JP6497282B2 - Negative electrode for all-solid-state battery - Google Patents

Negative electrode for all-solid-state battery Download PDF

Info

Publication number
JP6497282B2
JP6497282B2 JP2015178567A JP2015178567A JP6497282B2 JP 6497282 B2 JP6497282 B2 JP 6497282B2 JP 2015178567 A JP2015178567 A JP 2015178567A JP 2015178567 A JP2015178567 A JP 2015178567A JP 6497282 B2 JP6497282 B2 JP 6497282B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
solid
electrode active
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015178567A
Other languages
Japanese (ja)
Other versions
JP2017054720A (en
Inventor
水谷 聡
聡 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015178567A priority Critical patent/JP6497282B2/en
Publication of JP2017054720A publication Critical patent/JP2017054720A/en
Application granted granted Critical
Publication of JP6497282B2 publication Critical patent/JP6497282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は全固体電池用負極に関する。   The present invention relates to a negative electrode for an all solid state battery.

難燃性の固体電解質を用いた固体電解質層を有する金属イオン二次電池(例えば、リチウムイオン二次電池等。以下において、固体電解質層を有するリチウムイオン二次電池を「全固体電池」と称することがある。)は、安全性を確保するためのシステムを簡素化しやすい等の長所を有している。   Metal ion secondary battery having a solid electrolyte layer using a flame retardant solid electrolyte (for example, a lithium ion secondary battery, etc. In the following, a lithium ion secondary battery having a solid electrolyte layer is referred to as an “all solid battery”. May have a merit that it is easy to simplify a system for ensuring safety.

このような全固体電池に関する技術として、例えば特許文献1には、銅箔基材からなる集電体と、集電体上に形成された凹凸面を有する粗化処理層と、粗化処理層上に形成された負極活物質層と、を備えるリチウムイオン二次電池用負極であって、負極活物質層は、Snを含有する非晶質炭素であるSn−Cと、当該Sn−Cの間に形成された空隙と、を有し、板厚方向に切断して断面視した場合において、負極活物質層中における空隙が占める割合である空隙率が、20%以上であることを特徴とするリチウムイオン二次電池用負極が開示されている。また特許文献2には、アノードと、カソードと、アノード及びカソードの間に配置される固体電解質層と、アノードと固体電解質層との界面に形成される、アノードの構成材料と固体電解質層の構成材料とを含有する第1の混合領域、及び、カソードと固体電解質層との界面に形成される、カソードの構成材料と固体電解質層の構成材料とを含有する第2の混合領域の少なくとも一方と、を備える全固体リチウムイオン二次電池が開示されている。特許文献2の請求項4には、アノードはSnやSi等を含有するものであることが開示されている。また、同請求項5には、アノードは、炭素多孔体の空孔内にSnやSi等を担持してなる複合材料を含有するものであることが開示されている。   For example, Patent Document 1 discloses a current collector made of a copper foil base material, a roughening treatment layer having an uneven surface formed on the current collector, and a roughening treatment layer. A negative electrode for a lithium ion secondary battery comprising a negative electrode active material layer formed thereon, the negative electrode active material layer comprising Sn-C, which is amorphous carbon containing Sn, and Sn-C And a void ratio, which is a ratio occupied by voids in the negative electrode active material layer, in a cross-sectional view when cut in the plate thickness direction. A negative electrode for a lithium ion secondary battery is disclosed. Further, Patent Document 2 discloses an anode, a cathode, a solid electrolyte layer disposed between the anode and the cathode, and a configuration material of the anode and a solid electrolyte layer formed at an interface between the anode and the solid electrolyte layer. And at least one of a first mixing region containing a material and a second mixing region containing a constituent material of the cathode and a constituent material of the solid electrolyte layer formed at an interface between the cathode and the solid electrolyte layer. , An all-solid-state lithium ion secondary battery is disclosed. Claim 4 of Patent Document 2 discloses that the anode contains Sn, Si, or the like. Further, in claim 5, it is disclosed that the anode contains a composite material in which Sn, Si or the like is supported in the pores of the carbon porous body.

