JP6509903B2 - コロケーション情報を使用した話者照合 - Google Patents

コロケーション情報を使用した話者照合 Download PDF

Info

Publication number
JP6509903B2
JP6509903B2 JP2016561322A JP2016561322A JP6509903B2 JP 6509903 B2 JP6509903 B2 JP 6509903B2 JP 2016561322 A JP2016561322 A JP 2016561322A JP 2016561322 A JP2016561322 A JP 2016561322A JP 6509903 B2 JP6509903 B2 JP 6509903B2
Authority
JP
Japan
Prior art keywords
computing device
user
user device
speaker
utterance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016561322A
Other languages
English (en)
Other versions
JP2017517027A (ja
Inventor
ラジエル・アルバレス・ゲバラ
オター・ハンソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Publication of JP2017517027A publication Critical patent/JP2017517027A/ja
Application granted granted Critical
Publication of JP6509903B2 publication Critical patent/JP6509903B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/06Decision making techniques; Pattern matching strategies
    • G10L17/12Score normalisation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/20Pattern transformations or operations aimed at increasing system robustness, e.g. against channel noise or different working conditions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/22Interactive procedures; Man-machine interfaces
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/22Interactive procedures; Man-machine interfaces
    • G10L17/24Interactive procedures; Man-machine interfaces the user being prompted to utter a password or a predefined phrase
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0861Network architectures or network communication protocols for network security for authentication of entities using biometrical features, e.g. fingerprint, retina-scan
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2111Location-sensitive, e.g. geographical location, GPS
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L2015/088Word spotting
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/223Execution procedure of a spoken command

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Game Theory and Decision Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Business, Economics & Management (AREA)
  • User Interface Of Digital Computer (AREA)
  • Telephonic Communication Services (AREA)
  • Emergency Alarm Devices (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Machine Translation (AREA)

