JP6504546B2 - 推定装置および推定方法 - Google Patents

推定装置および推定方法 Download PDF

Info

Publication number
JP6504546B2
JP6504546B2 JP2016112251A JP2016112251A JP6504546B2 JP 6504546 B2 JP6504546 B2 JP 6504546B2 JP 2016112251 A JP2016112251 A JP 2016112251A JP 2016112251 A JP2016112251 A JP 2016112251A JP 6504546 B2 JP6504546 B2 JP 6504546B2
Authority
JP
Japan
Prior art keywords
estimation
difference information
complex transfer
moving body
antenna elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016112251A
Other languages
English (en)
Other versions
JP2017129558A (ja
Inventor
尚樹 本間
尚樹 本間
大 笹川
大 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to CN201611048872.0A priority Critical patent/CN107064923B/zh
Priority to US15/391,832 priority patent/US10371808B2/en
Priority to EP17150142.2A priority patent/EP3193189B1/en
Publication of JP2017129558A publication Critical patent/JP2017129558A/ja
Application granted granted Critical
Publication of JP6504546B2 publication Critical patent/JP6504546B2/ja
Priority to US16/452,021 priority patent/US10663573B2/en
Priority to US16/843,576 priority patent/US11150336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/62Sense-of-movement determination

Description

本発明は、無線信号を利用した動体の方向や位置を推定する推定装置および推定方法に関する。
人物の位置などを知る方法として、無線信号を利用する方法が検討されている(例えば、特許文献1〜3参照)。特許文献1にはドップラーセンサを用いた生体検出の方法、特許文献2にはドップラーセンサとフィルタとを用いた人の動作や生体情報の検知方法が開示されている。特許文献3には、フーリエ変換を用いてドップラーシフトを含む成分を解析することで検出対象となる人物の位置や状態を知ることができることが開示されている。
特表2014−512526号公報 国際公開第2014/141519号 特開2015−117972号公報 特開2015−072173号公報 特開2015−119770号公報 国際公開第2012/125100号 特開2014−215200号公報 特開2015−117961号公報 国際公開第2012/115220号
F. Adib, Z. Kabelac, D. Katabi, and R. Miller, "3D tracking via body radio reflections", 11th USENIX Symp. Net. Systems Design \& Impl. (USENIX NSDI‘14), Apr. 2014. Dai Sasakawa, Keita Konno, Naoki Honma, Kentaro Nishimori, Nobuyasu Takemura, Tsutomu Mitsui, "Fast Estimation Algorithm for Living Body Radar,"2014 International Symposium on Antennas and Propagation (ISAP 2014),FR3D,pp.583-584,Dec.2014
しかしながら、特許文献1および2の方法では、人物の在、不在は検知可能だが、人物の存在する方向や位置を検出することはできない問題がある。
また、特許文献3の方法では、人物などの生体が存在する方向や生体が存在する位置を短時間かつ高精度に検出することは困難であるという問題がある。生体活動由来のドップラー効果による周波数変化は極めて小さく、フーリエ変換によってこの周波数変化を観測するためには、生体が静止した状態で長時間(例えば数十秒)の観測が必須であるからである。また、一般的に、生体は数十秒にわたって同じ姿勢や位置を継続することはないからである。
本発明は、上述の事情を鑑みてなされたもので、無線信号を利用して動体が存在する方向等の推定を、短時間かつ高精度に行うことができる推定装置および推定方法を提供することを目的とする。
上記目的を達成するために、本発明の一形態に係る推定装置は、動体の存在する方向を推定する推定装置であって、1個の送信アンテナ素子およびN個(Nは2以上の自然数)の受信アンテナ素子からなるアンテナ部と、前記N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、前記送信アンテナ素子から送信され、動体によって反射された反射信号を含む受信信号を、前記動体の活動に由来する周期に相当する第1期間について観測する受信部と、前記第1期間に観測された複数の前記受信信号から、前記送信アンテナ素子と前記N個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する複素伝達関数算出部と、(i)算出された複数の前記複素伝達関数を前記複数の受信信号が観測された順である時系列に逐次記録し、(ii)当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってN次元のベクトルにより表現される差分情報を2以上算出する差分情報算出部と、当該2以上算出された差分情報を用いて、前記推定装置を方向の基準として前記動体の存在する方向を推定する方向推定処理部と、を備える。
また、上記目的を達成するために、本発明の一形態に係る推定装置は、動体の存在する位置を推定する推定装置であって、M個(Mは2以上の自然数)の送信アンテナ素子からなる送信アンテナ部と、N個(Nは2以上の自然数)の受信アンテナ素子からなる受信アンテナ部と、前記N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、前記M個の送信アンテナ素子のそれぞれから送信され、動体によって反射された反射信号を含む受信信号を、当該動体の活動に由来する周期に相当する第1期間について観測する受信部と、前記第1期間に観測された複数の前記受信信号から、前記M個の送信アンテナ素子のそれぞれと前記N個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する複素伝達関数算出部と、(i)算出された複数の前記複素伝達関数を、前記複数の受信信号が観測された順である時系列に逐次記録し、(ii)当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってM×N次元の行列により表現される差分情報を2以上算出する差分情報算出部と、当該2以上の差分情報を用いて、前記動体の存在する位置を推定する位置推定処理部と、を備える。
本発明によれば、無線信号を利用して動体が存在する方向等の推定を、短時間かつ高精度に行うことができる。