特開2011−108362号公報JP 2011-108362 A 特開2008−251225号公報JP 2008-251225 A

特許文献1及び2に開示されているリチウムイオン二次電池は、負極活物質中の炭素にSi又はSnを含有することにより、全固体電池の容量(充電容量及び放電容量。以下において、充電容量及び放電容量をまとめて、単に「容量」と称することがある。)を向上することを可能にしている。しかし、負極活物質中の炭素にSi又はSnを含有するだけでは、充放電を行うことによる負極活物質の膨張収縮を抑制することや、負極活物質の膨張収縮による固体電解質への応力及び歪みの伝播を緩和することが不十分であり、さらに、Si又はSnの粒径によっては、負極活物質の膨張収縮により固体電解質に割れを生じさせる問題があった。すなわち、特許文献1及び2に開示されているリチウムイオン二次電池では、高い容量と優れた容量維持率を両立することは困難であった。   The lithium ion secondary batteries disclosed in Patent Documents 1 and 2 contain the capacity (charge capacity and discharge capacity of the all-solid-state battery) by containing Si or Sn in the carbon in the negative electrode active material. In addition, the discharge capacity is sometimes collectively referred to as “capacity”). However, if the carbon in the negative electrode active material contains only Si or Sn, the expansion and contraction of the negative electrode active material due to charge / discharge is suppressed, and the stress and strain on the solid electrolyte due to the expansion and contraction of the negative electrode active material. In addition, there is a problem that the solid electrolyte is cracked due to expansion and contraction of the negative electrode active material depending on the particle size of Si or Sn. That is, in the lithium ion secondary batteries disclosed in Patent Documents 1 and 2, it is difficult to achieve both a high capacity and an excellent capacity maintenance rate.

そこで本発明は、全固体電池において、高いセル体積エネルギー密度と優れた容量維持率とを両立することが可能な全固体電池用負極を提供することを課題とする。   Then, this invention makes it a subject to provide the negative electrode for all-solid-state batteries which can make a high cell volume energy density and the outstanding capacity maintenance rate compatible in all-solid-state batteries.

本発明者は、鋭意検討の結果、負極活物質に含有させるSi又はSn及び該Si又はSnを含有する負極活物質の粒径を限定し、且つ、負極活物質と硫化物固体電解質とを用いた負極の空隙率を限定することにより、高いセル体積エネルギー密度と優れた容量維持率とを両立した全固体電池を得ることが可能になることを知見した。本発明は当該知見に基づいて完成させた。   As a result of intensive studies, the inventor has limited the particle size of Si or Sn to be contained in the negative electrode active material and the negative electrode active material containing the Si or Sn, and uses the negative electrode active material and the sulfide solid electrolyte. It was found that by limiting the porosity of the negative electrode, it was possible to obtain an all-solid-state battery having both a high cell volume energy density and an excellent capacity retention rate. The present invention has been completed based on this finding.

上記課題を解決するために、本発明は以下の手段をとる。すなわち、
本発明は、硫化物固体電解質と負極活物質とを有する全固体電池用の負極であって、負極活物質はSi又はSnを含有する炭素材料を有する複合粒子であり、Si又はSnの粒子径が94nm以下、且つ、負極活物質の粒子径が15μm以下であり、負極の空隙率が5%〜30%である全固体電池用負極である。
In order to solve the above problems, the present invention takes the following means. That is,
The present invention is a negative electrode for an all-solid battery having a sulfide solid electrolyte and a negative electrode active material, wherein the negative electrode active material is a composite particle having a carbon material containing Si or Sn, and the particle diameter of Si or Sn Is 94 nm or less, the particle diameter of the negative electrode active material is 15 μm or less, and the negative electrode has a porosity of 5% to 30%.

