように、4回の撮像処理を行うことにより、三次元計測を行う上で必要な全ての画像データ(第1光に係る4通りの干渉縞画像データ、及び、第2光に係る4通りの干渉縞画像データからなる計8つの干渉縞画像データ)を取得することができる。
そして、制御装置5は、画像データ記憶装置54に記憶された第1光に係る4通りの干渉縞画像データ、及び、第2光に係る4通りの干渉縞画像データを基に、位相シフト法によりワークWの表面形状を計測する。つまり、ワークWの表面上の各位置における高さ情報を算出する。
以上詳述したように、本実施形態によれば、マッハ・ツェンダー干渉計の原理に基づいた比較的簡素な構成の下で、上記第1実施形態と同様の作用効果が奏されることとなる。
〔第4実施形態〕
以下、第4実施形態について図面を参照しつつ説明する。尚、第1実施形態と同一構成部分については、同一符号を付し、その詳細な説明を省略する。
以下、第4実施形態について図面を参照しつつ説明する。尚、第1実施形態と同一構成部分については、同一符号を付し、その詳細な説明を省略する。
図11は本実施形態に係る三次元計測装置300の概略構成を示す模式図である。以下、便宜上、図11の紙面前後方向を「X軸方向」とし、紙面上下方向を「Y軸方向」とし、紙面左右方向を「Z軸方向」として説明する。
三次元計測装置300は、フィゾー干渉計の原理に基づき構成されたものであり、特定波長の光を出力可能な2つの投光系302A,302B(第1投光系302A,第2投光系302B)と、該投光系302A,302Bからそれぞれ出射される光が入射される干渉光学系303と、該干渉光学系303から出射される光を撮像可能な2つの撮像系304A,304B(第1撮像系304A,第2撮像系304B)と、投光系302A,302Bや干渉光学系303、撮像系304A,304Bなどに係る各種制御や画像処理、演算処理等を行う制御装置5とを備えている。「制御装置5」が本実施形態における「画像処理手段」を構成し、「干渉光学系303」が本実施形態における「所定の光学系」を構成する。
まず、2つの投光系302A,302B(第1投光系302A,第2投光系302B)の構成について詳しく説明する。第1投光系302Aは、第1発光部311A、第1光アイソレータ312A、第1無偏光ビームスプリッタ313Aなどを備えている。ここで「第1発光部311A」が本実施形態における「第1照射手段」を構成する。
図示は省略するが、第1発光部311Aは、特定波長λ1の直線偏光を出力可能なレーザ光源や、該レーザ光源から出力される直線偏光を拡大し平行光として出射するビームエキスパンダ、強度調整を行うための偏光板、偏光方向を調整するための1/2波長板などを備えている。
かかる構成の下、本実施形態では、第1発光部311Aから、Y軸方向を偏光方向とする波長λ1(例えばλ1=1500nm)の直線偏光がZ軸方向右向きに出射される。ここで「波長λ1」が本実施形態における「第1波長」に相当する。以降、第1発光部311Aから出射される波長λ1の光を「第1光」という。
第1光アイソレータ312Aは、一方向(本実施形態ではZ軸方向右向き)に進む光のみを透過し逆方向(本実施形態ではZ軸方向左向き)の光を遮断する光学素子である。これにより、第1発光部311Aから出射された第1光のみを透過することとなり、戻り光による第1発光部311Aの損傷や不安定化などを防止することができる。
第1無偏光ビームスプリッタ313Aは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面313Ahには例えば金属膜などのコーティングが施されている。「第1無偏光ビームスプリッタ313A」が本実施形態における「第1導光手段」を構成する。
尚、本実施形態では、図11の紙面に平行な方向(Y軸方向又はZ軸方向)を偏光方向とする直線偏光をP偏光(P偏光成分)といい、図11の紙面に垂直なX軸方向を偏光方向とする直線偏光をS偏光(S偏光成分)という。「P偏光」が「第1の偏光方向を有する第1偏光」に相当し、「S偏光」が「第2の偏光方向を有する第2偏光」に相当する。
また、第1無偏光ビームスプリッタ313Aは、その接合面313Ahを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第1無偏光ビームスプリッタ313Aの接合面313AhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第1光アイソレータ312Aを介して、第1発光部311AからZ軸方向右向きに入射する第1光の一部(半分)をZ軸方向右向きに透過させ、残り(半分)をY軸方向下向きに反射させるように配置されている。
第2投光系302Bは、第2発光部311B、第2光アイソレータ312B、第2無偏光ビームスプリッタ313Bなどを備えている。ここで「第2発光部311B」が本実施形態における「第2照射手段」を構成する。
第2発光部311Bは、上記第1発光部311Aと同様、特定波長λ2の直線偏光を出力可能なレーザ光源や、該レーザ光源から出力される直線偏光を拡大し平行光として出射するビームエキスパンダ、強度調整を行うための偏光板、偏光方向を調整するための1/2波長板などを備えている。
かかる構成の下、本実施形態では、第2発光部311Bから、X軸方向を偏光方向とする波長λ2(例えばλ2=1503nm)の直線偏光がZ軸方向右向きに出射される。ここで「波長λ2」が本実施形態における「第2波長」に相当する。以降、第2発光部311Bから出射される波長λ2の光を「第2光」という。
第2光アイソレータ312Bは、一方向(本実施形態ではZ軸方向右向き)に進む光のみを透過し逆方向(本実施形態ではZ軸方向左向き)の光を遮断する光学素子である。これにより、第2発光部311Bから出射された第2光のみを透過することとなり、戻り光による第2発光部311Bの損傷や不安定化などを防止することができる。
第2無偏光ビームスプリッタ313Bは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面313Bhには例えば金属膜などのコーティングが施されている。「第2無偏光ビームスプリッタ313B」が本実施形態における「第2導光手段」を構成する。
また、第2無偏光ビームスプリッタ313Bは、その接合面313Bhを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第2無偏光ビームスプリッタ313Bの接合面313BhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第2光アイソレータ312Bを介して、第2発光部311BからZ軸方向右向きに入射する第2光の一部(半分)をZ軸方向右向きに透過させ、残り(半分)をY軸方向上向きに反射させるように配置されている。
次に干渉光学系303の構成について詳しく説明する。干渉光学系303は、偏光ビームスプリッタ320、1/4波長板321、ハーフミラー323、設置部324などを備えている。
偏光ビームスプリッタ320は、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面(境界面)320hには例えば誘電体多層膜などのコーティングが施されている。
本実施形態における偏光ビームスプリッタ320は、P偏光成分を透過させ、S偏光成分を反射する構成となっている。
偏光ビームスプリッタ320は、その接合面320hを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、偏光ビームスプリッタ320の接合面320hがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
より詳しくは、上記第1無偏光ビームスプリッタ313AからZ軸方向右向きに透過した第1光が入射する偏光ビームスプリッタ320の第1面(Z軸方向左側面)320a、並びに、該第1面320aと相対向する第3面(Z軸方向右側面)320cがZ軸方向と直交するように配置されている。「偏光ビームスプリッタ320の第1面320a」が本実施形態における「第1入出力部」に相当する。
一方、第1面320aと接合面320hを挟んで隣り合う面であって、上記第2無偏光ビームスプリッタ313BからY軸方向上向きに反射した第2光が入射する偏光ビームスプリッタ320の第2面(Y軸方向下側面)320b、並びに、該第2面320bと相対向する第4面(Y軸方向上側面)320dがY軸方向と直交するように配置されている。「偏光ビームスプリッタ320の第2面320b」が本実施形態における「第2入出力部」に相当する。
そして、偏光ビームスプリッタ320の第3面320cとZ軸方向に相対向するように1/4波長板321が配置され、さらにそのZ軸方向右側にて、該1/4波長板321とZ軸方向に相対向するようにハーフミラー323が配置され、さらにそのZ軸方向右側にて、該ハーフミラー323とZ軸方向に相対向するように設置部324が配置されている。但し、ハーフミラー323は、周期的な干渉縞(キャリア)を生じさせるために、厳密にはZ軸方向に対し僅かに傾いた状態で設置されている。
1/4波長板321は、直線偏光を円偏光に変換しかつ円偏光を直線偏光に変換する機能を有する。つまり、偏光ビームスプリッタ320の第3面320cから出射される直線偏光(P偏光又はS偏光)は1/4波長板321を介して円偏光に変換された上でハーフミラー323に対し照射される。
ハーフミラー323は、入射光を1:1の比率で透過光と反射光とに分割するものである。具体的には、1/4波長板321からZ軸方向右向きに入射する円偏光の一部(半分)を計測光としてZ軸方向右向きに透過させ、残り(半分)を参照光としてZ軸方向左向きに反射させる。そして、ハーフミラー323を透過した円偏光(計測光)が設置部324に置かれた被計測物としてのワークWに対し照射される。つまり、「ハーフミラー323」が本実施形態における「参照面」を構成することとなる。また、「ハーフミラー323」は、入射する所定の光を2つの光に分割する「分割手段」を構成すると共に、これらを再び合成する「合成手段」を構成することとなる。
次に2つの撮像系304A,304B(第1撮像系304A,第2撮像系304B)の構成について詳しく説明する。第1撮像系304Aは、第1撮像手段を構成する第1カメラ333Aを備え、第2撮像系304Bは、第2撮像手段を構成する第2カメラ333Bを備えている。
各カメラ333A,333Bは、レンズや撮像素子等を備えてなる公知のものである。本実施形態では、カメラ333A,333Bの撮像素子として、CCDエリアセンサを採用している。勿論、撮像素子は、これに限定されるものではなく、例えばCMOSエリアセンサ等を採用してもよい。
各カメラ333A,333Bによって撮像された画像データは、各カメラ333A,333B内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置5(画像データ記憶装置54)に入力されるようになっている。
次に三次元計測装置300の作用について説明する。尚、後述するように、本実施形態における第1光及び第2光の照射は同時に行われるものであり、第1光の光路と第2光の光路が一部で重なることとなるが、ここでは、より分かりやすくするため、第1光及び第2光の光路ごとに異なる図面を用いて個別に説明する。
まず第1光の光路について図12を参照して説明する。図12に示すように、波長λ1の第1光(Y軸方向を偏光方向とするP偏光)が第1発光部311AからZ軸方向右向きに出射される。
第1発光部311Aから出射された第1光は、第1光アイソレータ312Aを通過し、第1無偏光ビームスプリッタ313Aに入射する。第1無偏光ビームスプリッタ313Aに入射した第1光の一部はZ軸方向右向きに透過し、残りはY軸方向下向きに反射する。