図1は、実施の形態1における推定装置の構成の一例を示すブロック図である。 図2は、図1に示す推定装置の検出対象の一例を示す図である。 図3は、図1に示すアンテナ部における信号波の伝達の様子を概念的に示す図である。 図4は、実施の形態1における差分情報を計算する際に用いられる所定間隔の2つの時点の一例を示す概念図である。 図5は、図4とは別の所定間隔の2つの時点の一例を示す概念図である。 図6は、実施の形態1における推定装置の推定処理を示すフローチャートである。 図7は、実施の形態2における推定装置の構成の一例を示すブロック図である。 図8は、図7に示す推定装置の検出対象の一例を示す図である。 図9は、実施の形態2における推定装置の推定処理を示すフローチャートである。 図10は、実施の形態2に係る推定方法を用いた実験の概念を示す図である。 図11は、実施の形態2に係る推定方法を用いた実験結果を示す図である。 図12は、実施の形態2に係る推定方法を用いた別の実験結果を示す図である。
(本発明の基礎となった知見)
人物の位置などを知る方法として、無線信号を利用する方法が検討されている。
例えば特許文献1には、ドップラーセンサを用いた生体検出の方法、特許文献2にはドップラーセンサとフィルタとを用いた人の動作や生体情報の検知方法が開示されている。
また、例えば特許文献3には、所定の領域に無線信号を送信し、検出対象で反射した無線信号を複数のアンテナで受信して、送受信アンテナ間の複素伝達関数を推定することが開示されている。複素伝達関数は、入力と出力の関係を表す複素数の関数であり、ここでは、送受信アンテナ間の伝搬特性を表すものである。この複素伝達関数の要素の数は送信アンテナ数および受信アンテナ数の積と等しい。
特許文献3には、さらに、フーリエ変換を用いてドップラーシフトを含む成分を解析することで検出対象となる人物の位置や状態を知ることができることが開示されている。より具体的には、複素伝達関数の要素の時間変化を記録し、その時間波形をフーリエ変換する。人物などの生体は呼吸や心拍などの生体活動は、反射波に僅かなドップラー効果を与える。したがって、ドップラーシフトを含む成分は人物の影響を含んでいる。一方、ドップラーシフトの無い成分は人物の影響を受けていない、つまり固定物からの反射波や送受信アンテナ間の直接波に対応する。以上のことから、特許文献3では、ドップラーシフトを含む成分を解析することで検出対象となる人物の位置や状態を知ることができることが開示されている。
同様に、例えば特許文献4〜特許文献9では、観測された信号をフーリエ変換することによって、人物(生体)に由来するドップラー成分を取り出す。そして、これを解析することによって生体の位置や生体の心拍や呼吸などの状態を感知することが開示されている。
また、例えば非特許文献1には、フーリエ変換を行わずに人体方向や位置を検出する方法が開示されている。非特許文献1では、事前に無人状態の伝搬応答を測定し、無人状態と有人状態との差分は人物によって生じたものと考えて差分成分を解析することで人物位置を推定する。より具体的には、非特許文献1に開示される位置推定方法では、1GHz以上の広い帯域の周波数応答を観測し、抽出された人物由来の反射波の伝搬時間を計算することで、異なる場所に置かれた複数アンテナからの距離を推定し、推定した距離を用いて人物位置を推定する。非特許文献1では、有人時の複素伝搬チャネルの時間応答を観測し、異なる時間の複素伝搬チャネルどうしを減算することで、壁や什器等の固定物からの反射成分が除去された人物由来の反射波だけを抽出する。
また、例えば非特許文献2および特許文献6では、有人時の複素伝達関数から不要な成分を除去し、生体の方向を推定する方法が開示されている。より具体的には、固定物からの反射波や送受信アンテナ間の直接波を複素伝達関数から除去するため、予め無人時の複素伝達関数を測定する。そして、有人時の複素伝達関数が固定物からの反射波や送受信アンテナ間の直接波を含むことから、有人時の複素伝達関数から無人時の複素伝達関数を減算することで不要な成分を除去する。
しかしながら、上述した特許文献1および2の方法では、人物の在、不在は検知可能であるが、人物の存在する方向や位置を検出することはできない。
また、上述した特許文献3の方法では、フーリエ変換を行うために、数十秒の観測時間が必要である。そのため、人物の方向や位置検出を短時間かつ高精度に行うことは困難である。生体活動由来のドップラー効果による周波数変化は極めて小さく、フーリエ変換によってこの周波数変化を観測するためには、生体が静止した状態で長時間(例えば数十秒)の観測が必須であるからである。一般的に、生体は数十秒にわたって同じ姿勢や位置を継続することはないため、観測時間を短縮すると、フーリエ変換によって正しく生体由来の信号を抽出できなくなり、人物の方向や位置の推定精度が低下する。
この問題すなわち上述した特許文献3の問題は、特許文献4〜特許文献9に示される発明でも同様に生じうる。
また、特許文献6および非特許文献1〜2の方法では、無人時の複素伝達関数を予め測定しておく必要があるという問題がある。家具などの什器等が移動するなど伝搬環境自体に変化が生ずると、人物位置を推定できなくなるからである。人物が生活する環境への適用を考えると、椅子や机等は頻繁に移動することが想定されるため、上述した特許文献6および非特許文献1〜2の方法を人物の生活環境に適用することは困難である。
このように、従来技術では、無線信号を利用して動体が存在する方向等の推定を、短時間かつ高精度に行うことはできないという問題がある。
また、近年では、生体が呼吸や心拍等の何らかの生体活動によって電波にドップラーシフトを生じさせるという特徴を利用し、多重波が存在する電波伝搬環境において、生体の存在方向等を推定するレーダが検討されている。つまり、生体に電波を照射し、受信信号のフーリエ変換によって生体を経由しない信号成分を除去し、生体から反射する電波の到来方向を推定することで生体方向を推定するレーダが検討されている。
しかしながら、上述したように、フーリエ変換を用いて、生体方向の推定を短時間かつ高精度に行うことはできない。
そこで、発明者らは、このことを鑑み、無線信号を利用して動体が存在する方向等の推定を、短時間かつ高精度に行うことができる推定装置等を想到した。
すなわち、本発明の一態様に係る推定装置は、動体の存在する方向を推定する推定装置であって、1個の送信アンテナ素子およびN個(Nは2以上の自然数)の受信アンテナ素子からなるアンテナ部と、前記N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、前記送信アンテナ素子から送信され、動体によって反射された反射信号を含む受信信号を、前記動体の活動に由来する周期に相当する第1期間について観測する受信部と、前記第1期間に観測された複数の前記受信信号から、前記送信アンテナ素子と前記N個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する複素伝達関数算出部と、(i)算出された複数の前記複素伝達関数を前記複数の受信信号が観測された順である時系列に逐次記録し、(ii)当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってN次元のベクトルにより表現される差分情報を2以上算出する差分情報算出部と、当該2以上算出された差分情報を用いて、前記推定装置を方向の基準として前記動体の存在する方向を推定する方向推定処理部と、を備える。
この構成により、動体の活動に由来する周期に相当する短時間の観測時間により、高い精度で動体の存在する方向を推定することが可能となる。それにより、無線信号を利用して動体が存在する方向の推定を、短時間かつ高精度に行うことができる。
ここで、例えば、前記2以上の差分情報それぞれにおける前記所定間隔の2つの時点のうちの始点は、異なる時刻である。
これにより、2以上の差分情報の平均を取得することで瞬間的なノイズの影響を弱めることができるので、方向推定の精度をより向上させることができる。
