JP6505846B2 - プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池 - Google Patents

プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池 Download PDF

Info

Publication number
JP6505846B2
JP6505846B2 JP2017536406A JP2017536406A JP6505846B2 JP 6505846 B2 JP6505846 B2 JP 6505846B2 JP 2017536406 A JP2017536406 A JP 2017536406A JP 2017536406 A JP2017536406 A JP 2017536406A JP 6505846 B2 JP6505846 B2 JP 6505846B2
Authority
JP
Japan
Prior art keywords
complex oxide
composite oxide
raw material
powder
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017536406A
Other languages
English (en)
Other versions
JPWO2017033862A1 (ja
Inventor
秋本 順二
順二 秋本
尚樹 浜尾
尚樹 浜尾
邦光 片岡
邦光 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2017033862A1 publication Critical patent/JPWO2017033862A1/ja
Application granted granted Critical
Publication of JP6505846B2 publication Critical patent/JP6505846B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/006Compounds containing, besides hafnium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/90Other crystal-structural characteristics not specified above
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Geology (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、高いプロトン伝導性を有する複合酸化物と、この複合酸化物を電解質として使用した燃料電池に関する。
燃料電池に使用するためのプロトン伝導性複合酸化物として、Li1.75.05LaNb0.25Zr1.7512が知られている(非特許文献1)。Li1.75.05LaNb0.25Zr1.7512は、良好なリチウム伝導性のLi6.75LaNb0.25Zr1.7512を水洗し、真空乾燥させ、150℃でのアニール処理を繰り返すことによって作製される。
しかしながら、Li1.75.05LaNb0.25Zr1.7512の結晶構造については、格子定数が報告されているのみであり、水素量とプロトン伝導性についての相関については明らかではなかった。また、非特許文献2には、Li6.75LaTa0.25Zr1.7512を常温で水洗することによって、リチウムを水素に置換できることが記載されている。しかし、水素への置換量がリチウムの21%と少なかった。
C.Liu, K.Rui, C.Shen, M.E.Badding, G.Zhang, Z.Wen, Journal of Power Sources, 282 (2015) p.286-293 Y.Li, J.-T.Han, S.V.Vogel, C.-A.Wang, Solid State Ionics, 269 (2015) p.57-61
本発明は、このような事情に鑑みてなされたものであり、高いプロトン伝導性を有する複合酸化物を提供することを課題とする。
本願発明者らは、ガーネット型リチウムイオン伝導体酸化物を、80℃以上のアルコール中でプロトン交換処理することによって、プロトン伝導性複合酸化物が得られることを見出した。このプロトン伝導性複合酸化物は、化学式Li7−xLa12(MはZrおよび/またはHf、3.2<x≦7)で表わされ、ガーネット型構造を有し、水酸化ランタンの不純物相としての析出がなく、プロトン伝導に適する空間群であるI−43dなどをとる。そして、このプロトン伝導性複合酸化物を電解質材料として使用した燃料電池システムで発電できることを確認して、本発明の完成に至った。
本発明の複合酸化物は、化学式Li7−xLa12(MはZrおよび/またはHf、3.2<x≦7)で表され、立方晶系に属するガーネット型構造の単一相である。本発明のプロトン伝導体は、本発明の複合酸化物を含有する。本発明の燃料電池は、燃料極と、空気極と、本発明のプロトン伝導体を含有する固定電解質を有する。
本発明の複合酸化物の製造方法は、化学式Li7−xLa12(MはZrおよび/またはHf、3.2<x≦7)で表され、立方晶系に属するガーネット型構造の単一相である複合酸化物の製造方法であって、化学式Li7−xLa12(MはZrおよび/またはHf、0≦x≦3.2)で表される原料複合酸化物と、ヒドロキシ基またはカルボキシル基を有する化合物を接触させて、原料複合酸化物の少なくとも一部のリチウムを、ヒドロキシ基またはカルボキシル基を有する化合物の水素と交換する交換工程を有する。
本発明によれば、プロトン伝導体として有用な複合酸化物が得られる。
燃料電池の一例を示す模式図。 実施例1で得られた複合酸化物Li7−xLaZr12(3.2<x≦6.6)の粉末X線回折チャート。 実施例1で得られた複合酸化物Li7−xLaZr12(3.2<x≦6.6)について、空間群I−43dで指数付けした粉末X線回折チャート。 実施例1の保持時間24時間で得られたLi1.375.63LaZr12の熱重量変化を示すグラフ。 実施例1の保持時間48時間で得られたLi1.495.51LaZr12の熱重量変化を示すグラフ。 実施例1の保持時間120時間で得られたLi1.365.64LaZr12の熱重量変化を示すグラフ。 実施例1の保持時間120時間で得られたLi1.365.64LaZr12から作製した固体電解質の導電率の温度依存性を示すグラフ。 実施例2で得られた原料複合酸化物LiLaZr12の粉末X線回折チャート。 実施例2で無水エタノールを用いて得られた複合酸化物Li7−xLaZr12(3.2<x≦6.6)の粉末X線回折チャート。 実施例2で1−ヘキサノールを用いて得られた複合酸化物Li7−xLaZr12(3.2<x≦6.6)の粉末X線回折チャート。 実施例2で2−プロパノールを用いて得られた複合酸化物Li7−xLaZr12(3.2<x≦6.6)の粉末X線回折チャート。 実施例3で得られた複合酸化物Li1.55.5LaZr12単結晶の結晶構造の原子配列を示す図。 実施例1の保持時間120時間で得られた複合酸化物Li1.365.64LaZr12の粉末X線回折データについて、実施例3で得られたLi1.55.5LaZr12単結晶の原子座標を初期値としてリートベルト解析を行って得られたフィッティングを示す粉末X線回折チャート。 