ここで「Si又はSnの粒子径」とは、負極活物質の透過型電子顕微鏡(TEM)画像において、該負極活物質中に含有されているSi又はSn粒子から10粒子を選択し、それぞれのSi又はSn粒子の粒子径から算出される平均値である。
また、「負極活物質の粒子径」とは、レーザー式粒度分布計を用いて測定した負極活物質の平均粒子径(D50)である。
また、「空隙率」とは、負極の全体に占める負極内の空隙の体積の割合であり、空隙率をA、負極活物質に含まれる各材料の重量を各材料の真密度で割って得られる体積の合計をx、実際の負極の寸法から得られる体積をyとするとき、A(%)=(1−x/y)×100により算出される値である。
Here, “the particle diameter of Si or Sn” means that, in a transmission electron microscope (TEM) image of the negative electrode active material, 10 particles are selected from the Si or Sn particles contained in the negative electrode active material. It is an average value calculated from the particle diameter of Si or Sn particles.
The “particle diameter of the negative electrode active material” is an average particle diameter (D 50 ) of the negative electrode active material measured using a laser particle size distribution meter.
The “porosity” is the ratio of the volume of voids in the negative electrode to the entire negative electrode, obtained by dividing the porosity by A and the weight of each material contained in the negative electrode active material by the true density of each material. A value calculated by A (%) = (1−x / y) × 100, where x is the total volume obtained and y is the volume obtained from the actual negative electrode dimensions.

本発明に係る全固体電池用負極は、負極活物質の局所的な膨張収縮、及び負極活物質の膨張収縮に伴って生じる固体電解質の割れを抑制することができる。これにより、負極活物質と固体電解質との接触状態を良好にすることができる。   The negative electrode for an all-solid battery according to the present invention can suppress local expansion and contraction of the negative electrode active material and cracking of the solid electrolyte caused by the expansion and contraction of the negative electrode active material. Thereby, the contact state of a negative electrode active material and a solid electrolyte can be made favorable.

本発明によれば、高いセル体積エネルギー密度と優れた容量維持率とを両立する全固体電池を得ることが可能な全固体電池用負極を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode for all-solid-state batteries which can obtain the all-solid-state battery which makes a high cell volume energy density and the outstanding capacity maintenance rate compatible can be provided.

本発明の一の実施形態に係る全固体電池用負極10を説明する図である。It is a figure explaining the negative electrode 10 for all-solid-state batteries which concerns on one Embodiment of this invention. 本発明の一の実施形態に係る全固体電池100を説明する図である。It is a figure explaining the all-solid-state battery 100 which concerns on one Embodiment of this invention. セル体積エネルギー密度及び容量維持率と、負極活物質におけるSiの質量百分率との関係を説明する図である。It is a figure explaining the relationship between a cell volume energy density and a capacity | capacitance maintenance factor, and the mass percentage of Si in a negative electrode active material. セル体積エネルギー密度及び容量維持率と、負極活物質の粒子径との関係を説明する図である。It is a figure explaining the relationship between a cell volume energy density and a capacity | capacitance maintenance factor, and the particle diameter of a negative electrode active material. セル体積エネルギー密度及び容量維持率と、Siの粒子径との関係を説明する図である。It is a figure explaining the relationship between a cell volume energy density and a capacity | capacitance maintenance factor, and the particle diameter of Si. セル体積エネルギー密度及び容量維持率と、空隙率との関係を説明する図である。It is a figure explaining the relationship between a cell volume energy density and a capacity | capacitance maintenance factor, and a porosity.

以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。   The present invention will be described below with reference to the drawings. In addition, the form shown below is an illustration of this invention and this invention is not limited to the form shown below.

図1は、本発明の一の実施形態に係る全固体電池用負極10(以下において、「負極10」と称することがある。)を説明する図である。負極1は、少なくとも硫化物固体電解質1と、負極活物質2と、空隙3とを有している。   FIG. 1 is a diagram illustrating an all-solid battery negative electrode 10 (hereinafter, also referred to as “negative electrode 10”) according to an embodiment of the present invention. The negative electrode 1 has at least a sulfide solid electrolyte 1, a negative electrode active material 2, and a void 3.