また、例えば、前記動体は、生体であるとしてもよい。
また、例えば、前記周期は、前記生体の呼吸、心拍、体動の少なくとも一つを含む生体由来の周期であり、前記所定間隔は当該生体由来の周期の略半分であるとしてもよい。
これにより、呼吸、心拍、体動の少なくとも一つの周期に相当する第1期間の観測から、生体の存在する方向を推定することが可能となる。
また、例えば、前記方向推定処理部は、前記2以上算出された差分情報それぞれから、当該差分情報における所定間隔の2つの時点である差分時間の相関行列である瞬時相関行列を算出し、算出した当該瞬時相関行列を用いて、所定の到来方向推定手法により、前記反射信号の到来方向を推定し、推定した前記反射信号の到来方向に基づいて、前記動体の存在する方向を推定するとしてもよい。
ここで、例えば、前記所定の到来方向推定手法は、MUSIC(MUltiple SIgnal Classification)アルゴリズムに基づく推定手法である。
また、本発明の一態様に係る推定装置は、動体の存在する位置を推定する推定装置であって、M個(Mは2以上の自然数)の送信アンテナ素子からなる送信アンテナ部と、N個(Nは2以上の自然数)の受信アンテナ素子からなる受信アンテナ部と、前記N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、前記M個の送信アンテナ素子のそれぞれから送信され、動体によって反射された反射信号を含む受信信号を、当該動体の活動に由来する周期に相当する第1期間について観測する受信部と、前記第1期間に観測された複数の前記受信信号から、前記M個の送信アンテナ素子のそれぞれと前記N個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する複素伝達関数算出部と、(i)算出された複数の前記複素伝達関数を、前記複数の受信信号が観測された順である時系列に逐次記録し、(ii)当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってM×N次元の行列により表現される差分情報を2以上算出する差分情報算出部と、当該2以上の差分情報を用いて、前記動体の存在する位置を推定する位置推定処理部と、を備える。
この構成により、動体の活動に由来する周期に相当する短時間の観測時間により、高い精度で動体の存在する位置を推定することが可能となる。それにより、無線信号を利用して動体が存在する位置の推定を、短時間かつ高精度に行うことができる。
ここで、例えば、前記2以上の差分情報それぞれにおける前記所定間隔の2つの時点のうちの始点は、異なる時刻である。
これにより、2以上の差分情報の平均を取得することで瞬間的なノイズの影響を弱めることができるので、位置推定の精度をより向上させることができる。
また、例えば、前記動体は、生体であるとしてもよい。
また、例えば、前記周期は、前記生体の呼吸、心拍、体動の少なくとも一つを含む生体由来の周期であり、前記所定間隔は、当該生体由来の周期の略半分であるとしてもよい。
これにより、2以上の差分情報の平均を取得することができるので、瞬間的なノイズの影響を弱めることにより位置推定の精度をより向上させることができる。
また、例えば、前記位置推定処理部は、前記2以上算出された差分情報それぞれから、当該差分情報における所定間隔の2つの時点である差分時間の相関行列である瞬時相関行列を算出し、算出した当該瞬時相関行列を用いて、所定の到来方向推定手法により、前記送信アンテナ部から前記動体に送信された送信信号の送信方向と、前記反射信号の到来方向とを推定し、前記送信信号の前記送信方向と前記反射信号の前記到来方向とに基づき、前記動体の存在する位置を推定するとしてもよい。
ここで、例えば、前記所定の到来方向推定手法は、MUSICアルゴリズムに基づく推定手法である。
なお、本発明は、装置として実現するだけでなく、このような装置が備える処理手段を備える集積回路として実現したり、その装置を構成する処理手段をステップとする方法として実現したり、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを示す情報、データまたは信号として実現したりすることもできる。そして、それらプログラム、情報、データおよび信号は、CD−ROM等の記録媒体やインターネット等の通信媒体を介して配信してもよい。
以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(実施の形態1)
以下では、図面を参照しながら、実施の形態1における推定装置10が、所定期間の異なる2つの時点に観測された複素伝達関数の差分情報を用いて、検出対象である動体(生体)の方向を推定することについて説明する。
[推定装置10の構成]
図1は、実施の形態1における推定装置10の構成の一例を示すブロック図である。図2は、図1に示す推定装置10の検出対象の一例を示す図である。
図1に示す推定装置10は、アンテナ部11と、送信機12と、受信部13と、複素伝達関数算出部14と、差分情報算出部15と、方向推定処理部16とを備え、動体の存在する方向を推定する。
[送信機12]
送信機12は、生体50の方向を推定するために用いる高周波の信号を生成する。例えば、図2に示すように、送信機12は、生成した信号(送信波)を、アンテナ部11が備える1個の送信アンテナ素子から送信する。
[アンテナ部11]
アンテナ部11は、1個の送信アンテナ素子およびN個(Nは2以上の自然数)の受信アンテナ素子からなる。本実施の形態では、アンテナ部11は、送信アンテナ部11Aと受信アンテナ部11Bとからなり、送信アンテナ部11Aは、1素子の送信アンテナである送信アンテナ素子とMR個の受信アンテナ素子(受信アレーアンテナ)とを備える。
上述したように、1個の送信アンテナ素子は、送信機12が生成した信号(送信波)を送信する。そして、例えば図2に示すように、MR個の受信アンテナ素子のそれぞれは、当該1個の送信アンテナ素子から送信され、生体50によって反射された信号(受信信号)を受信する。
[受信部13]
受信部13は、N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、送信アンテナ素子から送信され、動体によって反射された反射信号を含む受信信号を、動体の活動に由来する周期に相当する第1期間について観測する。ここで、動体は、図2に示すような生体50である。また、動体の活動に由来する周期は、生体50の呼吸、心拍、体動の少なくとも一つを含む生体由来の周期(生体変動周期)である。
本実施の形態では、受信部13は、N個(MR個)の受信機(受信機13−1〜受信機13−N)からなる。受信機13−1〜受信機13−Nのそれぞれは、対応する受信アンテナ素子で受信された高周波の信号を、信号処理が可能な低周波の信号に変換する。受信部13は、少なくとも第1期間、受信機13−1〜受信機13−Nのそれぞれが変換した低周波の信号を、複素伝達関数算出部14に伝達する。
[複素伝達関数算出部14]
複素伝達関数算出部14は、第1期間に観測された複数の受信信号から、送信アンテナ素子とN個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する。
本実施の形態では、複素伝達関数算出部14は、受信部13から伝達された低周波の信号から、1個の送信アンテナ素子とMR個の受信アンテナ素子との間の伝搬特性を表す複素伝達関数を算出する。以下、図3を用いてより具体的に説明する。
図3は、図1に示すアンテナ部11における信号波の伝達の様子を概念的に示す図である。図3に示すように、送信アンテナ部11Aの送信アンテナ素子から送信される送信波は、生体50によって反射され、受信アンテナ部11Bの受信アレーアンテナに到達する。ここで、受信アレーアンテナは、MR個の受信アンテナ素子からなり、素子間隔dのリニアアレーである。また、受信アレーアンテナの正面から見た生体50の方向をθとする。生体50と受信アレーアンテナとの距離は十分に大きく、受信アレーアンテナに到来する生体由来の反射波は平面波と見なせるものとする。