このうち、Z軸方向右向きに透過した第1光は、偏光ビームスプリッタ320の第1面320aに入射する。一方、Y軸方向下向きに反射した第1光は、何らかの光学系等に入射することなく、捨て光となる。
偏光ビームスプリッタ320の第1面320aからZ軸方向右向きに入射した第1光(P偏光)は、接合面320hをZ軸方向右向きに透過して第3面320cから出射される。
偏光ビームスプリッタ320の第3面320cから出射した第1光は、1/4波長板321を通過することで、Y軸方向を偏光方向とするP偏光から右回りの円偏光に変換された上でハーフミラー323に照射される。
ハーフミラー323に照射された第1光は、その一部(半分)が計測光としてハーフミラー323をZ軸方向右向きに透過し、残りが参照光としてZ軸方向左向きに反射する。ここで、透過光(計測光)及び反射光(参照光)とも、光の進行方向に対する回転方向(右回り)は維持される。
そして、ハーフミラー323をZ軸方向右向きに透過した第1光に係る計測光(右回りの円偏光)は、設置部324に置かれたワークWに照射され反射する。ここでも、光の進行方向に対する回転方向(右回り)は維持される。
ワークWにて反射した第1光に係る計測光は、再度、ハーフミラー323をZ軸方向左向きに通過し、上記ハーフミラー323にてZ軸方向左向きに反射した第1光に係る参照光(右回りの円偏光)と合成される。回転方向が同じ右回りの円偏光である計測光及び参照光が合成されることで、両者は干渉する。
続いて、この第1光に係る干渉光は、1/4波長板321を通過することで、右回りの円偏光から、X軸方向を偏光方向とするS偏光に変換された上で偏光ビームスプリッタ320の第3面320cに再入射する。
ここで、偏光ビームスプリッタ320の第3面320cから再入射した第1光に係る干渉光(S偏光)は、接合面320hにてY軸方向下向きに反射し、出力光として偏光ビームスプリッタ320の第2面320bから出射される。
偏光ビームスプリッタ320の第2面320bから出射された第1光に係る干渉光は、第2無偏光ビームスプリッタ313Bに入射する。第2無偏光ビームスプリッタ313Bに対しY軸方向下向きに入射した第1光に係る干渉光は、その一部がY軸方向下向きに透過し、残りがZ軸方向左向きに反射する。このうち、Y軸方向下向きに透過した干渉光は第1撮像系304A(第1カメラ333A)に入射し撮像されることとなる。一方、Z軸方向左向きに反射した干渉光は、第2光アイソレータ312Bによりその進行を遮断され、捨て光となる。
次に第2光の光路について図13を参照して説明する。図13に示すように、波長λ2の第2光(X軸方向を偏光方向とするS偏光)が第2発光部311BからZ軸方向右向きに出射される。
第2発光部311Bから出射された第2光は、第2光アイソレータ312Bを通過し、第2無偏光ビームスプリッタ313Bに入射する。第2無偏光ビームスプリッタ313Bに入射した第2光の一部はZ軸方向右向きに透過し、残りはY軸方向上向きに反射する。
このうち、Y軸方向上向きに反射した第2光は、偏光ビームスプリッタ320の第2面320bに入射する。一方、Z軸方向右向きに透過した第2光は、何らかの光学系等に入射することなく、捨て光となる。
偏光ビームスプリッタ320の第2面320bからY軸方向上向きに入射した第2光(S偏光)は、接合面320hにてZ軸方向右向きに反射して第3面320cから出射される。
偏光ビームスプリッタ320の第3面320cから出射した第2光は、1/4波長板321を通過することで、X軸方向を偏光方向とするS偏光から、左回りの円偏光に変換された上でハーフミラー323に照射される。
ハーフミラー323に照射された第2光は、その一部(半分)が計測光としてハーフミラー323をZ軸方向右向きに透過し、残りが参照光としてZ軸方向左向きに反射する。ここで、透過光(計測光)及び反射光(参照光)とも、光の進行方向に対する回転方向(左回り)は維持される。
そして、ハーフミラー323をZ軸方向右向きに透過した第2光に係る計測光(左回りの円偏光)は、設置部324に置かれたワークWに照射され反射する。ここでも、光の進行方向に対する回転方向(左回り)は維持される。
ワークWにて反射した第2光に係る計測光は、再度、ハーフミラー323をZ軸方向左向きに通過し、上記ハーフミラー323にてZ軸方向左向きに反射した第2光に係る参照光(左回りの円偏光)と合成される。回転方向が同じ左回りの円偏光である計測光及び参照光が合成されることで、両者は干渉する。
続いて、この第2光に係る干渉光は、1/4波長板321を通過することで、左回りの円偏光から、Y軸方向を偏光方向とするP偏光に変換された上で偏光ビームスプリッタ320の第3面320cに再入射する。
ここで、偏光ビームスプリッタ320の第3面320cから再入射した第2光に係る干渉光(P偏光)は、接合面320hをZ軸方向左向きに透過して、出力光として偏光ビームスプリッタ320の第1面320aから出射される。
偏光ビームスプリッタ320の第1面320aから出射された第2光に係る干渉光は、第1無偏光ビームスプリッタ313Aに入射する。第1無偏光ビームスプリッタ313Aに対しZ軸方向左向きに入射した第2光に係る干渉光は、その一部がZ軸方向左向きに透過し、残りがY軸方向上向きに反射する。このうち、Y軸方向上向きに反射した干渉光は第2撮像系304B(第2カメラ333B)に入射し撮像されることとなる。一方、Z軸方向左向きに透過した干渉光は、第1光アイソレータ312Aによりその進行を遮断され、捨て光となる。
次に、制御装置5によって実行される形状計測処理の手順について詳しく説明する。まずは、設置部324へワークWを設置した後、第1投光系302Aから第1光を照射すると同時に、第2投光系302Bから第2光を照射する。その結果、干渉光学系303の偏光ビームスプリッタ320の第2面320bから第1光に係る干渉光が出射されると同時に、偏光ビームスプリッタ320の第1面320aから第2光に係る干渉光が出射される。
そして、偏光ビームスプリッタ320の第2面320bから出射された第1光に係る干渉光を第1撮像系304Aにより撮像すると同時に、偏光ビームスプリッタ320の第1面320aから出射された第2光に係る干渉光を第2撮像系304Bにより撮像する。
そして、各カメラ333A,333Bからそれぞれ撮像された画像データが制御装置5へ出力される。制御装置5は、入力した画像データを画像データ記憶装置54に記憶する。
そして、制御装置5は、画像データ記憶装置54に記憶された第1光に係る干渉縞画像データ、及び、第2光に係る干渉縞画像データを基に、フーリエ変換法によりワークWの表面形状を計測する。つまり、ワークWの表面上の各位置における高さ情報を算出する。
ここで、一般的なフーリエ変換法による高さ計測の原理について説明する。第1光又は第2光に係る干渉縞画像データの同一座標位置(x,y)における干渉縞強度、すなわち輝度g(x,y)は、下記[数11]の関係式で表すことができる。
但し、a(x,y)はオフセット、b(x,y)は振幅、φ(x,y)は位相、fx0はx方向のキャリア周波数、fy0はy方向のキャリア周波数を表す。
そして、輝度g(x,y)を2次元フーリエ変換し、2次元空間周波数スペクトルを得る。この左右のスペクトルのうちの一方を残し、中央へシフトした後、逆フーリエ変換する。
このシフトしたスペクトルは、下記[数12]の関係式で表すことができるので、位相φについて解けば各座標の位相を求めることができる。
但し、c(x,y)はスペクトル。
そして、波長の異なる2種類の光を用いる場合には、上記第1実施形態と同様、まず波長λ1の第1光に係る干渉縞画像データの輝度g1(x,y)を基に、ワークW面上の座標(ξ,η)における第1光に係る位相φ1(ξ,η)を算出する。
同様に、波長λ2の第2光に係る干渉縞画像データの輝度g2(x,y)を基に、ワークW面上の座標(ξ,η)における第2光に係る位相φ2(ξ,η)を算出する。
続いて、このようにして得られた第1光に係る位相φ1(ξ,η)と、第2光に係る位相φ2(ξ,η)とから、ワークW面上の座標(ξ,η)における高さ情報z(ξ,η)を算出する。そして、このように求められたワークWの計測結果(高さ情報)は、制御装置5の演算結果記憶装置55に格納される。
以上詳述したように、本実施形態によれば、フィゾー干渉計の原理に基づいた比較的簡素な構成の下で、上記第1実施形態と同様の作用効果が奏されることとなる。
〔第5実施形態〕
以下、第5実施形態について図面を参照しつつ説明する。図14は本実施形態に係る三次元計測装置の概略構成を示す模式図である。
以下、第5実施形態について図面を参照しつつ説明する。図14は本実施形態に係る三次元計測装置の概略構成を示す模式図である。
本実施形態は、第2実施形態とは異なる分光光学系を備えたものであり、マイケルソン干渉計の光学構成を採用した第1実施形態と第1撮像系4A及び第2撮像系4Bに関連する構成が異なる。従って、本実施形態では、第1,第2実施形態と異なる構成部分について詳しく説明し、同一構成部分については同一符号を付し、その詳細な説明を省略する。
本実施形態に係る第1撮像系4Aは、第2無偏光ビームスプリッタ13Bを透過した第1光に係る合成光(参照光成分及び計測光成分)を4つの分光に分割する第1の分光手段としての分光光学系600Aと、該分光光学系600Aにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板610Aと、該1/4波長板610Aを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット615Aと、該フィルタユニット615Aを透過した4つの分光を同時に撮像するカメラ633Aとを備えている。
本実施形態に係る第2撮像系4Bは、第1無偏光ビームスプリッタ13Aを透過した第2光に係る合成光(参照光成分及び計測光成分)を4つの分光に分割する第2の分光手段としての分光光学系600Bと、該分光光学系600Bにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板610Bと、該1/4波長板610Bを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット615Bと、該フィルタユニット615Bを透過した4つの分光を同時に撮像するカメラ633Bとを備えている。
尚、「1/4波長板610A」及び「1/4波長板610B」は、上記第1実施形態の「1/4波長板31A」及び「1/4波長板31B」と同様の構成を有するものであり、その詳細な説明は省略する。但し、4つの分光それぞれに対応して個別に1/4波長板を備える構成としてもよい。
「フィルタユニット615A」及び「フィルタユニット615B」は、本実施形態におけるフィルタ手段及び干渉手段を構成する。「フィルタユニット615A」及び「フィルタユニット615B」は、上記第2実施形態の「フィルタユニット126」と同様の構成を有するものであり、その詳細な説明は省略する。但し、4つの分光それぞれに対応して個別に透過軸方向が45°ずつ異なる4つの偏光板(偏光板126a,126b,126c,126d)を備えた構成としてもよい。
「カメラ633A」及び「カメラ633B」並びにこれらに関連する制御処理や画像データ記憶装置54等に係る構成は、上記第1,第2実施形態の「第1カメラ33A(撮像素子33Ai)」及び「カメラ633B」等に係る構成と同様の構成を有するものであり、その詳細な説明は省略する。
次に分光光学系600A及び分光光学系600Bの構成について図15~図18を参照して詳しく説明する。尚、本実施形態における分光光学系600A及び分光光学系600Bは同一構成である。
以下、図15~図18を参照して、分光光学系600A(600B)について説明する際には、便宜上、図15の紙面上下方向を「X´軸方向」とし、紙面前後方向を「Y´軸方向」とし、紙面左右方向を「Z´軸方向」として説明する。但し、分光光学系600A(600B)単体を説明するための座標系(X´,Y´,Z´)と、三次元計測装置1全体を説明するための座標系(X,Y,Z)は異なる座標系である。