Description

本明細書は、話者照合に関する。
自宅または自動車のような会話可能な環境では、ユーザは、音声入力を使用して、情報にアクセスするか、または、様々な機能を制御し得る。情報および機能は、所与のユーザのために個別化され得る。多くのユーザ環境では、話者の集団から、所与の話者を識別することが有利であり得る。
本明細書は、話者照合システムに、より多くの情報を提供することによって、話者照合システムを増強することに関する。たとえば、いくつかの話者照合システムは、通常は、さらなる処理を実行するため、および/または、音声コマンドおよびクエリのようなより多くのユーザ入力を受信するために、コンピューティングデバイスをウェイクアップするために、あらかじめ定義されたフレーズを求めて連続的にリスンするステップを含む。そのような話者照合システムは、デバイスにおいて登録されたユーザの集合、および、知られていない未登録のユーザから、あらかじめ定義されたフレーズの発声を区別し得る。典型的なシナリオでは、特定のコンピューティングデバイスが、たとえば、会議室における人の集合、または、食卓における他の食事客のように、デバイスに比較的に近くに位置している人によって話された、あらかじめ定義されたフレーズの任意の発声を検出するであろう。いくつかの事例では、これらの人々は、それらのデバイスと互換性のある話者照合システムを使用し得る。コロケーション情報を活用することによって、各デバイスに関連付けられた話者照合システムは、発声が、各々のデバイスの登録されたユーザによって話されたか、または、たとえば詐欺者のように近くにいる別のユーザによって話されたかを検出し得る。そして、この情報は、話者照合決定を改善するために使用され得る。
一般に、本明細書に記述された主題の革新的な1つの態様は、発声を符号化するオーディオ信号を、第1のユーザデバイスによって受信するステップと、第1のユーザデバイスの第1のユーザのための第1の話者モデルを、第1のユーザデバイスによって取得するステップと、第1のユーザデバイスとコロケートされた対応する第2のユーザデバイスの第2のユーザのために、第2のユーザのための第2の話者モデル、または、発声が第2のユーザによって話された各々の可能性を示す第2のスコアを、第1のユーザデバイスによって取得するステップと、(i)第1の話者モデルおよび第2の話者モデル、または(ii)第1の話者モデルおよび第2のスコアを使用して、発声が第1のユーザによって話されたことを、第1のユーザデバイスによって判定するステップと、からなる動作を含む方法において具体化され得る。この態様の他の実施形態は、対応するコンピュータシステム、装置、および、各々が方法の動作を実行するように構成された1つまたは複数のコンピュータ記憶デバイスに記録されたコンピュータプログラムを含む。1つまたは複数のコンピュータのシステムは、ソフトウェアと、ファームウェアと、ハードウェアと、または、オペレーション中、システムに対してこれら動作を実行させる、システムにインストールされたこれらの組合せと、を有することによって、特定のオペレーションまたは動作を実行するように構成され得る。1つまたは複数のコンピュータプログラムは、データ処理装置によって実行された場合、この装置に対して動作を実行させる命令を含むことによって特定のオペレーションまたは動作を実行するように構成され得る。
一般に、本明細書に記述された主題の1つの革新的な態様は、発声を符号化するオーディオ信号を、第1のユーザデバイスによって受信するステップと、第1のユーザデバイスの第1のユーザのための第1の話者モデルを、第1のユーザデバイスによって取得するステップと、各々の各ユーザのための話者モデル、または、発声が各々のユーザによって話された各々の可能性を示すスコアを、第1のユーザデバイスとコロケートされた他のユーザデバイスの複数の他のユーザの各々のために、第1のユーザデバイスによって取得するステップと、(i)第1の話者モデルおよび複数の他の話者モデル、または(ii)第1の話者モデルおよび複数のスコアを使用して、発声が第1のユーザによって話されたことを、第1のユーザデバイスによって判定するステップと、からなる動作を含む方法において具体化され得る。この態様の他の実施形態は、対応するコンピュータシステム、装置、および、各々が方法の動作を実行するように構成された1つまたは複数のコンピュータ記憶デバイスに記録されたコンピュータプログラムを含む。1つまたは複数のコンピュータのシステムは、ソフトウェアと、ファームウェアと、ハードウェアと、または、オペレーション中、システムに対してこれら動作を実行させる、システムにインストールされたこれらの組合せとを有することによって、特定のオペレーションまたは動作を実行するように構成され得る。1つまたは複数のコンピュータプログラムは、データ処理装置によって実行された場合、装置に対して動作を実行させる命令を含むことによって特定のオペレーションまたは動作を実行させるように構成され得る。
一般に、本明細書に記述された主題の革新的な1つの態様は、発声を符号化するオーディオ信号を、第1のユーザデバイスによって受信するステップと、第1のユーザデバイスの第1のユーザのための第1の話者モデルを、第1のユーザデバイスによって決定するステップと、第1のユーザデバイスとコロケートされ得る他の人々のために、第1のユーザデバイスに記憶される1つまたは複数の第2の話者モデルを、第1のユーザデバイスによって決定するステップと、第1の話者モデルと第2の話者モデルとを使用して、発声が第1のユーザによって話されたことを、第1のユーザデバイスによって決定するステップと、からなる動作を含む方法において具体化され得る。この態様の他の実施形態は、対応するコンピュータシステム、装置、および、各々が方法の動作を実行するように構成された1つまたは複数のコンピュータ記憶デバイスに記録されたコンピュータプログラムを含む。1つまたは複数のコンピュータのシステムは、ソフトウェアと、ファームウェアと、ハードウェアと、または、オペレーション中、システムに対してこれら動作を実行させる、システムにインストールされたこれらの組合せとを有することによって、特定のオペレーションまたは動作を実行するように構成され得る。1つまたは複数のコンピュータプログラムは、データ処理装置によって実行された場合、装置に対して動作を実行させる命令を含むことによって特定のオペレーションまたは動作を実行させるように構成され得る。
一般に、本明細書に記述された主題の1つの革新的な態様は、発声を符号化するオーディオ信号を、これらコンピュータのうちの少なくとも1つによって受信するステップと、各々のユーザデバイスの各々のユーザのための各々の話者モデルの識別情報を、複数のユーザデバイスの各々のためにコンピュータのうちの少なくとも1つによって取得するステップと、識別された話者モデルを使用して、ユーザデバイスのうちの1つの特定のユーザによって発声が話されたことを、これらコンピュータのうちの少なくとも1つによって判定するステップと、からなる動作を含む方法において具体化され得る。この態様の他の実施形態は、対応するコンピュータシステム、装置、および、各々が方法の動作を実行するように構成された1つまたは複数のコンピュータ記憶デバイスに記録されたコンピュータプログラムを含む。1つまたは複数のコンピュータのシステムは、ソフトウェアと、ファームウェアと、ハードウェアと、または、オペレーション中、システムに対してこれら動作を実行させる、システムにインストールされたこれらの組合せとを有することによって、特定のオペレーションまたは動作を実行するように構成され得る。1つまたは複数のコンピュータプログラムは、データ処理装置によって実行された場合、装置に対して動作を実行させる命令を含むことによって特定のオペレーションまたは動作を実行させるように構成され得る。
一般に、本明細書に記述された主題の1つの革新的な態様は、発声を符号化するオーディオ信号を、第1のユーザデバイスによって受信するステップと、発声が第1のユーザデバイスの第1のユーザによって話された可能性を示す第1のスコアを、第1のユーザデバイスによって取得するステップと、第1のユーザデバイスとコロケートされた対応する第2のユーザデバイスの第2のユーザのために、発声が第2のユーザによって話された各々の可能性を示す第2のスコアを、第1のユーザデバイスによって取得するステップと、第1のスコアと第2のスコアとの組合せを、第1のユーザデバイスによって決定するステップと、第1のスコアと第2のスコアとの組合せを使用して、第1のスコアと第2のスコアを、第1のユーザデバイスによって規格化するステップと、規格化された第1のスコアと、規格化された第2のスコアとを使用して、発声が第1のユーザによって話されたことを、第1のユーザデバイスによって判定するステップと、からなる動作を含む方法によって具体化され得る。
前述した実施形態および他の実施形態は各々オプションとして、以下の特徴のうちの1つまたは複数を、単独でまたは組み合わせて含め得る。第2のユーザのための第2の話者モデル、または、発声が第2のユーザによって話された各々の可能性を示す第2のスコアを、第1のユーザデバイスとコロケートされた対応する第2のユーザデバイスの第2のユーザのために、第1のユーザデバイスによって取得するステップは、第2のユーザのための第2の話者モデル、または、発声が第2のユーザによって話された各々の可能性を示す第2のスコアを、第1のユーザデバイスの物理的位置の近くの物理的エリアにコロケートされた第2のユーザデバイスの第2のユーザのために、第1のユーザデバイスによって取得するステップ、を含み得る。この方法は、発声が第1のユーザによって話されたことを判定することに応じて動作を実行するステップ、を含み得る。この方法は、発声に含まれたコマンドを識別するためにオーディオ信号を分析するステップと、コマンドに対応する動作を実行するステップと、を含み得る。この方法は、オーディオ信号の一部と第1の話者モデルとを使用して、発声が第1のユーザによって話された可能性を示す第1のスコアを、第1のユーザデバイスによって生成するステップ、を含み得る。この方法は、最高スコアを決定するために、第1のスコアを第2のスコアと比較するステップを含み得る。発声が第1のユーザによって話されたことを判定するステップは、第1のスコアが最高スコアであることを判定するステップを含み得る。
いくつかの実施において、第2のユーザのための第2の話者モデル、または、発声が第2のユーザによって話された各々の可能性を示す第2のスコアを、第1のユーザデバイスの物理的位置の近くの物理的エリアに配置された対応する第2のユーザデバイスの第2のユーザのために、第1のユーザデバイスによって取得するステップは、第2の話者モデルを、第1のユーザデバイスによって取得するステップと、オーディオ信号の一部と第2の話者モデルとを使用して、第2のスコアを、第1のユーザデバイスによって生成するステップと、を含み得る。
いくつかの実施において、第2のユーザのための第2の話者モデル、または、発声が第2のユーザによって話された各々の可能性を示す第2のスコアを、第1のユーザデバイスの物理的位置の近くの物理的エリアに配置された対応する第2のユーザデバイスの第2のユーザのために、第1のユーザデバイスによって取得するステップは、第1のユーザデバイスの物理的位置の近くの物理的エリアに第2のユーザデバイスが配置されていることを第1のユーザデバイスによって判定するステップと、第1のユーザデバイスが第2の話者モデルへアクセスすることを可能にする設定を第1のユーザデバイスが有していることを、第1のユーザデバイスによって判定するステップと、第2の話者モデルを、第1のユーザデバイスによって受信するステップと、オーディオ信号の一部と第2の話者モデルとを使用して、第2のスコアを、第1のユーザデバイスによって生成するステップと、を含み得る。第2の話者モデルを、第1のユーザデバイスによって受信するステップは、第1のユーザデバイスに記憶された1つまたは複数の第3の話者モデルを第1のユーザデバイスによって識別するステップと、第3の話者モデルのサブセットが、第2の話者モデルを含み得ることを、第1のユーザデバイスによって判定するステップと、を含み得る。この方法は、第3の話者モデルのサブセットに含まれていない第3の話者モデルを、第1のユーザデバイスによって、第1のユーザデバイスから削除するステップ、を含み得る。第2の話者モデルを、第1のユーザデバイスによって受信するステップは、第1のユーザデバイスにおけるメモリから、第2の話者モデルを、第1のユーザデバイスによって検索するステップ、を含み得る。第2のスコアを、第1のユーザデバイスによって生成するステップは、別のユーザデバイスから、第2の話者モデルを要求することなく、第1のユーザデバイスに記憶された第2の話者モデルと、オーディオ信号の一部とを使用して、第1のユーザデバイスによって、第2のスコアを生成するステップ、を含み得る。第2の話者モデルを、第1のユーザデバイスによって受信するステップは、サーバから、第2の話者モデルを、第1のユーザデバイスによって受信するステップ、を含み得る。第2のユーザデバイスは、第2の話者モデルを含み得る。第2の話者モデルを、第1のユーザデバイスによっ
て受信するステップは、第2のユーザデバイスから、第1のユーザデバイスによって、第2の話者モデルを受信するステップ、を含み得る。
いくつかの実施では、第2のユーザのための第2の話者モデル、または、発声が第2のユーザによって話された各々の可能性を示す第2のスコアを、第1のユーザデバイスの物理的位置の近くの物理的エリアに配置された対応する第2のユーザデバイスの第2のユーザのために、第1のユーザデバイスによって取得するステップは、第1のユーザデバイスの物理的位置の近くの物理的エリアに第2のユーザデバイスが配置されていることを第1のユーザデバイスによって判定するステップと、第2のスコアを第1のユーザデバイスによって受信するステップと、を含み得る。第2のスコアを第1のユーザデバイスによって受信するステップは、第2のユーザデバイスから、第1のユーザデバイスによって、第2のスコアを受信するステップを含み得る。第1のユーザデバイスによって、第2のスコアを受信するステップは、サーバから、第1のユーザデバイスによって、第2のスコアを受信するステップを含み得る。この方法は、第2のユーザデバイスのためのデバイス識別子を、第1のユーザデバイスによって決定するステップと、デバイス識別子を、第1のユーザデバイスによって、サーバへ提供するステップとを含み得、この識別子をサーバへ提供することに応じて、第1のユーザデバイスが、サーバから第2のスコアを受信する。
いくつかの実施では、この方法は、第1のユーザデバイスの物理的位置の近くの物理的エリアに位置され得る他の人々のために、第1のユーザデバイスに記憶される1つまたは複数の第3の話者モデルを、第1のユーザデバイスによって決定するステップと、(i)第1の話者モデル、第2の話者モデル、および第3の話者モデル、または(ii)第1の話者モデル、第2のスコア、および第3の話者モデルを使用して、発声が第1のユーザによって話されたことを、第1のユーザデバイスによって判定するステップと、を含み得る。この方法は、オーディオ信号の一部と第1の話者モデルとを使用して、発声が第1のユーザによって話された可能性を示す第1のスコアを、第1のユーザデバイスによって生成するステップと、各々の第3の話者モデルと、オーディオ信号の一部とを使用して、第3の話者モデルの各々のために、第1のユーザデバイスによって、各々の第3のスコアを生成するステップと、最高スコアを決定するために、第1のユーザデバイスによって、第1のスコア、第2のスコア、および第3のスコアを比較するステップと、を含み得る。この方法は、第3のユーザデバイスが、第1のユーザデバイスの物理的位置の近くの物理的エリアに配置される頻度を、第3のユーザデバイスのために、第1のユーザデバイスによって決定するステップと、この頻度がしきい頻度を満足するか否かを、第1のユーザデバイスによって判定するステップと、この頻度がしきい頻度を満足すると判定することに応じて、第1のユーザデバイスによって、第3の話者モデルに、第3のユーザデバイスの第3のユーザのための第3の話者モデルを記憶するステップと、を含み得る。この方法は、第3の話者モデルを識別する入力を、第1のユーザデバイスによって、第1のユーザから受信するステップと、第3の話者モデルを識別する入力をユーザから受信するステップに応じて、第1のユーザデバイスによって、第3の話者モデルに、第3の話者モデルを記憶するステップと、を含み得る。
いくつかの実施では、この方法は、各々のユーザデバイスから、ユーザデバイスの各々のためにコンピュータのうちの少なくとも1つによって、各々の話者モデルを受信するステップ、を含み得る。この方法は、各々の識別情報を使用して、これらコンピュータのうちの少なくとも1つに含まれたメモリから、ユーザデバイスの各々のためにコンピュータのうちの少なくとも1つによって、各々の話者モデルを検索するステップ、を含み得る。
いくつかの実施では、この方法は、規格化された第1のスコアが、しきい値を満足することを、第1のユーザデバイスによって判定するステップを含み得、発声が第1のユーザによって話されたことを判定するステップは、規格化された第1のスコアがしきい値を満足することを判定するステップに応じる。この方法は、第1のスコアと第2のスコアとの平均が、しきい値を満足しないことを、第1のユーザデバイスによって判定するステップを含み得、第1のスコアと第2のスコアとの組合せを判定するステップは、第1のスコアと第2のスコアとの平均が、しきい値を満足しないことを判定するステップに応じる。この方法は、第1のユーザデバイスによって、第1のスコアと第2のスコアとの両方がしきい値を満足しないことを判定するステップを含み得、第1のスコアと第2のスコアとの組合せを判定するステップは、第1のスコアと第2のスコアとの両方がしきい値を満足しないことを判定するステップに応じる。この方法は、第1のスコアがしきい値を満足しないことを、第1のユーザデバイスによって判定するステップを含み得、第1のスコアと第2のスコアとの組合せを判定するステップは、第1のスコアがしきい値を満足しないことを判定するステップに応じる。
本明細書に記述された主題は、以下の利点のうちの1つまたは複数を実現するように、特定の実施形態において実施され得る。いくつかの実施では、詐称者話者モデルの使用が、ユーザデバイスのユーザ以外の人によって話された発声に応じたユーザデバイスによる動作を低減し得る。いくつかの実施では、システムは、詐称者話者モデルを使用する場合、60乃至80パーセントまで誤った肯定を低減し得る。いくつかの実施では、システムは、コロケートされた異なる話者のためのスコアの組合せを使用して、最終的な発声スコアを規格化し得る。
本明細書の主題の1つまたは複数の実施形態の詳細は、添付図面および以下の詳細説明に記述される。主題の他の特徴、態様、および利点は、詳細説明、図面、および特許請求の範囲から明らかになるであろう。
1つまたは複数のユーザデバイスA〜Dが、発声を符号化するオーディオ信号を分析する環境の例を図示する図である。 1つまたは複数のユーザデバイスA〜Dが、発声を符号化するオーディオ信号を分析する環境の例を図示する図である。 1つまたは複数のユーザデバイスA〜Dが、発声を符号化するオーディオ信号を分析する環境の例を図示する図である。 話者照合システムの例を示す図である。 発声がユーザによって話されたか否かを判定するための処理のフロー図である。 本書において記述されたシステムおよび方法を実施するために使用され得るコンピューティングデバイスのブロック図である。
様々な図面において、同一の参照番号および指定が、同一の要素を示す。
話者照合システムは、通常は、さらなる処理を実行するため、および/または、音声コマンドおよびクエリのようなより多くのユーザ入力を受信するために、コンピューティングデバイスをウェイクアップするために、あらかじめ定義されたフレーズを求めて連続的にリスンする処理、を含み得る。そのような話者照合システムは、デバイスにおいて登録されたユーザの集合から、および、知られていない未登録のユーザから、ホットワードの発声を区別し得る。
登録は、知られている、または、知られていない他のユーザから、彼または彼女を区別するために使用され得るモデルを生成するために、ユーザが、システムへサンプル発声を提供したか否かを称する。話者照合処理は、所与の発声のために生成されたモデルを、話者(または、複数の話者)のために生成されたモデルと比較するステップと、類似性しきい値に基づいて、発声を受諾するか拒否するかを決定するステップと、を含み得る。
話者照合システムは、特に、認識品質、および詐欺者防止効果に関する広範なエリア、そしてさらには、広範なパフォーマンス要件、における適用可能性を有する。たとえば、デバイスを解除するために使用される話者照合システムは、このシステムが、信頼された環境において既に解除されているデバイスにおいて使用されている場合よりも、詐欺者の低い誤った受諾を提供するために、より高い要件を有し得る。誤った受諾は、(登録されたユーザを認識しない)より低い誤った拒否に有利に緩和され得る。
所与の発声の受諾または拒否の決定を実行するために、照合システムが単に、登録された話者から提供された情報しか有していない場合、照合処理は、チャレンジングである。なぜなら、知られていない、あり得る詐欺者の集合は、現実的には解放されているからである。その結果、知られていない話者からの発声が、登録された話者のための類似性しきい値を超えることが、より高い可能性となり得、結果として、誤った受諾となる。このチャレンジは、モバイルデバイスの場合、特に重要であり、モバイルデバイスの周囲の、あり得る詐欺者の利用可能性が、高まり、常に変化する。
話者照合システムは、これらのシステムに、より多くの情報を提供することによって改善され得る。特に、モバイルデバイス/プラットフォームに既に存在し得る一般に利用可能なAPIによって提供されたコロケーション情報を利用することによって、各デバイスにおける照合システムは、あり得る詐欺者が近くにいるか否かを検出し得る。そのような情報は、類似性しきい値を調節するために使用され得り、また、照合決定を改善するために、登録された話者モデルを共有する。いくつかの例において、システムは、コロケートされた話者のためのスコアの組合せを使用して、1つまたは複数の話者モデルのためのスコアを規格化し得る。たとえば、ユーザデバイスは、各々のスコアを生成するために、ユーザデバイスに記憶された話者モデルと、他のユーザデバイスから受信された話者モデルとを使用し、これらスコアの組合せを決定し、この組合せを使用して、これらスコアの各々を規格化し得る。
たとえば、ユーザデバイスは、バックグランドノイズによって、発声のために低いスコアを生成し得る。たとえば、これらスコアは、バックグランドノイズに比例して減少し得る。走行中の車両、または、混雑したレストランのように、非常にノイズの多い条件では、ユーザデバイスのユーザからの発声のスコアが、しきい値を満足しない、たとえば、受諾しきい値以下であり、誤って拒否されることが可能であり得る。スコアの規格化は、ノイズペナルティを低減し得る。たとえば、異なる話者モデルを使用して各々生成された多くのスコアの平均が、受諾しきい値を満足しない、たとえば、受諾しきい値以下であるので、規格化は、ユーザデバイスのユーザのためのスコアが、受諾しきい値を満足すべき、たとえば、受諾しきい値よりも大きくなるように、これらスコアの各々を改善するという結果になるであろう。
そのような照合システムは、可能な詐欺者のモデルにアクセスし得るので、これらシステムは、詐欺者の発声が、受諾しきい値よりも高い、登録されたユーザに対する類似性スコアを取得するケースにおいて、いくつかの発声を良好に拒否する(たとえば、誤った受諾率を低下させる)ことができ得る。たとえば、発声が、たとえば、コロケートされたユーザから生成された、「詐欺者」の集合におけるモデルのうちの1つに対して、等しい、または、それよりも高いスコアを有しているのであれば、このシステムは、この発声が、詐欺者からのものである可能性が高いと仮定し、拒否し得る。そのようなアプローチは、様々なタイプの話者モデル、たとえば、iベクトル、dベクトル等との互換性を有し得る。
いつデバイスが、所与の地理的エリアにコロケートされているのかを判定するための多くの方式が存在し得る。たとえば、この情報は、全地球測位システム(GPS)、近距離無線通信(NFC)、Bluetooth(登録商標)、サブソニックオーディオ、および/または、他のセンサおよび技術のうちの1つまたは複数から導出され得る。いくつかの例において、コロケートされたデバイスは、たとえば、これらデバイスが同じ電話またはビデオ会議に参加している場合、仮想的に関連付けられ得る。これらの例において、デバイスまたはサーバは、カレンダ入力、電子メールまたはテキストメッセージ、または他の「ソフトな」概念を使用してコロケーションを判定し得る。
多くのユーザはまた、ユーザのすべてが、対応するユーザデバイスを有している訳ではない場合、同じエリアにコロケートされ得るが、これらユーザデバイスのいくつかは、これらユーザのための話者モデルを含んでいる。たとえば、5人の友達が、彼らの居間のうちの1つにおり、これら友達のうちの2人が、自分たちのモバイルデバイスを有している場合、これら友達のうちの誰が、特定の発声を話したのかを判定するために、第1のモバイルデバイスは、モバイルデバイスを有していない3人の友達の話者モデルを含み得、第1および第2のモバイルデバイスは、これら話者モデルと、デバイスを所有している友達のための話者モデルとを使用し得る。
典型的な実施では、話者照合システムは、発声を符号化するオーディオ信号を受信し、話者モデルを使用して生成されたスコアが、しきいスコア値を満足しているか否かを判定する。話者照合システムが、特定のユーザデバイスの特定のユーザのために単一の話者モデルのみを使用する場合、話者照合システムは、別のユーザ(たとえば、ユーザの兄弟)によって話された発声のためのしきいスコア値を満足するスコアを生成し得る。
話者照合システムの精度を増加させるために、話者照合システムは、たとえば、ユーザのために1つ、および、ユーザの兄弟のために別の1つのように、多くの話者モデルを使用する。たとえば、話者照合システムは、発声を符号化するオーディオ信号のために、2つのスコアを生成する。うち1つのスコアはユーザのため、別のスコアはその兄弟のためである。話者照合システムは、どのスコアが最高であるかを判定するために、両方がしきいスコア値を満足し得るこれらスコアを比較する。話者照合システムは、たとえば、最高スコアを生成するために、別の人の話者モデルが使用されるように、別の人が発声を話した場合と比較された発声を話した特定の人のための話者モデルを使用して最高スコアを生成する可能性が最も高い。
話者照合システムが、たとえば、ユーザのための話者モデルを使用して生成された、ユーザのスコアが最高であると判定した場合、特定のユーザデバイスは、発声に応じて動作を実行し得る。話者照合システムが、たとえばユーザの兄弟のための話者モデルを使用して生成された、ユーザの兄弟のスコアが最高であると判定した場合、特定のユーザデバイスは、動作を講じない。
話者照合システムは、たとえば、特定のユーザデバイスとともにコロケートされた、特定のユーザデバイスの近くの物理的エリア内の他のユーザのための他の話者モデル、または、これら他のユーザデバイスから受信されたスコアを使用し、どのスコアが最高であるかと、発声に応じて、特定のユーザデバイスが動作を実行するか否かとを判定する。話者照合システムは、たとえばサーバのような、特定のデバイスまたは別のデバイスにおいて実行し得る。
図1A〜図1Cは、1つまたは複数のユーザデバイスA〜D 102a〜dが、発声を符号化するオーディオ信号を分析する環境100の例を図示する。ユーザデバイスA〜D 102a〜dは、発声が、ユーザデバイスの各々のユーザによって話された可能性が高いか否かを判定し、ユーザデバイスが、この発声に応じて動作を実行すべきであるか、または、この発声が、各々のユーザによって話された可能性が高くなく、ユーザデバイスが、動作を講じるべきではないことを判定するために、多くの異なるアルゴリズムのうちの1つを使用し得る。
たとえば、4人の同僚が、会議室におり、第1の同僚、たとえばユーザDが、「オーケーグーグル、デモを開始して下さい」というコマンドを発行し得る。ユーザデバイスA 102aは、たとえば、時々またはしばしば、ユーザAまたはユーザデバイスA 102aと同じ物理的エリアにあるユーザデバイスA 102aのユーザAのための話者モデルA 104aと、他のユーザのための他の話者モデルとを含む、多くの話者モデルを使用してオーディオ信号を分析し得る。他の話者モデルは、たとえば、ユーザデバイスA 102aは、別のユーザデバイスB〜D 102b〜dから特定の話者モデルを最近要求した時のような短期間、または、たとえば、ユーザデバイスA 102aと同じ物理的エリアに他のユーザがいる確率が高い時のような長期間、ユーザデバイスA 102aのメモリに記憶され得る。