この場合、複素伝達関数算出部14は、受信アレーアンテナを使って観測された複素受信信号ベクトル
Figure 0006504546
から、送信アンテナ素子と受信アレーアンテナとの間の伝搬特性を表す複素伝達関数ベクトルを算出することができる。複素伝達関数ベクトルは、例えば、
Figure 0006504546
により算出できる。ここで、sは複素送信信号であり、既知であるものとする。
[差分情報算出部15]
差分情報算出部15は、算出された複数の複素伝達関数を複数の受信信号が観測された順である時系列に逐次記録する。そして、差分情報算出部15は、当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってN次元のベクトルにより表現される差分情報を2以上算出する。ここで、2以上の差分情報それぞれにおける所定間隔の2つの時点のうちの始点は、異なる時刻である。また、所定間隔は生体50由来の周期(生体変動周期)の略半分であってもよい。
図4は、実施の形態1における差分情報を計算する際に用いられる所定間隔の2つの時点の一例を示す概念図である。図5は、図4とは別の所定間隔の2つの時点の一例を示す概念図である。図4において、縦軸は変動チャネル値を示し、横軸は時間を示す。また、Tmeasは受信信号の観測時間を示す。この観測時間Tmeasは上述した第1期間である。観測時間Tmeasは、例えば生体の呼吸、心拍、体動の少なくとも一つを含む生体変動最大周期すなわち生体変動に由来する最大の周期に相当する。図4に示す例では、観測時間を、生体50の呼吸活動の周期に相当する約3秒としている。
図4に示すような観測時間Tmeasに受信部13で観測された受信信号から算出された複数の複素伝達関数すなわち時変動チャネルを逐次記録した場合、観測時間Tmeasは生体変動最大周期に相当するので、観測時間Tmeasに生体50の変動の最大値と最小値とが必ず含まれることになる。ここで、生体変動最大周期をTmax、生体変動に由来する最小の周期(生体変動最小周期)をTminとすると、これらの半周期であるTmax/2、Tmin/2の時間差分は生体50の変動に対応する時間差となる。そのため、複素伝達関数の差分情報を計算する際の所定間隔TをTmax/2≦T≦Tmin/2の範囲とできる。このように、所定間隔Tを生体50由来の周期(生体変動周期)の略半分としても、生体50の1周期分の時変動チャネルから生体由来の成分を抽出することができる。
また、図4に示す例では、差分情報算出部15は、例えば、時間tと時間t+Tとの異なる時間、すなわち所定間隔Tの2つの時点での複素伝達関数の差分を示す差分情報を算出する。そして、差分情報算出部15は、差分情報の算出を、△tずつずらした時間を始点とした所定間隔Tで複数回行う。すなわち、差分情報算出部15は、このような差分情報の算出をさらに異なる2つの時点の所定間隔Tで(異なる複素伝達関数の組に対して)実施する。ここで、差分情報を算出するのは、生体50以外の固定物を経由する複素伝達関数成分は除去され、生体50のみを経由する複素伝達関数成分だけが残るからである。
本実施の形態では、受信アンテナ素子は複数(MR個)あるため受信アンテナ部11Bに対応する複素伝達関数の差分値(差分情報)の数も複数となる。これらをまとめて複素差分チャネルベクトルと定義する。受信アンテナ素子の数をMRとすると複素差分チャネルベクトルは、
Figure 0006504546
と表せ、
Figure 0006504546
である。また、l、mは測定番号を表す正の整数であり、サンプル時間である。
Figure 0006504546
は転置を表す。なお、図4に示す例では、Nはチャネル観測回数であり、CtやCt+Tなど時間間隔Tにおける2つの時点を含む台形の頂点(演算に用いたデータ)の数に対応する。観測時間Tmeasが3秒で、100回測定(観測)する場合に、N=300となる。
複素伝達関数算出部14が算出した複素伝達関数ベクトルには、例えば図3に示すように、直接波や固定物由来の反射波など、生体50を経由しない反射波が含まれている。一方、複素差分チャネルベクトルには、2つの時点における複素伝達関数ベクトルの差分演算によって生体50を経由しない全ての反射波が消去され、生体由来の反射波のみが含まれることになる。この差分演算を行うと生体50由来の反射波の複素伝達関数も減算されるというデメリットもあるが、呼吸や心拍等の生体活動によって生体50経由の反射波の振幅や位相は常に時変動しているため、複素差分チャネルベクトルは完全に0とはならない。つまり、異なる2つの時点の複素伝達関数ベクトルどうしを減算すると、生体50を経由する複素伝達関数ベクトルに係数をかけたものが残ることになる。
なお、差分情報算出部15が複数の組(異なる2つの時点の複素伝達関数)に対して差分情報の算出を行うのは、後述するように、複数回の平均を取ることにより、瞬間的なノイズの影響を弱めて方向推定の精度を向上させるためである。なお、差分情報の算出を行う際の所定間隔Tは、図4に示すように固定値ではなく、任意の所定間隔すなわち、例えば図5のように時間t´と時間t´+T´などの2つの時点における所定間隔T´であってもよい。
[方向推定処理部16]
方向推定処理部16は、当該2以上算出された差分情報を用いて、推定装置10を方向の基準として動体の存在する方向を推定する。より具体的には、方向推定処理部16は、2以上算出された差分情報それぞれから、当該差分情報における所定間隔の2つの時点である差分時間の相関行列である瞬時相関行列を算出し、算出した当該瞬時相関行列を用いて、所定の到来方向推定手法により、反射信号の到来方向を推定する。そして、推定した反射信号の到来方向に基づいて、動体の存在する方向を推定する。ここで、所定の到来方向推定手法は、MUSIC(MUltiple SIgnal Classification)アルゴリズムに基づく推定手法である。
本実施の形態では、方向推定処理部16は、差分情報算出部15が複数の差分情報として算出した複素差分チャネルベクトルから(式1)に示す相関行列(以下、「瞬時相関行列」と称する)を算出する。所定間隔の2つの時点である差分時間は、瞬時であるから、このように称する。
Figure 0006504546
、ここで、
Figure 0006504546
は、複素共役転置を表す。
また、方向推定処理部16は、さらにこの瞬時相関行列を(式2)に示すように平均(平均演算)するとしてもよい。上述したように、これにより、瞬間的なノイズの影響を弱めて方向推定の精度を向上させることができるからである。
Figure 0006504546
ここで、(式1)に示す瞬時相関行列のランクは1である。この瞬時相関行列は、4x1のベクトルを4x4の行列にしたものであり、1つの行成分を整数倍した行が増えた行列に過ぎない。そのため、連立方程式は解けない、つまり、ランク1である。
しかし、瞬時相関行列の平均演算によって相関行列のランクを回復させることが可能である。つまり、(式1)を(式2)のように平均化することで、固有値(≒ランク)を増やすことができるので、解ける変数(ターゲット)を増やせる。よって、(式2)は固有値が増えており、推定精度を向上させることができる。そして、後述するが、複数の到来波の同時推定が可能になる。なお、平均演算を利用して精度向上を図ることは、後述のMUSIC法でよく用いられる手段であるが、通常周波数成分で行う。一方、本実施の形態では、時間方向で平均化している点で異なる。
このように、複素伝達関数をある期間で時系列的に記録し、その記録した複数の複素伝達関数(全て)を利用することで、観測期間が比較的短い場合(例えば数秒)でも推定精度を向上できるという効果が得られる。
方向推定処理部16は、以上のように算出された瞬時相関行列を用いて反射信号の到来方向推定を行うことができる。
以下、複素差分チャネルベクトルから求めた瞬時相関行列を用いて方向推定を行う方法について説明する。ここではMUSICアルゴリズムに基づく推定法について説明する。
(式2)に示す瞬時相関行列を固有値分解すると、
Figure 0006504546