分光光学系600A(600B)は、無偏光の2つの光学部材(プリズム)を貼り合せて一体とした1つの無偏光の光学部材である。
より詳しくは、分光光学系600A(600B)は、第2無偏光ビームスプリッタ13B(第1無偏光ビームスプリッタ13A)を透過した第1光に係る合成光(第2光に係る合成光)を2つの分光に分割する第1プリズム601と、該第1プリズム601により分割された2つの分光をそれぞれ2つの分光に分割して計4つの分光を出射する第2プリズム602とからなる。
第1プリズム601及び第2プリズム602は、それぞれ「ケスタープリズム」と称される公知の光学部材により構成されている。但し、本実施形態において、「ケスタープリズム」とは、「内角がそれぞれ30°、60°、90°となる直角三角形の断面形状を有する一対の光学部材(三角柱形状のプリズム)を貼り合せて一体とした正三角形の断面形状を有する正三角柱形状の光学部材であって、その接合面に無偏光のハーフミラーを有したもの」を指す。勿論、各プリズム601,602として用いられるケスタープリズムは、これに限定されるものではない。後述する分光光学系600A(600B)の機能を満たすものであれば、例えば正三角柱形状でないものなど、各プリズム601,602として本実施形態とは異なる光学部材(ケスタープリズム)を採用してもよい。
具体的に、第1の光学部材(第1のケスタープリズム)としての第1プリズム601は、平面視(X´-Z´平面)正三角形状をなすと共に、Y´軸方向に沿って延びる正三角柱形状をなす(図15参照)。「X´-Z´平面」が本実施形態における「第1の平面」に相当する。
第1プリズム601は、Y´軸方向に沿った長方形状の3つの面(第1面601a、第2面601b、第3面601c)のうち、第1面601aと第2面601bとの交線を通り第3面601cと直交する平面に沿ってハーフミラー601Mが形成されている。「ハーフミラー601M」が本実施形態における「第1分岐手段」を構成する。
第1プリズム601は、第3面601cがX´-Y´平面に沿ってZ´軸方向と直交するように配置されると共に、ハーフミラー601MがY´-Z´平面に沿ってX´軸方向と直交するように配置されている。従って、第1面601a及び第2面601bは、それぞれX´軸方向及びZ´軸方向に対し30°又は60°傾斜するように配置されている。
一方、第2の光学部材(第2のケスタープリズム)としての第2プリズム602は、正面視(Y´-Z´平面)正三角形状をなすと共に、X´軸方向に沿って延びる正三角柱形状をなす(図16参照)。「Y´-Z´平面」が本実施形態における「第2の平面」に相当する。
第2プリズム602は、X´軸方向に沿った正方形状の3つの面(第1面602a、第2面602b、第3面602c)のうち、第1面602aと第2面602bとの交線を通り第3面602cと直交する平面に沿ってハーフミラー602Mが形成されている。「ハーフミラー602M」が本実施形態における「第2分岐手段」を構成する。
第2プリズム602は、第1面602aがX´-Y´平面に沿ってZ´軸方向と直交するように配置されている。従って、第2面602b、第3面602c及びハーフミラー602Mは、それぞれY´軸方向及びZ´軸方向に対し30°又は60°傾斜するように配置されている。
そして、第1プリズム601の第3面601cと第2プリズム602の第1面602aとが接合されている。つまり、第1プリズム601と第2プリズム602は、ハーフミラー601Mを含む平面(Y´-Z´平面)と、ハーフミラー602Mを含む平面とが直交する向きで接合されている。
ここで、X´軸方向における第1プリズム601の第3面601cの長さと、X´軸方向における第2プリズム602の第1面602aの長さは同一となっている(図15参照)。一方、Y´軸方向における第1プリズム601の第3面601cの長さは、Y´軸方向における第2プリズム602の第1面602aの長さの半分となっている(図16、17参照)。そして、第1プリズム601の第3面601cは、第2プリズム602の第1面602aと第2面602bとの交線に沿って接合されている(図18等参照)。
両プリズム601,602は、それぞれ空気よりも屈折率の高い所定の屈折率を有する光学材料(例えばガラスやアクリル等)により形成されている。ここで、両プリズム601,602を同一材料により形成してもよいし、異なる材料により形成してもよい。後述する分光光学系600A(600B)の機能を満たすものであれば、各プリズム601,602の材質はそれぞれ任意に選択可能である。
続いて、分光光学系600A及び分光光学系600Bの作用について図面を参照しつつ詳しく説明する。但し、上述したとおり、第1撮像系4A及び第2撮像系4Bに用いられる分光光学系600A及び分光光学系600Bは同一構成であるため、以下、第1撮像系4Aに係る分光光学系600Aを例にして説明し、第2撮像系4Bに係る分光光学系600Bについては省略する。
分光光学系600Aは、第2無偏光ビームスプリッタ13Bを透過した第1光に係る合成光F0が第1プリズム601の第1面601aに対し垂直に入射するように配置されている(図14,15参照)。但し、図14においては、簡素化のため、分光光学系600Aの正面が手前側を向くように第1撮像系4Aを図示している。
第1面601aから第1プリズム601内に入射した合成光F0は、ハーフミラー601Mにて2方向に分岐する。詳しくは、第1面601a側に向けハーフミラー601Mで反射する分光FA1と、第2面601b側に向けハーフミラー601Mを透過する分光FA2とに分岐する。
このうち、ハーフミラー601Mで反射した分光FA1は、第1面601aにて第3面601c側に向け全反射し、第3面601cから垂直に出射する。一方、ハーフミラー601Mを透過した分光FA2は、第2面601bにて第3面601c側に向け全反射し、第3面601cから垂直に出射する。つまり、第1プリズム601の第3面601cから平行する2つの分光FA1,FA2が出射される。
第1プリズム601の第3面601cから出射した分光FA1,FA2は、それぞれ第2プリズム602の第1面602aに垂直に入射する(図16参照)。
第1面602aから第2プリズム602内に入射した分光FA1,FA2は、それぞれハーフミラー602Mにて2方向に分岐する。
詳しくは、一方の分光FA1は、第1面602a側に向けハーフミラー602Mで反射する分光FB1と、第2面602b側に向けハーフミラー602Mを透過する分光FB2とに分岐する。
他方の分光FA2は、第1面602a側に向けハーフミラー602Mで反射する分光FB3と、第2面602b側に向けハーフミラー602Mを透過する分光FB4とに分岐する。
このうち、ハーフミラー602Mで反射した分光FB1,FB3は、それぞれ第1面602aにて第3面602c側に向け全反射し、第3面602cから垂直に出射する。一方、ハーフミラー602Mを透過した分光FB2,FB4は、それぞれ第2面602bにて第3面602c側に向け全反射し、第3面602cから垂直に出射する。つまり、第2プリズム602の第3面602cから、2行2列のマトリクス状に並ぶ4つの光FB1~FB4が平行して出射される。
分光光学系600A(第2プリズム602の第3面602c)から出射した4つの分光FB1~FB4は、それぞれ1/4波長板610Aにより円偏光に変換された後、フィルタユニット615Aにマトリクス状に配置された各偏光板126a~126dに入射する。
これにより、フィルタユニット615Aを透過した4つの分光FB1~FB4は、それぞれ位相を90°ずつ異ならせた干渉光となる。そして、これらの4つの分光FB1~FB4がカメラ633Aの撮像素子33Aiにより同時に撮像される。結果として、位相が90°ずつ異なる4通りの干渉縞画像が得られる。
以上詳述したように、本実施形態によれば、上記第1,第2実施形態と同様の作用効果が奏される。
加えて、本実施形態では、分光光学系600A,600Bにおいて、1つの光を平行する2つの光に分割する手段として、ケスタープリズムであるプリズム601,602を採用しているため、分割された2つの光の光路長が光学的に等しくなる。結果として、上記第2実施形態のように、分割された2つの光の光路長を調整する光路調整手段を備える必要がなく、部品点数の削減を図ると共に、構成の簡素化や装置の小型化等を図ることができる。
また、分光光学系600A,600Bに対し1つの光F0が入射されてから、4つの光FB1~FB4が出射されるまでの間、光が光学部材内のみを進み、空気中に出ない構成となるため、空気の揺らぎ等による影響を低減することができる。
〔第6実施形態〕
以下、第6実施形態について図面を参照しつつ説明する。図19は本実施形態に係る三次元計測装置の概略構成を示す模式図である。
以下、第6実施形態について図面を参照しつつ説明する。図19は本実施形態に係る三次元計測装置の概略構成を示す模式図である。
本実施形態は、第2実施形態や第5実施形態とは異なる分光光学系を備えたものであり、マイケルソン干渉計の光学構成を採用した第1実施形態と第1撮像系4A及び第2撮像系4Bに関連する構成が異なる。従って、本実施形態では、第1,第2,第5実施形態と異なる構成部分について詳しく説明し、同一構成部分については同一符号を付し、その詳細な説明を省略する。
本実施形態に係る第1撮像系4Aは、第2無偏光ビームスプリッタ13Bを透過した第1光に係る合成光(参照光成分及び計測光成分)を4つの分光に分割する第1の分光手段としての分光光学系700Aを備えている。
分光光学系700Aは、第2無偏光ビームスプリッタ13Bを透過した第1光に係る合成光を2つの分光に分割する無偏光ビームスプリッタ701Aと、該無偏光ビームスプリッタ701Aにより分割された2つの分光のうちの一方の分光をさらに2つの分光に分割する第1プリズム702Aと、前記無偏光ビームスプリッタ701Aにより分割された2つの分光のうちの他方の分光をさらに2つの分光に分割する第2プリズム703Aとを備えている。
さらに、本実施形態に係る第1撮像系4Aは、第1プリズム702Aにより分割された2つの分光をそれぞれ円偏光に変換する1/4波長板704Aと、第2プリズム703Aにより分割された2つの分光をそれぞれ円偏光に変換する1/4波長板705Aと、前記1/4波長板704Aを透過した2つの分光の所定成分を選択的に透過させるフィルタユニット706Aと、前記1/4波長板705Aを透過した2つの光の所定成分を選択的に透過させるフィルタユニット707Aと、前記フィルタユニット706Aを透過した2つの分光を同時に撮像するカメラ708Aと、前記フィルタユニット707Aを透過した2つの分光を同時に撮像するカメラ709Aとを備えている。
一方、本実施形態に係る第2撮像系4Bは、第1無偏光ビームスプリッタ13Aを透過した第2光に係る合成光(参照光成分及び計測光成分)を4つの分光に分割する第2の分光手段としての分光光学系700Bを備えている。
分光光学系700Bは、第1無偏光ビームスプリッタ13Aを透過した第2光に係る合成光を2つの分光に分割する無偏光ビームスプリッタ701Bと、該無偏光ビームスプリッタ701Bにより分割された2つの分光のうちの一方の分光をさらに2つの分光に分割する第1プリズム702Bと、前記無偏光ビームスプリッタ701Bにより分割された2つの分光のうちの他方の分光をさらに2つの分光に分割する第2プリズム703Bとを備えている。
さらに、本実施形態に係る第2撮像系4Bは、第1プリズム702Bにより分割された2つの分光をそれぞれ円偏光に変換する1/4波長板704Bと、第2プリズム703Bにより分割された2つの分光をそれぞれ円偏光に変換する1/4波長板705Bと、1/4波長板704Bを透過した2つの分光の所定成分を選択的に透過させるフィルタユニット706Bと、1/4波長板705Bを透過した2つの光の所定成分を選択的に透過させるフィルタユニット707Bと、フィルタユニット706Bを透過した2つの分光を同時に撮像するカメラ708Bと、フィルタユニット707Bを透過した2つの分光を同時に撮像するカメラ709Bとを備えている。