実施例4で得られた原料複合酸化物LiLaHf12の粉末X線回折チャート。 実施例4で得られた複合酸化物Li1.935.07LaHf12の粉末X線回折チャート。 実施例4で得られた複合酸化物Li1.935.07LaHf12の熱重量変化を示すグラフ。 実施例5で得られた複合酸化物Li0.056.95LaHf12の粉末X線回折チャート。 実施例5で得られた複合酸化物Li0.056.95LaHf12の熱重量変化を示すグラフ。 実施例6で得られた複合酸化物Li7−xLaZr12(3.2<x≦6.6)の粉末X線回折チャート。 実施例7で得られた複合酸化物Li0.396.61LaZr12の粉末X線回折チャート。 実施例7で得られた複合酸化物Li0.396.61LaZr12の熱重量変化を示すグラフ。 実施例8で得られた複合酸化物HLaZr12の粉末X線回折チャート。 実施例8で得られた複合酸化物HLaZr12の熱重量変化を示すグラフ。 比較例2で得られた分解生成物の水酸化ランタンを含む複合酸化物Li7−xLaZr12の粉末X線回折チャート。 比較例2の交換温度120℃で得られた複合酸化物Li1.505.50LaZr12の熱重量変化を示すグラフ。
本発明者らは、ガーネット型構造を有するプロトン伝導体について、プロトン交換反応がより進行し、水素含有量を多くするための製造方法、および良好なプロトン伝導性を示す立方晶系の結晶構造の空間群について鋭意検討した。その結果、ガーネット型構造を有する複合酸化物Li7−xLa12(MはZrおよび/またはHf、3.2<x≦7)が作製可能であり、この複合酸化物を電解質に使用した中温作動型燃料電池システムで発電できることを見出した。
特に結晶構造の最適化で、立方晶系の空間群がI−43dとなることで、結晶構造のプロトン伝導経路にリチウムが占有することがなくなり、プロトン伝導に適する結晶構造となっている。ここで空間群がI−43dであることは、粉末X線回折測定で、指数310、530、710、730などのピークが観測されることで確認可能である。すなわち、これらのピークは空間群Ia−3dでは消滅則から原理的に観測されない。また、公知の合成方法では、電解質材料として使用する際に問題となる水酸化ランタンが析出してしまう欠点があったのに対して、アルコール系の溶媒を使うことで、単一相のプロトン伝導体が製造できることを見出した。なお、Ia−3dの空間群を有する複合酸化物であっても、水素含有量が多ければ、プロトン伝導に適する。
以下、本発明の複合酸化物、プロトン伝導体、燃料電池、および複合酸化物の製造方法について、実施形態と実施例に基づいて説明する。なお、重複説明は適宜省略する。また、2つの数値の間に「〜」を記載して数値範囲を表す場合、この2つの数値も数値範囲に含まれるものとする。
本発明の第一の実施形態に係る複合酸化物は、化学式Li7−xLa12(MはZrおよび/またはHf、3.2<x≦6.6)で表され、立方晶系に属するガーネット型構造の単一相である。第一実施形態の複合酸化物は、立方晶系の格子定数aが、13.07Å<a<13.11Åを満たしている。第一実施形態の複合酸化物は、結晶構造がI−43dの空間群である。
本発明の第二の実施形態に係る複合酸化物は、化学式Li7−xLa12(MはZrおよび/またはHf、6.6<x≦7)で表され、立方晶系に属するガーネット型構造の単一相である。第二実施形態の複合酸化物は、立方晶系の格子定数aが、13.07Å<a<13.11Åを満たしている。第二実施形態の複合酸化物は、結晶構造がIa−3dの空間群である。
本発明の実施形態に係るプロトン伝導体は、各実施形態の複合酸化物を含有する。本発明の実施形態に係る燃料電池は、燃料極と、空気極と、本実施形態のプロトン伝導体を含有する固定電解質を有する。本発明の実施形態に係る複合酸化物の製造方法は、化学式Li7−xLa12(MはZrおよび/またはHf、3.2<x≦7)で表され、立方晶系に属するガーネット型構造の単一相である複合酸化物の製造方法である。本実施形態の複合酸化物の製造方法は、化学式Li7−xLa12(MはZrおよび/またはHf、0≦x≦3.2)で表される原料複合酸化物と、ヒドロキシ基またはカルボキシル基を有する化合物を接触させて、原料複合酸化物の少なくとも一部のリチウムを、ヒドロキシ基またはカルボキシル基を有する化合物の水素と交換する交換工程を有している。なお、水は、ヒドロキシ基を有する化合物に含まれない。
アルコールを用いて、交換温度80〜180℃で交換工程を行えば、結晶構造がI−43dの空間群である複合酸化物Li7−xLa12(MはZrおよび/またはHf、3.2<x≦6.6)が得られる。また、酸性水溶液を用いて、交換温度200〜220℃で交換工程を行えば、結晶構造がIa−3dの空間群である複合酸化物Li7−xLa12(MはZrおよび/またはHf、6.6<x≦7)が得られる。
原料複合酸化物は、リチウム原料、ランタン原料、ならびにジルコニウム原料および/またはハフニウム原料を、化学式Li7−xLa12(MはZrおよび/またはHf、0≦x≦3.2)の化学組成となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、製造することができる。リチウム原料は、金属リチウムおよびリチウム化合物の少なくとも一方である。ランタン原料は、金属ランタンおよびランタン化合物の少なくとも一方である。ジルコニウム原料は、金属ジルコニウムおよびジルコニウム化合物の少なくとも一方である。ハフニウム原料は、金属ハフニウムおよびハフニウム化合物の少なくとも一方である。
リチウム、ランタン、ジルコニウム、およびハフニウムの2種類以上を含む化合物を、LiLa12(MはZrおよび/またはHf)の化学組成となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、LiLa12(MはZrおよび/またはHf)を合成してもよい。リチウム化合物としては、リチウムを含有するものであれば特に制限されず、例えばLiCO、LiOH・HO、LiNO、LiCl、LiSO、LiO、Li等が挙げられる。また、LiLaOなどのリチウムランタン酸化物、LiZrOなどのリチウムジルコニウム酸化物等が挙げられる。これらの中でも、炭酸リチウムLiCO等が好ましい。
ランタン化合物としては、ランタンを含有するものであれば特に制限されず、例えばLa、La(CO、La(NO・6HO等が挙げられる。これらの中でも、酸化ランタンLa等が好ましい。ジルコニウム化合物としては、ジルコニウムを含有するものであれば特に制限されず、例えばZrCl、ZrO等が挙げられる。また、ランタンジルコニウム化合物であるLaZr等が挙げられる。
具体的な原料複合酸化物の製造方法は以下のとおりである。まず、リチウム原料、ランタン原料、ならびにジルコニウム原料および/またはハフニウム原料を含む混合物を調製する。各原料の混合割合は、化学式Li7−xLa12(MはZrおよび/またはHf、0≦x≦3.2)の化学組成となるように混合することが好ましい。また、混合方法は、各原料を均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式または乾式で混合すればよい。