ユーザデバイスA 102aは、話者モデルの各々のためのスコアを決定し、多くのスコアから最高スコアを決定する。ユーザデバイスA 102aは、たとえば、最高スコアを、しきいスコア値と比較することによって、最高スコアが、しきいスコア値を満足するか否かと、最高スコアが、ユーザデバイスA 102aのユーザAに関する可能性が高いこととを判定し得る。最高スコアが、しきいスコア値を満足していないのであれば、ユーザデバイスA 102aは、さらなる動作を講じず、そして、たとえば、この発声が、ユーザデバイスA 102aが話者モデルを有していないユーザによって発せられたことを判定し得る。
最高スコアが、ユーザデバイスA 102aのユーザAに関するもの、たとえば、コマンドを発行した第1の同僚はユーザAであるとユーザデバイスA 102aが判定した場合、ユーザデバイスA 102aは、オーディオ信号の受信に応じて動作を実行する。たとえば、ユーザデバイスA 102aは、要求されたデモを起動させ得る。
最高スコアが、ユーザAに関するものではなく、第1の同僚が、ユーザAではないとユーザデバイスA 102aが判定した場合、ユーザデバイスA 102aは、オーディオ信号に関してさらなる動作を講じないことがあり得る。たとえば、ユーザデバイスA 102aは、第1の同僚によって話された別の発声を伴う別のオーディオ信号を受信し、他の発声に応じて動作を講じないことがあり得る。
いくつかの例では、ユーザデバイスA〜D 102a〜dが、同じまたは互換性のある話者照合システムを含んでいる場合、ユーザデバイスA〜D 102a〜dの各々は、たとえば話者モデルのように各々のユーザに関する情報、または、たとえばスコアのように、発声を符号化するオーディオ信号の分析に関する情報を共有し得る。たとえば、図1Aに図示されるように、たとえばユーザDのような第1の同僚が、「オーケーグーグル、デモを開始して下さい」という発声106を発し得る。そして、ユーザデバイスA〜D 102a〜dの各々におけるマイクロホンが、この発声を表す信号をキャプチャし、オーディオ信号におけるこの発声を符号化し得る。
ユーザデバイスA〜D 102a〜dの各々は、図1Bに図示されるように、ユーザデバイスの各々のユーザA〜Dが発声106を発した可能性を表すスコアを生成するために、対応する話者モデルA〜D 104a〜dを使用して各々のオーディオ信号を分析する。この例において、ユーザデバイスA 102aは、ユーザAについてスコア0.76を生成し、ユーザデバイスB 102bは、ユーザBについてスコア0.23を生成し、ユーザデバイスC 102cは、ユーザCについてスコア0.67を生成し、ユーザデバイスD 102dは、ユーザDについてスコア0.85を生成する。
ユーザデバイスA〜D 102a〜dの各々は、他のユーザデバイスと各々のスコアを共有する。たとえば、ユーザデバイスA〜D 102a〜dは、各々のユーザデバイスの近くのエリアに物理的に配置された他のユーザデバイスを決定するために、GPS、NFC、Bluetooth、サブソニックオーディオ、または他の任意の適切な技術のような1つまたは複数のセンサを使用し得る。ユーザデバイスA〜D 102a〜dは、ユーザデバイスが、そのスコアを別のユーザデバイスと共有でき得るか否かを示すアクセス設定を決定し得、そして、他のユーザデバイスが、同じ話者照合システムを使用するか否かを判定し得、たとえば、このスコアまたは両方を使用し得る。
各々のユーザデバイスによって生成されたスコアが最高スコアであり、各々のユーザデバイスが発声106に応じて動作を実行すべきであるか否かを判定するために、ユーザデバイスA〜D 102a〜dの各々は、互いのスコアのすべてを比較する。たとえば、図1Cに示すように、ユーザデバイスD 102dは、ユーザデバイスD 102dのユーザDのための話者モデルD 104dを使用して生成されたスコアが最高であり、発声106がユーザDによって話された可能性が、発声106が他のユーザデバイスA〜C 102a〜cに関する他のユーザによって話された可能性よりも大きい、と判定する。ユーザデバイスD 102dは、要求されたデモ108を起動するような、発声106に一致する動作を実行し得る。ユーザデバイスD 102dは、発声がユーザDによって話され、たとえば、ユーザデバイスD 102dがスコアを受け取らなかった別のユーザによって話されていない可能性が高いことを保証するために、最高スコアをしきいスコア値と比較し得る。
同様に、他のユーザデバイスA〜C 102a〜cの各々は、各々のスコアが、最高ではなく、各々の他のユーザデバイスが動作を講じるべきではないと判定する。各々のスコアが最高スコアではないと判定する前に、他のユーザデバイスA〜C 102a〜cの各々は、発声と、話者モデルのうちの1つとの間に少なくとも最低の類似性があり、発声が、他のユーザデバイスA〜C 102a〜cが各々の話者モデルを有していない別のユーザによって話されていないことを保証するために、最高スコアを、たとえば、各々のユーザデバイスに特有のしきいスコア値と比較し得る。他のユーザデバイスA〜C 102a〜cは、最高スコアが別のユーザデバイスから受信された場合、最高スコアに対応するユーザ、ユーザデバイス、またはその両方に関する情報を知っていることも、または、知らないこともあり得る。たとえば、ユーザデバイスA〜D 102a〜dの各々は、たとえば、ユーザまたはユーザデバイスの、任意の識別情報なしで、他のユーザデバイスへスコアを送信し得る。いくつかの例では、ユーザデバイスは、スコアが生成されたユーザのための識別子とともにスコアを送信し得る。
図2は、話者照合システム200の例である。1つまたは複数のユーザデバイスA〜B 202a〜bまたはサーバ204は、発声を話した可能性が最も高いユーザを判定するために、たとえば、発声の特性を表すデータのような、発声を符号化するオーディオ信号を分析し得る。ユーザデバイスA〜B 202a〜b、サーバ204、またはこれらのデバイスの複数の組合せは、話者モデルを使用してオーディオ信号を分析し、話者モデルを使用して決定されたオーディオ信号の別の分析を比較し、特定のユーザが発声を話したか否かを判定し得る。
たとえば、ユーザデバイスA〜B 202a〜bの各々は、各々のユーザのための話者モデルA〜B 206a〜bを含む。話者モデルA〜B 206a〜bは、各ユーザに、登録フレーズを話させ、その後、たとえば、キーワードサンプルからメル周波数ケプストラム係数(MFCC)特徴を抽出し、将来の比較のための基準としてこれら特徴を使用し、および/または、特定のユーザによって話された発声の表現を使用してニューラルネットワークを学習するような任意の適切な方法を使用して、特定のユーザのために生成され得る。
話者照合モジュールA 208aは、特定の発声がユーザAによって話された可能性を判定するために、ユーザデバイスA 202aのユーザAのための話者モデルA 206aを使用する。たとえば、話者照合モジュールA 208aは、たとえば、オーディオ信号の表現のように、特定の発声を符号化するオーディオ信号を受信し、特定の発声がユーザAによって話された可能性を表すスコアを生成するために、話者モデルA 206aを使用する。
話者照合モジュールA 208aは、詐欺者話者モデル210aの各々について、特定の発声が、特定の詐欺者話者モデルに対応する各々のユーザによって話された可能性を表すスコアを生成するために、ユーザデバイスA 202aに記憶された1つまたは複数の詐欺者話者モデル210aを使用し得る。たとえば、ユーザデバイスA 202aは、オーディオ信号を受信し、ユーザデバイスB 202bが、たとえば同じ部屋のように、ユーザデバイスA 202aの物理的位置の近くの物理的エリアに位置していることを判定し、たとえば話者モデルB 206bのようなユーザデバイスB 202bから、または、サーバ204から、ユーザデバイスB 202bのユーザのための話者モデルを要求し得る。たとえば、ユーザデバイスAは、話者モデルB 206bを求める要求の一部として、ユーザデバイスB 202bのためのデバイス識別子、または、ユーザBのための識別子を、たとえばサーバ204へ送信し得る。ユーザデバイスA 202aは、詐欺者話者モデル210aのうちの1つとして話者モデルB 206bをメモリに記憶し、話者照合モジュール208aは、詐欺者話者モデル210aの各々のためのスコアを生成する。
詐欺者話者モデル210aは、同じ部屋、玄関、または、歩道または通路の一部等のような、ユーザデバイスA 202aの物理的位置の近くの物理的エリアにあり得る他のユーザのための話者モデルを含み得る。詐欺者話者モデルは、たとえば履歴データを使用して決定されるような、ユーザAまたはユーザデバイスA 202aと同じ物理的エリアに頻繁にいるユーザのための話者モデルを含み得る。たとえば、ユーザデバイスA 202aは、たとえば、ユーザAが詐欺者話者モデル210aから話者モデルCの削除を要求するまで、または、ユーザデバイスCのための毎日の持続時間がもはやしきい持続時間を満足しなくなるまで、たとえばユーザデバイスCのような別のユーザデバイスが、各勤務日に約4時間、ユーザデバイスA 202aとして同じ物理的エリアにいること、この毎日の4時間の持続時間は、たとえば、勤務日、平均的な毎日の持続時間等に特有の毎日の3時間しきい持続時間よりも長いこと、および、ユーザデバイスCのユーザCのための話者モデルCが、詐欺者話者モデル210aに記憶されるべきであること、を判定し得る。この頻度は、いくつかの例を挙げると、たとえば毎日4時間のような特定の値であり得るか、または、たとえば、ユーザデバイスA 202が特定の他のユーザデバイスを検出する時間の5パーセント、または、ユーザデバイスA 202aによって検出された他のユーザデバイスの合計の10パーセントが、特定の他のユーザデバイスであるようなパーセンテージであり得る。
いくつかの例では、ユーザAは、ユーザデバイスA 202aが詐欺者話者モデル210aに含まれるべき1つまたは複数の話者モデルを識別し得る。たとえば、ユーザデバイスA 202aは、ユーザAの家族または友達のユーザデバイスA 202aにおける別の話者モデルを学習する入力を受信し得る。この入力は、他の話者モデルが、詐欺者話者モデルであるべきであることと、たとえば、ユーザデバイスA 202aのユーザではないユーザA以外のユーザのための話者モデルであることを示し得る。他の話者モデルは、ユーザデバイスA 202aが別の方式でプログラムされていないのであれば、他のユーザによって話された発声に応じて、ユーザデバイスA 202aによって実行される動作を低減または削減するために、たとえば、ユーザAの子供のように、ユーザデバイスA 202aの周囲の物理的エリアに頻繁にいる別のユーザのためのものであり得る。
たとえば、話者照合モジュール208aが、話者モデルA 206aを使用して第1のスコアを生成し、詐欺者話者モデル210aの各々のための各々の第2のスコアを生成した場合、話者照合モジュール208aは、最高スコアを決定するために、これらスコアを比較する。話者モデルA 206aを使用して最高スコアが生成された場合、話者照合モジュール208aは、ユーザAが特定の発声を話したことと、ユーザデバイスA 202aが、たとえば、特定の発声に含まれるコマンドを識別するために音声認識モジュール212aが特定の発声を分析し得るような適切な動作を講じ得ることと、を判定する。
一例において、詐欺者話者モデルのうちの1つは、たとえば、兄弟の両方が、同じような声を有している場合、ユーザAの兄弟のためのものであり得る。話者照合モジュール208aは、各々の話者モデルを使用して、兄弟のうちの1人によって話された発声を分析することによって、ユーザAのための第1のスコアと、彼の兄弟のための第2のスコアとを生成する。話者照合モジュール208aは、どちらのスコアがより大きいのかを判定するために、これら2つのスコアを比較する。これらの各々は、しきいスコアよりも大きく、たとえば、話者モデルにおける類似性のために、単独で、ユーザデバイスA 202aによる動作をトリガするであろう。ユーザAのための第1のスコアが、第2のスコアよりも大きい場合、ユーザデバイスA 202aは、この発声に基づいて動作を実行し、たとえば、この動作は、音声認識モジュール212aを使用して部分的に決定され得る。ユーザAの兄弟のための第2のスコアが、第1のスコアよりも大きい場合、ユーザデバイスA 202aはさらなる動作を講じず、たとえば、特定の発声に応じて動作を実行しない。
詐称者話者モデル210aのうちのいくつかは、特定の日時、特定の日、特定の場所、または、これらの複数の組合せの間において使用され得る。たとえば、ユーザデバイスA 202aが、ユーザAの家族の家にある場合、ユーザデバイスA 202aは、家族の家で暮らす人々のために詐称者話者モデルを使用し得る。そして、たとえば、これら人々のうちの1人のためのコロケートされたユーザデバイスが検出されないのであれば、これら詐欺者話者モデルを使用しないことがあり得る。
いくつかの例では、ユーザデバイスA〜B 202a〜bは、各々の話者モデル、または、各々の話者モデルを使用して生成されたスコアが、たとえば、近距離通信を使用して生成された1つのようなワイヤレス通信チャネル216を使用して、他のユーザデバイスへ提供され得るか否かを判定するために、メモリに記憶された設定214a〜bを使用し得る。たとえば、ユーザデバイスA 202aは、特定の発声を受信し、ユーザデバイスB 202bが、ユーザデバイスA 202aの近くの物理的エリアにあることを判定し、たとえば、要求されている特定の話者モデルを知ることなく、話者モデルB 202bのようなユーザデバイスB 202bからの話者モデルを要求し得る。ユーザデバイスB 202bは、この要求を受信し、話者モデルB 206bが別のデバイスと共有され得るか、または、特定のユーザデバイスA 202aと共有され得るかを判定するために、設定B 214bを分析し、ユーザデバイスB 202bが話者モデルB 206bを共有し得ることを判定することに応じて、ユーザデバイスB 202bは、ワイヤレス通信チャネル216を使用して、話者モデルB 206bのコピーをユーザデバイスA 202aへ送信する。
ユーザデバイスA 202aは、ユーザデバイスB 202bのユーザBのための、または、たとえば、複数の人が単一のユーザデバイスを操作し得る場合の例では、ユーザデバイスB 202bのすべてのユーザのための、話者モデルを要求し得る。話者モデルA 206aは、複数の人が、ユーザデバイスA 202aを操作する場合の例では、多くの話者モデルを含み得る。これらの例では、話者照合モジュール208aは、ユーザデバイスA 202aのユーザの各々のためのスコアを生成し、これらスコアを、詐欺者話者モデル210aを使用して生成された他のスコアと比較し、最高スコアを決定し得る。最高スコアが、ユーザデバイスA 202aのユーザのうちの1人に関するものである場合、ユーザデバイスA 202aは、たとえば、音声認識モジュール212aを使用して少なくとも部分的に決定された、適切な動作を実行し得る。
動作を実行すべきか否かの判定は、特定の動作のタイプ、ユーザデバイスA 202aの特定のユーザ、またはこれら両方を使用してなされ得る。たとえば、第1のユーザAは、ユーザデバイスA 202aにおいて任意のアプリケーションを起動する許可を有し得る一方、第2のユーザAは、ユーザデバイスA 202aにおいて教育アプリケーションのみを起動する許可を有し得る。
いくつかの実施では、話者モデルのうちの1つまたは複数が、ユーザデバイスA 202a〜bの代わりに、または、それに加えて、サーバ204に記憶される。たとえば、サーバ204は、ユーザデバイスA〜B 202a〜bのユーザA〜Bのための話者モデル218を記憶し得る。これら例において、ユーザデバイスA 202aまたはユーザデバイスB 202bは、発声を符号化するオーディオ信号を受信し、このオーディオ信号、または、たとえば、このオーディオ信号の一部の表現のような、オーディオ信号の一部を、サーバ204へ提供し得る。サーバ204は、ユーザデバイスの識別子、話者モデル、または、ユーザデバイスのユーザを受信し、たとえば、話者識別子220を使用して、話者モデル218のうちのどれが、受信された識別子に対応するのかを判定する。
いくつかの例では、サーバ204は、オーディオ信号の一部を分析している場合、ユーザデバイスの話者モデルに加えて使用されるであろう他の話者モデルのための識別子を受信する。たとえば、ユーザデバイスB 202bがユーザデバイスA 202aの物理的位置の近くのエリアに物理的に位置しているとユーザデバイスA 202aが判定した場合、サーバ204は、ユーザデバイスA 202aから、話者照合要求とともに、ユーザデバイスA〜B 202a〜bのオーディオ信号と識別子とを受信し得る。
サーバ204は、ユーザデバイスから、位置情報を、たとえばオーディオ信号とともに、または個別に受信し得る。そして、たとえば、他のユーザデバイスのための位置情報を使用して、サーバ204へオーディオ信号を提供したユーザデバイスの物理的位置の近くのエリアに物理的に配置された他のユーザデバイスを判定するために、位置情報を使用し得る。サーバ204は、その後、判定された他のデバイスのための他の話者モデル218を識別し得る。サーバ204は、サーバ204においてスコアを生成した場合、または、話者モデルをユーザデバイスA〜B 202a〜bへ提供した場合、識別された他の話者モデルを使用し得る。
サーバ204上の話者照合モジュール222は、各々の人がオーディオ信号において符号化された特定の発声を話した可能性を各々表す各々のスコアを生成するために、サーバ204へオーディオ信号を提供したユーザデバイスと、決定された他のユーザデバイスとから、話者モデルのすべてを使用する。話者照合モジュール222は、サーバ204に含まれたメモリから話者モデルを検索し得る。話者照合モジュール222は、各々のユーザデバイスから話者モデルを受信し得る。サーバ204、または話者照合モジュール222は、最高スコアを決定し、そのユーザデバイスのユーザが特定の発声を話した可能性が最も高いことを示すメッセージを、各々のユーザデバイスへ提供する。サーバ204は、対応する他のユーザが、恐らく発声を話さなかったことを示すメッセージを、他のユーザデバイスへ提供し得る。
いくつかの例では、特定のユーザデバイスが、たとえば、特定のユーザデバイスのユーザの各々のための、特定のユーザデバイスに関連付けられた詐欺者話者モデルの各々のための、または両方、のような多くの話者識別子をサーバ204へ提供し得る。特定のユーザデバイスは、たとえばユーザまたは詐欺者のような、話者識別子の各々のためのモデルのタイプを示すデータを含み得る。話者照合モジュール222は、受信された話者識別子に対応する話者モデル218のすべてを使用してオーディオ信号を分析し、最高スコアを生成するためにどの話者モデルが使用されるのかを決定し得る。最高スコアが、特定のユーザデバイスのユーザのうちの1人のためのモデルを使用して生成された場合、サーバ204は、特定のユーザデバイスへ、特定のデバイスのユーザが特定の発声を話した可能性が最も高いことを示すメッセージを提供する。このメッセージは、最高スコアを生成するために使用される特定の話者モデルのための話者識別子を含み得る。
いくつかの実施では、より低い数値が、より高い数値と比べて、特定のユーザが発声を話した可能性が高いことを表し得る。たとえば、より低い数値は、より高い数値よりも高いスコアであり得る。
いくつかの例では、ユーザデバイスが多くのユーザを有する場合、ユーザデバイスまたはサーバ204は、ユーザデバイスの現在のユーザのための特定の話者モデルを決定し得る。たとえば、ユーザデバイスは、現在のユーザのための話者識別子をサーバ204へ提供し、ユーザデバイスの他のユーザについて、他の話者識別子のすべてが、サーバ204に記憶された詐欺者話者モデル用であることを示し得る。いくつかの例では、ユーザデバイスは、オーディオ信号の受信に応じて、動作を実行するか否かを判定するために、現在のユーザの話者モデルを使用し、ユーザデバイスの他のユーザのための話者モデルを、詐欺者話者モデルとして使用する。ユーザデバイスは、ユーザデバイスをロック解除し、現在のユーザを判定するために、パスワード、ユーザ名、またはその両方を使用することのように、ユーザデバイスの現在のユーザを決定するための任意の適切な方法を使用し得る。
いくつかの実施では、オーディオ信号について、詐欺者話者モデル、または、別のユーザデバイスから受信したモデルを使用してスコアが生成され、そのスコアが、特定のユーザデバイスのユーザのための話者モデルを使用して生成されたスコア以上であれば、その特定のユーザデバイスは、オーディオ信号の受信に応じて何ら動作を実行しない。これらの実施では、2つのスコアが同じである場合、ユーザデバイスは、オーディオ信号の受信に応じて何ら動作を実行しない。他の実施では、異なるユーザデバイスの2人のユーザに関する2つのスコアが同じであり、これら両方が最高スコアである場合、これら2つのスコアに対応する2つのユーザデバイスは両方とも動作を実行し得る。実施では、単一のユーザデバイスにおいて、モデルに関する2つのスコアが、同じ最高スコアである場合の実施では、ユーザデバイスは、動作を実行することもしないこともあり得る。たとえば、2つのスコアの各々が、異なるユーザデバイスのユーザに関するものである場合、ユーザデバイスは、動作を実行し得る。これらスコアのうちの1つが、ユーザ話者モデルに関し、これらスコアのうちの1つが、詐欺者話者モデルに関するものである場合、ユーザデバイスは、何ら動作を実行しないことがあり得る。
いくつかの実施では、ユーザデバイスは、検出された他のユーザデバイスの量に依存してしきい値を調節し得る。たとえば、他のデバイスが検出されない場合、しきい値はさほど限定的ではなく、たとえばオーディオ信号の受信後、他のユーザデバイスが検出された場合、より限定的であり得る。しきい値は、検出された他のデバイスの数に基づいて、最大しきい値に達するまで、たとえば線形的または指数関数的に、より限定的になり得る。いくつかの例では、1つまたは複数のスコアは、たとえば、異なる類似性モデルを使用して生成された同じ発声のためのスコアの組合せを使用して規格化され得る。この組合せは、平均、合計、または積であり得る。
いくつかの実施では、ユーザデバイスA〜B 202a〜bのうちの1つまたは複数は、各々のユーザデバイスの近くの物理的エリアにおける他のユーザデバイスを定期的に検出し得る。たとえば、ユーザデバイスB 202bは、別のユーザデバイスが、ユーザデバイスB 202bと同じ部屋にあるか否かを5分毎、10分毎、または30分毎に判定し得る。いくつかの例では、ユーザデバイスB 202bは、ユーザデバイスB 202bが、あらかじめ決定された期間、実質的に同じエリアに留まっていたと判定すると、たとえば、ユーザデバイスB 202bのユーザBが、ユーザデバイスB 202bを保持しているが、歩いていないか、または、ユーザBが、単一の部屋に留まっていると判定すると、別のユーザデバイスが、ユーザデバイスB 202bからあらかじめ決定された距離内にあるか否かを判定し得る。
ユーザデバイスA〜B 202a〜bは、パーソナルコンピュータ、たとえばスマートフォンまたはタブレット、および、ネットワーク224を介してデータを送信および受信でき得る他のデバイス、たとえば時計または温度計のようなウェアラブルデバイスのようなモバイル通信デバイス、テレビ、およびネットワーク接続機器を含み得る。ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、インターネット、またはそれらの組合せのようなネットワーク224は、ユーザデバイスA〜B 202a〜bおよびサーバ204を接続する。
図3は、発声がユーザによって話されたものであるか否かを判定するための処理300のフロー図である。たとえば、処理300は、話者照合システム200からのユーザデバイスA 202aまたはサーバ204によって使用され得る。
この処理は、発声を符号化するオーディオ信号を受信する(302)。たとえば、ユーザデバイス上のマイクロホンは、オーディオ信号を受信し、オーディオ信号を、第1のユーザデバイス上の話者照合モジュールへ、またはサーバへ提供する。
この処理は、第1のユーザデバイスの第1のユーザのための第1の話者モデルを取得する(304)。たとえば、話者照合モジュールは、第1のユーザデバイスのための単一の第1のユーザが存在することを判定し、その第1のユーザのための第1の話者モデルを取得する。いくつかの例では、話者照合モジュールは、現在第1のユーザデバイスにログインしているか、または、第1のユーザデバイスがロック状態にある場合に、第1のユーザデバイスへ最も直近にログインした、第1のユーザデバイスの現在のユーザを判定し、そのユーザのための第1の話者モデルを取得する。
いくつかの例では、話者照合モジュールは、第1のユーザデバイスについて多くのユーザが存在することを判定し、これらユーザのうちの1人のための第1の話者モデルを取得する。第1のユーザデバイスは、その後、他のユーザのために、処理300における1つまたは複数のステップを反復し得る。たとえば、話者照合モジュールは、ユーザの各々のために、ステップ304および306を反復し得る。
この処理は、オーディオ信号の一部と、第1の話者モデルとを使用して、発声が、第1のユーザによって話された可能性を示す第1のスコアを生成する(306)。たとえば、第1のデバイスの話者照合モジュールは、第1のスコアを生成するために、オーディオ信号の全体および第1の話者モデルを使用する。
オーディオ信号は、話者照合モジュールが第1の話者モデルに対して比較し得る発声の変形を含み得る。たとえば、マイクロホンは、この発声を記録し、発声の記録を、話者照合モジュールが第1のスコアを生成するために使用するオーディオ信号を生成する特徴抽出モジュールへ提供し得る。
実施では、第1のユーザデバイスの多くのユーザが存在する場合、話者照合モジュールは、これら多くのユーザの各々のスコアを比較し、最高スコアを選択する。たとえば、第1のユーザデバイスは、各々が第1のユーザデバイスの各々のユーザのためである1から5までの話者モデルを有し得る。
話者照合モジュールは、スコアが、しきいスコア値を満足するか否かを判定するために、たとえば最高スコアのようなスコアを、しきいスコア値と比較し得る。たとえば、話者照合モジュールは、しきいスコア値が、最小要求スコアである場合、最高スコアが、しきいスコア値よりも高いか否かを、または、しきいスコア値が、最大要求スコアであり、たとえば、最高スコアが、第1のユーザデバイスのユーザのために生成されたスコアの最小数値を有する場合、最高スコアが、しきいスコア値よりも低いか否かを、判定する。
最高スコアが、しきいスコア値を満足するのであれば、話者照合モジュール、または、第1のユーザデバイスにおける別のモジュールは、たとえば、第1のユーザデバイスまたはサーバ上に記憶された、第1のユーザデバイスにおいて識別された詐欺者話者モデルの各々のためのスコアを生成し、ステップ308を実行するために処理300を継続する。最高スコアが、しきいスコア値を満足しないのであれば、ユーザデバイスまたはサーバは、処理300の実行を停止し得る。第1のユーザデバイスまたはサーバが、処理300の実行を停止した場合、第1のユーザデバイスまたはサーバは、他のユーザデバイスから他の話者モデルまたは他のスコアを要求することを停止し得る。
第1のユーザデバイスにおける話者照合モジュール、または、サーバにおける類似のモジュールは、第1のユーザデバイスのユーザの最高スコアと同じまたはそれよりも大きなスコアが生成され、この時、話者照合モジュールが処理300の実行を停止するまで、詐欺者話者モデルの各々のためのスコアを生成し得る。話者照合モジュールが、これ以上の詐欺者話者モデルが存在しない、または、第1のユーザデバイスのユーザのための最高スコアが、たとえばステップ308および310を使用して決定された、他のユーザデバイスの他のユーザのための詐欺者話者モデルのためのスコアを含む詐欺者話者モデルのすべてのためのスコアと比較されている、と判定した場合、処理は、ステップ312を進める。
たとえば、この処理は、1つまたは複数の第2のユーザデバイスが、第1のユーザデバイスの物理的位置の近くの物理的エリアに配置されていることを判定する(308)。第1のユーザデバイスは、近距離通信を使用して、第2のユーザデバイスを決定し得る。例では、話者照合モジュールが既に第1のスコアを決定している場合、第1のユーザデバイスは、たとえば、類似の処理を実行する他の話者照合モジュールによる使用のために、第1のスコアを、他のユーザデバイスへ提供し得る。いくつかの例では、第1のユーザデバイスは、第1の話者モデル、第1のユーザデバイスの他のユーザのための他の話者モデル、または、これら2つの組合せを、第2のユーザデバイスの少なくともいくつかへ提供し得る。