「無偏光ビームスプリッタ701A」及び「無偏光ビームスプリッタ701B」は、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面には無偏光のハーフミラーが設けられている。
第1撮像系4Aに係る「第1プリズム702A」及び「第2プリズム703A」、並びに、第2撮像系4Bに係る「第1プリズム702B」及び「第2プリズム703B」は、公知のケスタープリズムであって、上記第5実施形態に係る「第1プリズム601」及び「第2プリズム602」と同様の構成を有するものであり、その詳細な説明は省略する。
第1撮像系4Aに係る「1/4波長板704A」及び「1/4波長板705A」、並びに、第2撮像系4Bに係る「1/4波長板704B」及び「1/4波長板705B」は、上記第1実施形態の「1/4波長板31A」及び「1/4波長板31B」と同様の構成を有するものであり、その詳細な説明は省略する。但し、本実施形態に係る「1/4波長板704A」等は、それぞれ2つの分光に対応するものである。勿論、各分光それぞれに対応して個別に1/4波長板を備える構成としてもよい。
第1撮像系4Aに係る「フィルタユニット706A」及び「フィルタユニット707A」、並びに、第2撮像系4Bに係る「フィルタユニット706B」及び「フィルタユニット707B」は、上記第2実施形態の「フィルタユニット126」と同様の構成を有するものであり、その詳細な説明は省略する。但し、本実施形態に係る「フィルタユニット706A」等は、それぞれ2つの分光に対応するものである。例えば第1撮像系4Aに係る「フィルタユニット706A」が「偏光板126a,126b」を備え、「フィルタユニット707A」が「偏光板126c,126d」を備えた構成としてもよい(第2撮像系4bについても同様)。勿論、4つの分光それぞれに対応して個別に透過軸方向が45°ずつ異なる4つの偏光板(偏光板126a,126b,126c,126d)を備えた構成としてもよい。
第1撮像系4Aに係る「カメラ708A」及び「カメラ709A」、第2撮像系4Bに係る「カメラ708B」及び「カメラ709B」、並びに、これらに関連する制御処理や画像データ記憶装置54等に係る構成は、上記第1,第2実施形態の「第1カメラ33A」及び「第2カメラ633B」等に係る構成と同様の構成を有するものであり、その詳細な説明は省略する。但し、本実施形態に係る「カメラ708A(撮像素子)」等は、それぞれ2つの分光に対応するものである。例えば第1撮像系4Aに係る「カメラ708A(撮像素子)」の撮像領域が「フィルタユニット706A(偏光板126a,126b)」に対応して2つの撮像エリア(H1,H2)に区分けされ、「カメラ709A(撮像素子)」の撮像領域が「フィルタユニット707A(偏光板126c,126d)」に対応して2つの撮像エリア(H3,H4)に区分けされた構成としてもよい(第2撮像系4Bについても同様)。かかる場合、アスペクト比が2:1の撮像素子を備えることが好ましい。
続いて、分光光学系700A及び分光光学系700Bの作用について説明する。但し、上述したとおり、第1撮像系4A及び第2撮像系4Bに用いられる分光光学系700A及び分光光学系700Bは同一構成であるため、以下、第1撮像系4Aに係る分光光学系700Aを例にして説明し、第2撮像系4Bに係る分光光学系700Bについては省略する。
第2無偏光ビームスプリッタ13Bを透過した第1光に係る合成光は、まず分光光学系700Aの無偏光ビームスプリッタ701Aに入射し、ハーフミラーにて2方向に分岐する。このうち、ハーフミラーで反射した分光は第1プリズム702Aに入射する。一方、ハーフミラーを透過した分光は第2プリズム703Aに入射する。
第1プリズム702Aの第1面に入射した分光は、ハーフミラーにて2方向に分岐する。詳しくは、第1面側に向けハーフミラーで反射する分光と、第2面側に向けハーフミラーを透過する分光とに分岐する。
このうち、ハーフミラーで反射した分光は、第1面にて第3面側に向け全反射し、第3面から垂直に出射する。一方、ハーフミラーを透過した分光は、第2面にて第3面側に向け全反射し、第3面から垂直に出射する。つまり、第1プリズム702Aの第3面から平行する2つの分光が出射される。
同様に、第2プリズム703Aの第1面に入射した分光は、ハーフミラーにて2方向に分岐する。詳しくは、第1面側に向けハーフミラーで反射する分光と、第2面側に向けハーフミラーを透過する分光とに分岐する。
このうち、ハーフミラーで反射した分光は、第1面にて第3面側に向け全反射し、第3面から垂直に出射する。一方、ハーフミラーを透過した分光は、第2面にて第3面側に向け全反射し、第3面から垂直に出射する。つまり、第2プリズム703Aの第3面から平行する2つの分光が出射される。
そして、第1プリズム702Aから出射した2つの分光は、それぞれ1/4波長板704Aにより円偏光に変換された後、フィルタユニット706A(例えば偏光板126a,126b)に入射する。
フィルタユニット706Aを透過した2つの分光は、例えば位相「0°」の干渉光と位相「90°」の干渉光になる。そして、これらの2つの分光がカメラ708Aの2つの撮像エリアにて同時に撮像され、例えば位相「0°」の干渉縞画像と位相「90°」の干渉縞画像とが得られる。
同様に、第2プリズム703Aから出射した2つの分光は、それぞれ1/4波長板705Aにより円偏光に変換された後、フィルタユニット707A(例えば偏光板126c,126d)に入射する。
フィルタユニット707Aを透過した2つの分光は、例えば位相「180°」の干渉光と位相「270°」の干渉光になる。そして、これらの2つの分光がカメラ709Aの2つの撮像エリアにて同時に撮像され、例えば位相「180°」の干渉縞画像と位相「270°」の干渉縞画像とが得られる。
結果として、第1撮像系4A(カメラ708A及びカメラ709A)により、位相が90°ずつ異なる4通りの干渉縞画像が取得されることとなる。
以上詳述したように、本実施形態では、上記第5実施形態と同様の作用効果が奏される。
〔第7実施形態〕
以下、第7実施形態について説明する。本実施形態は、2つの光源から出射される波長の異なる2種類の光を重ね合わせた状態で干渉光学系へ入射させ、ここから出射される光を光学分離手段により波長分離し、上記各波長の光に係る干渉光を個別に撮像する構成を、マイケルソン干渉計の光学構成を採用した上記第1実施形態等(第5実施形態等を含む)に組み合わせ、波長の異なる4種類の光を利用した計測を可能としたものである。
以下、第7実施形態について説明する。本実施形態は、2つの光源から出射される波長の異なる2種類の光を重ね合わせた状態で干渉光学系へ入射させ、ここから出射される光を光学分離手段により波長分離し、上記各波長の光に係る干渉光を個別に撮像する構成を、マイケルソン干渉計の光学構成を採用した上記第1実施形態等(第5実施形態等を含む)に組み合わせ、波長の異なる4種類の光を利用した計測を可能としたものである。
以下、図面を参照しつつ詳しく説明する。図20は本実施形態に係る三次元計測装置の概略構成を示す模式図である。本実施形態は、上記第1実施形態等と、第1投光系2A及び第2投光系2B、並びに、第1撮像系4A及び第2撮像系4Bに関連する構成が異なる。従って、本実施形態では、上記各実施形態と異なる構成部分について詳しく説明し、同一構成部分については同一符号を付し、その詳細な説明を省略する。
本実施形態に係る第1投光系2Aは、2つの発光部751A,752A、発光部751Aに対応する光アイソレータ753A、発光部752Aに対応する光アイソレータ754A、ダイクロイックミラー755A、無偏光ビームスプリッタ756Aなどを備えている。
「発光部751A」及び「発光部752A」は、「第1発光部11A」と同様の構成を有するものであり、その詳細な説明は省略する。但し、発光部751Aは第1の波長(例えば491nm)の直線偏光を出射し、発光部752Aは第2の波長(例えば540nm)の直線偏光を出射するといったように、両発光部751A,752Aは波長の異なる光を出射する。
「光アイソレータ753A」及び「光アイソレータ754A」は「第1光アイソレータ12A」と同様の構成を有するものであり、その詳細な説明は省略する。
かかる構成の下、発光部751AからY軸方向下向きに出射された第1の波長の直線偏光(以下、「第1波長光」という)は、光アイソレータ753Aを介してダイクロイックミラー755Aに入射する。
同様に、発光部752AからZ軸方向左向きに出射された第2の波長の直線偏光(以下、「第2波長光」という)は、光アイソレータ754Aを介してダイクロイックミラー755Aに入射する。
ダイクロイックミラー755Aは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材(ダイクロイックプリズム)であって、その接合面755Ahに誘電体多層膜が形成されている。
ダイクロイックミラー755Aは、その接合面755Ahを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、ダイクロイックミラー755Aの接合面755AhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
本実施形態におけるダイクロイックミラー755Aは、少なくとも第1波長光を反射し、第2波長光を透過する特性を有する。これにより、図20に示す本実施形態の配置構成では、ダイクロイックミラー755Aに入射した第1波長光と第2波長光とが合成された上で無偏光ビームスプリッタ756Aに向けZ軸方向左向きに出射されることとなる。
以降、発光部751Aから出射される第1波長光と、発光部752Aから出射される第2波長光とを合成した合成光を「第1光」という。つまり、「発光部751A,752A」や「ダイクロイックミラー755A」等により本実施形態における「第1照射手段」が構成されることとなる。
「無偏光ビームスプリッタ756A」は、「第1無偏光ビームスプリッタ13A」と同様の構成を有するものであり、その詳細な説明は省略する。本実施形態では、ダイクロイックミラー755AからZ軸方向左向きに入射する第1光の一部(半分)をZ軸方向左向きに透過させ、残り(半分)をY軸方向下向きに反射させる。
本実施形態に係る第2投光系2Bは、2つの発光部751B,752B、発光部751Bに対応する光アイソレータ753B、発光部752Bに対応する光アイソレータ754B、ダイクロイックミラー755B、無偏光ビームスプリッタ756Bなどを備えている。
「発光部751B」及び「発光部752B」は、「第2発光部11B」と同様の構成を有するものであり、その詳細な説明は省略する。但し、発光部751Bは第3の波長(例えば488nm)の直線偏光を出射し、発光部752Bは第4の波長(例えば532nm)の直線偏光を出射するといったように、両発光部751B,752Bは波長の異なる光を出射する。
「光アイソレータ753B」及び「光アイソレータ754B」は「第2光アイソレータ12B」と同様の構成を有するものであり、その詳細な説明は省略する。
かかる構成の下、発光部751BからZ軸方向左向きに出射された第3の波長の直線偏光(以下、「第3波長光」という)は、光アイソレータ753Bを介してダイクロイックミラー755Bに入射する。
同様に、発光部752BからY軸方向上向きに出射された第4の波長の直線偏光(以下、「第4波長光」という)は、光アイソレータ754Bを介してダイクロイックミラー755Bに入射する。
ダイクロイックミラー755Bは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材(ダイクロイックプリズム)であって、その接合面755Bhに誘電体多層膜が形成されている。