つぎに、焼成容器にこの混合物を入れて焼成する。アルミナ製の焼成容器を使用すると、この混合物中にアルミニウムが混入してしまうので好ましくない。したがって、良好なプロトン伝導体を得る目的では、非アルミナ系のセラミックス製の焼成容器などを使用することが好ましく、イットリウム安定化ジルコニア(YSZ)製の焼成容器などを使用することが好ましい。焼成温度は、原料によって適宜設定することができるが、最高温度として900℃〜1200℃が好ましく、950℃〜1150℃がより好ましい。また、焼成雰囲気も特に限定されず、通常は酸化性雰囲気または大気中で焼成すればよい。
また、高温焼成の時間が長い場合や焼成回数が多い場合は、リチウムが高温で揮発し、化学組成中のリチウム量が減少してしまうことある。このような場合には、目的とするLi7−xLa12(MはZrおよび/またはHf、0≦x≦3.2)の組成比よりも、あらかじめリチウム量を30mol%以下で過剰にした混合物を用いることが好ましい。焼成時間は、焼成温度等に応じて適宜変更することができる。冷却方法も特に限定されないが、通常は自然放冷(炉内放冷)または徐冷すればよい。焼成後は、必要に応じて焼成物を公知の方法で粉砕し、最高温度を変更しながら1〜2回さらに再焼成してもよい。なお、粉砕の程度は、焼成温度などに応じて適宜調節すればよい。
こうして得られた原料複合酸化物Li7−xLa12(MはZrおよび/またはHf、0≦x≦3.2)とヒドロキシ基またはカルボキシル基を有する化合物を接触させて、原料複合酸化物の少なくとも一部のリチウムと、ヒドロキシ基またはカルボキシル基を有する化合物の水素を交換する交換工程を経て、化学式Li7−xLa12(MはZrおよび/またはHf、3.2<x≦7)で表わされる複合酸化物が得られる。この製造方法によれば、副生成物である水酸化ランタンの析出を抑制でき、単一相としてのガーネット型プロトン伝導体が作製可能である。また、水素交換反応が確実に進行して、水素含有量を最大限にできる。
ヒドロキシ基またはカルボキシル基を有する化合物が酸性水溶液に含有されているか、ヒドロキシ基またはカルボキシル基を有する化合物がアルコールであることが好ましい。アルコールは、第一級アルコールが好ましい。例えば、メタノール、エタノール、1−プロパノール、1−ブタノール、1−ヘキサノール、1−ヘプタノールなどがよい。中でも沸点が低いメタノール、エタノールが特に好ましい。カルボキシ基を有する化合物としては、カルボキシ基を有する有機酸化合物であれば特に限定されないが、カルボン酸が好ましく、例えば安息香酸、フタル酸、酢酸、ギ酸などが挙げられる。
交換工程での温度(以下「交換温度」ということがある)は、使用するヒドロキシ基またはカルボキシル基を有する水系化合物または非水系化合物の沸点と、イオン交換速度の観点から設定することができる。交換温度は、例えば80℃以上が好ましく、100℃以上がより好ましく、120℃以上が更に好ましい。交換温度は、溶媒の揮発をできるだけ抑制する観点から、220℃以下であることが望ましい。交換工程での反応時間(以下「交換時間」または「保持時間」ということがある)は、使用するヒドロキシ基またはカルボキシル基を有する水系化合物または非水系化合物の種類と量によって適宜変更することができる。交換時間は、より交換反応を進行させるためには、12時間以上が好ましく、100時間以上がより好ましい。
交換温度を維持する方法(以下「加熱方法」ということがある)は、水系化合物または非水系化合物の溶媒の揮発を抑えながら加熱できる方法であれば特に限定されない。加熱方法は、例えば、冷却装置を設けた還流管を用いた加熱、または気密容器中での交換工程もしくは超臨界状態での交換工程などに対応できる連続式加熱などが好ましい。加熱方法は、PTFE製のビーカーをSUS製のオートクレーブ中などで加熱する方法がより好ましい。加熱後、温度が室温まで下がってから、反応に使用した溶媒でよく洗浄したのち、水またはエタノールで洗浄し、最終的には60℃程度でよく乾燥して複合酸化物が得られる。この際、余分なリチウムを取り除くために、さらに水洗する工程を加えてもよい。
本発明の実施形態に係る燃料電池は、Li7−xLa12(MはZrおよび/またはHf、3.2<x≦7)を電解質材料として用いるものである。固体電解質セラミックス材料として本実施形態の複合酸化物を用いること以外は、公知の中温作動型燃料電池(平板型、円筒型、円筒平板型等)の電池要素をそのまま採用することができる。この中温作動型燃料電池としては、固体高分子形燃料電池、リン酸形燃料電池、溶融塩形燃料電池、固体酸化物形燃料電池、アルカリ電解質形燃料電池、直接形燃料電池、バイオ燃料電池などが挙げられる。
図1は、本発明の実施形態に係る燃料電池を円筒型の固体酸化物形燃料電池に適用した燃料電池1を示している。燃料電池1は、燃料極2と、インターコネクタ3と、固体電解質4と、空気極5を備えている。燃料極2と、インターコネクタ3と、空気極5は、公知の平板型、円筒型、または円筒平板型等の固体酸化物形燃料電池を構成する部材がそのまま採用できる。固体電解質4は、本実施形態の複合酸化物Li7−xLa12(MはZrおよび/またはHf、3.2<x≦7)を含有するプロトン伝導体を含んでいる。
本実施形態の複合酸化物は粉体として製造される。このため、本実施形態の複合酸化物を固体電解質として使用するためには、加圧成形技術、塗工技術、または成膜技術などを適用して成形体にする。加圧成形技術として、焼結成形法、加圧成形法、通電加圧焼結法などが挙げられる。塗工技術としては、スクリーン印刷法、電気泳動(EPD)法、ドクターブレード法、スプレーコーティング法、インクジェット法、またはスピンコート法などが挙げられる。成膜技術としては、蒸着法、スパッタリング法、化学気相成長(CVD)法、電気化学気相成長法、イオンビーム法、レーザーアブレーション法、大気圧プラズマ成膜法、減圧プラズマ成膜法、またはコンポジット成膜法などが挙げられる。
燃料極の材料としては、金属触媒と、プロトン伝導体からなるセラミックス粉末材料の混合物を用いることができる。金属触媒としては、還元性雰囲気において安定で、水素酸化活性を有するニッケル、鉄、コバルト、または白金、ルテニウム、もしくはパラジウムなどの貴金属等を用いることができる。また、プロトン伝導体としては、本実施形態の複合酸化物が使用できるが、それ以外にBa(Zr,Y)O、Sr(Zr,Y)O、Ba(Ce,Y)O、またはリン酸塩系プロトン伝導性酸化物などを用いることができる。なお、金属触媒とプロトン伝導体からなるセラミックス粉末材料の混合形態は、物理的な混合形態であってもよいし、金属触媒への粉末修飾またはセラミックス材料への金属触媒修飾であってもよい。
空気極の材料としては、固体酸化物形燃料電池の空気極材料として公知の粉末セラミックス材料が使用できる。例えば、ペロブスカイト型構造等を有するCo、Fe、Ni、Cr、またはMn等の金属酸化物を用いることができる。具体的には(Sm,Sr)CoO、(La,Sr)MnO、(La,Sr)CoO、(La,Sr)(Fe,Co)O、(La,Sr)(Fe,Co,Ni)Oなどの酸化物が挙げられる。これらの中でも(La,Sr)(Fe,Co)Oが好ましい。これらのセラミックス材料は、一種を単独で使用してもよいし、二種以上を混合して使用してもよい。
以下の実施例で本発明の特徴をより一層明確にする。本発明は、これらの実施例に限定されない。
[実施例1]
(複合酸化物Li7−xLaZr12(3.2<x≦6.6)の合成)