いくつかの実施では、この処理は、第1のユーザデバイスとコロケートされているが異なる物理的位置にある第2のユーザデバイスを決定し得る。たとえば、第1のユーザデバイスは、第1のユーザデバイスと特定の第2のユーザデバイスとの両方が、同じ電話またはビデオ会議に参加している場合、または、同じ電話またはビデオ会議に参加している近くのデバイスである場合、この第2のユーザデバイスが第1のユーザデバイスとコロケートされていることを判定し得る。これらデバイスは、同じ物理的部屋、または、異なる部屋に位置し得る。これら各々は、個別のビデオ会議器具を含んでいる。第1のデバイス、またはサーバは、たとえば、両ユーザのためのカレンダ入力が同じであり、イベントに参加しているユーザのすべてを示している場合、これらデバイスが、各々のユーザのためのカレンダ入力を使用してコロケートされていると判定し得る。
この処理は、第2のユーザデバイスの各々の第2のユーザのために、各々の第2のユーザのための第2の話者モデル、または、発声が各々の第2のユーザによって話された各々の可能性を示す第2のスコアを取得する(310)。たとえば、第2のユーザデバイスにおける他の話者照合モジュールは、たとえば、各々の第2の話者モデルと、同じ発声または同じ発声の一部を符号化する他のオーディオ信号とを使用して、第2のユーザデバイスのユーザの各々のために、各々第2のスコアを生成する。第1のユーザデバイスは、第2のユーザデバイスから第2のスコアの各々を受信し、その単一の第2のユーザデバイスが、多くのユーザを有している場合、単一のメッセージまたは多くのメッセージで、単一の第2のユーザデバイスから、多くの第2のスコアを受信し得る。
いくつかの例では、サーバは、第2のスコアのいくつかを生成し、これら第2のスコアを、第1のユーザデバイスへ提供する。サーバは、第1のユーザデバイスのユーザのための第1のスコアを生成し、第1のスコアを、第1のユーザデバイスへ提供し得る。サーバは、これらスコアのすべてを比較し、最高スコアを有するデバイスへメッセージを送信し得る。サーバは、最高スコアに対応しない他のデバイスへメッセージを送信することもしないこともあり得る。
この処理は、発声が第1のユーザによって話されたことを判定する(312)。たとえば、話者照合モジュールは、第1のユーザデバイスのための最高スコアを、ユーザデバイスに記憶された詐欺者話者モデルのスコア、第2のユーザデバイスから受信された第2のスコア、またはこれら両方と比較する。話者照合モジュールは、話者照合モジュールが、他のスコアの1つが、第1のユーザデバイスの最高スコア以上であることを判定した場合、第1のユーザデバイスの最高スコアを他のスコアと比較することを停止し、その後、たとえば、処理300の実行を停止し得る。
この処理は、発声が第1のユーザによって話されたことを判定することに応じて動作を実行する(314)。たとえば、音声認識モジュールは、オーディオ信号を分析し、オーディオ信号において符号化された発声のテキスト表現を決定する。第1のユーザデバイスは、このテキスト表現を使用して、発声において第1のユーザによって提供されたコマンドを決定し、このコマンドに応じて、動作を実行する。
上述された処理300におけるステップの順序は、単に例示的であって、ユーザによって発声が話されたか否かを判定するステップは、別の順序で実行され得る。たとえば、ユーザデバイスは、たとえばステップ302を実行して、オーディオ信号を受信する前に、たとえばステップ302を実行して、ユーザデバイスの物理的位置の近くの物理的エリアに配置された第2のユーザデバイスを判定し得る。
いくつかの実施では、処理300は、追加のステップ、より少ないステップ、または、多くのステップへ分割され得るステップのうちのいくつかを含み得る。たとえば、第1のユーザデバイスは、第2のユーザデバイスを決定し、たとえば詐欺者話者モデルのような、第2のユーザのための任意の話者モデルがメモリに記憶されているか否かを判定し、各々の第2のユーザデバイスから、メモリに記憶されていない第2の話者モデルのみを要求し得る。これらの例では、第1のユーザデバイスは、他の各々のユーザデバイスが第1のユーザデバイスの物理的位置の近くの物理的エリアにもはやおらず、たとえば、第2のユーザデバイスに現在含まれていない他のユーザのための任意の詐欺者話者モデルをメモリから削除し得る。
第1のユーザデバイスの物理的位置の近くの物理的エリアにもはや存在しないユーザデバイスのためのメモリから、詐欺者話者モデルを削除した場合、第1のユーザデバイスは、削除用ではないとフラグされた他のユーザのための任意の詐欺者話者モデルを保持し得る。たとえば、詐欺者話者モデルのうちの1つは、第1のユーザデバイスの物理的位置の近くの物理的エリアにしばしばいる友達のためのものであり得る。第1のユーザデバイスは、たとえ第1のユーザデバイスが友達によって操作された別のユーザデバイスを検出しない場合であっても、友達のための詐欺者話者モデルのうちの1つを保持し得る。
本明細書に記述されている主題および機能的なオペレーションの実施形態は、デジタル電子回路において、有形的に具体化されたコンピュータソフトウェアまたはファームウェアにおいて、本明細書で開示された構成およびそれらの構成的な等価物、または、これらのうちの1つまたは複数の組合せを含むコンピュータハードウェアにおいて、実施され得る。本明細書に記述された主題の実施形態は、1つまたは複数のコンピュータプログラム、すなわち、データ処理装置による実行のため、または、データ処理装置のオペレーションを制御するための、有形的な非一時的なプログラムキャリアで符号化されたコンピュータプログラム命令の1つまたは複数のモジュール、として実施され得る。あるいは、または、それに加えて、プログラム命令は、データ処理装置による実行のための適切な受信装置への送信のために、情報を符号化するために生成された、たとえば、マシンによって生成された電気的、光学的、または電磁気的な信号のような、人工的に生成された伝搬信号において符号化され得る。コンピュータ記憶媒体は、マシン読取可能な記憶デバイス、マシン読取可能な記憶基板、ランダムまたはシリアルなアクセスメモリデバイス、または、これらの1つまたは複数の組合せであり得る。
「データ処理装置」という用語は、データ処理ハードウェアを称し、例として、プログラマブルプロセッサ、コンピュータ、またはマルチプロセッサまたはコンピュータを含む、データを処理するためのすべての種類の装置、デバイス、およびマシンを包含する。装置はまた、あるいは、さらに、たとえば、FPGA(フィールドプログラマブルゲートアレイ)またはASIC(特定用途向け集積回路)のような専用目的論理回路を含み得る。この装置は、オプションとして、ハードウェアに加えて、コンピュータプログラムのための実行環境を生成するコード、たとえば、プロセッサファームウェアを構築するコード、プロトコルスタック、データベース管理システム、オペレーティングシステム、または、これらのうちの1つまたは複数の組合せ、を含み得る。
プログラム、ソフトウェア、ソフトウェアアプリケーション、モジュール、ソフトウェアモジュール、スクリプト、またはコードとしても称され得、または記述され得るコンピュータプログラムは、コンパイルまたはインタープリタされた言語、または宣言型または手続型の言語を含む、任意の形式のプログラミング言語で記述され、スタンドアロンプログラムとして、またはモジュール、構成要素、サブルーチン、または、コンピューティング環境における使用のために適した他のユニットとして含む任意の形式で展開され得る。コンピュータプログラムは、ファイルシステム内のファイルに相当し得るが、必ずしも相当する必要はない。プログラムは、問題となっているプログラムに特化された単一のファイルに、または、たとえば、1つまたは複数のモジュール、サブプログラム、またはコードの一部を記憶するファイルのような多くの調整されたファイルに、たとえば、マークアップ言語文書に記憶された1つまたは複数のスクリプトのような他のプログラムまたはデータを保持するファイルの一部において記憶され得る。コンピュータプログラムは、1つのコンピュータにおいて、または、1つの場所に配置され、または多くの場所にわたって分散され、通信ネットワークによって相互接続された多くのコンピュータにおいて実行されるために展開され得る。
本明細書に記述された処理および論理フローは、入力データに対して演算し、出力を生成することによって機能を実行するための、1つまたは複数のコンピュータプログラムを実行する1つまたは複数のプログラム可能なコンピュータによって実行され得る。処理および論理フローはまた、たとえばFPGA(フィールドプログラマブルゲートアレイ)またはASIC(特定用途向け集積回路)のような専用目的論理回路によって実行され、装置はまた、このような専用目的論理回路として実施され得る。
コンピュータプログラムの実行のために適切なコンピュータは、例によって、汎用または専用目的マイクロプロセッサまたはその両方、または、他の任意の種類の中央処理ユニットを含む。一般に、中央処理ユニットは、読取専用メモリ、または、ランダムアクセスメモリ、またはその両方から命令およびデータを受信するであろう。コンピュータの本質的な要素は、命令を実行または実施するための中央処理ユニットと、命令およびデータを記憶するための1つまたは複数のメモリデバイスである。一般に、コンピュータはまた、たとえば磁気ディスク、磁気光ディスク、または光ディスクのように、データを記憶するための1つまたは複数の大容量記憶デバイスを含んでいるか、あるいは、1つまたは複数の大容量記憶デバイスからデータを受け取るため、または、1つまたは複数の大容量記憶デバイスへデータを転送するため、またはその両方のために、動作可能に結合され得る。しかしながら、コンピュータは、そのようなデバイスを有する必要はない。さらに、コンピュータは、いくつか名前を挙げると、たとえば、モバイル電話、携帯情報端末(PDA)、モバイルオーディオまたはビデオプレーヤ、ゲームコンソール、全地球測位システム(GPS)受信機、または、たとえばユニバーサルシリアルバス(USB)フラッシュデバイスなどのポータブル記憶デバイスのような別のデバイスに組み込まれ得る。
コンピュータプログラム命令およびデータを記憶するために適切なコンピュータ読取可能な媒体は、例として、たとえばEPROM、EEPROM、およびフラッシュメモリデバイスのような半導体メモリデバイス、たとえば内部ハードディスクまたはリムーバブルディスクのような磁気ディスク、光磁気ディスク、およびCD-ROMディスクおよびDVD-ROMディスクを含むすべての形式の不揮発性メモリ、媒体、およびメモリデバイスを含む。プロセッサおよびメモリは、専用目的論理回路によって補足され得るか、または、専用目的論理回路内に組み込まれ得る。
ユーザとのインタラクションを提供するために、本明細書に記述された主題の実施形態は、ユーザへ情報を表示するための、たとえばCRT(陰極線管)またはLCD(液晶ディスプレイ)モニタのようなディスプレイデバイスと、ユーザがコンピュータへ入力を提供する、たとえばマウスまたはトラックボールのようなポインティングデバイスと、キーボードと、を有するコンピュータにおいて実施され得る。他の種類のデバイスもまた同様に、ユーザとのインタラクションを提供するために使用され得る。たとえば、ユーザへ提供されるフィードバックは、たとえば、視覚的なフィードバック、聴覚的なフィードバック、または触覚的なフィードバックのような任意の形式の知覚的なフィードバックであり得り、ユーザからの入力は、音響、音声、または触覚入力を含む任意の形式で受け取られ得る。それに加えて、コンピュータは、たとえば、ウェブブラウザから受信した要求に応じて、ユーザのデバイス上のウェブブラウザへウェブページを送信することによって、ユーザによって使用されるデバイスへ文書を送信し、ユーザによって使用されるデバイスから文書を受信することによって、ユーザとインタラクトし得る。
本明細書に記述された主題の実施形態は、たとえば、データサーバとしてバックエンド構成要素を含んでいるか、または、たとえば、アプリケーションサーバのようなミドルウェア構成要素を含んでいるか、または、たとえば、ユーザが本明細書に記述された主題の実施とインタラクトし得るグラフィックユーザインターフェースまたはウェブブラウザを有するクライアントコンピュータのようなフロントエンド構成要素を含んでいるコンピューティングシステムにおいて、または、1つまたは複数のそのようなバックエンド、ミドルウェア、またはフロントエンド構成要素の任意の組合せ、で実施され得る。システムの構成要素は、たとえば通信ネットワークのような、デジタルデータ通信の任意の形式または媒体によって相互接続され得る。通信ネットワークの例は、ローカルエリアネットワーク(LAN)、および、広域ネットワーク(WAN)、たとえばインターネットを含む。
コンピューティングシステムは、クライアントおよびサーバを含み得る。クライアントおよびサーバは、一般に、互いに離れており、一般に、通信ネットワークを介してインタラクトする。クライアントとサーバとの関係は、各々のコンピュータにおいて動作し、互いにクライアント-サーバ関係を有している、コンピュータプログラムによって生じる。いくつかの実施形態では、サーバは、たとえば、クライアントとして動作するユーザデバイスとインタラクトするユーザへ、データを表示するため、および、このユーザからユーザ入力を受信するために、ユーザデバイスへ、たとえばHTMLページのようなデータを送信する。ユーザデバイスにおいて、たとえば、ユーザインタラクションの結果、生成されたデータは、サーバにおいて、ユーザデバイスから受信され得る。
図4は、本書において記述されたシステムおよび方法を実施するために、クライアントとして、または、サーバとして、または、複数のサーバとして使用され得るコンピューティングデバイス400、450のブロック図である。コンピューティングデバイス400は、ラップトップ、デスクトップ、ワークステーション、携帯情報端末、サーバ、ブレードサーバ、メインフレーム、および他の適切なコンピュータのようなデジタルコンピュータの様々な形式を表すことが意図される。コンピューティングデバイス450は、携帯情報端末、セルラ電話、スマートフォン、スマートウォッチ、頭部装着型デバイス、および他の類似のコンピューティングデバイスのような様々な形式のモバイルデバイスを表すことが意図される。本明細書に図示された構成要素、それらの接続および関係、およびそれらの機能は、単なる典型例であって、本書において記述および/または特許請求された発明の実施を制限することは意味されていない。
コンピューティングデバイス400は、プロセッサ402、メモリ404、記憶デバイス406、メモリ404および高速拡張ポート410へ接続している高速インターフェース408、低速バス414および記憶デバイス406へ接続している低速インターフェース412を含む。構成要素402、404、406、408、410および412の各々は、様々なバスを使用して相互接続され、共通のマザーボードに搭載され得るか、または、他の方式で適切に搭載され得る。プロセッサ402は、高速インターフェース408へ結合されたディスプレイ416のような外部入力/出力デバイス上のGUIのためのグラフィック情報を表示するための、メモリ404内または記憶デバイス406に記憶された命令を含む、コンピューティングデバイス400内で実行するための命令を処理し得る。他の実施では、多くのプロセッサおよび/または多くのバスが、多くのメモリおよびタイプのメモリとともに、適切に使用され得る。また、各々が(たとえば、サーババンク、ブレードサーバのグループ、または、マルチプロセッサシステムとして)必要なオペレーションの一部を提供する多くのコンピューティングデバイス400と接続され得る。
メモリ404は、コンピューティングデバイス400内で情報を記憶する。1つの実施では、メモリ404は、コンピュータ読取可能な媒体である。1つの実施では、メモリ404は、揮発性メモリユニットである。別の実施では、メモリ404は、不揮発性メモリユニットである。
記憶デバイス406は、コンピューティングデバイス400のための大容量記憶を提供することができる。1つの実施では、記憶デバイス406は、コンピュータ読取可能な媒体である。様々な異なる実施では、記憶デバイス406は、フロッピーディスクデバイス、ハードディスクデバイス、光ディスクデバイス、またはテープデバイス、フラッシュメモリ、または他の類似のソリッドステートメモリデバイス、または、ストレージエリアネットワークまたは他の構成におけるデバイスを含むデバイスのアレイであり得る。1つの実施では、コンピュータプログラム製品は、情報キャリア内に有形的に具体化される。コンピュータプログラム製品は、実行された場合、上述されたような1つまたは複数の方法を実行する命令を含む。情報キャリアは、メモリ404、記憶デバイス406、または、プロセッサ402におけるメモリのような、コンピュータまたはマシンによる読取可能な媒体である。
高速コントローラ408は、コンピューティングデバイス400のための広帯域幅集約的なオペレーションを管理する一方、低速コントローラ412は、低帯域幅集約的なオペレーションを管理する。そのようなデューティの割当は、単なる典型例である。1つの実施では、高速コントローラ408は、メモリ404へ、(たとえば、グラフィックプロセッサまたはアクセラレータを介して)ディスプレイ416へ、および(図示しない)様々な拡張カードを受け取り得る高速拡張ポート410へ結合される。実施では、低速コントローラ412は、記憶デバイス406および低速拡張ポート414へ結合される。様々な通信ポート(たとえば、USB、Bluetooth、イーサネット(登録商標)、ワイヤレスイーサネット)を含み得る低速拡張ポートは、キーボード、ポインティングデバイス、スキャナ、または、スイッチまたはルータのようなネットワーキングデバイスのような1つまたは複数の入力/出力デバイスへ、たとえばネットワークアダプタを介して結合され得る。
図面に図示されるように、コンピューティングデバイス400は、多くの異なる形式で実施され得る。たとえば、標準的なサーバ420として、または、そのようなサーバのグループ内で何度も実施され得る。また、それは、ラックサーバシステム424の一部として実施され得る。それに加えて、それは、ラップトップコンピュータ422のようなパーソナルコンピュータにおいて実施され得る。あるいは、コンピューティングデバイス400からの構成要素が、デバイス450のようなモバイルデバイス(図示せず)における他の構成要素と組み合わされ得る。そのようなデバイスの各々は、コンピューティングデバイス400、450のうちの1つまたは複数を含み得り、システム全体は、互いに通信する多くのコンピューティングデバイス400、450からなり得る。
コンピューティングデバイス450は、他の構成要素の中でも、プロセッサ452、メモリ464、ディスプレイ454のような入力/出力デバイス、通信用インターフェース466、およびトランシーバ468を含む。デバイス450はまた、追加の記憶装置を提供するために、マイクロドライブまたは他のデバイスのような記憶デバイスを提供され得る。構成要素450、452、464、454、466、および468の各々は、様々なバスを使用して相互接続され、構成要素のいくつかは、共通のマザーボード上に搭載され得るか、または、他の方式で適切に搭載され得る。
プロセッサ452は、メモリ464に記憶された命令を含む、コンピューティングデバイス450内の実行のための命令を処理し得る。プロセッサはまた、個別のアナログおよびデジタルプロセッサを含み得る。プロセッサは、たとえば、ユーザインターフェース、デバイス450によって実行されるアプリケーション、および、デバイス450によるワイヤレス通信の制御のような、デバイス450の他の構成要素の調整のために準備し得る。
プロセッサ452は、制御インターフェース458を介して、および、ディスプレイ454に結合されたディスプレイインターフェース456を介して、ユーザと通信し得る。ディスプレイ454は、たとえば、TFT LCDディスプレイまたはOLEDディスプレイ、または他の適切なディスプレイ技術であり得る。ディスプレイインターフェース456は、グラフィックおよび他の情報をユーザへ提供するために、ディスプレイ454を駆動するための適切な回路を備え得る。制御インターフェース458は、ユーザからコマンドを受信し、それらをプロセッサ452への発行のために変換し得る。それに加えて、外部インターフェース462は、他のデバイスとのデバイス450の近傍エリア通信を可能にするように、プロセッサ452との通信に提供され得る。外部インターフェース462は、たとえば、(たとえば、ドッキング手順による)ワイヤ通信のため、または、(たとえば、Bluetoothまたは他のそのような技術による)ワイヤレス通信のために備え得る。
メモリ464は、コンピューティングデバイス450内で情報を記憶する。1つの実施では、メモリ464はコンピュータ読取可能な媒体である。1つの実施では、メモリ464は、揮発性メモリユニットである。別の実施では、メモリ464は、不揮発性メモリユニットである。拡張メモリ474もまた、たとえばSIMMカードインターフェースを含み得る拡張インターフェース472を介してデバイス450へ提供され接続され得る。そのような拡張メモリ474は、デバイス450のための追加の記憶スペースを提供し得るか、または、デバイス450のためのアプリケーションまたは他の情報をも記憶し得る。具体的には、拡張メモリ474は、上述された処理を実行または補足するための命令を含み得、安全な情報をも含み得る。したがって、たとえば、拡張メモリ474は、デバイス450のためのセキュリティモジュールとして提供され得、デバイス450の安全な使用を許可する命令を用いてプログラムされ得る。それに加えて、安全なアプリケーションが、ハッキング不可な方式で、SIMMカード上に識別情報を配置するように、追加の情報とともにSIMMカードを介して提供され得る。
メモリは、たとえば、上述したようなフラッシュメモリおよび/またはMRAMメモリを含み得る。1つの実施では、コンピュータプログラム製品は、情報キャリア内に有形的に具体化される。コンピュータプログラム製品は、実行された場合、上述されたような1つまたは複数の方法を実行する命令を含む。情報キャリアは、メモリ464、拡張メモリ474、またはプロセッサ452上のメモリのようなコンピュータまたはマシンによる読取可能な媒体である。
デバイス450は、必要な場合、デジタル信号処理回路を含み得る通信インターフェース466を介してワイヤレスに通信し得る。通信インターフェース466は、とりわけ、GSM(登録商標)音声コール、SMS、EMS、またはMMSメッセージング、CDMA、TDMA、PDC、WCDMA(登録商標)、CDMA2000、またはGPRSのような様々なモードまたはプロトコルの下で通信を提供し得る。そのような通信は、たとえば、ラジオ周波数トランシーバ468によって生じ得る。それに加えて、短距離通信が、たとえばBluetooth、Wi-Fi、または他のそのようなトランシーバ(図示せず)を使用して生じ得る。それに加えて、GPS受信機モジュール470が、デバイス450へ追加のワイヤレスデータを提供し得る。これは、デバイス450上で動作しているアプリケーションによって適切に使用され得る。
デバイス450はまた、オーディオコーデック460を使用して可聴的に通信し得る。オーディオコーデック460は、ユーザから、話された情報を受信し、それを、使用可能なデジタル情報へ変換し得る。オーディオコーデック460は同様に、たとえば、デバイス450のハンドセットにおいて、たとえばスピーカを介して、ユーザのために可聴音を生成し得る。そのような音は、音声電話コールからの音を含み得、記録された音(たとえば、音声メッセージ、音楽ファイル等)を含み得、また、デバイス450において動作しているアプリケーションによって生成された音をも含み得る。
図面に図示されるように、コンピューティングデバイス450は、多くの異なる形式で実施され得る。たとえば、それは、セルラ電話480として実施され得る。さらに、それは、スマートフォン482、携帯情報端末、または他の類似のモバイルデバイスの一部として実施され得る。
本明細書は、多くの特定の実施詳細を含んでいるが、これらは、特許請求されるべきもののスコープに対する限定として解釈されるべきではなく、むしろ、特定の実施形態に特有であり得る特徴の詳細として解釈されるべきである。個別の実施形態のコンテキストにおいて本明細書において記述されているいくつかの特徴はまた、単一の実施形態における組合せにおいても実施され得る。逆に、単一の実施形態のコンテキストに記述されている様々な特徴はまた、多くの実施形態において個別に、または、任意の適切な部分的組合せにおいても実施され得る。さらに、特徴は、いくつかの組合せにおける動作として、および、最初に特許請求されたものとして上述され得るが、いくつかのケースでは、特許請求された組合せからの1つまたは複数の特徴が、組合せから取り除かれ、特許請求された組合せが、部分的組合せまたは部分的組合せのバリエーションに向けられ得る。
同様に、これらオペレーションは、図面において特定の順序で図示されているが、これは、そのようなオペレーションが、所望される結果を達成するために、図示された特定の順序で、または、シーケンシャルな順序で実行されること、または、例示されたすべてのオペレーションが実行されるべきであること、を要求しているとは理解されるべきではない。いくつかの状況では、マルチタスクおよび並列処理が有利であり得る。さらに、上述された実施形態における様々なシステムモジュールおよび構成要素の分離は、すべての実施形態においてそのような分離を必要としているとして理解されるべきではなく、記述されたプログラム構成要素およびシステムは、一般に、単一のソフトウェア製品にともに統合され得るか、または、多くのソフトウェア製品へパックされ得ることが理解されるべきである。
本明細書に議論されたシステムが、ユーザに関する個人情報を収集する、または、個人情報を活用し得る状況では、ユーザは、プログラムまたは特徴が、たとえば、話者モデル、ユーザの嗜好、またはユーザの現在位置のようなユーザ情報を取集するための、または、コンテンツサーバからコンテンツを受信するか否か、および/または、どのようにして受信するのかを制御するための機会を提供され得る。それに加えて、いくつかのデータは、記憶または使用される前に、1つまたは多くの方式で取り扱われ、これによって、個人的に識別可能な情報が削除されるようになる。たとえば、個人的に識別可能な情報がユーザのために判定されないように、ユーザの識別情報が取り扱われ得るか、または、位置情報が取得されたユーザの地理的位置が、たとえば、都市、郵便番号、または州レベルへ一般化され得、これによって、ユーザの特定の位置が決定されないようになる。したがって、ユーザは、ユーザに関する情報がどのようにして収集されるのか、および、コンテンツサーバによってどのように使用されるのかに関する制御を有し得る。
主題の特定の実施形態が記述された。他の実施形態は、以下の特許請求の範囲内である。たとえば、特許請求の範囲において記述された動作は、異なる順序で実行され得り、依然として望ましい結果を達成し得る。一例として、添付図面に図示された処理は、所望される結果を達成するために、図示された特定の順序、または、シーケンシャルな順序を、必ずしも必要としない。いくつかのケースでは、マルチタスクおよび並列処理が、有利であり得る。たとえば、たとえば話者照合モジュールの一部のような類似性スコア計算を実行するモジュールは、デジタル信号処理(DSP)ユニットにおいて直接的に、ハードウェアにおいて実施され得る。
100 環境
102a ユーザデバイスA
102b ユーザデバイスB
102c ユーザデバイスC
102d ユーザデバイスD
104a 話者モデルA
104b 話者モデルB
104c 話者モデルC
104d 話者モデルD
106 ユーザD:オーケーグーグル、デモを開始して下さい
108 デモを起動
200 話者照合システム
202a ユーザデバイスA
202b ユーザデバイスB
204 サーバ
206a 話者モデルA
206b 話者モデルB
208a 話者照合モジュール
208b 話者照合モジュール
210a 詐欺者話者モデル
210b 詐欺者話者モデル
212a 音声認識モジュール
212b 音声認識モジュール
214a 設定A
214b 設定B
216 ワイヤレス通信チャネル
224 ネットワーク
400 コンピューティングデバイス
402 プロセッサ
404 メモリ
406 記憶デバイス
408 高速インターフェース
410 高速拡張ポート
412 低速インターフェース
414 低速拡張ポート
416 ディスプレイ
420 サーバ
422 ラップトップコンピュータ
424 ラックサーバシステム
450 コンピューティングデバイス
452 プロセッサ
454 ディスプレイ
456 ディスプレイインターフェース
458 制御インターフェース
460 オーディオコーデック
462 外部インターフェース
464 メモリ
466 通信用インターフェース
468 トランシーバ
470 GPS受信機モジュール
472 拡張インターフェース
474 拡張メモリ
480 セルラ電話
482 スマートフォン