ダイクロイックミラー755Bは、その接合面755Bhを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、ダイクロイックミラー755Bの接合面755BhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
本実施形態におけるダイクロイックミラー755Bは、少なくとも第3波長光を反射し、第4波長光を透過する特性を有する。これにより、図20に示す本実施形態の配置構成では、ダイクロイックミラー755Bに入射した第3波長光と第4波長光とが合成された上で無偏光ビームスプリッタ756Bに向けY軸方向上向きに出射されることとなる。
以降、発光部751Bから出射される第3波長光と、発光部752Bから出射される第4波長光とを合成した合成光を「第2光」という。つまり、「発光部751B,752B」や「ダイクロイックミラー755B」等により本実施形態における「第2照射手段」が構成されることとなる。
「無偏光ビームスプリッタ756B」は、「第2無偏光ビームスプリッタ13B」と同様の構成を有するものであり、その詳細な説明は省略する。本実施形態では、ダイクロイックミラー755BからY軸方向上向きに入射する第2光の一部(半分)をY軸方向上向きに透過させ、残り(半分)をZ軸方向右向きに反射させる。
本実施形態に係る第1撮像系4Aは、無偏光ビームスプリッタ756Bを透過した第1光(2波長合成光)に係る参照光成分及び計測光成分の合成光を、第1波長光に係る合成光(参照光成分及び計測光成分)と、第2波長光に係る合成光(参照光成分及び計測光成分)とに分離するダイクロイックミラー800Aを備えている。以下、ダイクロイックミラー800Aについて詳しく説明する。
ダイクロイックミラー800Aは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材(ダイクロイックプリズム)であって、その接合面800Ahに誘電体多層膜が形成されている。
ダイクロイックミラー800Aは、その接合面800Ahを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、ダイクロイックミラー800Aの接合面800AhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
本実施形態におけるダイクロイックミラー800Aは、上記ダイクロイックミラー755Aと同様の特性を有するものである。すなわち、ダイクロイックミラー800Aは、少なくとも第1波長光を反射し、第2波長光を透過する特性を有する。
これにより、図20に示す本実施形態の配置構成では、ダイクロイックミラー800Aに入射した第1光に係る合成光は、Y軸方向下向きに出射される第1波長光(例えば491nm)に係る合成光と、Z軸方向左向きに出射される第2波長光(例えば540nm)に係る合成光とに分離されることとなる。
さらに、本実施形態に係る第1撮像系4Aは、ダイクロイックミラー800AからY軸方向下向きに出射される第1波長光に係る合成光を4つの分光に分割する分光光学系801Aと、該分光光学系801Aにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板803Aと、該1/4波長板803Aを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット805Aと、該フィルタユニット805Aを透過した4つの分光を同時に撮像するカメラ807Aとを備えている。
同様に、本実施形態に係る第1撮像系4Aは、ダイクロイックミラー800AからZ軸方向左向きに出射される第2波長光に係る合成光を4つの分光に分割する分光光学系802Aと、該分光光学系802Aにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板804Aと、該1/4波長板804Aを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット806Aと、該フィルタユニット806Aを透過した4つの分光を同時に撮像するカメラ808Aとを備えている。
尚、第1波長光に係る「分光光学系801A」、「1/4波長板803A」、「フィルタユニット805A」及び「カメラ807A」に係る構成、並びに、第2波長光に係る「分光光学系802A」、「1/4波長板804A」、「フィルタユニット806A」及び「カメラ808A」に係る構成は、それぞれ上記第5実施形態に係る「分光光学系600A」、「1/4波長板610A」、「フィルタユニット615A」及び「カメラ633A」に係る構成と同一であるため、その詳細な説明は省略する。
本実施形態に係る第2撮像系4Bは、無偏光ビームスプリッタ756Aを透過した第2光(2波長合成光)に係る参照光成分及び計測光成分の合成光を、第3波長光に係る合成光(参照光成分及び計測光成分)と、第4波長光に係る合成光(参照光成分及び計測光成分)とに分離するダイクロイックミラー800Bを備えている。以下、ダイクロイックミラー800Bについて詳しく説明する。
ダイクロイックミラー800Bは、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材(ダイクロイックプリズム)であって、その接合面800Bhに誘電体多層膜が形成されている。
ダイクロイックミラー800Bは、その接合面800Bhを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、ダイクロイックミラー800Bの接合面800BhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
本実施形態におけるダイクロイックミラー800Bは、上記ダイクロイックミラー755Bと同様の特性を有するものである。すなわち、ダイクロイックミラー800Bは、少なくとも第3波長光を反射し、第4波長光を透過する特性を有する。
これにより、図20に示す本実施形態の配置構成では、ダイクロイックミラー800Bに入射した第3光に係る合成光は、Z軸方向左向きに出射される第3波長光(例えば488nm)に係る合成光と、Y軸方向上向きに出射される第4波長光(例えば532nm)に係る合成光とに分離されることとなる。
さらに、本実施形態に係る第2撮像系4Bは、ダイクロイックミラー800BからZ軸方向左向きに出射される第3波長光に係る合成光を4つの分光に分割する分光光学系801Bと、該分光光学系801Bにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板803Bと、該1/4波長板803Bを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット805Bと、該フィルタユニット805Bを透過した4つの分光を同時に撮像するカメラ807Bとを備えている。
同様に、本実施形態に係る第2撮像系4Bは、ダイクロイックミラー800BからY軸方向上向きに出射される第4波長光に係る合成光を4つの分光に分割する分光光学系802Bと、該分光光学系802Bにより分割された4つの分光をそれぞれ円偏光に変換する1/4波長板804Bと、該1/4波長板804Bを透過した4つの分光の所定成分を選択的に透過させるフィルタユニット806Bと、該フィルタユニット806Bを透過した4つの分光を同時に撮像するカメラ808Bとを備えている。
尚、第3波長光に係る「分光光学系801B」、「1/4波長板803B」、「フィルタユニット805B」及び「カメラ807B」に係る構成、並びに、第4波長光に係る「分光光学系802B」、「1/4波長板804B」、「フィルタユニット806B」及び「カメラ808B」に係る構成は、それぞれ上記第5実施形態に係る「分光光学系600B」、「1/4波長板610B」、「フィルタユニット615B」及び「カメラ633B」に係る構成と同一であるため、その詳細な説明は省略する。
上記構成により、位相が90°ずつ異なる第1波長光に係る4通りの干渉縞画像、位相が90°ずつ異なる第2波長光に係る4通りの干渉縞画像、位相が90°ずつ異なる第3波長光に係る4通りの干渉縞画像、及び、位相が90°ずつ異なる第4波長光に係る4通りの干渉縞画像を取得することができる。
以上詳述したように、本実施形態によれば、上記第5実施形態と同様の作用効果が奏される。さらに、本実施形態によれば、波長の異なる4種類の光を利用することにより、さらなる計測レンジの拡大を図ると共に、計測効率のさらなる向上を図ることができる。
また、第1波長光と第3波長光(例えば491nmと488nmの青系色の光)の2光を用いた計測と、第2波長光と第4波長光(例えば540nmと532nmの緑系色の光)の2光を用いた計測をワークWの種類に応じて切替えることができる。
結果として、波長の近い2種類の光を用いて計測レンジの拡大を図りつつも、ワークWの種類に応じて光の種類(波長)を切替えることができる。
例えば赤系光が適さないウエハ基板などのワークWに対しては、第1波長光と第3波長光(例えば491nmと488nmの青系色の光)の2光を用いた計測を行う一方、青系光が適さない銅などのワークWにたしては第2波長光と第4波長光(例えば540nmと532nmの緑系色の光)の2光を用いた計測を行うとよい。勿論、各光の波長は本実施形態の例に限定されるものではなく、他の波長の光を採用してもよい。
尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
(a)上記各実施形態では、ワークWの具体例について特に言及していないが、被計測物としては、例えばプリント基板に印刷されたクリーム半田や、ウエハ基板に形成された半田バンプなどが挙げられる。
ここで半田バンプ等の高さ計測の原理について説明する。図21に示すように、電極501(基板500)に対するバンプ503の高さHBは、バンプ503の絶対高さhoから、該バンプ503周辺の電極501の絶対高さhrを減算することにより求めることができる〔HB=ho-hr〕。ここで、電極501の絶対高さhrとしては、例えば電極501上の任意の1点の絶対高さや、電極501上の所定範囲の絶対高さの平均値などを用いることができる。また、「バンプ503の絶対高さho」や、「電極501の絶対高さhr」は、上記各実施形態において高さ情報z(ξ,η)として求めることができる。
従って、予め設定された良否の判定基準に従いクリーム半田や半田バンプの良否を検査する検査手段を設けた半田印刷検査装置又は半田バンプ検査装置において、三次元計測装置1(200,300)を備えた構成としても良い。
尚、マイケルソン干渉計の光学構成を採用した上記第1実施形態等に係る三次元計測装置1や、フィゾー干渉計の光学構成を採用した上記第4実施形態に係る三次元計測装置300は、反射ワークに適しており、マッハ・ツェンダー干渉計の光学構成を採用した上記第3実施形態に係る三次元計測装置200は、透過ワークに適している。また、位相シフト法を用いることで、0次光(透過光)を排除した計測が可能となる。
但し、第3実施形態において、第2全反射ミラー222及び設置部224を省略し、第2全反射ミラー222の位置にワークWを設置し、反射ワークを計測可能な構成としてもよい。
また、上記各実施形態においてワークWを設置する設置部24(224,324)を変位可能に構成し、ワークWの表面を複数の計測エリアに分割し、各計測エリアを順次移動しつつ各エリアの形状計測を行っていき、複数回に分けてワークW全体の形状計測を行う構成としてもよい。
(b)干渉光学系(所定の光学系)の構成は上記各実施形態に限定されるものではない。例えば上記第1実施形態等では、干渉光学系として、マイケルソン干渉計の光学構成を採用し、第3実施形態ではマッハツェンダー干渉計の光学構成を採用し、第4実施形態ではフィゾー干渉計の光学構成を採用しているが、これに限らず、入射光を参照光と計測光に分割してワークWの形状計測を行う構成であれば、他の光学構成を採用してもよい。