原料複合酸化物LiLaZr12(高純度化学研究所製)粉体1gと無水エタノール(和光純薬製、特級試薬)20mLを、内容積100mLのPTFE製ビーカーに入れ、それをSUS製耐圧容器にセットした。このSUS製耐圧容器を乾燥器に入れ、最高温度120℃で10時間、24時間、48時間、120時間、および240時間保持した。その後冷却し、エタノールで洗浄して粉体試料のみを取り出した。そして、空気中60℃で乾燥させて各複合酸化物の粉体試料を回収した。
粉末X線回折装置(リガク製、商品名SmartLab)により、得られた各複合酸化物の結晶構造を調べた。保持時間が24時間、48時間、120時間、および240時間の複合酸化物は、いずれも良好な結晶性を有し、立方晶系に属するガーネット型構造の単一相であることが明らかとなった。一方、保持時間が10時間の複合酸化物は、立方晶のピークの裾野位置に、原料複合酸化物の正方晶に由来するピークが残存していた。保持時間が10時間、24時間、48時間、および120時間の各複合酸化物の粉末X線回折チャートを図2に示す。
また、保持時間24時間、48時間、120時間、および240時間の各複合酸化物について、最小二乗法により、平均構造である立方晶系として格子定数aの精密化を行ったところ、下記の表1に示す値となった。本実施例で得られた保持時間24時間、48時間、120時間、および240時間の各複合酸化物は、格子定数からもガーネット型構造を保持していることが確認された。
Figure 0006505846
また、図2に示すように、22°、40°、49°、53°付近で、ガーネット型でよく観測されるIa−3dの空間群では指数付けできない新たにピークが観測された。これらのピークは、同じ立方晶系の空間群I−43dで、それぞれ指数310、530、710、730で指数付け可能である。本実施例で得られた複合酸化物は、これまでに報告がない新しい結晶構造を有することが確認された。保持時間120時間の複合酸化物について、指数付けした粉末X線回折チャートを図3に示す。
また、保持時間10時間、24時間、48時間、120時間、および240時間の各複合酸化物について、ICP発光分析装置(日立製、P−4010形)を用いて、リチウム量、ランタン量、およびジルコニウム量の定量分析を行った。その結果を表2に示す。リチウムが水素と交換した仮定により、各複合酸化物がLi7−xLaZr12(3.2<x≦6.6)であることが明らかとなった。
Figure 0006505846
つぎに、示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー製、EXSTAR TG/DTA7200)を用いて、乾燥空気雰囲気下、昇温速度10℃/min、温度範囲20℃〜800℃で、保持時間24時間、48時間、および120時間の各複合酸化物の熱分析を行った。この熱重量(TG)曲線を図4Aから図4Cに示す。保持時間24時間、保持時間48時間、および保持時間120時間の各複合酸化物の20℃から800℃までの重量減少は、それぞれ6.28wt%、6.14wt%、および6.30wt%であった。
この重量減少は、複合酸化物に含まれる水素がHOとして揮発したことに起因すると仮定すると、保持時間24時間、48時間、および120時間の各複合酸化物は、それぞれLi1.375.63LaZr12、Li1.495.51LaZr12、およびLi1.365.64LaZr12と算出できた。本実施例の合成方法で、原料複合酸化物に含まれる多くのリチウムが、水素に交換されたことが確認され、化学分析結果とよく一致していた。
また、粉末試料を60MPaの圧力でΦ10mmのペレット状に成形することで固体電解質を作製し、固体電解質の両面にAuをΦ7mmでスパッタリングしてブロッキング電極とした。周波数応答アナライザ(FRA)(ソーラトロン社製、1260型)を用いて、周波数32MHz〜100Hz、振幅電圧100mVの条件でこの固体電解質の導電率を測定した。そして、ナイキストプロットの円弧より抵抗値を求め、この抵抗値から導電率を算出した。
さらに、この固体電解質をヒーターで150℃〜250℃に加熱し、所定の温度を維持しながら固体電解質の導電率を測定し、固体電解質の導電率の温度依存性を確認した。固体電解質の導電率の温度依存性を図5に示す。測定温度250℃で、導電率5×10−7S/cmとなり、原料複合酸化物のリチウムと交換されたプロトンによるプロトン伝導性が明らかとなった。すなわち、本実施例で得られた複合酸化物は、燃料電池の電解質として使用できる。
[実施例2]
(原料複合酸化物LiLaZr12多結晶の合成)
炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、酸化ランタン(La、レアメタリック製、純度99.99%)、および酸化ジルコニウム(ZrO、レアメタリック製、純度99.99%)の各原料粉末を、物質量比(mol比)でLi:La:Zr=7.7:3:2となるように秤量した。これらをエタノール中にてメノウ製の乳鉢で混合し、乾燥させた後、ふた付きのアルミナるつぼ(ニッカトー製、グレードSSA−S、型番C3)に充填し、マッフル炉(ヤマト科学製、FP310)を用いて、空気中950℃で5時間加熱した。
その後、粉砕・混合を再度行い、空気中980℃で5時間再加熱して、原料複合酸化物LiLaZr12試料を得た。粉末X線回折装置(リガク製、商品名RINT−2550V)により、この原料複合酸化物の結晶構造を調べた。この原料複合酸化物(出発原料)は、良好な結晶性を有し、公知の正方晶系に属するガーネット型構造の単一相であることが確認された。この粉末X線回折チャートを図6Aに示す。
(複合酸化物Li7−xLaZr12(3.2<x≦6.6)の合成)
上記で合成した原料複合酸化物LiLaZr12粉体1gと無水エタノール20mLを、内容積100mLのPTFE製ビーカーに入れ、それをSUS製耐圧容器にセットした。このSUS製耐圧容器を乾燥器に入れ、最高温度120℃で24時間保持した。その後冷却し、エタノールで洗浄して粉体のみを取り出した。そして、空気中60℃で乾燥させて複合酸化物の粉体試料を回収した。
また、無水エタノール20mLに代えて、1−ヘキサノール(和光純薬製、特級試薬)20mLまたは2−プロパノール(和光純薬製、特級試薬)20mLを用い、上記と同様の方法で各複合酸化物の粉体試料を回収した。粉末X線回折装置(リガク製、商品名RINT−2550V)により、得られた各複合酸化物の結晶構造を調べた。これらの複合酸化物は、いずれも良好な結晶性を有するガーネット型構造の単一相であることが確認された。これらの粉末X線回折チャートを、図6B(無水エタノール使用)、図6C(1−ヘキサノール使用)、および図6D(2−プロパノール使用)に示す。
図6Bから図6Dに示すように、これらの複合酸化物のチャートは、原料複合酸化物のチャート(図6A)と比較すると、正方晶系のピーク分離が小さく立方晶化している。また、22°、53°付近に明確なピークが観測されていることから、これらの複合酸化物の結晶構造はIa−3dではなく、I−43dの空間群であることが確認できた。これより、原料複合酸化物のリチウムと、ヒドロキシ基またはカルボキシル基を有する化合物の水素を交換して、プロトン伝導体に適するI−43dの結晶構造を有する複合酸化物を合成する場合、ヒドロキシ基またはカルボキシル基を有する化合物がエタノールだけでなく、1−ヘキサノールまたは2−プロパノールでもよいことが分かった。すなわち、ヒドロキシ基またはカルボキシル基を有する化合物であれば、種類を選ばないことが明らかとなった。一方、1−ヘキサノールを用いたときと2−プロパノールを用いたときでは、1−ヘキサノールを用いたときの方が、プロトン交換がより進行しており、第一級アルコールを用いることがより好ましいことが明らかとなった。