Claims (16)

  1. コンピュータによって実施される方法であって、
    特定のあらかじめ定義されたホットワードを受信した後でロック状態にある間、音声コマンドに対応するように構成された第1のコンピュータデバイスによって、前記第1のコンピュータデバイスが話者照合データを他のコンピュータデバイスに提供することを許可されていることを示す設定するための値、を取得するステップと、
    前記第1のコンピュータデバイスによって、前記特定のあらかじめ定義されたホットワードを受信した後における音声コマンドの発声に対応するオーディオデータを受信するステップであって、前記オーディオデータは、前記第1のコンピュータデバイスがロック状態にある間であると共に前記特定のあらかじめ定義されたホットワード受信の後における音声コマンドに対応するように構成された第2のコンピュータデバイスとコロケートされている間に受信される、ステップと、
    前記第1のコンピュータデバイスがロック状態にある間、前記第1のコンピュータデバイスが話者照合データを他のコンピュータデバイスと共有することを許可されていることを示す前記設定するための前記取得された値に基づき、前記第1のコンピュータデバイスによって、前記第2のコンピュータデバイスにメッセージを送信するステップであって、前記第2のコンピュータデバイスは、(1)前記第1のコンピュータデバイスとコロケートされており、さらに、(2)前記特定のあらかじめ定義されたホットワードの後における音声コマンドに対応するように構成されている、ステップと、
    前記ロック状態を維持するように、且つ、前記特定のあらかじめ定義されたホットワードの後における前記音声コマンドの前記発声に対応する前記オーディオデータを受信したにもかかわらず前記音声コマンドに対応しないように、前記第1のコンピュータデバイスによって、決定するステップと、
    を備え、
    前記第2のコンピュータデバイスに前記メッセージを送信するステップは、
    前記第1のコンピュータデバイスによって前記第2のコンピュータデバイスに、前記第1のコンピュータデバイスのユーザのための話者照合モデルを含むメッセージを送信するステップ、又は、
    前記第1のコンピュータデバイスによって前記第2のコンピュータデバイスに、前記第1のコンピュータデバイスのユーザが前記発声を話した可能性を表す話者照合スコアを含むメッセージを送信するステップを含む、方法。
  2. 前記第2のコンピュータデバイスに前記メッセージを送信するステップは、前記発声に対応する前記オーディオデータを受信することに応じるステップである、請求項1に記載の方法。
  3. 前記第2のコンピュータデバイスに前記メッセージを送信するステップは、短距離通信プロトコルを使用する前記第2のコンピュータデバイスに、前記第1のコンピュータデバイスによって、前記メッセージを送信するステップを含む、請求項1に記載の方法。
  4. 前記第1のコンピュータデバイスによって、前記第2のコンピュータデバイスが前記第1のコンピュータデバイスとコロケートされているか、判断するステップを含み、
    前記第2のコンピュータデバイスに前記メッセージを送信するステップは、前記第2のコンピュータデバイスが前記第1のコンピュータデバイスとコロケートされていると判断されたことに応じるステップである、請求項1に記載の方法。
  5. 前記第1のコンピュータデバイスによって前記第2のコンピュータデバイスから、前記第2のコンピュータデバイスのユーザを表すデータ、を受信するステップを含み、
    前記ロック状態を維持するように、且つ、前記音声コマンドに対応しないように、前記決定するステップは、前記ロック状態を維持するように、且つ、前記第2のコンピュータデバイスの前記ユーザを表す前記データを使用することで 前記特定のあらかじめ定義されたホットワードの後における前記音声コマンドの前記発声に対応する前記オーディオデータを受信したにもかかわらず前記音声コマンドに対応しないように、前記第1のコンピュータデバイスによって、決定するステップを含む、請求項1に記載の方法。
  6. 前記第2のコンピュータデバイスの前記ユーザを表す前記データを受信する前記ステップは、前記第1のコンピュータデバイスによって前記第2のコンピュータデバイスから、前記第2のコンピュータデバイスの前記ユーザのための話者照合モデルを受信するステップを含む、請求項5に記載の方法。
  7. 前記第2のコンピュータデバイスの前記ユーザを表す前記データを受信する前記ステップは、前記第1のコンピュータデバイスによって前記第2のコンピュータデバイスから、前記第2のコンピュータデバイスの前記ユーザが前記発声を話した可能性を表す話者照合スコアを受信するステップを含む、請求項5に記載の方法。
  8. 前記第1のコンピュータデバイスのユーザのための話者照合モデルを使用して前記第1のコンピュータデバイスによって、前記第1のコンピュータデバイスの前記ユーザが前記発声を話した可能性を表す話者照合スコアを、生成するステップを含み、
    前記ロック状態を維持するように、且つ、前記音声コマンドに対応しないように、前記決定するステップは、前記ロック状態を維持するように、且つ、前記第1のコンピュータデバイスの前記ユーザが前記発声を話した可能性を表す話者照合スコアを使用することで前記特定のあらかじめ定義されたホットワードの後における前記音声コマンドの前記発声に対応する前記オーディオデータを受信したにもかかわらず前記音声コマンドに対応しないように、前記第1のコンピュータデバイスによって、決定するステップを含む、請求項1に記載の方法。
  9. 前記第1のコンピュータデバイスによって、前記第1のコンピュータデバイスのユーザ以外の者のための、前記第1のコンピュータデバイスにそれぞれが記憶される1つまたは複数の話者モデルを、決定するステップを含み、
    前記ロック状態を維持するように、且つ、前記音声コマンドに対応しないように、前記決定するステップは、前記ロック状態を維持するように、且つ、前記第1のコンピュータデバイスのユーザ以外の者のための、前記第1のコンピュータデバイスにそれぞれが記憶される前記1つまたは複数の話者モデルを使用することで 前記特定のあらかじめ定義されたホットワードの後における前記音声コマンドの前記発声に対応する前記オーディオデータを受信したにもかかわらず前記音声コマンドに対応しないように、前記第1のコンピュータデバイスによって、決定するステップを含む、請求項1に記載の方法。
  10. 前記第1のコンピュータデバイスによって、前記第1のコンピュータデバイスのユーザ以外の者のための、前記第1のコンピュータデバイスにそれぞれが記憶される前記1つまたは複数の話者モデルに対するユーザ入力識別データ、を取得するステップを含む、請求項9に記載の方法。
  11. 第3のコンピュータデバイスが、前記第1のコンピュータデバイスの物理的位置の近くの物理的エリアに配置される頻度を、前記第3のコンピュータデバイスのために、前記第1のコンピュータデバイスによって、決定するステップと、
    前記頻度がしきい頻度を満足するか否かを、前記第1のコンピュータデバイスによって判定するステップと、
    前記頻度が前記しきい頻度を満足すると判定することに応じて、前記第1のコンピュータデバイスによって、前記第1のコンピュータデバイスに前記第3のコンピュータデバイスの特定のユーザのための特定の話者モデルを関連付けるステップとを備える、請求項9に記載の方法。
  12. 特定のあらかじめ定義されたホットワードを受信した後でロック状態にある間、音声コマンドに対応するように構成された第1のコンピュータデバイスと、前記第1のコンピュータデバイスによって実行された場合、前記第1のコンピュータデバイスに対して、動作を実行させるように動作可能な命令を記憶した1つまたは複数の記憶デバイスとを備えるシステムであって、前記動作は、
    前記第1のコンピュータデバイスが話者照合データを他のコンピュータデバイスに提供することを許可されていることを示す設定するための値、を取得するステップと、
    前記特定のあらかじめ定義されたホットワードを受信した後における音声コマンドの発声に対応するオーディオデータを受信するステップであって、前記オーディオデータは、前記第1のコンピュータデバイスがロック状態にある間であると共に前記特定のあらかじめ定義されたホットワード受信の後における音声コマンドに対応するように構成された第2のコンピュータデバイスとコロケートされている間に受信される、ステップと、
    前記第1のコンピュータデバイスがロック状態にある間、前記第1のコンピュータデバイスが話者照合データを他のコンピュータデバイスと共有することを許可されていることを示す前記設定するための前記取得された値に基づき、前記第2のコンピュータデバイスにメッセージを送信するステップであって、前記第2のコンピュータデバイスは、(1)前記第1のコンピュータデバイスとコロケートされており、さらに、(2)前記特定のあらかじめ定義されたホットワードの後における音声コマンドに対応するように構成されている、ステップと、
    前記ロック状態を維持するように、且つ、前記特定のあらかじめ定義されたホットワードの後における前記音声コマンドの前記発声に対応する前記オーディオデータを受信したにもかかわらず前記音声コマンドに対応しないように、決定するステップと、
    を備え、
    前記第2のコンピュータデバイスに前記メッセージを送信するステップは、
    前記第1のコンピュータデバイスによって前記第2のコンピュータデバイスに、前記第1のコンピュータデバイスのユーザのための話者照合モデルを含むメッセージを送信するステップ、又は、
    前記第1のコンピュータデバイスによって前記第2のコンピュータデバイスに、前記第1のコンピュータデバイスのユーザが前記発声を話した可能性を表す話者照合スコアを含むメッセージを送信するステップを含む、システム。
  13. 前記第2のコンピュータデバイスに前記メッセージを送信するステップは、前記発声に対応する前記オーディオデータを受信することに応じるステップである、請求項12に記載のシステム。
  14. 前記第2のコンピュータデバイスに前記メッセージを送信するステップは、短距離通信プロトコルを使用する前記第2のコンピュータデバイスに、前記第1のコンピュータデバイスによって、前記メッセージを送信するステップを含む、請求項12に記載のシステム。
  15. 前記第1のコンピュータデバイスによって、前記第2のコンピュータデバイスが前記第1のコンピュータデバイスとコロケートされているか、判断するステップを含み、
    前記第2のコンピュータデバイスに前記メッセージを送信するステップは、前記第2のコンピュータデバイスが前記第1のコンピュータデバイスとコロケートされていると判断されたことに応じるステップである、請求項12に記載のシステム。
  16. 実行時に、1つまたは複数のコンピュータに対して動作を実行させる、前記1つまたは複数のコンピュータによって実行可能な命令を備えるソフトウェアを記憶した非一時的コンピュータ可読記録媒体であって、前記動作は、
    特定のあらかじめ定義されたホットワードを受信した後でロック状態にある間、音声コマンドに対応するように構成された第1のコンピュータデバイスによって、前記第1のコンピュータデバイスが話者照合データを他のコンピュータデバイスに提供することを許可されていることを示す設定するための値、を取得するステップと、
    前記第1のコンピュータデバイスによって、前記特定のあらかじめ定義されたホットワードを受信した後における音声コマンドの発声に対応するオーディオデータを受信するステップであって、前記オーディオデータは、前記第1のコンピュータデバイスがロック状態にある間であると共に前記特定のあらかじめ定義されたホットワード受信の後における音声コマンドに対応するように構成された第2のコンピュータデバイスとコロケートされている間に受信される、ステップと、
    前記第1のコンピュータデバイスがロック状態にある間、前記第1のコンピュータデバイスが話者照合データを他のコンピュータデバイスと共有することを許可されていることを示す前記設定するための前記取得された値に基づき、前記第1のコンピュータデバイスによって、前記第2のコンピュータデバイスにメッセージを送信するステップであって、前記第2のコンピュータデバイスは、(1)前記第1のコンピュータデバイスとコロケートされており、さらに、(2)前記特定のあらかじめ定義されたホットワードの後における音声コマンドに対応するように構成されている、ステップと、
    前記ロック状態を維持するように、且つ、前記特定のあらかじめ定義されたホットワードの後における前記音声コマンドの前記発声に対応する前記オーディオデータを受信したにもかかわらず前記音声コマンドに対応しないように、前記第1のコンピュータデバイスによって、決定するステップと、
    を備え、
    前記第2のコンピュータデバイスに前記メッセージを送信するステップは、
    前記第1のコンピュータデバイスによって前記第2のコンピュータデバイスに、前記第1のコンピュータデバイスのユーザのための話者照合モデルを含むメッセージを送信するステップ、又は、
    前記第1のコンピュータデバイスによって前記第2のコンピュータデバイスに、前記第1のコンピュータデバイスのユーザが前記発声を話した可能性を表す話者照合スコアを含むメッセージを送信するステップを含む、非一時的コンピュータ可読記録媒体
JP2016561322A 2014-07-18 2015-05-13 コロケーション情報を使用した話者照合 Active JP6509903B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/335,380 US9257120B1 (en) 2014-07-18 2014-07-18 Speaker verification using co-location information
US14/335,380 2014-07-18
PCT/US2015/030569 WO2016010616A1 (en) 2014-07-18 2015-05-13 Speaker verification using co-location information