負極活物質2は微粒子4を含有する炭素材料5を有する複合粒子である。負極活物質2の粒子径は15μm以下であり、且つ、微粒子4の粒子径は94nm以下である。空隙3は、隣接する硫化物固体電解質1及び/又は、負極活物質2によって囲まれた隙間である。負極10における空隙3の割合(空隙率)は5%〜30%である。   The negative electrode active material 2 is a composite particle having a carbon material 5 containing fine particles 4. The particle diameter of the negative electrode active material 2 is 15 μm or less, and the particle diameter of the fine particles 4 is 94 nm or less. The void 3 is a gap surrounded by the adjacent sulfide solid electrolyte 1 and / or the negative electrode active material 2. The ratio (void ratio) of the void 3 in the negative electrode 10 is 5% to 30%.

本発明に係る負極10によれば、負極活物質の局所的な膨張収縮、及び負極活物質の膨張収縮に伴って生じる固体電解質の割れを抑制することができる。これにより、負極活物質と固体電解質との接触状態を良好にすることができる。すなわち、高いセル体積エネルギー密度と優れた容量維持率とを両立する全固体電池を得ることが可能な全固体電池用負極を提供できる。   According to the negative electrode 10 according to the present invention, it is possible to suppress local expansion and contraction of the negative electrode active material and cracking of the solid electrolyte caused by the expansion and contraction of the negative electrode active material. Thereby, the contact state of a negative electrode active material and a solid electrolyte can be made favorable. That is, it is possible to provide an all-solid battery negative electrode capable of obtaining an all-solid battery having both a high cell volume energy density and an excellent capacity retention rate.

硫化物固体電解質1は、全固体電池に使用可能な硫化物固体電解質を適宜使用することができる。そのような硫化物固体電解質としては、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P、LiPSi等を例示することができる。硫化物固体電解質は、結晶質であってもよく、非結晶質であってもよく、ガラスセラミックであってもよい。 As the sulfide solid electrolyte 1, a sulfide solid electrolyte that can be used in an all-solid battery can be appropriately used. Examples of such sulfide solid electrolytes include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—P 2 O 5 , LiI—. Examples include Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 , Li 3 PSi 4, and the like. The sulfide solid electrolyte may be crystalline, non-crystalline, or glass ceramic.

負極活物質2は、微粒子4を含有する炭素材料5を有する複合粒子である。負極活物質2の粒子径は15μm以下である。負極活物質の粒子径が15μm以下であることにより、負極活物質2の局所的な膨張収縮、及び負極活物質2の膨張収縮に伴って生じる硫化物固体電解質1の割れを抑制することができる。   The negative electrode active material 2 is a composite particle having a carbon material 5 containing fine particles 4. The particle diameter of the negative electrode active material 2 is 15 μm or less. When the particle diameter of the negative electrode active material is 15 μm or less, local expansion and contraction of the negative electrode active material 2 and cracking of the sulfide solid electrolyte 1 caused by the expansion and contraction of the negative electrode active material 2 can be suppressed. .

微粒子4はSi又はSnを含有する金属であり、単体や合金等であってもよい。負極活物質2に微粒子4を含有することにより、全固体電池のセル体積エネルギー密度を向上することを可能にする。   The fine particles 4 are a metal containing Si or Sn, and may be a simple substance or an alloy. By including the fine particles 4 in the negative electrode active material 2, it is possible to improve the cell volume energy density of the all-solid-state battery.