[実施例3]
(原料複合酸化物LiLaZr12単結晶の合成)
実施例2で合成した原料複合酸化物LiLaZr12多結晶粉末1gと炭酸リチウム1gを秤量・湿式混合し、乾燥させた後、内容積30mLのふた付きの金ルツボに充填し、マッフル炉を用いて、空気中1040℃で96時間加熱した。その後、12時間かけて室温まで冷却し、生成物をよく水洗して、大きさ30〜100μm程度の多面体形状の原料複合酸化物LiLaZr12単結晶の試料を得た。単結晶X線回折装置(リガク製、商品名AFC−7S)を用いて、この原料複合酸化物の結晶構造を調べた。この原料複合酸化物は、良好な単結晶性を有し、公知の正方晶系に属するガーネット型構造であることが確認された。
(複合酸化物Li1.55.5LaZr12単結晶の合成)
上記で合成した原料複合酸化物LiLaZr12単結晶0.1gと無水エタノール20mLを、内容積100mLのPTFE製ビーカーに入れ、それをSUS製耐圧容器にセットした。このSUS製耐圧容器を乾燥器に入れ、最高温度120℃で186時間保持した。その後冷却し、エタノールで洗浄して単結晶試料のみを取り出した。そして、空気中60℃で乾燥させて複合酸化物の粉体試料を回収した。
単結晶X線回折装置を用いて、この複合酸化物の結晶構造を調べた。この複合酸化物は、良好な単結晶性を有し、立方晶系、空間群I−43dに属するガーネット型構造であることが確認された。また、単結晶X線回折によって決定された立方晶系の格子定数aは13.075(3)Åであった。さらに、収集した単結晶X線回折強度データを用いて単結晶X線構造解析を行った(プログラム:Xtal3.7使用)。その結果、得られた複合酸化物は、公知のガーネット型の結晶構造とは異なる原子座標を有する新物質であることが明らかとなった。最終のR値が3.8%の精度で決定された複合酸化物の原子座標を表3に示す。なお、X線散乱能が非常に弱いため、水素原子の原子位置は決定できないものの、リチウムの原子位置は正確に決定できた。この複合酸化物の結晶構造式は、Li1.55.5LaZr12であった。結晶構造図を図7に示す。
Figure 0006505846
また、明らかになった原子座標を初期構造モデルとして、実施例1の保持時間120時間で得られた複合酸化物の粉末X線回折データについて、プログラムRIETAN−FPを使用して、リートベルト法による結晶構造解析を行った。その結果、最終のR値として、Rwp=13.38%、R=6.95%と良好なフィッティングを示し、実施例1で得られた多結晶の複合酸化物の結晶構造は、本実施例で得られた単結晶の複合酸化物の結晶構造と同じであることが確認された。フィッティングしたパターンを図8に示す。
[実施例4]
(原料複合酸化物LiLaHf12の合成)
炭酸リチウム、酸化ランタン、および酸化ハフニウム(HfO、レアメタリック製、純度99.99%)の各原料粉末を、物質量比でLi:La:Hf=7.7:3:2となるように秤量した。これらをエタノール中にてメノウ製の乳鉢で混合し、乾燥後、ふた付きのアルミナるつぼに充填し、マッフル炉を用いて、空気中950℃で5時間加熱した。その後、粉砕・混合を行い、空気中980℃で5時間再加熱して原料複合酸化物LiLaHf12を得た。粉末X線回折装置(リガク製、商品名SmartLab 3kW)により、この原料複合酸化物の結晶構造を調べた。この原料複合酸化物は、良好な結晶性を有し、公知の正方晶系に属するガーネット型構造の単一相であることが確認された。この粉末X線回折チャートを図9に示す。
(複合酸化物Li1.935.07LaHf12の合成)
原料複合酸化物LiLaZr12に代えて、上記で合成した原料複合酸化物LiLaHf12を用いたことを除いて、無水エタノールを用いた実施例2と同様にして複合酸化物の粉体試料を回収した。粉末X線回折装置(リガク製、商品名SmartLab 3kW)を用いて、この複合酸化物の結晶構造を調べた。この複合酸化物は、良好な結晶性を有するガーネット型構造の単一相であることが確認された。この粉末X線回折チャートを図10に示す。図10に示すように、この複合酸化物のチャートは、正方晶系のピーク分離がなく立方晶化している。また、22°、53°付近に明確なピークが観測されていることから、この複合酸化物の結晶構造はIa−3dではなく、I−43dの空間群であることが確認できた。また、最小二乗法により算出した格子定数aは13.0772(1)Åであった。
つぎに、実施例1と同様にして、この複合酸化物の熱分析を行った。このTG曲線を図11に示す。20℃から800℃までの重量減少は、4.64wt%であった。この重量減少が実施例1の場合と同様であると仮定すると、この複合酸化物は、Li1.935.07LaHf12と算出することができた。本実施例の合成方法で、原料複合酸化物に含まれる多くのリチウムが、水素に交換されたことが確認された。
[実施例5]
(複合酸化物Li0.056.95LaHf12の合成)
実施例4の原料複合酸化物LiLaHf12粉体1gと、イオン交換水20mLと、安息香酸(C、和光純薬製、純度99.5%)粉末2gを、内容積100mLのPTFE製ビーカーに入れ、それをSUS製耐圧容器にセットした。このSUS製耐圧容器を乾燥器に入れ、最高温度200℃で24時間保持した。その後冷却し、エタノールで洗浄して粉体のみを取り出した。そして、空気中60℃で乾燥させて複合酸化物の粉体試料を回収した。
粉末X線回折装置(リガク製、商品名SmartLab 3kW)により、この複合酸化物の結晶構造を調べた。この複合酸化物は、良好な結晶性を有するガーネット型構造の単一相であることが確認された。この粉末X線回折チャートを図12に示す。図12に示すように、この複合酸化物のチャートは、原料複合酸化物のチャート(図9)と比較すると、正方晶系のピーク分離がなく立方晶化している。また、この複合酸化物のチャートで観察されたピークは、空間群Ia−3dとして帰属できることが確認できた。また、最小二乗法により算出した格子定数aは、13.0710(2)Åであった。
つぎに、実施例1と同様にして、この複合酸化物の熱分析を行った。このTG曲線を図13に示す。20℃から800℃までの重量減少は6.43wt%であった。この重量減少が実施例1の場合と同様であると仮定すると、この複合酸化物の化学式は、Li0.056.95LaHf12と算出できた。本実施例の合成方法で、原料複合酸化物に含まれるほとんどのリチウムが、水素に交換されたことが確認された。
[実施例6]
(複合酸化物Li7−xLaZr12(3.2<x≦6.6)の還流合成)
原料複合酸化物LiLaZr12(高純度化学研究所製)粉体5gと1−ヘキサノール(和光純薬製、特級試薬)100mLを、低温イオン交換処理装置(SIBATA製、商品名Chemi Chemi−200型)に入れ、撹拌しながら、100℃、120℃、140℃、および160℃の4種類の合成温度で24時間還流操作を行った。その後、無水エタノールで洗浄して粉末のみを取り出した。そして、空気中60℃で乾燥させて各複合酸化物の粉体試料を回収した。