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019071251A Division JP7007320B2 (ja) 2014-07-18 2019-04-03 コロケーション情報を使用した話者照合

Publications (2)

Publication Number Publication Date
JP2017517027A JP2017517027A (ja) 2017-06-22
JP6509903B2 true JP6509903B2 (ja) 2019-05-08

Family

ID=53268901

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016561322A Active JP6509903B2 (ja) 2014-07-18 2015-05-13 コロケーション情報を使用した話者照合
JP2019071251A Active JP7007320B2 (ja) 2014-07-18 2019-04-03 コロケーション情報を使用した話者照合
JP2021155665A Active JP7384877B2 (ja) 2014-07-18 2021-09-24 コロケーション情報を使用した話者照合
JP2023190911A Pending JP2023184691A (ja) 2014-07-18 2023-11-08 コロケーション情報を使用した話者照合

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2019071251A Active JP7007320B2 (ja) 2014-07-18 2019-04-03 コロケーション情報を使用した話者照合
JP2021155665A Active JP7384877B2 (ja) 2014-07-18 2021-09-24 コロケーション情報を使用した話者照合
JP2023190911A Pending JP2023184691A (ja) 2014-07-18 2023-11-08 コロケーション情報を使用した話者照合

Country Status (6)

Country Link
US (6) US9257120B1 (ja)
EP (2) EP4047497A3 (ja)
JP (4) JP6509903B2 (ja)
KR (2) KR101804388B1 (ja)
CN (3) CN109376521B (ja)
WO (1) WO2016010616A1 (ja)