(c)投光系2A,2B(302A,302B)の構成は上記各実施形態に限定されるものではない。例えば上記各実施形態(第7実施形態を除く)では、第1投光系2A(302A)から波長λ1=1500nmの光が照射され、第2投光系2B(302B)から波長λ2=1503nmの光が照射される構成となっているが、各光の波長はこれに限定されるものではない。但し、計測レンジを広げるためには、2つの光の波長差をより小さくすることが好ましい。
また、第1投光系2A(302A)及び第2投光系2B(302B)から同一波長の光が照射される構成としてもよい。
上述したように、従来より、被計測物の形状を計測する三次元計測装置として、レーザ光などを利用した三次元計測装置(干渉計)が知られている。かかる三次元計測装置においては、レーザ光源からの出力光の揺らぎ等の影響により、計測精度が低下するおそれがある。
これに対し、例えば被計測物が比較的小さく、1つの光(1つの波長)でも計測レンジが不足しないような場合には、異なる2つの光源から同一波長の光を照射して、該2つの光でそれぞれ三次元計測を行うことにより、計測精度の向上を図ることができる。
しかしながら、2つの光で三次元計測を行おうとした場合、第1光に係る出力光の撮像と、第2光に係る出力光の撮像をそれぞれ異なるタイミングで行う必要があり、計測効率が低下するおそれがある。
例えば位相シフト法を利用した三次元計測において、位相を4段階に変化させる場合には、4通りの画像データを取得する必要があるため、2つの光を用いる場合には、それぞれ異なるタイミングで4回ずつ、計8回分の撮像時間が必要となる。
同一波長の2つの光を照射する本発明は、上記事情等に鑑みてなされたものであり、その目的は、2つの光を利用して、計測効率の向上を図ることのできる三次元計測装置を提供することにある。
本発明によれば、第1光に係る出力光の撮像と、第2光に係る出力光の撮像を同時に行うことができるため、計4回分(又は計3回分)の撮像時間で、2つの光に係る計8通り(又は6通り)の干渉縞画像を取得することができる。結果として、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
特にマッハ・ツェンダー干渉計の原理に基づき構成された上記第3実施形態に係る三次元計測装置200においては、1つのワークWに対し異なる方向から2つの光(計測光)を照射することができるため、例えば複雑な形状を有するワークなどの全体像をより精度よく計測することが可能となる。
また、上記各実施形態では、投光系2A,2B(302A,302B)において、光アイソレータ12A,12B(312A,312B)等を備えた構成となっているが、光アイソレータ12A,12B(312A,312B)等を省略した構成としてもよい。
また、上記各実施形態において、第1投光系2A(302A)と第2撮像系4B(304B)の両者の位置関係を第1無偏光ビームスプリッタ13A(313A)等を挟んで入れ替えた構成としてもよいし、第2投光系2B(302B)と第1撮像系4A(304A)の両者の位置関係を第2無偏光ビームスプリッタ13B(313B)等を挟んで入れ替えた構成としてもよい。
また、導光手段の構成は、上記各実施形態に係る無偏光ビームスプリッタ13A,13B(313A,313B)等に限定されるものではない。第1照射手段(第2照射手段)から出射される第1光(第2光)の少なくとも一部を第1入出力部(第2入出力部)に向け入射させると共に、第1入出力部(第2入出力部)から出射される第2光に係る出力光(第1光に係る出力光)の少なくとも一部を第2撮像手段(第1撮像手段)に向け入射させる構成であれば、他の構成を採用してもよい。つまり、第1実施形態においては、第1投光系2A(第2投光系2B)から照射された第1光(第2光)を偏光ビームスプリッタ20の第1面20a(第2面20b)に入射させ、かつ、偏光ビームスプリッタ20の第1面20a(第2面20b)から出射された第2光に係る出力光(第1光に係る出力光)を第2撮像系4B(第1撮像系4A)により撮像可能とする構成であれば、他の構成を採用してもよい。
また、上記各実施形態では、第1無偏光ビームスプリッタ13A(313A)及び第2無偏光ビームスプリッタ13B(313B)等として、直角プリズムを貼り合せて一体としたキューブ型を採用しているが、これに限定されるものではなく、例えばプレートタイプの所定のハーフミラーを採用してもよい。
同様に、上記各実施形態では、偏光ビームスプリッタ20(211,212,320)として、直角プリズムを貼り合せて一体としたキューブ型を採用しているが、これに限定されるものではなく、例えばプレート型偏光ビームスプリッタを採用してもよい。
(d)上記各実施形態(第4実施形態を除く)では、位相の異なる4通りの干渉縞画像データを基に位相シフト法を行う構成となっているが、これに限らず、例えば位相の異なる2通り又は3通りの干渉縞画像データを基に位相シフト法を行う構成としてもよい。
勿論、第1実施形態等に係る三次元計測装置1や、第3実施形態に係る三次元計測装置200は、例えば第4実施形態のフーリエ変換法のように、位相シフト法とは異なる他の方法により三次元計測を行う構成にも適用することができる。
逆に、第4実施形態に係る三次元計測装置300は、位相シフト法など、フーリエ変換法とは異なる他の方法により三次元計測を行う構成にも適用することができる。
(e)上記第1,3実施形態では、位相シフト手段として、透過軸方向を変更可能に構成された偏光板32A,32Bを採用し、上記第2実施形態等においては、透過軸方向が異なる4つの偏光板からなるフィルタユニット126を採用している。
位相シフト手段の構成は、これらに限定されるものではなく、例えば第1実施形態においてピエゾ素子等により参照面23を光軸に沿って移動させることで物理的に光路長を変化させる構成を採用してもよい。
また、第3実施形態において、第2実施形態等に係る構成(フィルタユニット126など)を位相シフト手段として採用してもよい。また、全反射ミラー221(参照面)を、Y軸方向及びZ軸方向に対し45°傾斜した状態を維持しつつ、ピエゾ素子等により該傾斜方向と直交する方向に沿って移動させることで物理的に光路長を変化させる構成を位相シフト手段として採用してもよい。
また、第4実施形態において、位相シフト法を採用する場合には、例えばピエゾ素子等によりハーフミラー323(参照面)を光軸に沿って移動させることで物理的に光路長を変化させる構成を採用してもよい。
(f)上記各実施形態(第4実施形態を除く)では、2波長位相シフト法を行うにあたり、高さ情報z(ξ,η)を計算式により求める構成となっているが、これに限らず、例えば位相φ1,φ2、縞次数m1,m2、高さ情報zの対応関係を表した数表やテーブルデータを予め記憶しておき、これを参酌して高さ情報zを取得する構成としてもよい。かかる場合、必ずしも縞次数を特定する必要はない。
(g)分光手段の構成は上記第2実施形態等に限定されるものではない。例えば上記第2実施形態に係る分光光学系125等では、干渉光学系3から入射される光を4つに分光する構成となっているが、これに限らず、例えば3つに分光する構成など、少なくとも位相シフト法による計測に必要な数の光に分割可能な構成となっていればよい。
また、上記第2実施形態等では、入射される合成光L0等を、進行方向に直交する平面において光路がマトリクス状に並ぶ4つの光LB1~LB4等に分割する構成となっているが、複数のカメラを用いて各分光LB1~LB4等を撮像する構成であれば、必ずしもマトリクス状に並ぶように分光される必要はない。
また、上記第2実施形態等では、分光手段として、複数の光学部材(プリズム)を組み合わせて一体とした分光光学系125を採用しているが、これに限らず、分光手段として回折格子を採用してもよい。
(h)フィルタ手段の構成は上記第2実施形態等に限定されるものではない。例えば上記第2実施形態では、フィルタユニット126が、透過軸方向が0°の第1偏光板126a、透過軸方向が45°の第2偏光板126b、透過軸方向が90°の第3偏光板126c、透過軸方向が135°の第4偏光板126dにより構成され、透過軸方向が45°ずつ異なるこれら4つの偏光板126a~26dを用いて、位相が90°ずつ異なる4通りの干渉縞画像を取得し、該4通りの干渉縞画像を基に位相シフト法により形状計測を行う構成となっている。
これに代えて、位相が異なる3通りの干渉縞画像を基に位相シフト法により形状計測を行う場合には、以下のような構成としてもよい。例えば図22に示すように、フィルタユニット126の第1偏光板126a、第2偏光板126b、第3偏光板126c、第4偏光板126dをそれぞれ、透過軸方向が0°の偏光板、透過軸方向が60°(又は45°)の偏光板、透過軸方向が120°(又は90°)の偏光板、計測光(例えば右回りの円偏光)及び参照光(例えば左回りの円偏光)を直線偏光に変換する1/4波長板と、計測光の直線偏光を選択的に透過させる偏光板とを組み合わせたものとした構成としてもよい。ここで、「1/4波長板」及び「偏光板」の組を所謂「円偏光板」とした構成としてもよい。
かかる構成によれば、一つの撮像素子による一回の撮像で、120°(又は90°)ずつ位相が異なる3通りの干渉縞画像に加えて、ワークWの輝度画像を取得することができる。これにより、3通りの干渉縞画像を基に位相シフト法により行う形状計測に加え、輝度画像を基にした計測を組み合せて行うことが可能となる。例えば位相シフト法による形状計測により得られた三次元データに対しマッピングを行うことや、計測領域の抽出を行うこと等が可能となる。結果として、複数種類の計測を組み合せた総合的な判断を行うことができ、計測精度のさらなる向上を図ることができる。
尚、図15に示した例では、第4偏光板126dとして、円偏光を直線偏光に変換する1/4波長板と、計測光の直線偏光を選択的に透過させる偏光板とを組み合わせたものを採用しているが、これに限らず、計測光のみを選択的に透過させる構成であれば、他の構成を採用してもよい。
さらに、第4偏光板126dを省略した構成としてもよい。つまり、フィルタユニット126の第1偏光板126a、第2偏光板126b、第3偏光板126cをそれぞれ透過した3つの光と、フィルタユニット126(偏光板)を介することなく直接入射される1つの光を同時に一つの撮像素子により撮像する構成としてもよい。
かかる構成によれば、第4偏光板126dとして、「1/4波長板」及び「偏光板」の組を配置した上記構成と同様の作用効果が奏される。つまり、一つの撮像素子による一回の撮像で、120°(又は90°)ずつ位相が異なる3通りの干渉縞画像に加えて、ワークWの輝度画像を取得することができる。
尚、計測光(例えば右回りの円偏光)と参照光(例えば左回りの円偏光)とをそのまま撮像したとしても、参照光は既知(予め計測して得ることが可能)であり均一なので撮像後の処理により、この参照光分を取り除く処理や均一光を取り除く処理を行うことにより、計測光の信号を抽出することが可能となる。
第4偏光板126dを省略した構成の利点としては、「1/4波長板」及び「偏光板」の組を配置した構成と比較して、これら「1/4波長板」及び「偏光板」を省略することができるため、光学部品が減り、構成の簡素化や部品点数の増加抑制等を図ることができる。
(i)上記各実施形態においては、レンズを備えたカメラを使用しているが、必ずしもレンズは必要なく、レンズのないカメラを使用しても上記[数6]の関係式を利用するなどしてピントの合った画像を計算により求めることにより行っても良い。