粉末X線回折装置(リガク製、商品名SmartLab 3kW)により、これらの複合酸化物の結晶構造を調べた。これらの複合酸化物は、いずれも良好な結晶性を有するガーネット型構造の単一相であることが確認された。この粉末X線回折チャートを図14に示す。図14に示すように、これらの複合酸化物のチャートは、正方晶系のピーク分離がなく立方晶化している。また、22°、53°付近に明確なピークが観測されていることから、これらの複合酸化物の結晶構造はIa−3dではなく、I−43dの空間群であることが確認できた。また、平均構造である立方晶系として、これらの複合酸化物の格子定数aを最小二乗法により算出したところ、表4に示す値となった。
Figure 0006505846
[実施例7]
(複合酸化物Li0.396.61LaZr12の合成)
原料複合酸化物LiLaZr12(高純度化学研究所製)粉体1gと、無水エタノール20mLと、安息香酸(和光純薬製、特級試薬)2gを、内容積100mLのPTFE製ビーカーに入れ、それをSUS製耐圧容器にセットした。このSUS製耐圧容器を乾燥器に入れ、最高温度200℃で24時間保持した。その後冷却し、エタノールで洗浄して粉体のみを取り出した。そして、空気中60℃で乾燥させて複合酸化物の粉体試料を回収した。
粉末X線回折装置(リガク製、商品名SmartLab 3kW)により、この複合酸化物の結晶構造を調べた。この複合酸化物は、良好な結晶性を有するガーネット型構造の単一相であることが確認された。この粉末X線回折チャートを図15に示す。図15に示すように、この複合酸化物のチャートは、正方晶系のピーク分離がなく立方晶化している。この複合酸化物の結晶構造は、Ia−3dであることが確認できた。また、最小二乗法により算出したこの複合酸化物の格子定数aは、13.1005(2)Åであった。
つぎに、実施例1と同様にして、この複合酸化物の熱分析を行った。このTG曲線を図16に示す。20℃から800℃までの重量減少は、8.75wt%であった。この重量減少が実施例1の場合と同様であると仮定すると、この複合酸化物の化学式は、Li0.396.61LaZr12と算出できた。つぎに、ICP発光分析装置を用いて、この複合酸化物のリチウム量、ランタン量、およびジルコニウム量の定量分析を行った。リチウムが水素と交換した仮定により、この複合酸化物は、Li0.396.61LaZr12であることが明らかとなった。
[実施例8]
(複合酸化物HLaZr12の合成)
乾燥器の最高温度を220℃としたことを除いて、実施例7と同様にして、複合酸化物の粉体試料を回収した。粉末X線回折装置(リガク製、商品名SmartLab 3kW)により、この複合酸化物の結晶構造を調べた。この複合酸化物は、良好な結晶性を有するガーネット型構造の単一相であることが確認された。この粉末X線回折チャートを図17に示す。この複合酸化物のチャートは、正方晶系のピーク分離がなく立方晶化している。この複合酸化物の結晶構造は、Ia−3dであることが確認できた。また、最小二乗法により算出したこの複合酸化物の格子定数aは、13.0943(2)Åであった。
つぎに、実施例1と同様にして、この複合酸化物の熱分析を行った。このTG曲線を図18に示す。20℃から800℃までの重量減少は、10.91wt%であった。この重量減少が実施例1の場合と同様であると仮定すると、この複合酸化物の化学式は、HLaZr12と算出できた。本実施例の合成方法で、複合酸化物のすべてのリチウムが水素に交換されたことが確認された。
(複合酸化物HLaZr12の成形体および電解質膜の作製)
上記で合成した複合酸化物HLaZr120.4gを一軸加圧成形法で加圧して、ペレット状の圧粉体を得た。この圧粉体とイオン交換水20mLを、内容積100mLのPTFE製ビーカーに入れ、それをSUS製耐圧容器にセットした。このSUS製耐圧容器を乾燥器に入れ、最高温度180℃で24時間保持した。その後、冷却してペレット状の固体電解質を得た。得られた固体電解質の相対密度を算出したところ78%であった。また、上記で合成した複合酸化物HLaZr12粉末0.05gに、PTFE粉末を4wt%の割合で混合し、一軸加圧成形法で60MPaにて加圧して薄膜状のコンポジット膜を得た。得られたコンポジット膜は、直径10mm、厚さ0.2mm、質量0.0485gの緻密な膜状成形体であった。
[比較例1]
(複合酸化物Li6.250.75LaZr12の合成)
原料複合酸化物LiLaZr12(高純度化学研究所製)粉体10gと純水500mLをガラスビーカーに入れ、25℃の室温条件下で24時間撹拌し、その後、無水エタノールで洗浄して粉末試料のみを取り出した。そして、空気中60℃で乾燥させて複合酸化物の粉体試料を回収した。
粉末X線回折装置(リガク製、商品名SmartLab)により、この複合酸化物の結晶構造を調べた。この複合酸化物は、良好な結晶性を有し、原料複合酸化物と同じ正方晶系に属するガーネット型構造の単一相であることが明らかとなった。ICP発光分析装置を用いて、この複合酸化物のリチウム量、ランタン量、およびジルコニウム量の定量分析を行った。リチウムが水素と交換した仮定により、この複合酸化物は、Li6.250.75LaZr12であることが明らかとなった。このように、室温での水洗処理のみでは、原料複合酸化物のリチウムが水素にほとんど交換されないことが確認された。
[比較例2]
(純水のみを用いた複合酸化物Li7−xLaZr12の合成)
実施例2のLiLaZr12粉体1gと純水20mLを、内容積100mLのPTFE製ビーカーに入れ、それをSUS製耐圧容器にセットした。このSUS製耐圧容器を乾燥器に入れ、最高温度(交換温度)80℃、100℃、120℃、140℃、および180℃の5種類で24時間保持した。その後冷却し、エタノールで洗浄して粉体のみを取り出した。そして、空気中60℃で乾燥させて各複合酸化物の粉体試料を回収した。
粉末X線回折装置(リガク製、商品名RINT−2550V)により、これらの複合酸化物の結晶構造を調べた。これらの複合酸化物は、いずれも良好な結晶性を有するガーネット型構造が主相であることが確認された。この粉末X線回折チャートを図19に示す。図19に示すように、これらの複合酸化物のチャートは、原料複合酸化物のチャート(図6A)と比較すると、交換温度が高くなるほど、正方晶系のピーク分離がなくなっており、立方晶化している。
また、22°、53°付近に明確なピークが観測されていることから、これらの複合酸化物の結晶構造はIa−3dではなく、I−43dの空間群であることが確認できた。しかしながら、16°、28°、39°付近に不純物相ピークが観測され、特に16°のピークは水酸化ランタンに対応することが確認された。また、交換温度180℃の場合に、これらの不純物ピークの強度が強く、複合酸化物の分解反応が進行していることが判明した。
つぎに、実施例1と同様にして、交換温度120℃の複合酸化物の熱分析を行った。このTG曲線を図20に示す。20℃から800℃までの重量減少は6.20wt%であった。この重量減少が実施例1の場合と同様であると仮定すると、この複合酸化物の化学式は、Li1.505.50LaZr12と算出できた。本比較例の合成方法では、原料複合酸化物のリチウムと水素の交換反応が進行しているものの、不純物の水酸化ランタンが複合酸化物に含まれることが確認された。この複合酸化物を固体電解質にすると複合酸化物に含まれる水酸化ランタンが炭酸ランタンとなり、電解質材料としての強度が維持できない。このため、本比較例の合成方法は適当でない。
本発明の複合酸化物は、中温作動型燃料電池システムなどの燃料電池における電解質材料として好適に使用できる。
1 円筒型固体酸化物形燃料電池
2 燃料極
3 インターコネクタ
4 電解質
5 空気極