Families Citing this family (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8677377B2 (en) 2005-09-08 2014-03-18 Apple Inc. Method and apparatus for building an intelligent automated assistant
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
US8977255B2 (en) 2007-04-03 2015-03-10 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
US10002189B2 (en) 2007-12-20 2018-06-19 Apple Inc. Method and apparatus for searching using an active ontology
US9330720B2 (en) 2008-01-03 2016-05-03 Apple Inc. Methods and apparatus for altering audio output signals
US20100030549A1 (en) 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
US8676904B2 (en) * 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
US10706373B2 (en) 2011-06-03 2020-07-07 Apple Inc. Performing actions associated with task items that represent tasks to perform
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
US8682667B2 (en) 2010-02-25 2014-03-25 Apple Inc. User profiling for selecting user specific voice input processing information
US9262612B2 (en) 2011-03-21 2016-02-16 Apple Inc. Device access using voice authentication
US10057736B2 (en) 2011-06-03 2018-08-21 Apple Inc. Active transport based notifications
US10134385B2 (en) 2012-03-02 2018-11-20 Apple Inc. Systems and methods for name pronunciation
US10417037B2 (en) 2012-05-15 2019-09-17 Apple Inc. Systems and methods for integrating third party services with a digital assistant
KR20240132105A (ko) 2013-02-07 2024-09-02 애플 인크. 디지털 어시스턴트를 위한 음성 트리거
US10652394B2 (en) 2013-03-14 2020-05-12 Apple Inc. System and method for processing voicemail
US10541997B2 (en) * 2016-12-30 2020-01-21 Google Llc Authentication of packetized audio signals
US10748529B1 (en) 2013-03-15 2020-08-18 Apple Inc. Voice activated device for use with a voice-based digital assistant
WO2014197335A1 (en) 2013-06-08 2014-12-11 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
KR101772152B1 (ko) 2013-06-09 2017-08-28 애플 인크. 디지털 어시스턴트의 둘 이상의 인스턴스들에 걸친 대화 지속성을 가능하게 하기 위한 디바이스, 방법 및 그래픽 사용자 인터페이스
DE112014003653B4 (de) 2013-08-06 2024-04-18 Apple Inc. Automatisch aktivierende intelligente Antworten auf der Grundlage von Aktivitäten von entfernt angeordneten Vorrichtungen
US10296160B2 (en) 2013-12-06 2019-05-21 Apple Inc. Method for extracting salient dialog usage from live data
US9430463B2 (en) 2014-05-30 2016-08-30 Apple Inc. Exemplar-based natural language processing
CN110797019B (zh) 2014-05-30 2023-08-29 苹果公司 多命令单一话语输入方法
US9633004B2 (en) 2014-05-30 2017-04-25 Apple Inc. Better resolution when referencing to concepts
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
US11676608B2 (en) * 2021-04-02 2023-06-13 Google Llc Speaker verification using co-location information
US11942095B2 (en) * 2014-07-18 2024-03-26 Google Llc Speaker verification using co-location information
US9257120B1 (en) * 2014-07-18 2016-02-09 Google Inc. Speaker verification using co-location information
US9818400B2 (en) 2014-09-11 2017-11-14 Apple Inc. Method and apparatus for discovering trending terms in speech requests
US9668121B2 (en) 2014-09-30 2017-05-30 Apple Inc. Social reminders
US10127911B2 (en) 2014-09-30 2018-11-13 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
US10074360B2 (en) 2014-09-30 2018-09-11 Apple Inc. Providing an indication of the suitability of speech recognition
US11275757B2 (en) 2015-02-13 2022-03-15 Cerner Innovation, Inc. Systems and methods for capturing data, creating billable information and outputting billable information
US9734682B2 (en) 2015-03-02 2017-08-15 Enovate Medical, Llc Asset management using an asset tag device
US20160302210A1 (en) * 2015-04-10 2016-10-13 Enovate Medical, Llc Communication hub and repeaters
US10152299B2 (en) 2015-03-06 2018-12-11 Apple Inc. Reducing response latency of intelligent automated assistants
US10567477B2 (en) 2015-03-08 2020-02-18 Apple Inc. Virtual assistant continuity
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
US9721566B2 (en) 2015-03-08 2017-08-01 Apple Inc. Competing devices responding to voice triggers
US10133538B2 (en) * 2015-03-27 2018-11-20 Sri International Semi-supervised speaker diarization
US10460227B2 (en) 2015-05-15 2019-10-29 Apple Inc. Virtual assistant in a communication session
US10200824B2 (en) 2015-05-27 2019-02-05 Apple Inc. Systems and methods for proactively identifying and surfacing relevant content on a touch-sensitive device
US10083688B2 (en) 2015-05-27 2018-09-25 Apple Inc. Device voice control for selecting a displayed affordance
US9578173B2 (en) 2015-06-05 2017-02-21 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
US11025565B2 (en) 2015-06-07 2021-06-01 Apple Inc. Personalized prediction of responses for instant messaging
US20160378747A1 (en) 2015-06-29 2016-12-29 Apple Inc. Virtual assistant for media playback
US10331312B2 (en) 2015-09-08 2019-06-25 Apple Inc. Intelligent automated assistant in a media environment
US10740384B2 (en) 2015-09-08 2020-08-11 Apple Inc. Intelligent automated assistant for media search and playback
US10671428B2 (en) 2015-09-08 2020-06-02 Apple Inc. Distributed personal assistant
US10747498B2 (en) 2015-09-08 2020-08-18 Apple Inc. Zero latency digital assistant
US11587559B2 (en) 2015-09-30 2023-02-21 Apple Inc. Intelligent device identification
US9542941B1 (en) * 2015-10-01 2017-01-10 Lenovo (Singapore) Pte. Ltd. Situationally suspending wakeup word to enable voice command input
US9571995B1 (en) * 2015-10-07 2017-02-14 Verizon Patent And Licensing Inc. Call transfer initiation via near field communication (NFC)
US10691473B2 (en) 2015-11-06 2020-06-23 Apple Inc. Intelligent automated assistant in a messaging environment
US10956666B2 (en) 2015-11-09 2021-03-23 Apple Inc. Unconventional virtual assistant interactions
US9860355B2 (en) * 2015-11-23 2018-01-02 International Business Machines Corporation Call context metadata
US10049668B2 (en) 2015-12-02 2018-08-14 Apple Inc. Applying neural network language models to weighted finite state transducers for automatic speech recognition
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
JP2017138476A (ja) * 2016-02-03 2017-08-10 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
US10373612B2 (en) * 2016-03-21 2019-08-06 Amazon Technologies, Inc. Anchored speech detection and speech recognition
US11227589B2 (en) 2016-06-06 2022-01-18 Apple Inc. Intelligent list reading
US10049663B2 (en) 2016-06-08 2018-08-14 Apple, Inc. Intelligent automated assistant for media exploration
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
DK201670540A1 (en) * 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
US10438583B2 (en) * 2016-07-20 2019-10-08 Lenovo (Singapore) Pte. Ltd. Natural language voice assistant
US10621992B2 (en) * 2016-07-22 2020-04-14 Lenovo (Singapore) Pte. Ltd. Activating voice assistant based on at least one of user proximity and context
US9972320B2 (en) 2016-08-24 2018-05-15 Google Llc Hotword detection on multiple devices
US10474753B2 (en) 2016-09-07 2019-11-12 Apple Inc. Language identification using recurrent neural networks
US10043516B2 (en) 2016-09-23 2018-08-07 Apple Inc. Intelligent automated assistant
US9741360B1 (en) 2016-10-09 2017-08-22 Spectimbre Inc. Speech enhancement for target speakers
GB2557375A (en) * 2016-12-02 2018-06-20 Cirrus Logic Int Semiconductor Ltd Speaker identification
US11281993B2 (en) 2016-12-05 2022-03-22 Apple Inc. Model and ensemble compression for metric learning
US10559309B2 (en) * 2016-12-22 2020-02-11 Google Llc Collaborative voice controlled devices
US10916243B2 (en) * 2016-12-27 2021-02-09 Amazon Technologies, Inc. Messaging from a shared device
US11204787B2 (en) 2017-01-09 2021-12-21 Apple Inc. Application integration with a digital assistant
US11010601B2 (en) 2017-02-14 2021-05-18 Microsoft Technology Licensing, Llc Intelligent assistant device communicating non-verbal cues
US10467510B2 (en) 2017-02-14 2019-11-05 Microsoft Technology Licensing, Llc Intelligent assistant
US11100384B2 (en) 2017-02-14 2021-08-24 Microsoft Technology Licensing, Llc Intelligent device user interactions
CN117577099A (zh) * 2017-04-20 2024-02-20 谷歌有限责任公司 设备上的多用户认证的方法、系统和介质
US10417266B2 (en) 2017-05-09 2019-09-17 Apple Inc. Context-aware ranking of intelligent response suggestions
DK201770383A1 (en) 2017-05-09 2018-12-14 Apple Inc. USER INTERFACE FOR CORRECTING RECOGNITION ERRORS
US10395654B2 (en) 2017-05-11 2019-08-27 Apple Inc. Text normalization based on a data-driven learning network
DK180048B1 (en) 2017-05-11 2020-02-04 Apple Inc. MAINTAINING THE DATA PROTECTION OF PERSONAL INFORMATION
DK201770439A1 (en) 2017-05-11 2018-12-13 Apple Inc. Offline personal assistant
US10726832B2 (en) 2017-05-11 2020-07-28 Apple Inc. Maintaining privacy of personal information
DK179496B1 (en) 2017-05-12 2019-01-15 Apple Inc. USER-SPECIFIC Acoustic Models
DK201770428A1 (en) 2017-05-12 2019-02-18 Apple Inc. LOW-LATENCY INTELLIGENT AUTOMATED ASSISTANT
US11301477B2 (en) 2017-05-12 2022-04-12 Apple Inc. Feedback analysis of a digital assistant
DK179745B1 (en) 2017-05-12 2019-05-01 Apple Inc. SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT
DK201770432A1 (en) 2017-05-15 2018-12-21 Apple Inc. Hierarchical belief states for digital assistants
DK201770411A1 (en) 2017-05-15 2018-12-20 Apple Inc. MULTI-MODAL INTERFACES
DK201770431A1 (en) 2017-05-15 2018-12-20 Apple Inc. Optimizing dialogue policy decisions for digital assistants using implicit feedback
US20180336892A1 (en) 2017-05-16 2018-11-22 Apple Inc. Detecting a trigger of a digital assistant
US10311144B2 (en) 2017-05-16 2019-06-04 Apple Inc. Emoji word sense disambiguation
DK179549B1 (en) 2017-05-16 2019-02-12 Apple Inc. FAR-FIELD EXTENSION FOR DIGITAL ASSISTANT SERVICES
US10403278B2 (en) 2017-05-16 2019-09-03 Apple Inc. Methods and systems for phonetic matching in digital assistant services
US20180336275A1 (en) 2017-05-16 2018-11-22 Apple Inc. Intelligent automated assistant for media exploration
US10664533B2 (en) 2017-05-24 2020-05-26 Lenovo (Singapore) Pte. Ltd. Systems and methods to determine response cue for digital assistant based on context
US10657328B2 (en) 2017-06-02 2020-05-19 Apple Inc. Multi-task recurrent neural network architecture for efficient morphology handling in neural language modeling
WO2019003357A1 (ja) * 2017-06-28 2019-01-03 株式会社オプティム コンピュータシステム、Web会議音声補助方法及びプログラム
EP4092998A1 (en) 2017-06-30 2022-11-23 Google LLC Methods, systems, and media for connecting an iot device to a call
EP3646161A1 (en) 2017-06-30 2020-05-06 Google LLC Methods, systems, and media for voice-based call operations
US10445429B2 (en) 2017-09-21 2019-10-15 Apple Inc. Natural language understanding using vocabularies with compressed serialized tries
US10755051B2 (en) 2017-09-29 2020-08-25 Apple Inc. Rule-based natural language processing
US10749855B2 (en) * 2017-10-30 2020-08-18 Vmware, Inc. Securely managing digital assistants that access third-party applications
US10515640B2 (en) * 2017-11-08 2019-12-24 Intel Corporation Generating dialogue based on verification scores
US10482878B2 (en) * 2017-11-29 2019-11-19 Nuance Communications, Inc. System and method for speech enhancement in multisource environments
US10157611B1 (en) * 2017-11-29 2018-12-18 Nuance Communications, Inc. System and method for speech enhancement in multisource environments
US10636424B2 (en) 2017-11-30 2020-04-28 Apple Inc. Multi-turn canned dialog
EP4181553A1 (en) * 2017-12-08 2023-05-17 Google LLC Distributed identification in networked system
CN107993665B (zh) * 2017-12-14 2021-04-30 科大讯飞股份有限公司 多人会话场景中发言人角色确定方法、智能会议方法及系统
US10733982B2 (en) 2018-01-08 2020-08-04 Apple Inc. Multi-directional dialog
US10733375B2 (en) 2018-01-31 2020-08-04 Apple Inc. Knowledge-based framework for improving natural language understanding
KR102513297B1 (ko) * 2018-02-09 2023-03-24 삼성전자주식회사 전자 장치 및 전자 장치의 기능 실행 방법
US10789959B2 (en) 2018-03-02 2020-09-29 Apple Inc. Training speaker recognition models for digital assistants
US10592604B2 (en) 2018-03-12 2020-03-17 Apple Inc. Inverse text normalization for automatic speech recognition
US10877637B1 (en) 2018-03-14 2020-12-29 Amazon Technologies, Inc. Voice-based device operation mode management
US11127405B1 (en) * 2018-03-14 2021-09-21 Amazon Technologies, Inc. Selective requests for authentication for voice-based launching of applications
US10885910B1 (en) 2018-03-14 2021-01-05 Amazon Technologies, Inc. Voice-forward graphical user interface mode management
US11240057B2 (en) * 2018-03-15 2022-02-01 Lenovo (Singapore) Pte. Ltd. Alternative output response based on context
US10818288B2 (en) 2018-03-26 2020-10-27 Apple Inc. Natural assistant interaction
US10909331B2 (en) 2018-03-30 2021-02-02 Apple Inc. Implicit identification of translation payload with neural machine translation
US10928918B2 (en) 2018-05-07 2021-02-23 Apple Inc. Raise to speak
US11145294B2 (en) 2018-05-07 2021-10-12 Apple Inc. Intelligent automated assistant for delivering content from user experiences
US10984780B2 (en) 2018-05-21 2021-04-20 Apple Inc. Global semantic word embeddings using bi-directional recurrent neural networks
DK201870355A1 (en) 2018-06-01 2019-12-16 Apple Inc. VIRTUAL ASSISTANT OPERATION IN MULTI-DEVICE ENVIRONMENTS
DK179822B1 (da) 2018-06-01 2019-07-12 Apple Inc. Voice interaction at a primary device to access call functionality of a companion device
US10892996B2 (en) 2018-06-01 2021-01-12 Apple Inc. Variable latency device coordination
US11386266B2 (en) 2018-06-01 2022-07-12 Apple Inc. Text correction
DK180639B1 (en) 2018-06-01 2021-11-04 Apple Inc DISABILITY OF ATTENTION-ATTENTIVE VIRTUAL ASSISTANT
US11076039B2 (en) 2018-06-03 2021-07-27 Apple Inc. Accelerated task performance
US11437044B2 (en) 2018-06-27 2022-09-06 Nec Corporation Information processing apparatus, control method, and program
KR102563817B1 (ko) 2018-07-13 2023-08-07 삼성전자주식회사 사용자 음성 입력 처리 방법 및 이를 지원하는 전자 장치
CN110797014B (zh) * 2018-07-17 2024-06-07 中兴通讯股份有限公司 一种语音识别方法、装置及计算机存储介质
US11010561B2 (en) 2018-09-27 2021-05-18 Apple Inc. Sentiment prediction from textual data
US11170166B2 (en) 2018-09-28 2021-11-09 Apple Inc. Neural typographical error modeling via generative adversarial networks
US10839159B2 (en) 2018-09-28 2020-11-17 Apple Inc. Named entity normalization in a spoken dialog system
US11462215B2 (en) 2018-09-28 2022-10-04 Apple Inc. Multi-modal inputs for voice commands
KR102621897B1 (ko) * 2018-10-10 2024-01-08 주식회사 케이티 화자 인식 장치 및 그 동작방법
KR102623246B1 (ko) * 2018-10-12 2024-01-11 삼성전자주식회사 전자 장치, 전자 장치의 제어 방법 및 컴퓨터 판독 가능 매체.
WO2020085769A1 (en) * 2018-10-24 2020-04-30 Samsung Electronics Co., Ltd. Speech recognition method and apparatus in environment including plurality of apparatuses
US11475898B2 (en) 2018-10-26 2022-10-18 Apple Inc. Low-latency multi-speaker speech recognition
US11004454B1 (en) * 2018-11-06 2021-05-11 Amazon Technologies, Inc. Voice profile updating
US11024291B2 (en) 2018-11-21 2021-06-01 Sri International Real-time class recognition for an audio stream
WO2020111880A1 (en) 2018-11-30 2020-06-04 Samsung Electronics Co., Ltd. User authentication method and apparatus
US11393478B2 (en) * 2018-12-12 2022-07-19 Sonos, Inc. User specific context switching
US11875883B1 (en) 2018-12-21 2024-01-16 Cerner Innovation, Inc. De-duplication and contextually-intelligent recommendations based on natural language understanding of conversational sources
US11062704B1 (en) 2018-12-21 2021-07-13 Cerner Innovation, Inc. Processing multi-party conversations
US11869509B1 (en) 2018-12-21 2024-01-09 Cerner Innovation, Inc. Document generation from conversational sources
US11798560B1 (en) 2018-12-21 2023-10-24 Cerner Innovation, Inc. Rapid event and trauma documentation using voice capture
US11410650B1 (en) 2018-12-26 2022-08-09 Cerner Innovation, Inc. Semantically augmented clinical speech processing
US11638059B2 (en) 2019-01-04 2023-04-25 Apple Inc. Content playback on multiple devices
US11348573B2 (en) 2019-03-18 2022-05-31 Apple Inc. Multimodality in digital assistant systems
US10923111B1 (en) 2019-03-28 2021-02-16 Amazon Technologies, Inc. Speech detection and speech recognition
WO2020208745A1 (ja) 2019-04-10 2020-10-15 楽天株式会社 認証システム、認証端末、ユーザ端末、認証方法、及びプログラム
US11307752B2 (en) 2019-05-06 2022-04-19 Apple Inc. User configurable task triggers
DK201970509A1 (en) 2019-05-06 2021-01-15 Apple Inc Spoken notifications
US11423908B2 (en) 2019-05-06 2022-08-23 Apple Inc. Interpreting spoken requests
US11475884B2 (en) 2019-05-06 2022-10-18 Apple Inc. Reducing digital assistant latency when a language is incorrectly determined
US11140099B2 (en) 2019-05-21 2021-10-05 Apple Inc. Providing message response suggestions
US11496600B2 (en) 2019-05-31 2022-11-08 Apple Inc. Remote execution of machine-learned models
DK201970511A1 (en) 2019-05-31 2021-02-15 Apple Inc Voice identification in digital assistant systems
US11289073B2 (en) 2019-05-31 2022-03-29 Apple Inc. Device text to speech
DK180129B1 (en) 2019-05-31 2020-06-02 Apple Inc. USER ACTIVITY SHORTCUT SUGGESTIONS
US11227599B2 (en) 2019-06-01 2022-01-18 Apple Inc. Methods and user interfaces for voice-based control of electronic devices
US11360641B2 (en) 2019-06-01 2022-06-14 Apple Inc. Increasing the relevance of new available information
KR102098237B1 (ko) * 2019-06-26 2020-04-07 네이버 주식회사 화자 검증 방법 및 음성인식 시스템
WO2021010056A1 (ja) * 2019-07-17 2021-01-21 ホシデン株式会社 マイクユニット
CN110600041B (zh) * 2019-07-29 2022-04-29 华为技术有限公司 一种声纹识别的方法及设备
US11721330B1 (en) * 2019-09-04 2023-08-08 Amazon Technologies, Inc. Natural language input processing
US11158329B2 (en) * 2019-09-11 2021-10-26 Artificial Intelligence Foundation, Inc. Identification of fake audio content
WO2021056255A1 (en) 2019-09-25 2021-04-01 Apple Inc. Text detection using global geometry estimators
US11145315B2 (en) * 2019-10-16 2021-10-12 Motorola Mobility Llc Electronic device with trigger phrase bypass and corresponding systems and methods
US11061543B1 (en) 2020-05-11 2021-07-13 Apple Inc. Providing relevant data items based on context
US11038934B1 (en) 2020-05-11 2021-06-15 Apple Inc. Digital assistant hardware abstraction
US11490204B2 (en) 2020-07-20 2022-11-01 Apple Inc. Multi-device audio adjustment coordination
US11438683B2 (en) 2020-07-21 2022-09-06 Apple Inc. User identification using headphones
US11798546B2 (en) * 2020-08-14 2023-10-24 Google Llc Transient personalization mode for guest users of an automated assistant
CN116711005A (zh) * 2021-01-05 2023-09-05 松下电器(美国)知识产权公司 识别装置、识别方法以及程序
US12118983B2 (en) 2021-04-02 2024-10-15 Samsung Electronics Co., Ltd. Electronic device and operation method thereof
KR20220137437A (ko) * 2021-04-02 2022-10-12 삼성전자주식회사 전자 장치 및 전자 장치의 동작 방법