1…三次元計測装置、2A…第1投光系、2B…第2投光系、3…干渉光学系、4A…第1撮像系、4B…第2撮像系、5…制御装置、11A…第1発光部、11B…第2発光部、12A…第1光アイソレータ、12B…第2光アイソレータ、13A…第1無偏光ビームスプリッタ、13B…第2無偏光ビームスプリッタ、20…偏光ビームスプリッタ、20a…第1面、20c…第3面、20b…第2面、20d…第4面、21,22…1/4波長板、23…参照面、24…設置部、31A…1/4波長板、31B…1/4波長板、32A…第1偏光板、32B…第2偏光板、33A…第1カメラ、33B…第2カメラ、W…ワーク。
Claims (13)
- 入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系と、
前記所定の光学系に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記所定の光学系から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記所定の光学系から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
前記第1光と前記第2光をそれぞれ前記所定の光学系の異なる位置に入射させ、
前記第1光に係る出力光と前記第2光に係る出力光をそれぞれ前記所定の光学系の異なる位置から出射させることを特徴とする三次元計測装置。 - 入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系と、
前記所定の光学系の第1入出力部に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系の第2入出力部に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記第1入出力部に対し前記第1光を入射することにより前記第2入出力部から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記第2入出力部に対し前記第2光を入射することにより前記第1入出力部から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。 - 入射する所定の光を偏光方向が互いに直交する2つの偏光に分割する境界面を有し、該分割した一方の偏光を計測光として被計測物に照射しかつ他方の偏光を参照光として参照面に照射すると共に、これらを再び合成して出射可能な偏光ビームスプリッタと、
前記境界面を挟んで隣り合う前記偏光ビームスプリッタの第1面及び第2面のうち第1入出力部となる前記第1面に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記偏光ビームスプリッタの第2入出力部となる前記第2面に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記参照光が出入射される前記偏光ビームスプリッタの第3面と前記参照面との間に配置された第1の1/4波長板と、
前記計測光が出入射される前記偏光ビームスプリッタの第4面と前記被計測物との間に配置される第2の1/4波長板と、
前記偏光ビームスプリッタの前記第1面に対し前記第1光を入射することにより前記第2面から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記偏光ビームスプリッタの前記第2面に対し前記第2光を入射することにより前記第1面から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。 - 第1波長の偏光を含む第1光を出射可能な第1照射手段と、
第2波長の偏光を含む第2光を出射可能な第2照射手段と、
前記第1照射手段から入射される前記第1光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を計測光として被計測物に対し照射可能としかつ他方の偏光を参照光として参照面に対し照射可能とすると共に、前記被計測物を介して入射した前記第2光に係る計測光と、前記参照面を介して入射した前記第2光に係る参照光とを合成して出射可能な第1入出力部としての第1偏光ビームスプリッタと、
前記第2照射手段から入射される前記第2光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を計測光として被計測物に対し照射可能としかつ他方の偏光を参照光として参照面に対し照射可能とすると共に、前記被計測物を介して入射した前記第1光に係る計測光と、前記参照面を介して入射した前記第1光に係る参照光とを合成して出射可能な第2入出力部としての第2偏光ビームスプリッタと、
前記第1偏光ビームスプリッタと前記参照面との間に配置された第1の1/4波長板と、
前記第1偏光ビームスプリッタと前記被計測物との間に配置された第2の1/4波長板と、
前記第2偏光ビームスプリッタと前記参照面との間に配置された第3の1/4波長板と、
前記第2偏光ビームスプリッタと前記被計測物との間に配置された第4の1/4波長板と、
前記第1偏光ビームスプリッタに対し前記第1光を入射することにより前記第2偏光ビームスプリッタから出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記第2偏光ビームスプリッタに対し前記第2光を入射することにより前記第1偏光ビームスプリッタから出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。 - 第1の偏光方向を有する偏光である第1偏光を透過させ、第2の偏光方向を有する偏光である第2偏光を反射する境界面を有する偏光ビームスプリッタと、
前記境界面を挟んで隣り合う前記偏光ビームスプリッタの第1面及び第2面のうち第1入出力部となる前記第1面に対し入射させる、第1波長の前記第1偏光を含む第1光を出射可能な第1照射手段と、
前記偏光ビームスプリッタの第2入出力部となる前記第2面に対し入射させる、第2波長の前記第2偏光を含む第2光を出射可能な第2照射手段と、
前記境界面を透過した第1光及び前記境界面に反射した第2光が出射される前記偏光ビームスプリッタの第3面と相対向するように配置された1/4波長板と、
前記偏光ビームスプリッタとは反対側にて前記1/4波長板と相対向するように配置され、前記1/4波長板を介して照射された光の一部を計測光として透過して被計測物に照射しかつ残りの光を参照光として反射するハーフミラーと、
前記偏光ビームスプリッタの前記第1面に対し前記第1光を入射することにより前記第2面から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記偏光ビームスプリッタの前記第2面に対し前記第2光を入射することにより前記第1面から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。 - 前記第1照射手段から出射される第1光の少なくとも一部を前記第1入出力部に向け入射させると共に、前記第1入出力部から出射される前記第2光に係る出力光の少なくとも一部を前記第2撮像手段に向け入射させる第1導光手段と、
前記第2照射手段から出射される第2光の少なくとも一部を前記第2入出力部に向け入射させると共に、前記第2入出力部から出射される第1光に係る出力光の少なくとも一部を前記第1撮像手段に向け入射させる第2導光手段とを備えたことを特徴とする請求項2乃至5のいずれかに記載の三次元計測装置。 - 前記第1照射手段と前記第1導光手段との間に、前記第1照射手段から出射される一方向の光のみを透過しかつ逆方向の光を遮断する第1光アイソレータを備えると共に、
前記第2照射手段と前記第2導光手段との間に、前記第2照射手段から出射される一方向の光のみを透過しかつ逆方向の光を遮断する第2光アイソレータを備えたことを特徴とする請求項6に記載の三次元計測装置。 - 入射する所定の光を偏光方向が互いに直交する2つの偏光に分割し、一方の偏光を計測光として被計測物に照射しかつ他方の偏光を参照光として参照面に照射すると共に、これらを再び合成して出射可能な所定の光学系と、
前記所定の光学系に対し入射させる、第1波長を有する第1光を出射可能な第1照射手段と、
前記所定の光学系に対し入射させる、前記第1波長とは異なる第2波長を有する第2光を出射可能な第2照射手段と、
前記所定の光学系から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記所定の光学系から出射される前記第2光に係る出力光を撮像可能な第2撮像手段と、
前記第1撮像手段及び前記第2撮像手段により撮像された干渉縞画像を基に前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
前記第1光と前記第2光をそれぞれ前記所定の光学系の異なる位置に入射させ、
前記所定の光学系が、
前記第1光を、第1の偏光方向を有する第1偏光よりなる前記参照光と、第2の偏光方向を有する第2偏光よりなる前記計測光とに分割し、
前記第2光を、前記第2偏光よりなる前記参照光と、前記第1偏光よりなる前記計測光とに分割し、
これらを再び合成した前記第1光に係る出力光と前記第2光に係る出力光をそれぞれ前記所定の光学系の異なる位置から出射させることを特徴とする三次元計測装置。 - 前記第1光に係る前記参照光と前記計測光との間に相対的な位相差を付与する第1位相シフト手段と、
前記第2光に係る前記参照光と前記計測光との間に相対的な位相差を付与する第2位相シフト手段とを備え、
前記画像処理手段は、
前記第1位相シフト手段により複数通りに位相シフトされた前記第1光に係る出力光を前記第1撮像手段により撮像した複数通りの干渉縞画像を基に、位相シフト法により前記被計測物の形状計測を行い、当該計測値を第1計測値として取得可能な第1計測値取得手段と、
前記第2位相シフト手段により複数通りに位相シフトされた前記第2光に係る出力光を前記第2撮像手段により撮像した複数通りの干渉縞画像を基に、位相シフト法により前記被計測物の形状計測を行い、当該計測値を第2計測値として取得可能な第2計測値取得手段と、
前記第1計測値及び前記第2計測値から特定される高さ情報を、前記被計測物の高さ情報として取得可能な高さ情報取得手段とを備えた請求項1乃至8のいずれかに記載の三次元計測装置。 - 前記第1光に係る出力光を複数の光に分割する第1の分光手段と、
前記第1位相シフト手段として、前記第1の分光手段により分割された複数の分割光のうち、少なくとも前記位相シフト法による計測に必要な数の分割光に対してそれぞれ異なる位相差を付与する第1のフィルタ手段と、
前記第2光に係る出力光を複数の光に分割する第2の分光手段と、
前記第2位相シフト手段として、前記第2の分光手段により分割された複数の分割光のうち、少なくとも前記位相シフト法による計測に必要な数の分割光に対してそれぞれ異なる位相差を付与する第2のフィルタ手段とを備え、
前記第1撮像手段は、少なくとも前記第1のフィルタ手段を透過する前記複数の分割光を同時に撮像可能に構成され、
前記第2撮像手段は、少なくとも前記第2のフィルタ手段を透過する前記複数の分割光を同時に撮像可能に構成されていることを特徴とする請求項9に記載の三次元計測装置。 - 前記分光手段は、
第1の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第1の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第1分岐手段を有する第1の光学部材と、
前記第1の平面と直交する第2の平面に沿った断面形状が三角形状となる三角柱形状をなし、該第2の平面と直交する方向に沿った3つの面のうちの第1面と第2面との交線を通り第3面と直交する平面に沿って第2分岐手段を有する第2の光学部材とを備え、
前記第1の光学部材の第3面と前記第2の光学部材の第1面とを相対向するように配置することにより、