Claims (12)

  1. 化学式Li7−xLa12(MはZrおよび/またはHf、3.2<x≦6.6)で表され、立方晶系に属するガーネット型構造の単一相である複合酸化物。
  2. 立方晶系の格子定数aが、13.07Å<a<13.11Åを満たす請求項1に記載の複合酸化物。
  3. 結晶構造がI−43dの空間群である請求項1または2に記載の複合酸化物。
  4. 化学式Li7−xLa12(MはZrおよび/またはHf、6.6<x≦7)で表され、立方晶系に属するガーネット型構造の単一相である複合酸化物。
  5. 立方晶系の格子定数aが、13.07Å<a<13.11Åを満たす請求項4に記載の複合酸化物。
  6. 結晶構造がIa−3dの空間群である請求項4または5に記載の複合酸化物。
  7. 請求項1から6のいずれかに記載の複合酸化物を含有するプロトン伝導体。
  8. 燃料極と、空気極と、請求項7に記載のプロトン伝導体を含有する固定電解質とを有する燃料電池。
  9. 化学式Li7−xLa12(MはZrおよび/またはHf、3.2<x≦7)で表され、立方晶系に属するガーネット型構造の単一相である複合酸化物の製造方法であって、
    化学式Li7−xLa12(MはZrおよび/またはHf、0≦x≦3.2)で表される原料複合酸化物と、ヒドロキシ基またはカルボキシル基を有する化合物を接触させて、前記原料複合酸化物の少なくとも一部のリチウムを、前記ヒドロキシ基またはカルボキシル基を有する化合物の水素と交換する交換工程を有する複合酸化物の製造方法。
  10. 前記ヒドロキシ基またはカルボキシル基を有する化合物が、酸性水溶液に含有されている、またはアルコールである請求項9に記載の複合酸化物の製造方法。
  11. 前記交換工程で、前記原料複合酸化物と、前記ヒドロキシ基またはカルボキシル基を有する化合物を温度80〜220℃で接触させる請求項9または10に記載の複合酸化物の製造方法。
  12. 前記交換工程で、前記原料複合酸化物と、前記ヒドロキシ基またはカルボキシル基を有する化合物を12時間以上接触させる請求項9から11のいずれかに記載の複合酸化物の製造方法。
JP2017536406A 2015-08-21 2016-08-19 プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池 Active JP6505846B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015164093 2015-08-21
JP2015164093 2015-08-21
PCT/JP2016/074243 WO2017033862A1 (ja) 2015-08-21 2016-08-19 プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池