一方で、Si又はSnを含有する負極活物質を用いると、通常使用される負極活物質よりも多くのLiと反応するため、負極活物質の体積が3〜4倍程度に膨張することが知られている。そのため、膨張した負極活物質により周囲の固体電解質を圧迫し、固体電解質にひび割れが生じることがあり、これによってLiイオン伝導の経路が切れる虞がある。さらに、負極活物質も自身の膨張によって割れを生じることがあり、これによって負極活物質は微粉化して孤立化してしまうため、周囲とのLiイオン伝導の経路が切れる虞がある。すなわち、負極活物質と固体電解質との界面の維持、及び固体電解質相のLiイオン伝導経路の維持ができなくなると、充放電できず、著しい容量低下を引き起こし十分な容量を取り出せなくなる虞がある。   On the other hand, when a negative electrode active material containing Si or Sn is used, it reacts with more Li than a normally used negative electrode active material, so that the volume of the negative electrode active material expands to about 3 to 4 times. It has been. For this reason, the expanded negative electrode active material may compress the surrounding solid electrolyte, causing cracks in the solid electrolyte, which may break the Li ion conduction path. Furthermore, the negative electrode active material may also crack due to its own expansion. This causes the negative electrode active material to be pulverized and isolated, which may break the Li ion conduction path with the surroundings. That is, if the interface between the negative electrode active material and the solid electrolyte cannot be maintained, and the Li ion conduction path of the solid electrolyte phase cannot be maintained, charging / discharging cannot be performed, and there is a possibility that sufficient capacity cannot be taken out due to a significant capacity reduction.

そこで、本発明に係る微粒子4の粒子径を94nm以下とした。微粒子4の粒子径が94nm以下であることにより、高いセル体積エネルギー密度と優れた容量維持率とを両立することが可能になる。一方、微粒子4の粒子径が94nmを超えると、負極活物質2の局所的な膨張収縮、及び負極活物質2の膨張収縮に伴って生じる硫化物固体電解質1の割れを抑制できないため、容量維持率が低下する。   Therefore, the particle diameter of the fine particles 4 according to the present invention is set to 94 nm or less. When the particle diameter of the fine particles 4 is 94 nm or less, it is possible to achieve both a high cell volume energy density and an excellent capacity retention rate. On the other hand, when the particle diameter of the fine particles 4 exceeds 94 nm, local expansion and contraction of the negative electrode active material 2 and cracking of the sulfide solid electrolyte 1 caused by the expansion and contraction of the negative electrode active material 2 cannot be suppressed. The rate drops.

負極活物質2における微粒子4の質量百分率は、20wt%〜95wt%の範囲にあることが好ましい。微粒子4の質量百分率が20wt%〜95wt%の範囲にあることにより、高いセル体積エネルギー密度と優れた容量維持率とを両立することが可能になる。これに対して、微粒子4の質量百分率が20wt%未満であると、セル体積エネルギー密度が低下する。また、微粒子4の質量百分率が95wt%を超えると、セル体積エネルギー密度は向上するが容量維持率は低下するため、高いセル体積エネルギー密度と優れた容量維持率とを両立することができない。   The mass percentage of the fine particles 4 in the negative electrode active material 2 is preferably in the range of 20 wt% to 95 wt%. When the mass percentage of the fine particles 4 is in the range of 20 wt% to 95 wt%, it is possible to achieve both a high cell volume energy density and an excellent capacity maintenance rate. On the other hand, when the mass percentage of the fine particles 4 is less than 20 wt%, the cell volume energy density decreases. Further, if the mass percentage of the fine particles 4 exceeds 95 wt%, the cell volume energy density is improved, but the capacity retention ratio is lowered, so that a high cell volume energy density and an excellent capacity maintenance ratio cannot be achieved at the same time.

微粒子4は炭素材料5に含有されていればよいが、特に分散されて配置されていることが好ましい。微粒子4が負極活物質2に分散されて配置されることにより、負極活物質2の局所的な膨張収縮、及び負極活物質2の膨張収縮に伴って生じる固体電解質1の割れを抑制することが可能になる。   The fine particles 4 may be contained in the carbon material 5, but it is particularly preferable that they are arranged in a dispersed manner. By disperse | distributing the microparticles | fine-particles 4 to the negative electrode active material 2, the crack of the solid electrolyte 1 which arises with the local expansion / contraction of the negative electrode active material 2 and the expansion / contraction of the negative electrode active material 2 can be suppressed. It becomes possible.

さらに、微粒子4はSi又はSnのほかに、Fe、Co、Ni、Ti、Cr、B、Pを含んでいてもよい。   Furthermore, the fine particles 4 may contain Fe, Co, Ni, Ti, Cr, B, and P in addition to Si or Sn.