Figure 0006504546

Figure 0006504546
と書ける。
ここで、
Figure 0006504546
は、要素数がMRである固有ベクトル、
Figure 0006504546
は固有ベクトルに対応する固有値であり、
Figure 0006504546
の順であるものとする。Lは到来波の数つまり検出対象の生体数である。
また、受信アレーアンテナのステアリングベクトル(方向ベクトル)は、
Figure 0006504546
と定義され、これにMUSIC法を適用する。ここで、kは波数である。
すなわち、方向推定処理部16は、MUSIC法に基づき、受信アレーアンテナのステアリングベクトルを用いて、下記で示される評価関数Pmusic(θ)の極大値を探索することで到来波の方向を推定することができる。
Figure 0006504546
方向推定処理部16は、このように瞬時相関行列を固有値分解し、MUSIC法にかけることで反射信号の到来方向を推定できるので、推定した反射信号の到来方向から生体50の存在する方向を推定することができる。推定した反射信号の到来方向と推定装置10を基準にした生体50の存在する方向とは略一致するからである。
[推定装置10の動作]
以上のよう構成された推定装置10の推定処理の動作について説明する。図6は、実施の形態1における推定装置10の推定処理を示すフローチャートである。
まず、推定装置10は、1個の送信アンテナ素子から送信され、生体50によって反射された反射信号を含む受信信号を、生体50の活動に由来する周期に相当する第1期間について観測する(S10)。
次に、推定装置10は、第1期間に観測された複数の受信信号から、1個の送信アンテナ素子とMR個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する(S20)。詳細は上述した通りであるため、ここでの説明は省略する。以下も同様である。
次に、推定装置10は、当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報を2以上算出する(S30)。
そして、推定装置10は、2以上の差分情報を用いて、生体50の存在する方向を推定する(S40)。
[効果等]
本実施の形態の推定装置10および推定方法によれば、上述した差分情報を算出することで、フーリエ変換を使わず、フーリエ変換を使ったときよりも早い処理時間で生体由来の成分のみが無線信号内に残る信号処理を行うことができる。また、複数の差分情報を用いることで、推定精度の向上を図ることができる。したがって、動体の活動に由来する周期に相当する短時間の観測時間により、高い精度で動体の存在する方向を推定することが可能となる。それにより、無線信号を利用して動体が存在する方向の推定を、短時間かつ高精度に行うことができる。
(実施の形態2)
実施の形態1では、所定期間の異なる2つの時点に観測された複素伝達関数の差分情報を用いて、検出対象である動体(生体)の存在する方向を推定する推定装置10およびその推定方法について説明した。実施の形態2では、同様の差分情報を用いてから検出対象である動体(生体)の位置を推定する推定装置20およびその推定方法について説明する。
[推定装置20の構成]
図7は、実施の形態2における推定装置20の構成の一例を示すブロック図である。図8は、図7に示す推定装置20の検出対象の一例を示す図である。図1および図2と同様の要素には同一の符号を付しており、詳細な説明は省略する。
図7に示す推定装置20は、送信アンテナ部21Aと、受信アンテナ部21Bと、送信部22と、受信部23と、複素伝達関数算出部24と、差分情報算出部25と、位置推定処理部26とを備え、動体の位置を推定する。図7に示す推定装置20は、図1に示す推定装置10と比較して、少なくとも送信アンテナ素子の数が異なり、それにより、動体の位置を推定することができる。
[送信部22]
送信部22は、生体50の方向を推定するために用いる高周波の信号を生成する。例えば、図8に示すように、送信部22は、生成した信号(送信波)を、送信アンテナ部21Aが備えるMT個の送信アンテナ素子(送信アレーアンテナ)から送信する。
[送信アンテナ部21A]
送信アンテナ部21Aは、M個(Mは2以上の自然数)の送信アンテナ素子からなる。本実施の形態では、送信アンテナ部21Aは、MT個の送信アンテナ素子を備える。上述したように、MT個の送信アンテナ素子は、送信部22が生成した信号(送信波)を送信する。
[受信アンテナ部21B]
受信アンテナ部21Bは、N個(Nは2以上の自然数)の受信アンテナ素子(受信アレーアンテナ)からなる。本実施の形態では、実施の形態1と同様に、受信アンテナ部21Bは、MR個の受信アンテナ素子(受信アレーアンテナ)を備える。そして、例えば図8に示すように、MR個の受信アンテナ素子のそれぞれは、当該MT個の送信アンテナ素子(送信アレーアンテナ)から送信された信号は、生体50によって反射された信号(受信信号)を受信する。
[受信部23]
受信部23は、N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、M個の送信アンテナ素子のそれぞれから送信され、動体によって反射された反射信号を含む受信信号を、当該動体の活動に由来する周期に相当する第1期間について観測する。ここで、動体は、図8に示すような生体50である。動体の活動に由来する周期に相当する。また、動体の活動に由来する周期は、生体50の呼吸、心拍、体動の少なくとも一つを含む生体由来の周期(生体変動周期)である。
本実施の形態では、受信部23は、MR個の受信機からなる。MR個の受信機のそれぞれは、対応する受信アンテナ素子で受信された高周波の信号を、信号処理が可能な低周波の信号に変換する。受信部23は、少なくとも第1期間、MR個の受信機のそれぞれが変換した低周波の信号を、複素伝達関数算出部24に伝達する。
[複素伝達関数算出部24]
複素伝達関数算出部24は、第1期間に観測された複数の受信信号ら、M個の送信アンテナ素子とN個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する。
本実施の形態では、複素伝達関数算出部24は、受信部23から伝達された低周波の信号から、MT個の送信アンテナ素子とMR個の受信アンテナ素子との間の伝搬特性を表す複素伝達関数を算出する。以下、図8を用いてより具体的に説明する。
図8において、送信アレーアンテナおよび受信アレーアンテナは共に素子間隔dのリニアアレーとし、送信アレーアンテナおよび受信アレーアンテナそれぞれの正面から見た生体50の方向をθTRとしている。生体と送受信アレーアンテナの距離は、アレーアンテナの開口幅と比べて十分に大きいものと仮定し、送信アレーアンテナから出発および受信アレーアンテナに到来する生体経由の信号は平面波と見なせるものとする。
図8に示すように、送信アンテナ部21AのMT個の送信アンテナ素子(送信アレーアンテナ)から角度θTで送信される送信波は、生体50によって反射され、受信アレーアンテナに角度θRで到達する。
この場合、複素伝達関数算出部24は、受信アレーアンテナを使って観測された複素受信信号ベクトルから複素伝達関数ベクトルを算出することができる。複素伝達関数ベクトルは行列形式となるが実施の形態1と同様に算出できる。なお、算出した複素伝達関数行列には、上述したように、直接波や固定物由来の反射波など、生体50を経由しない反射波が含まれている。
[差分情報算出部25]
差分情報算出部25は、算出された複数の複素伝達関数を、複数の受信信号が観測された順である時系列に逐次記録する。そして、差分情報算出部25は、当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってM×N次元の行列により表現される差分情報を2以上算出する。ここで、2以上の差分情報それぞれにおける所定間隔の2つの時点のうちの始点は、異なる時刻である。また、所定間隔は生体50由来の周期(生体変動周期)の略半分であってもよい。
なお、差分情報を計算する際に用いられる所定間隔の2つの時点については、図4等を用いて実施の形態1で説明した通りであるので、ここでの説明は省略する。
本実施の形態でも、差分情報算出部25は、複素伝達関数算出部24により算出された複素伝達関数のうち所定間隔Tの2つの異なる時点における2つの複素伝達関数の差分を示す差分情報を算出する。また、差分情報算出部25は、差分情報の算出をさらに異なる2つの時点(異なる複素伝達関数の組)に対しても実施する。ここで、差分情報を算出するのは、実施の形態1と同様に、生体50以外の固定物を経由する複素伝達関数成分を除去し、生体50のみを経由する複素伝達関数成分だけが残すためである。
本実施の形態では、送信アンテナ素子と受信アンテナ素子の数は共に複数ある。そのため、送信アンテナ部21A、受信アンテナ部21Bに対応する複素伝達関数の差分値(差分情報)の数は送信アンテナ素子×受信アンテナ素子数(MR×MT)となり、これらをまとめて複素差分チャネル行列H(l,m)と定義する。差分情報算出部25は、差分情報として、次のように表せる複素差分チャネル行列H(l,m)を算出する。この複素差分チャネル行列H(l,m)には、差分演算によって生体50を経由しない全ての反射波が消去されるため、生体50由来の反射波のみが含まれる。
Figure 0006504546
ここで、
Figure 0006504546
である。また、l、mは、測定番号を表す正の整数であり、サンプル時間である。
[位置推定処理部26]
位置推定処理部26は、当該2以上算出された差分情報を用いて、動体の存在する位置を推定する。より具体的には、まず、位置推定処理部26は、2以上算出された差分情報それぞれから、当該差分情報における所定間隔の2つの時点である差分時間の相関行列である瞬時相関行列を算出する。次に、位置推定処理部26は、算出した当該瞬時相関行列を用いて、所定の到来方向推定手法により、送信アンテナ部21Aから動体に送信された送信信号の送信方向と、反射信号の到来方向とを推定する。そして、位置推定処理部26は、推定した送信信号の送信方向と推定した反射信号の到来方向とに基づき、動体の存在する位置を推定する。ここで、所定の到来方向推定手法は、MUSICアルゴリズムに基づく推定手法である。
本実施の形態では、位置推定処理部26は、差分情報算出部25が複数の差分情報として算出した複素差分チャネル行列から瞬時相関行列を算出する。
より具体的には、位置推定処理部26は、差分情報算出部25が算出した上記の複素差分チャネル行列H(l,m)の要素を並び替え、(式3)に示すMRMT×1のベクトルとする複素差分チャネルを算出する。
Figure 0006504546
ここで、vec(・)は行列のベクトルへの変換を意味する。
次に、位置推定処理部26は、この複素差分チャネルベクトルから(式4)に示す瞬時相関行列を算出する。
Figure 0006504546
また、位置推定処理部26は、さらにこの瞬時相関行列を(式5)に示すように平均(平均演算)するとしてもよい。上述したように、これにより、瞬間的なノイズの影響を弱めて方向推定の精度を向上させることができるからである。
Figure 0006504546
ここで、(式4)の瞬時相関行列のランクは1であるが、実施の形態1でも説明したように、瞬時相関行列の平均演算によって相関行列のランクを回復させることが可能である。これによって、推定精度が改善するだけではなく、複数の到来波の同時推定が可能になる。
このように、複素伝達関数をある期間で時系列的に記録し、その記録した複数の複素伝達関数(全て)を利用することで、観測期間が比較的短い場合(例えば数秒)でも推定精度を向上できるという効果が得られる。
位置推定処理部26は、以上のように算出された瞬時相関行列を用いて生体50の位置推定を行うことができる。
次に、複素差分チャネル行列から求めた瞬時相関行列を用いて方向推定を行う方法について説明する。本実施の形態でもMUSICアルゴリズムに基づく推定法について説明する。
(式5)に示す瞬時相関行列を固有値分解すると、
Figure 0006504546