Publications (2)

Publication Number Publication Date
JPWO2017033862A1 JPWO2017033862A1 (ja) 2018-08-09
JP6505846B2 true JP6505846B2 (ja) 2019-04-24

Family

ID=58100289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017536406A Active JP6505846B2 (ja) 2015-08-21 2016-08-19 プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池

Country Status (4)

Country Link
US (1) US10669159B2 (ja)
JP (1) JP6505846B2 (ja)
KR (1) KR102158060B1 (ja)
WO (1) WO2017033862A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969374B2 (ja) * 2017-12-28 2021-11-24 トヨタ自動車株式会社 酸化物電解質焼結体の製造方法、及び、その製造方法に用いるガーネット型イオン伝導性酸化物
CN109809464B (zh) * 2019-02-27 2022-02-08 河南师范大学 一种具有多核嵌套结构的碳酸镧微纳米材料的制备方法
CN114206779A (zh) * 2019-08-06 2022-03-18 罗地亚经营管理公司 制备石榴石型无机材料的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316512B2 (ja) 2010-10-29 2013-10-16 株式会社豊田中央研究所 ガーネット型イオン伝導性酸化物及びその製造方法
US10211481B2 (en) * 2014-11-26 2019-02-19 Corning Incorporated Stabilized solid garnet electrolyte and methods thereof

Also Published As

Publication number Publication date
KR20180039166A (ko) 2018-04-17
WO2017033862A1 (ja) 2017-03-02
US20180282174A1 (en) 2018-10-04
KR102158060B1 (ko) 2020-09-21
JPWO2017033862A1 (ja) 2018-08-09
US10669159B2 (en) 2020-06-02

Similar Documents

Publication Publication Date Title
Zhang et al. High-performance SmBaMn2O5+ δ electrode for symmetrical solid oxide fuel cell
Philippeau et al. Comparative study of electrochemical properties of mixed conducting Ln2NiO4+ δ (Ln= La, Pr and Nd) and La0. 6Sr0. 4Fe0. 8Co0. 2O3− δ as SOFC cathodes associated to Ce0. 9Gd0. 1O2− δ, La0. 8Sr0. 2Ga0. 8Mg0. 2O3− δ and La9Sr1Si6O26. 5 electrolytes
Shuk et al. Hydrothermal synthesis and properties of mixed conductors based on Ce1− xPrxO2− δ solid solutions
Jiang et al. Evaluation of Pr1+ xBa1-xCo2O5+ δ (x= 0-0.30) as cathode materials for solid-oxide fuel cells
Raza et al. Study on calcium and samarium co-doped ceria based nanocomposite electrolytes
Liu et al. Improving the performance of the Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for proton-conducting SOFCs by microwave sintering
JP6505846B2 (ja) プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池
Ortiz-Vitoriano et al. Nanoparticles of La0. 8Ca0. 2Fe0. 8Ni0. 2O3− δ perovskite for solid oxide fuel cell application
Hanif et al. Mo-doped BaCe0· 9Y0· 1O3-δ proton-conducting electrolyte at intermediate temperature SOFCs. Part I: microstructure and electrochemical properties
Lenka et al. Synthesis and characterization of GdCoO3 as a potential SOFC cathode material
JP7285013B2 (ja) 複合酸化物、並びにそれを電解質材料に使用した電気化学デバイス
Ding et al. A comparative study of NiO–Ce0. 9Gd0. 1O1. 95 nanocomposite powders synthesized by hydroxide and oxalate co-precipitation methods
Moura et al. Cobalt-free perovskite Pr0. 5Sr0. 5Fe1− xCuxO3− δ (PSFC) as a cathode material for intermediate temperature solid oxide fuel cells
JP5969632B2 (ja) ゾルゲル法による中低温型の固体酸化物燃料電池用の空気極粉末の合成方法
JP6505847B2 (ja) プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池
RU2749669C1 (ru) Электродный материал для электрохимических устройств
Wu et al. Rapid gas-phase synthesis of the perovskite-type BaCe0. 7Zr0. 1Y0. 1Yb0. 1O3− δ proton-conducting nanocrystalline electrolyte for intermediate-temperature solid oxide fuel cells
Osinkin et al. Transport and electrochemical properties of Sr 2 Fe 1.5 Mo 0.5 O 6+ Ce 0.8 Sm 0.2 O 1.9 composite as promising anode for solid oxide fuel cells
Zhou et al. Synthesis and electrocatalytic performance of La0. 3Ce0. 1Sr0. 5Ba0. 1TiO3 anode catalyst for solid oxide fuel cells
Dueñas et al. Synthesis and evaluation of the A-Site deficient perovskite La0. 65Sr0. 3Cr0. 85Ni0. 15O3-δ as fuel electrode for high temperature Co-electrolysis enhanced by in situ exsolution of Ni nanoparticles
Bedarkova et al. Novel co-doped protonic conductors BaLa1. 9Sr0. 1In1. 95M0. 05O6. 925 with layered perovskite structure
KR20160038833A (ko) 전해질막, 이를 포함하는 연료 전지, 상기 연료 전지를 포함하는 전지 모듈 및 상기 전해질막의 제조방법
RU2779630C1 (ru) Электродный материал на основе никелата празеодима для электрохимических устройств
Macedo et al. Electrical properties of lanthanum silicate apatite electrolytes prepared by an innovative chemical route
US9293230B2 (en) Method for synthesis of nano-crystalline metal oxide powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190327

R150 Certificate of patent or registration of utility model

Ref document number: 6505846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250