炭素材料5は、全固体電池の負極活物質として使用可能な炭素材料を適宜使用することができる。そのような炭素材料としては、少なくとも炭素を含有していれば特に限定されず、グラファイト、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン、カーボンブラック類(アセチレンブラックやケッチェンブラック等)等を挙げることができる。   As the carbon material 5, a carbon material that can be used as a negative electrode active material of an all-solid battery can be appropriately used. Such a carbon material is not particularly limited as long as it contains at least carbon. Graphite, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, soft carbon, carbon blacks (acetylene) Black, ketjen black, etc.).

空隙3は、隣接する硫化物固体電解質1及び/又は、負極活物質2によって囲まれた隙間である。負極10の空隙率は5%〜30%である。空隙率が5%〜30%の範囲にあることにより、負極活物質2とLiとが反応した際の膨張スペースを予め確保でき、負極活物質2の周囲の硫化物固体電解質1への圧迫を抑制できる。これによって、全固体電池において、初回充電及びその後の充放電の際の固体電解質の割れや、固体電解質と負極活物質との間に生じる隙間を抑制できるため、Liイオン伝導経路の切断を抑制することができる。すなわち、負極活物質2と周囲の硫化物固体電解質1との接触が維持されるため、負極10のLiイオン伝導も低下せず、その結果、高いセル体積エネルギー密度と優れた容量維持率とを両立することが可能になる。これに対して、空隙率が5%未満であると、負極活物質2の膨張時に負極10への損傷が大きくなるため、容量維持率が低下する。また、空隙率が30%を超えると、硫化物固体電解質1と負極活物質2との接触が不十分となり、セル体積エネルギー密度及び容量維持率が低下する。   The void 3 is a gap surrounded by the adjacent sulfide solid electrolyte 1 and / or the negative electrode active material 2. The porosity of the negative electrode 10 is 5% to 30%. When the porosity is in the range of 5% to 30%, an expansion space when the negative electrode active material 2 and Li react can be secured in advance, and the sulfide solid electrolyte 1 around the negative electrode active material 2 can be pressed. Can be suppressed. As a result, in an all-solid-state battery, cracks in the solid electrolyte during the initial charge and subsequent charge / discharge and gaps formed between the solid electrolyte and the negative electrode active material can be suppressed, so that the Li ion conduction path is prevented from being cut. be able to. That is, since the contact between the negative electrode active material 2 and the surrounding sulfide solid electrolyte 1 is maintained, the Li ion conduction of the negative electrode 10 does not decrease, and as a result, a high cell volume energy density and an excellent capacity maintenance rate are achieved. It becomes possible to achieve both. On the other hand, when the porosity is less than 5%, damage to the negative electrode 10 increases when the negative electrode active material 2 expands, and thus the capacity retention rate decreases. On the other hand, when the porosity exceeds 30%, the contact between the sulfide solid electrolyte 1 and the negative electrode active material 2 becomes insufficient, and the cell volume energy density and the capacity retention rate are lowered.

また、負極1には、必要に応じて、導電材やバインダー等を適宜含有させることができる。導電材としては、気相成長炭素繊維(VGCF)、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の炭素材料のほか、硫化物全固体電池の使用時の環境に耐えることができる金属材料を例示することができる。バインダーとしては、アクリロニトリルブタジエンゴム(ABR)、ブタジエンゴム(BR)、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム(SBR)等を例示できる。   Moreover, the negative electrode 1 can contain a conductive material, a binder, etc. suitably as needed. Conductive materials include carbon materials such as vapor grown carbon fiber (VGCF), acetylene black (AB), ketjen black (KB), carbon nanotube (CNT), carbon nanofiber (CNF), and all-sulfide solids. A metal material that can withstand the environment when the battery is used can be exemplified. Examples of the binder include acrylonitrile butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), and the like.