Figure 0006504546

Figure 0006504546
と書ける。
ここで、
Figure 0006504546
は、要素数がMRである固有ベクトル、
Figure 0006504546
は固有ベクトルに対応する固有値であり、
Figure 0006504546
の順であるものとする。Lは到来波の数つまり検出対象の生体数である。
また、送信アレーアンテナのステアリングベクトル(方向ベクトル)は、
Figure 0006504546
、受信アレーアンテナのステアリングベクトル(方向ベクトル)は
Figure 0006504546
と定義される。ここで、kは波数である。さらに、これらのステアリングベクトルを乗算し、
Figure 0006504546
と、送受信アレーアンテナ双方の角度情報を考慮したステアリングベクトルを定義し、これにMUSIC法を適用する。
すなわち、位置推定処理部26は、MUSIC法に基づき、乗算したステアリングベクトルを用いて下記で示される評価関数Pmusic(θ)で極大値を探索することで到来波の方向を推定することができる。
Figure 0006504546
本実施の形態では、二つの角度(θT,θR)について評価関数の極大値の探索を行う必要があるため、2次元の探索処理を実施する。そして、位置推定処理部26は、このようにして得られた二つの角度(θT,θR)から生体50への送信波の送信方向と生体50からの反射波の到来方向を推定し、推定された二つの方向の交点から生体50の位置を推定する。
[推定装置20の動作]
以上のよう構成された推定装置20の推定処理の動作について説明する。図9は、実施の形態2における推定装置20の推定処理を示すフローチャートである。
まず、推定装置20は、MT個の送信アンテナ素子から送信され、生体50によって反射された反射信号を含む受信信号を、生体50の活動に由来する周期に相当する第1期間について観測する(S10A)。
次に、推定装置20は、第1期間に観測された複数の受信信号から、MT個の送信アンテナ素子とMR個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する(S20A)。詳細は上述した通りであるため、ここでの説明は省略する。以下も同様である。
次に、推定装置20は、当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報を2以上算出する(S30A)。
そして、推定装置20は、2以上の差分情報を用いて、生体50の存在する位置を推定する(S40A)。
[効果等]
本実施の形態の推定装置20および推定方法によれば、上述した差分情報を算出することで、フーリエ変換を使わず、フーリエ変換を使ったときよりも早い処理時間で生体由来の成分のみが無線信号内に残る信号処理を行うことができる。また、複数の差分情報を用いることで、推定精度の向上を図ることができる。したがって、動体の活動に由来する周期に相当する短時間の観測時間により、高い精度で動体の存在する方向を推定することが可能となる。それにより、無線信号を利用して動体が存在する位置の推定を、短時間かつ高精度に行うことができる。
ここで、実施の形態2に係る効果を確かめるために実験による評価を行ったので、以下説明する。
図10は、実施の形態2に係る推定方法を用いた実験の概念を示す図である。
図10に示す送信アレーアンテナ(Tx array)と受信アレーアンテナ(Rx array)との双方は、4素子パッチアレーアンテナを用いた4×4MIMO(Multiple Input Multiple Output)構成である。また、送信側にSP4T(Single-Pole-4-Throw)スイッチ、受信側には4系統の受信機を用いた。そして、本実験では、これらの機器を用いてMIMOチャネルの測定を行った。
ここで、送受信アンテナのアレー素子間隔を0.5波長、送受信間距離Dを4.0m、アンテナ高hを人間(Living-Body)の直立時の胸の高さである1.0mに設定した。送信機からは2.47125GHzの無変調連続波(CW:Continuous Wave)が送信され、サンプリング周波数(チャネルの取得速度)は7.0Hz、チャネル測定時間は3.3秒とした。チャネル測定時、被験者以外無人とし、被験者はアンテナ側の壁に対して正面を向いた状態とした。
図11は、実施の形態2に係る推定方法を用いた実験結果を示す図である。図11では、被験者が2人の場合の生体位置推定の結果が示されている。実験時の被験者の立ち位置は、被験者1が(X=1.0m,Y=2.5m)、被験者2が(X=3.0m,Y=2.0m)であった。図11では、実際の被験者の位置が〇印、評価関数の極大値の探索することで推定された被験者の位置が◇印で示されている。図11に示すように、被験者2人の場合においても評価関数の極大値の探索することで推定された被験者の位置は、実際の被験者(生体)の近くに現れている。したがって、実施の形態2に係る推定方法により複数人の生体位置推定が可能であることが分かる。
図12は、実施の形態2に係る推定方法を用いた別の実験結果を示す図である。図12の実線Aには、被験者が2人の場合の生体位置推定を1500回試行したときの位置推定誤差の累積確率分布(CDF:Cumulative Distribution Function)が示されている。なお、図12の点線Bには、本実験条件である3.28秒の時変動チャネルに従来法であるフーリエ変換を用いた生体位置推定法(上記特許文献3)の結果(位置推定誤差の累積確率分布)が比較例として併せて示されている。
図12より、フーリエ変換を用いた比較例の場合のCDF90%値は1.12mであり、実施の形態2に係る推定方法を用いた場合のCDF90%値は0.39mである。したがって、実施の形態2に係る推定方法の方が0.73m精度よく推定できていることが分かる。これにより、本実施の形態によって短い観測時間であっても高い精度で生体位置を推定できることが示された。
以上のように、本発明によれば、所定期間の2つの異なる時点の伝搬チャネルの差分である差分情報を算出することで、フーリエ変換を使わず、フーリエ変換を使ったときよりも早い処理時間で生体由来の成分のみが無線信号内に残る信号処理を行うことができる。また、複数の差分情報を用いることで、推定精度の向上を図ることができる。これにより、動体の活動に由来する周期に相当する短時間の観測時間により、高い精度で動体の存在する方向を推定することが可能となる。それにより、無線信号を利用して動体が存在する方向や位置の推定を、短時間かつ高精度に行うことができる推定装置および推定方法を実現することができる。
以上、本発明の一態様に係る推定装置および推定方法について、実施の形態に基づいて説明したが、本発明は、これらの実施形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施形態に施したもの、あるいは異なる実施形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
例えば、実施の形態1および2では、生体50の方向推定や位置推定を例として説明したが、生体50に限らない。高周波の信号が照射された場合に、その活動によって反射波にドップラー効果を与える種々の動体(機械等)に適用可能である。
また、本発明は、このような特徴的な構成要素を備える、推定装置として実現することができるだけでなく、推定装置に含まれる特徴的な構成要素をステップとする推定方法などとして実現することもできる。また、そのような方法に含まれる特徴的な各ステップをコンピュータに実行させるコンピュータプログラムとして実現することもできる。そして、そのようなコンピュータプログラムを、CD−ROM等のコンピュータで読取可能な非一時的な記録媒体あるいはインターネット等の通信ネットワークを介して流通させることができるのは、言うまでもない。
本発明は、無線信号を利用した動体の方向や位置を推定する推定装置および推定方法に利用でき、特に、生体と機械を含む動体の方向や位置を測定する測定器、動体の方向や位置に応じた制御を行う家電機器、動体の侵入を検知する監視装置などに搭載される推定装置および推定方法に利用できる。
10、20 推定装置
11 アンテナ部
11A、21A 送信アンテナ部
11B、21B 受信アンテナ部
12 送信機
13、23 受信部
14、24 複素伝達関数算出部
15、25 差分情報算出部
16 方向推定処理部
22 送信部
26 位置推定処理部
50 生体