前記第1の光学部材の前記第1面に対し入射される光を前記第1分岐手段にて2方向に分岐させ、このうち前記第1分岐手段にて反射した分割光を前記第1面にて前記第3面側に向け反射させ、前記第1分岐手段を透過した分割光を前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する2つの分割光として出射させ、
前記第1の光学部材の第3面から出射された2つの分割光を前記第2の光学部材の第1面に対し入射させ、該2つの分割光をそれぞれ前記第2分岐手段にて2方向に分岐させ、このうち前記第2分岐手段にて反射した2つの分割光をそれぞれ前記第1面にて前記第3面側に向け反射させ、前記第2分岐手段を透過した2つの分割光をそれぞれ前記第2面にて前記第3面側に向け反射させることにより、前記第3面から平行する4つの分割光として出射させることを特徴とする請求項10に記載の三次元計測装置。 - 前記第1撮像手段は、少なくとも前記第1のフィルタ手段を透過する前記複数の分割光を同時に撮像可能な単一の撮像素子を備え、
前記第2撮像手段は、少なくとも前記第2のフィルタ手段を透過する前記複数の分割光を同時に撮像可能な単一の撮像素子を備えていることを特徴とする請求項10又は11に記載の三次元計測装置。 - 前記被計測物が、プリント基板に印刷されたクリーム半田、又は、ウエハ基板に形成された半田バンプであることを特徴とする請求項1乃至12のいずれかに記載の三次元計測装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680005622.0A CN107110640B (zh) | 2015-05-25 | 2016-05-16 | 三维测量装置 |
EP16799857.4A EP3306264B1 (en) | 2015-05-25 | 2016-05-16 | Three-dimensional measurement device |
KR1020177015655A KR101931190B1 (ko) | 2015-05-25 | 2016-05-16 | 삼차원 계측 장치 |
US15/820,816 US10704888B2 (en) | 2015-05-25 | 2017-11-22 | Three-dimensional measurement device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-105495 | 2015-05-25 | ||
JP2015105495 | 2015-05-25 | ||
JP2015-177399 | 2015-09-09 | ||
JP2015177399 | 2015-09-09 | ||
JP2015239056A JP6271493B2 (ja) | 2015-05-25 | 2015-12-08 | 三次元計測装置 |
JP2015-239056 | 2015-12-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/820,816 Continuation US10704888B2 (en) | 2015-05-25 | 2017-11-22 | Three-dimensional measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016190151A1 true WO2016190151A1 (ja) | 2016-12-01 |
Family
ID=57393995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/064465 WO2016190151A1 (ja) | 2015-05-25 | 2016-05-16 | 三次元計測装置 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI619927B (ja) |
WO (1) | WO2016190151A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017203756A1 (ja) * | 2016-05-26 | 2017-11-30 | Ckd株式会社 | 三次元計測装置 |
WO2022180938A1 (ja) * | 2021-02-25 | 2022-09-01 | Ckd株式会社 | 三次元計測装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI645158B (zh) * | 2018-03-23 | 2018-12-21 | 泓邦科技有限公司 | 三維量測裝置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11211417A (ja) * | 1998-01-22 | 1999-08-06 | Nikon Corp | 光波干渉測定方法および装置 |
JP2000074618A (ja) * | 1998-08-27 | 2000-03-14 | Fuji Xerox Co Ltd | 干渉計測方法および干渉計測装置 |
JP2000310518A (ja) * | 1999-04-27 | 2000-11-07 | Olympus Optical Co Ltd | 3次元形状測定装置 |
JP2001227927A (ja) * | 2000-02-18 | 2001-08-24 | Mitsutoyo Corp | 形状計測装置 |
JP2006126192A (ja) * | 2004-10-26 | 2006-05-18 | Mitsutoyo Corp | モノリシック直交位相検出器 |
JP2006308594A (ja) * | 2005-04-29 | 2006-11-09 | Agilent Technol Inc | 低い非線形誤差の変位測定干渉計 |
JP2007093288A (ja) * | 2005-09-27 | 2007-04-12 | Matsushita Electric Ind Co Ltd | 光計測装置及び光計測方法 |
JP2010164389A (ja) * | 2009-01-14 | 2010-07-29 | Canon Inc | 調整方法 |
JP2013238850A (ja) * | 2012-04-20 | 2013-11-28 | Tohoku Univ | 多機能画像取得装置およびケスタープリズム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI291013B (en) * | 2006-01-25 | 2007-12-11 | Univ Nat Taipei Technology | Digital-structured micro-optic three-dimensional confocal surface profile measuring system and technique |
US9186470B2 (en) * | 2012-02-08 | 2015-11-17 | Apple Inc. | Shape reflector and surface contour mapping |
-
2016
- 2016-04-08 TW TW105110999A patent/TWI619927B/zh active
- 2016-05-16 WO PCT/JP2016/064465 patent/WO2016190151A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11211417A (ja) * | 1998-01-22 | 1999-08-06 | Nikon Corp | 光波干渉測定方法および装置 |
JP2000074618A (ja) * | 1998-08-27 | 2000-03-14 | Fuji Xerox Co Ltd | 干渉計測方法および干渉計測装置 |
JP2000310518A (ja) * | 1999-04-27 | 2000-11-07 | Olympus Optical Co Ltd | 3次元形状測定装置 |
JP2001227927A (ja) * | 2000-02-18 | 2001-08-24 | Mitsutoyo Corp | 形状計測装置 |
JP2006126192A (ja) * | 2004-10-26 | 2006-05-18 | Mitsutoyo Corp | モノリシック直交位相検出器 |
JP2006308594A (ja) * | 2005-04-29 | 2006-11-09 | Agilent Technol Inc | 低い非線形誤差の変位測定干渉計 |
JP2007093288A (ja) * | 2005-09-27 | 2007-04-12 | Matsushita Electric Ind Co Ltd | 光計測装置及び光計測方法 |
JP2010164389A (ja) * | 2009-01-14 | 2010-07-29 | Canon Inc | 調整方法 |
JP2013238850A (ja) * | 2012-04-20 | 2013-11-28 | Tohoku Univ | 多機能画像取得装置およびケスタープリズム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3306264A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017203756A1 (ja) * | 2016-05-26 | 2017-11-30 | Ckd株式会社 | 三次元計測装置 |
JP2017211287A (ja) * | 2016-05-26 | 2017-11-30 | Ckd株式会社 | 三次元計測装置 |
US10782122B2 (en) | 2016-05-26 | 2020-09-22 | Ckd Corporation | Three-dimensional measurement device |
WO2022180938A1 (ja) * | 2021-02-25 | 2022-09-01 | Ckd株式会社 | 三次元計測装置 |
JP7442145B2 (ja) | 2021-02-25 | 2024-03-04 | Ckd株式会社 | 三次元計測装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI619927B (zh) | 2018-04-01 |
TW201643372A (zh) | 2016-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6271493B2 (ja) | 三次元計測装置 | |
JP6513619B2 (ja) | 三次元計測装置 | |
TWI633277B (zh) | Three-dimensional measuring device | |
CN109564089B (zh) | 测量装置 | |
CN111051810B (zh) | 三维测量装置 | |
WO2016190151A1 (ja) | 三次元計測装置 | |
WO2022091508A1 (ja) | 三次元計測装置 | |
WO2022049863A1 (ja) | 三次元計測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16799857 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177015655 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016799857 Country of ref document: EP |