負極10の作製方法は、液体に上記負極活物質等を分散して調整したスラリー状の負極組成物を用いて負極を作製する方法を例示することができる。負極活物質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、負極の厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、全固体電池の性能を高めやすくするために、負極はプレスする過程を経て作製されることが好ましい。本発明において、負極をプレスする際の圧力は、例えば100MPa程度とすることができる。   Examples of the method for producing the negative electrode 10 include a method for producing a negative electrode using a slurry-like negative electrode composition prepared by dispersing the negative electrode active material or the like in a liquid. Examples of the liquid in which the negative electrode active material and the like are dispersed include heptane and the like, and a nonpolar solvent can be preferably used. Further, the thickness of the negative electrode is, for example, preferably from 0.1 μm to 1 mm, and more preferably from 1 μm to 100 μm. Moreover, in order to make it easy to improve the performance of the all-solid-state battery, the negative electrode is preferably manufactured through a pressing process. In this invention, the pressure at the time of pressing a negative electrode can be about 100 Mpa, for example.

ここで、本発明に係る負極10を用いた全固体電池100について説明するが、本発明は当該形態に限定されない。   Here, although the all-solid-state battery 100 using the negative electrode 10 which concerns on this invention is demonstrated, this invention is not limited to the said form.

図2に示すように、全固体電池100は、負極集電体10aと、負極集電体に接続された負極10と、正極集電体20aと、正極集電体に接続された正極20と、負極及び正極の間に配設された固体電解質層30と、からなっている。   As shown in FIG. 2, the all-solid battery 100 includes a negative electrode current collector 10a, a negative electrode 10 connected to the negative electrode current collector, a positive electrode current collector 20a, and a positive electrode 20 connected to the positive electrode current collector. And a solid electrolyte layer 30 disposed between the negative electrode and the positive electrode.

負極集電体10aは、負極10に接続された導電体である。負極集電体10aには全固体電池の集電体として使用可能な金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。   The negative electrode current collector 10 a is a conductor connected to the negative electrode 10. A metal that can be used as a current collector for an all-solid battery can be used for the negative electrode current collector 10a. As such a metal, a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified.

正極集電体20aは、正極20に接続された導電体である。正極集電体20aには固体電池の集電体として使用可能な金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。   The positive electrode current collector 20 a is a conductor connected to the positive electrode 20. As the positive electrode current collector 20a, a metal that can be used as a current collector of a solid state battery can be used. As such a metal, a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified.

正極20は、少なくとも正極活物質を含んでおり、必要に応じて、硫化物固体電解質、導電材、及びバインダー等を適宜含有させることができる。   The positive electrode 20 includes at least a positive electrode active material, and can contain a sulfide solid electrolyte, a conductive material, a binder, and the like as needed.

正極20に含有させる正極活物質としては、全固体電池で使用可能な正極活物質を適宜用いることができる。そのような正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNiCoMn(1−x−y)(ただし、0<x<1、0<y<1、0<x+y<1))等の層状活物質のほか、オリビン型リン酸鉄リチウム(LiFePO)等のオリビン型活物質や、スピネル型マンガン酸リチウム(LiMn)等のスピネル型活物質等や、ニッケルコバルトアルミ酸リチウム(Li(Ni−Co−Al)O)等のNAC系活物質等を例示することができる。正極活物質の形状は、例えば粒子状や薄膜状等にすることができる。正極活物質の平均粒子径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上30μm以下であることがより好ましい。また、正極20における正極活物質の含有量は、特に限定されないが、質量百分率で、例えば40wt%以上99wt%以下とすることが好ましい。 As the positive electrode active material to be contained in the positive electrode 20, a positive electrode active material that can be used in an all-solid battery can be appropriately used. Examples of such a positive electrode active material include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium nickel cobalt manganese composite oxide (LiNi x Co y Mn (1-xy) O 2 (however, In addition to layered active materials such as 0 <x <1, 0 <y <1, 0 <x + y <1)), olivine-type active materials such as olivine-type lithium iron phosphate (LiFePO 4 ), and spinel-type lithium manganate Examples thereof include spinel active materials such as (LiMn 2 O 4 ) and NAC-based active materials such as nickel cobalt lithium aluminate (Li (Ni—Co—Al) O 2 ). The shape of the positive electrode active material can be, for example, particulate or thin film. The average particle diameter (D 50 ) of the positive electrode active material is, for example, preferably from 1 nm to 100 μm, and more preferably from 10 nm to 30 μm. Moreover, the content of the positive electrode active material in the positive electrode 20 is not particularly limited, but is preferably 40 wt% or more and 99 wt% or less in mass percentage, for example.