Claims (14)

  1. 動体の存在する方向を推定する推定装置であって、
    1個の送信アンテナ素子およびN個(Nは2以上の自然数)の受信アンテナ素子からなるアンテナ部と、
    前記N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、前記送信アンテナ素子から送信され、動体によって反射された反射信号を含む受信信号を、前記動体の活動に由来する周期に相当する第1期間について観測する受信部と、
    前記第1期間に観測された複数の前記受信信号から、前記送信アンテナ素子と前記N個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する複素伝達関数算出部と、
    (i)算出された複数の前記複素伝達関数を前記複数の受信信号が観測された順である時系列に逐次記録し、(ii)当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってN次元のベクトルにより表現される差分情報を2以上算出する差分情報算出部と、
    当該2以上算出された差分情報を用いて、前記推定装置を方向の基準として前記動体の存在する方向を推定する方向推定処理部と、を備える、
    推定装置。
  2. 前記2以上の差分情報それぞれにおける前記所定間隔の2つの時点のうちの始点は、異なる時刻である、
    請求項1に記載の推定装置。
  3. 前記動体は、生体である、
    請求項1または2に記載の推定装置。
  4. 前記周期は、前記生体の呼吸、心拍、体動の少なくとも一つを含む生体由来の周期であり、前記所定間隔は当該生体由来の周期の略半分である、
    請求項3に記載の推定装置。
  5. 前記方向推定処理部は、
    前記2以上算出された差分情報それぞれから、当該差分情報における所定間隔の2つの時点である差分時間の相関行列である瞬時相関行列を算出し、
    算出した当該瞬時相関行列を用いて、所定の到来方向推定手法により、前記反射信号の到来方向を推定し、
    推定した前記反射信号の到来方向に基づいて、前記動体の存在する方向を推定する、
    請求項1〜4のいずれか1項に記載の推定装置。
  6. 前記所定の到来方向推定手法は、MUSIC(MUltiple SIgnal Classification)アルゴリズムに基づく推定手法である、
    請求項5に記載の推定装置。
  7. 動体の存在する位置を推定する推定装置であって、
    M個(Mは2以上の自然数)の送信アンテナ素子からなる送信アンテナ部と、
    N個(Nは2以上の自然数)の受信アンテナ素子からなる受信アンテナ部と、
    前記N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、前記M個の送信アンテナ素子のそれぞれから送信され、動体によって反射された反射信号を含む受信信号を、当該動体の活動に由来する周期に相当する第1期間について観測する受信部と、
    前記第1期間に観測された複数の前記受信信号から、前記M個の送信アンテナ素子のそれぞれと前記N個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出する複素伝達関数算出部と、
    (i)算出された複数の前記複素伝達関数を、前記複数の受信信号が観測された順である時系列に逐次記録し、(ii)当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってM×N次元の行列により表現される差分情報を2以上算出する差分情報算出部と、
    当該2以上の差分情報を用いて、前記動体の存在する位置を推定する位置推定処理部と、を備える、
    推定装置。
  8. 前記2以上の差分情報それぞれにおける前記所定間隔の2つの時点のうちの始点は、異なる時刻である、
    請求項7に記載の推定装置。
  9. 前記動体は、生体である、
    請求項7または8に記載の推定装置。
  10. 前記周期は、前記生体の呼吸、心拍、体動の少なくとも一つを含む生体由来の周期であり、
    前記所定間隔は、当該生体由来の周期の略半分である、
    請求項9に記載の推定装置。
  11. 前記位置推定処理部は、
    前記2以上算出された差分情報それぞれから、当該差分情報における所定間隔の2つの時点である差分時間の相関行列である瞬時相関行列を算出し、
    算出した当該瞬時相関行列を用いて、所定の到来方向推定手法により、前記送信アンテナ部から前記動体に送信された送信信号の送信方向と、前記反射信号の到来方向とを推定し、
    前記送信信号の前記送信方向と前記反射信号の前記到来方向とに基づき、前記動体の存在する位置を推定する、
    請求項7〜10のいずれか1項に記載の推定装置。
  12. 前記所定の到来方向推定手法は、MUSICアルゴリズムに基づく推定手法である、
    請求項11に記載の推定装置。
  13. 1個の送信アンテナ素子およびN個(Nは2以上の自然数)の受信アンテナ素子からなるアンテナ部を備える推定装置が行う推定方法であって、
    前記N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、前記送信アンテナ素子から送信され、動体によって反射された反射信号を含む受信信号を、前記動体の活動に由来する周期に相当する第1期間について観測し、
    前記第1期間に観測された複数の前記受信信号から、前記送信アンテナ素子と前記N個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を複数算出し、
    (i)算出された複数の前記複素伝達関数を前記複数の受信信号が観測された順である時系列に逐次記録し、(ii)当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってN次元のベクトルにより表現される差分情報を2以上算出し、
    当該2以上算出された差分情報を用いて、前記推定装置を方向の基準として前記動体の存在する方向を推定する、
    推定方法。
  14. M個(Mは2以上の自然数)の送信アンテナ素子からなる送信アンテナ部と、N個(Nは2以上の自然数)の受信アンテナ素子からなる受信アンテナ部とを備える推定装置の推定方法であって、
    前記N個の受信アンテナ素子のそれぞれにより受信された受信信号であって、前記M個の送信アンテナ素子のそれぞれから送信され、動体によって反射された反射信号を含む受信信号を、当該動体の活動に由来する周期に相当する第1期間について観測し、
    前記第1期間に観測された複数の前記受信信号から、前記M個の送信アンテナ素子のそれぞれと前記N個の受信アンテナ素子のそれぞれとの間の伝搬特性を表す複素伝達関数を算出し、
    (i)算出された複数の前記複素伝達関数を、前記複数の受信信号が観測された順である時系列に逐次記録し、(ii)当該複数の複素伝達関数のうち所定間隔の2つの時点における2つの複素伝達関数の差分を示す差分情報であってM×N次元の行列により表現される差分情報を少なくとも2以上算出し、
    当該2以上の差分情報を用いて、前記動体の存在する位置を推定する、
    推定方法。
JP2016112251A 2016-01-15 2016-06-03 推定装置および推定方法 Active JP6504546B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201611048872.0A CN107064923B (zh) 2016-01-15 2016-11-25 定位传感器以及方向推定方法
US15/391,832 US10371808B2 (en) 2016-01-15 2016-12-27 Positioning sensor and direction estimation method
EP17150142.2A EP3193189B1 (en) 2016-01-15 2017-01-03 Positioning sensor and direction estimation method
US16/452,021 US10663573B2 (en) 2016-01-15 2019-06-25 Positioning sensor and direction estimation method
US16/843,576 US11150336B2 (en) 2016-01-15 2020-04-08 Positioning sensor and direction estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016006651 2016-01-15
JP2016006651 2016-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019049561A Division JP6751923B2 (ja) 2016-01-15 2019-03-18 プログラム