Family Cites Families (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363102A (en) 1981-03-27 1982-12-07 Bell Telephone Laboratories, Incorporated Speaker identification system using word recognition templates
JPS59180599A (ja) 1983-03-31 1984-10-13 日本電気ホームエレクトロニクス株式会社 車載用音声認識制御装置
JPS59180599U (ja) 1983-05-19 1984-12-03 株式会社村田製作所 圧電発音装置
JPH0231896A (ja) 1988-07-21 1990-02-01 Osaka Gas Co Ltd 廃水の処理装置
JPH0552976A (ja) 1991-08-22 1993-03-02 Canon Inc 電子装置
US6081782A (en) * 1993-12-29 2000-06-27 Lucent Technologies Inc. Voice command control and verification system
US5659665A (en) 1994-12-08 1997-08-19 Lucent Technologies Inc. Method and apparatus for including speech recognition capabilities in a computer system
JP3522421B2 (ja) * 1995-10-31 2004-04-26 株式会社リコー 話者認識システムおよび話者認識方法
US6073101A (en) * 1996-02-02 2000-06-06 International Business Machines Corporation Text independent speaker recognition for transparent command ambiguity resolution and continuous access control
US5895448A (en) 1996-02-29 1999-04-20 Nynex Science And Technology, Inc. Methods and apparatus for generating and using speaker independent garbage models for speaker dependent speech recognition purpose
US6023676A (en) 1996-12-12 2000-02-08 Dspc Israel, Ltd. Keyword recognition system and method
SE511418C2 (sv) 1997-03-13 1999-09-27 Telia Ab Metod för talarverifiering/identifiering via modellering av typiska icke-typiska egenskaper.
US8209184B1 (en) * 1997-04-14 2012-06-26 At&T Intellectual Property Ii, L.P. System and method of providing generated speech via a network
US6076055A (en) 1997-05-27 2000-06-13 Ameritech Speaker verification method
US5897616A (en) 1997-06-11 1999-04-27 International Business Machines Corporation Apparatus and methods for speaker verification/identification/classification employing non-acoustic and/or acoustic models and databases
JPH1152976A (ja) 1997-07-29 1999-02-26 Nec Home Electron Ltd 音声認識装置
JP3524370B2 (ja) 1998-02-19 2004-05-10 富士通テン株式会社 音声起動システム
JP2000075954A (ja) * 1998-09-02 2000-03-14 Sony Corp 電子機器制御装置
US6141644A (en) 1998-09-04 2000-10-31 Matsushita Electric Industrial Co., Ltd. Speaker verification and speaker identification based on eigenvoices
US6499013B1 (en) * 1998-09-09 2002-12-24 One Voice Technologies, Inc. Interactive user interface using speech recognition and natural language processing
JP2000122678A (ja) * 1998-10-14 2000-04-28 Nippon Telegr & Teleph Corp <Ntt> 音声認識機器制御装置
US6744860B1 (en) 1998-12-31 2004-06-01 Bell Atlantic Network Services Methods and apparatus for initiating a voice-dialing operation
US6671672B1 (en) 1999-03-30 2003-12-30 Nuance Communications Voice authentication system having cognitive recall mechanism for password verification
US6408272B1 (en) 1999-04-12 2002-06-18 General Magic, Inc. Distributed voice user interface
JP3357629B2 (ja) 1999-04-26 2002-12-16 旭化成株式会社 設備制御システム
GB9911971D0 (en) * 1999-05-21 1999-07-21 Canon Kk A system, a server for a system and a machine for use in a system
US8645137B2 (en) 2000-03-16 2014-02-04 Apple Inc. Fast, language-independent method for user authentication by voice
DE10015960C2 (de) 2000-03-30 2003-01-16 Micronas Munich Gmbh Spracherkennungsverfahren und Spracherkennungsvorrichtung
US6567775B1 (en) 2000-04-26 2003-05-20 International Business Machines Corporation Fusion of audio and video based speaker identification for multimedia information access
US6826159B1 (en) 2000-05-24 2004-11-30 Cisco Technology, Inc. System and method for providing speaker identification in a conference call
EP1168736A1 (en) 2000-06-30 2002-01-02 Alcatel Telecommunication system and method with a speech recognizer
US7016833B2 (en) 2000-11-21 2006-03-21 The Regents Of The University Of California Speaker verification system using acoustic data and non-acoustic data
US6973426B1 (en) 2000-12-29 2005-12-06 Cisco Technology, Inc. Method and apparatus for performing speaker verification based on speaker independent recognition of commands
JP2002279245A (ja) 2001-03-19 2002-09-27 Ntt Docomo Inc サービスセンタ及び発注受付方法
US20020194003A1 (en) * 2001-06-05 2002-12-19 Mozer Todd F. Client-server security system and method
US6701293B2 (en) 2001-06-13 2004-03-02 Intel Corporation Combining N-best lists from multiple speech recognizers
US7233933B2 (en) * 2001-06-28 2007-06-19 Microsoft Corporation Methods and architecture for cross-device activity monitoring, reasoning, and visualization for providing status and forecasts of a users' presence and availability
US20030171930A1 (en) * 2002-03-07 2003-09-11 Junqua Jean-Claude Computer telephony system to access secure resources
JP4224250B2 (ja) 2002-04-17 2009-02-12 パイオニア株式会社 音声認識装置、音声認識方法および音声認識プログラム
JP2003345391A (ja) 2002-05-23 2003-12-03 Denso Corp 端末、音声認識サーバ、音声認識システムおよびコンピュータプログラム
US20030231746A1 (en) 2002-06-14 2003-12-18 Hunter Karla Rae Teleconference speaker identification
US7224981B2 (en) 2002-06-20 2007-05-29 Intel Corporation Speech recognition of mobile devices
JP2004086356A (ja) * 2002-08-23 2004-03-18 Fujitsu Ten Ltd 認証方法および認証装置
TW200409525A (en) 2002-11-26 2004-06-01 Lite On Technology Corp Voice identification method for cellular phone and cellular phone with voiceprint password
US7457745B2 (en) 2002-12-03 2008-11-25 Hrl Laboratories, Llc Method and apparatus for fast on-line automatic speaker/environment adaptation for speech/speaker recognition in the presence of changing environments
EP1429314A1 (en) 2002-12-13 2004-06-16 Sony International (Europe) GmbH Correction of energy as input feature for speech processing
US7533023B2 (en) 2003-02-12 2009-05-12 Panasonic Corporation Intermediary speech processor in network environments transforming customized speech parameters
US7222072B2 (en) 2003-02-13 2007-05-22 Sbc Properties, L.P. Bio-phonetic multi-phrase speaker identity verification
US7571014B1 (en) 2004-04-01 2009-08-04 Sonos, Inc. Method and apparatus for controlling multimedia players in a multi-zone system
US8290603B1 (en) 2004-06-05 2012-10-16 Sonos, Inc. User interfaces for controlling and manipulating groupings in a multi-zone media system
US20070198262A1 (en) 2003-08-20 2007-08-23 Mindlin Bernardo G Topological voiceprints for speaker identification
EP1511277A1 (en) 2003-08-29 2005-03-02 Swisscom AG Method for answering an incoming event with a phone device, and adapted phone device
US7305078B2 (en) 2003-12-18 2007-12-04 Electronic Data Systems Corporation Speaker identification during telephone conferencing
US20050165607A1 (en) 2004-01-22 2005-07-28 At&T Corp. System and method to disambiguate and clarify user intention in a spoken dialog system
US8214447B2 (en) 2004-06-08 2012-07-03 Bose Corporation Managing an audio network
US7720012B1 (en) 2004-07-09 2010-05-18 Arrowhead Center, Inc. Speaker identification in the presence of packet losses
US8589156B2 (en) * 2004-07-12 2013-11-19 Hewlett-Packard Development Company, L.P. Allocation of speech recognition tasks and combination of results thereof
US8412521B2 (en) 2004-08-20 2013-04-02 Multimodal Technologies, Llc Discriminative training of document transcription system
US8521529B2 (en) 2004-10-18 2013-08-27 Creative Technology Ltd Method for segmenting audio signals
JP4710331B2 (ja) 2005-01-27 2011-06-29 ソニー株式会社 プレゼンテーション用アプリケーションをリモートコントロールするための装置,方法,プログラム及び記録媒体
KR100679043B1 (ko) 2005-02-15 2007-02-05 삼성전자주식회사 음성 대화 인터페이스 장치 및 방법
US8725514B2 (en) * 2005-02-22 2014-05-13 Nuance Communications, Inc. Verifying a user using speaker verification and a multimodal web-based interface
US8041570B2 (en) 2005-05-31 2011-10-18 Robert Bosch Corporation Dialogue management using scripts
US7603275B2 (en) 2005-10-31 2009-10-13 Hitachi, Ltd. System, method and computer program product for verifying an identity using voiced to unvoiced classifiers
JP4657097B2 (ja) 2005-12-21 2011-03-23 京セラミタ株式会社 電子機器及び音声操作プログラム
JP2006227634A (ja) * 2006-03-29 2006-08-31 Seiko Epson Corp 音声認識を用いた機器制御方法および音声認識を用いた機器制御システムならびに音声認識を用いた機器制御プログラムを記録した記録媒体
US8595007B2 (en) 2006-06-15 2013-11-26 NITV Federal Services, LLC Voice print recognition software system for voice identification and matching
US8073681B2 (en) * 2006-10-16 2011-12-06 Voicebox Technologies, Inc. System and method for a cooperative conversational voice user interface
CN1996847B (zh) 2006-12-27 2010-05-19 中国科学院上海技术物理研究所 基于协作网格的图像及多媒体数据通信与存储系统
US8099288B2 (en) 2007-02-12 2012-01-17 Microsoft Corp. Text-dependent speaker verification
US8838457B2 (en) 2007-03-07 2014-09-16 Vlingo Corporation Using results of unstructured language model based speech recognition to control a system-level function of a mobile communications facility
US20110060587A1 (en) 2007-03-07 2011-03-10 Phillips Michael S Command and control utilizing ancillary information in a mobile voice-to-speech application
US8352264B2 (en) 2008-03-19 2013-01-08 Canyon IP Holdings, LLC Corrective feedback loop for automated speech recognition
US8503686B2 (en) 2007-05-25 2013-08-06 Aliphcom Vibration sensor and acoustic voice activity detection system (VADS) for use with electronic systems
US8385233B2 (en) 2007-06-12 2013-02-26 Microsoft Corporation Active speaker identification
GB2450886B (en) 2007-07-10 2009-12-16 Motorola Inc Voice activity detector and a method of operation
US8495727B2 (en) * 2007-08-07 2013-07-23 Microsoft Corporation Spam reduction in real time communications by human interaction proof
JP2009104020A (ja) * 2007-10-25 2009-05-14 Panasonic Electric Works Co Ltd 音声認識装置
CN101140646A (zh) * 2007-11-05 2008-03-12 陆航程 基于epc、ebc物联网的“数据大跟踪”税控系统及其税控终端
US8140335B2 (en) * 2007-12-11 2012-03-20 Voicebox Technologies, Inc. System and method for providing a natural language voice user interface in an integrated voice navigation services environment
US8423362B2 (en) * 2007-12-21 2013-04-16 General Motors Llc In-vehicle circumstantial speech recognition
JP5424173B2 (ja) 2008-01-31 2014-02-26 BizMobile株式会社 携帯サービスの提供システム及び提供方法
GB2458461A (en) 2008-03-17 2009-09-23 Kai Yu Spoken language learning system
US8504365B2 (en) 2008-04-11 2013-08-06 At&T Intellectual Property I, L.P. System and method for detecting synthetic speaker verification
US8145482B2 (en) 2008-05-25 2012-03-27 Ezra Daya Enhancing analysis of test key phrases from acoustic sources with key phrase training models
KR101056511B1 (ko) 2008-05-28 2011-08-11 (주)파워보이스 실시간 호출명령어 인식을 이용한 잡음환경에서의음성구간검출과 연속음성인식 시스템
US8676586B2 (en) 2008-09-16 2014-03-18 Nice Systems Ltd Method and apparatus for interaction or discourse analytics
US8676904B2 (en) 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
US9922640B2 (en) 2008-10-17 2018-03-20 Ashwin P Rao System and method for multimodal utterance detection
KR101519104B1 (ko) 2008-10-30 2015-05-11 삼성전자 주식회사 목적음 검출 장치 및 방법
US8326637B2 (en) 2009-02-20 2012-12-04 Voicebox Technologies, Inc. System and method for processing multi-modal device interactions in a natural language voice services environment
US8209174B2 (en) 2009-04-17 2012-06-26 Saudi Arabian Oil Company Speaker verification system
US9858925B2 (en) 2009-06-05 2018-01-02 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
CN101923853B (zh) 2009-06-12 2013-01-23 华为技术有限公司 说话人识别方法、设备和系统
WO2011064938A1 (ja) * 2009-11-25 2011-06-03 日本電気株式会社 音声データ解析装置、音声データ解析方法及び音声データ解析用プログラム
US8311838B2 (en) 2010-01-13 2012-11-13 Apple Inc. Devices and methods for identifying a prompt corresponding to a voice input in a sequence of prompts
US8626511B2 (en) 2010-01-22 2014-01-07 Google Inc. Multi-dimensional disambiguation of voice commands
US20120331137A1 (en) * 2010-03-01 2012-12-27 Nokia Corporation Method and apparatus for estimating user characteristics based on user interaction data
US8543402B1 (en) 2010-04-30 2013-09-24 The Intellisis Corporation Speaker segmentation in noisy conversational speech
US8306814B2 (en) * 2010-05-11 2012-11-06 Nice-Systems Ltd. Method for speaker source classification
KR101672212B1 (ko) 2010-06-15 2016-11-04 엘지전자 주식회사 휴대 단말기 및 그 동작 방법
US8532994B2 (en) * 2010-08-27 2013-09-10 Cisco Technology, Inc. Speech recognition using a personal vocabulary and language model
US8719018B2 (en) 2010-10-25 2014-05-06 Lockheed Martin Corporation Biometric speaker identification
US8874773B2 (en) 2010-11-30 2014-10-28 Gary W. Grube Obtaining group and individual emergency preparedness communication information
EP2494545A4 (en) 2010-12-24 2012-11-21 Huawei Tech Co Ltd METHOD AND DEVICE FOR DETECTING LANGUAGE ACTIVITIES
JP5636309B2 (ja) * 2011-02-18 2014-12-03 株式会社東芝 音声対話装置および音声対話方法
US9262612B2 (en) * 2011-03-21 2016-02-16 Apple Inc. Device access using voice authentication
US9444816B2 (en) * 2011-03-30 2016-09-13 Qualcomm Incorporated Continuous voice authentication for a mobile device
CA2834351A1 (en) * 2011-04-27 2012-11-01 Right Brain Interface N.V. Method and apparatus for collaborative upload of content
US9159324B2 (en) 2011-07-01 2015-10-13 Qualcomm Incorporated Identifying people that are proximate to a mobile device user via social graphs, speech models, and user context
US20130024196A1 (en) * 2011-07-21 2013-01-24 Nuance Communications, Inc. Systems and methods for using a mobile device to deliver speech with speaker identification
US8660847B2 (en) 2011-09-02 2014-02-25 Microsoft Corporation Integrated local and cloud based speech recognition
US8340975B1 (en) * 2011-10-04 2012-12-25 Theodore Alfred Rosenberger Interactive speech recognition device and system for hands-free building control
CN102710732A (zh) * 2011-11-06 2012-10-03 李宗诚 互联网全息协同系统信息融合基础
US9031847B2 (en) 2011-11-15 2015-05-12 Microsoft Technology Licensing, Llc Voice-controlled camera operations
EP2783365B1 (en) 2011-11-21 2018-02-21 Robert Bosch GmbH Method and system for adapting grammars in hybrid speech recognition engines for enhancing local speech recognition performance
US8825020B2 (en) 2012-01-12 2014-09-02 Sensory, Incorporated Information access and device control using mobile phones and audio in the home environment
JP6221202B2 (ja) * 2012-02-03 2017-11-01 ヤマハ株式会社 通信システム
US20130262873A1 (en) * 2012-03-30 2013-10-03 Cgi Federal Inc. Method and system for authenticating remote users
KR20130133629A (ko) * 2012-05-29 2013-12-09 삼성전자주식회사 전자장치에서 음성명령을 실행시키기 위한 장치 및 방법
US20140006825A1 (en) 2012-06-30 2014-01-02 David Shenhav Systems and methods to wake up a device from a power conservation state
US9536528B2 (en) 2012-07-03 2017-01-03 Google Inc. Determining hotword suitability
JP6131537B2 (ja) 2012-07-04 2017-05-24 セイコーエプソン株式会社 音声認識システム、音声認識プログラム、記録媒体及び音声認識方法
TWI474317B (zh) 2012-07-06 2015-02-21 Realtek Semiconductor Corp 訊號處理裝置以及訊號處理方法
WO2014029099A1 (en) * 2012-08-24 2014-02-27 Microsoft Corporation I-vector based clustering training data in speech recognition
US9058806B2 (en) * 2012-09-10 2015-06-16 Cisco Technology, Inc. Speaker segmentation and recognition based on list of speakers
US8983836B2 (en) 2012-09-26 2015-03-17 International Business Machines Corporation Captioning using socially derived acoustic profiles
US8904498B2 (en) * 2012-10-17 2014-12-02 Ca, Inc. Biometric identification for mobile applications
WO2014064324A1 (en) 2012-10-26 2014-05-01 Nokia Corporation Multi-device speech recognition
US8996372B1 (en) 2012-10-30 2015-03-31 Amazon Technologies, Inc. Using adaptation data with cloud-based speech recognition
JP2014092777A (ja) * 2012-11-06 2014-05-19 Magic Hand:Kk モバイル通信機器の音声による起動
US9704486B2 (en) 2012-12-11 2017-07-11 Amazon Technologies, Inc. Speech recognition power management
CN104937603B (zh) * 2013-01-10 2018-09-25 日本电气株式会社 终端、解锁方法和程序
US9502038B2 (en) * 2013-01-28 2016-11-22 Tencent Technology (Shenzhen) Company Limited Method and device for voiceprint recognition
US9349386B2 (en) 2013-03-07 2016-05-24 Analog Device Global System and method for processor wake-up based on sensor data
US9361885B2 (en) 2013-03-12 2016-06-07 Nuance Communications, Inc. Methods and apparatus for detecting a voice command
US9257952B2 (en) 2013-03-13 2016-02-09 Kopin Corporation Apparatuses and methods for multi-channel signal compression during desired voice activity detection
EP2984599A4 (en) * 2013-04-12 2016-11-30 Sciometrics Llc IDENTITY BASKET: TOOL TO DETERMINE IN REAL TIME AN IDENTITY IN THE MOBILE ENVIRONMENT
US8768687B1 (en) 2013-04-29 2014-07-01 Google Inc. Machine translation of indirect speech
US9058805B2 (en) * 2013-05-13 2015-06-16 Google Inc. Multiple recognizer speech recognition
US9697831B2 (en) * 2013-06-26 2017-07-04 Cirrus Logic, Inc. Speech recognition
WO2015025330A1 (en) 2013-08-21 2015-02-26 Kale Aaditya Kishore A system to enable user to interact with an electronic processing device using voice of the user
WO2015029304A1 (ja) 2013-08-29 2015-03-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 音声認識方法及び音声認識装置
US9343068B2 (en) 2013-09-16 2016-05-17 Qualcomm Incorporated Method and apparatus for controlling access to applications having different security levels
US8775191B1 (en) 2013-11-13 2014-07-08 Google Inc. Efficient utterance-specific endpointer triggering for always-on hotwording
US9373321B2 (en) 2013-12-02 2016-06-21 Cypress Semiconductor Corporation Generation of wake-up words
US8938394B1 (en) 2014-01-09 2015-01-20 Google Inc. Audio triggers based on context
US9639854B2 (en) 2014-06-26 2017-05-02 Nuance Communications, Inc. Voice-controlled information exchange platform, such as for providing information to supplement advertising
US9257120B1 (en) * 2014-07-18 2016-02-09 Google Inc. Speaker verification using co-location information
US9424841B2 (en) 2014-10-09 2016-08-23 Google Inc. Hotword detection on multiple devices
US9318107B1 (en) 2014-10-09 2016-04-19 Google Inc. Hotword detection on multiple devices
US9812126B2 (en) 2014-11-28 2017-11-07 Microsoft Technology Licensing, Llc Device arbitration for listening devices
JP6754184B2 (ja) 2014-12-26 2020-09-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 音声認識装置及び音声認識方法
US9721566B2 (en) 2015-03-08 2017-08-01 Apple Inc. Competing devices responding to voice triggers

Also Published As

Publication number Publication date
KR20160143680A (ko) 2016-12-14
JP7384877B2 (ja) 2023-11-21
EP3129982B1 (en) 2022-04-13
US10986498B2 (en) 2021-04-20
JP2023184691A (ja) 2023-12-28
EP3129982A1 (en) 2017-02-15
US20160019889A1 (en) 2016-01-21
CN109376521A (zh) 2019-02-22
JP2021193466A (ja) 2021-12-23
WO2016010616A1 (en) 2016-01-21
CN106164921B (zh) 2018-12-07
KR101890377B1 (ko) 2018-08-21
US10147429B2 (en) 2018-12-04
JP2017517027A (ja) 2017-06-22
CN109598112A (zh) 2019-04-09
US9257120B1 (en) 2016-02-09
US20160314792A1 (en) 2016-10-27
CN109598112B (zh) 2022-09-06
US20180012604A1 (en) 2018-01-11
US20200013412A1 (en) 2020-01-09
JP7007320B2 (ja) 2022-01-24
JP2019152867A (ja) 2019-09-12
CN106164921A (zh) 2016-11-23
US9412376B2 (en) 2016-08-09
US10460735B2 (en) 2019-10-29
CN109376521B (zh) 2021-06-15
EP4047497A2 (en) 2022-08-24
US9792914B2 (en) 2017-10-17
US20160019896A1 (en) 2016-01-21
US20190074017A1 (en) 2019-03-07
EP4047497A3 (en) 2022-09-28
KR20160147955A (ko) 2016-12-23
KR101804388B1 (ko) 2017-12-04

Similar Documents

Publication Publication Date Title
JP6509903B2 (ja) コロケーション情報を使用した話者照合
JP6474762B2 (ja) 発話者の検証のための動的な閾値
US20230145324A1 (en) Hotword-Based Speaker Recognition
US11942095B2 (en) Speaker verification using co-location information
US11676608B2 (en) Speaker verification using co-location information

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190403

R150 Certificate of patent or registration of utility model

Ref document number: 6509903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250