Publications (2)

Publication Number Publication Date
JP2017129558A JP2017129558A (ja) 2017-07-27
JP6504546B2 true JP6504546B2 (ja) 2019-04-24

Family

ID=59394664

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016112251A Active JP6504546B2 (ja) 2016-01-15 2016-06-03 推定装置および推定方法
JP2019049561A Active JP6751923B2 (ja) 2016-01-15 2019-03-18 プログラム
JP2020132223A Active JP6865394B2 (ja) 2016-01-15 2020-08-04 プログラム

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019049561A Active JP6751923B2 (ja) 2016-01-15 2019-03-18 プログラム
JP2020132223A Active JP6865394B2 (ja) 2016-01-15 2020-08-04 プログラム

Country Status (2)

Country Link
JP (3) JP6504546B2 (ja)
CN (1) CN107064923B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132850A (ja) * 2016-01-15 2019-08-08 パナソニックIpマネジメント株式会社 プログラム
WO2023276945A1 (ja) 2021-06-29 2023-01-05 パナソニックIpマネジメント株式会社 推定装置、および、推定方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371808B2 (en) 2016-01-15 2019-08-06 Panasonic Intellectual Property Management Co., Ltd. Positioning sensor and direction estimation method
JP7035375B2 (ja) * 2017-08-23 2022-03-15 株式会社三洋物産 遊技機
JP7035371B2 (ja) * 2017-08-23 2022-03-15 株式会社三洋物産 遊技機
US10264405B1 (en) * 2017-12-06 2019-04-16 Cognitive Systems Corp. Motion detection in mesh networks
CN108196278B (zh) * 2017-12-20 2021-06-15 北京遥感设备研究所 一种基于两点gps定位的指向方法
JP6975898B2 (ja) * 2017-12-26 2021-12-01 パナソニックIpマネジメント株式会社 推定方法、推定装置およびプログラム
CN110018522B (zh) * 2018-01-09 2023-09-01 松下知识产权经营株式会社 推定装置及推定方法
JP6961274B2 (ja) * 2018-02-22 2021-11-05 バヤール イメージング リミテッド Mimoレーダを用いた相関移動の検出および測定
JP6587199B1 (ja) 2018-07-03 2019-10-09 パナソニックIpマネジメント株式会社 推定装置および推定方法
US11226408B2 (en) * 2018-07-03 2022-01-18 Panasonic Intellectual Property Management Co., Ltd. Sensor, estimating device, estimating method, and recording medium
JP7054583B2 (ja) 2018-09-18 2022-04-14 株式会社東芝 無線電力伝送装置、無線電力伝送システム及び無線電力伝送方法
TWM575867U (zh) * 2018-10-12 2019-03-21 崴鼎農業科技股份有限公司 Biodetection system
TWI722347B (zh) * 2018-12-11 2021-03-21 財團法人工業技術研究院 基於通道狀態資訊量測生理狀態資訊的方法、裝置及其系統
JP7281784B2 (ja) * 2018-12-28 2023-05-26 パナソニックIpマネジメント株式会社 推定方法および推定装置
CN111381227B (zh) * 2018-12-28 2024-04-26 松下知识产权经营株式会社 推测方法以及推测装置
US11561279B2 (en) 2018-12-28 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Radar estimating method, device and medium to extract living body vector information
JP7440131B2 (ja) 2019-11-11 2024-02-28 ジェーシーエフテクノロジー インコーポレイテッド 生体信号測定用のレーダにおけるレーダ収集信号のランダムノイズの除去方法及びその装置
JP7474997B2 (ja) 2020-12-25 2024-04-26 パナソニックIpマネジメント株式会社 センサ、推定方法、及び、センサシステム
JP2022182179A (ja) 2021-05-27 2022-12-08 京セラ株式会社 電子機器、電子機器の制御方法、及びプログラム
JPWO2023276592A1 (ja) 2021-06-29 2023-01-05

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0719995D0 (en) * 2007-10-12 2007-11-21 Qinetiq Ltd Radar method and apparatus suitable for use in multipath environments
BR112012024337A2 (pt) * 2010-03-26 2017-10-03 Vayyar Imaging Ltd Método e aparelho para intensificar formação de imagem em micro-ondas de um objeto, sistema para radar mimo, e, produto de programa de computador
JP2014228291A (ja) * 2013-05-20 2014-12-08 三星電子株式会社Samsung Electronics Co.,Ltd. 無線検出装置及び無線検出方法
JP6273546B2 (ja) * 2013-10-02 2018-02-07 三星電子株式会社Samsung Electronics Co.,Ltd. 位置推定装置及び位置推定方法
JP6343846B2 (ja) * 2013-12-17 2018-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. 検出装置、検出方法及びプログラム
JP6504546B2 (ja) * 2016-01-15 2019-04-24 パナソニックIpマネジメント株式会社 推定装置および推定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132850A (ja) * 2016-01-15 2019-08-08 パナソニックIpマネジメント株式会社 プログラム
WO2023276945A1 (ja) 2021-06-29 2023-01-05 パナソニックIpマネジメント株式会社 推定装置、および、推定方法

Also Published As

Publication number Publication date
CN107064923B (zh) 2021-12-03
JP6751923B2 (ja) 2020-09-09
JP2020190566A (ja) 2020-11-26
JP2017129558A (ja) 2017-07-27
CN107064923A (zh) 2017-08-18
JP2019132850A (ja) 2019-08-08
JP6865394B2 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
JP6504546B2 (ja) 推定装置および推定方法
US11150336B2 (en) Positioning sensor and direction estimation method
US10895631B2 (en) Sensor and estimating method
US10241187B2 (en) Position sensor, direction estimation method, and system
JP6667145B2 (ja) センサーおよび推定方法
CN107045124B (zh) 定位传感器、方向推定方法以及系统
JP6975898B2 (ja) 推定方法、推定装置およびプログラム
CN108279398B (zh) 传感器以及推定生物体的位置的方法
US20190339379A1 (en) Estimation device, living body count estimation device, estimation method, and recording medium
JP7349661B2 (ja) 推定方法、推定装置およびプログラム
JP2014228291A (ja) 無線検出装置及び無線検出方法
JP6893328B2 (ja) センサおよび位置推定方法
US11175380B2 (en) Estimating device and estimating method
JP2019197039A (ja) 推定装置、生体数推定装置、推定方法、及び、プログラム
US11047968B2 (en) Estimating method and estimating device
US11561279B2 (en) Radar estimating method, device and medium to extract living body vector information
Hino et al. Activity recognition using array antenna
WO2023276592A1 (ja) 推定方法、および、推定装置
CN111381229B (zh) 推测方法、推测装置以及记录介质
US20220221549A1 (en) Sensor and position estimation method
Valls et al. Vital Signs Estimation Using a 26 GHz Multi-Beam Communication Testbed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181221

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6504546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151