正極20に含有させることが可能な硫化物固体電解質としては、負極に含有させることが可能な上記硫化物固体電解質を例示することができる。また、正極に含有させることが可能なバインダーとしては、負極に含有させることが可能な上記バインダーを例示することができる。さらに、正極に含有させることが可能な導電材としては、負極に含有させることが可能な上記導電材を例示することができる。   Examples of the sulfide solid electrolyte that can be contained in the positive electrode 20 include the sulfide solid electrolyte that can be contained in the negative electrode. Moreover, as a binder which can be contained in a positive electrode, the said binder which can be contained in a negative electrode can be illustrated. Furthermore, examples of the conductive material that can be contained in the positive electrode include the conductive materials that can be contained in the negative electrode.

正極活物質、硫化物固体電解質、及び、バインダー等を液体に分散して調整したスラリー状の正極組成物を用いて正極を作製する場合、使用可能な液体としてはヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、正極の厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、全固体電池の性能を高めやすくするために、正極はプレスする過程を経て作製されることが好ましい。本発明において、正極をプレスする際の圧力は、例えば100MPa程度とすることができる。   When producing a positive electrode using a positive electrode active material, a sulfide solid electrolyte, and a slurry-like positive electrode composition prepared by dispersing a binder in a liquid, heptane or the like can be exemplified as a usable liquid. A nonpolar solvent can be preferably used. Further, the thickness of the positive electrode is, for example, preferably from 0.1 μm to 1 mm, and more preferably from 1 μm to 100 μm. Moreover, in order to make it easy to improve the performance of the all-solid-state battery, the positive electrode is preferably manufactured through a pressing process. In this invention, the pressure at the time of pressing a positive electrode can be about 100 MPa, for example.

固体電解質層30は、少なくとも硫化物固体電解質を含有する層であり、硫化物固体電解質に加えて、バインダーを適宜含有させることができる。固体電解質層30に含有させることが可能な硫化物固体電解質としては、正極や負極に含有させることが可能な上記硫化物固体電解質を例示することができる。また、固体電解質層30に含有させることが可能なバインダーとしては、負極10や正極20に含有させることが可能な上記バインダーを例示することができる。ただし、全固体電池の高出力化を図りやすくするために、硫化物固体電解質の過度の凝集を防止し且つ均一に分散された硫化物固体電解質を有する固体電解質層30を形成可能にする等の観点から、固体電解質層30にバインダーを含有させる場合、その含有率は5wt%以下とすることが好ましい。また、液体に上記硫化物固体電解質等を分散して調整したスラリー状の硫化物固体電解質組成物を負極10や正極20等の基材に塗布する過程を経てセパレート層を作製する場合、硫化物固体電解質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。固体電解質層30における硫化物固体電解質の含有量は、質量百分率で、例えば60wt%以上、中でも70wt%以上、特に80wt%以上であることが好ましい。固体電解質層30の厚さは、電池の構成によって大きく異なるが、例えば、0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、全固体電池100の性能を高めやすくするために、固体電解質層30はプレスする過程を経て作製されることが好ましい。本発明において、固体電解質層30をプレスする際の圧力は、例えば100MPa程度とすることができる。   The solid electrolyte layer 30 is a layer containing at least a sulfide solid electrolyte, and can appropriately contain a binder in addition to the sulfide solid electrolyte. Examples of the sulfide solid electrolyte that can be contained in the solid electrolyte layer 30 include the sulfide solid electrolyte that can be contained in the positive electrode and the negative electrode. Examples of the binder that can be contained in the solid electrolyte layer 30 include the binder that can be contained in the negative electrode 10 and the positive electrode 20. However, in order to easily increase the output of the all-solid-state battery, excessive aggregation of the sulfide solid electrolyte is prevented, and the solid electrolyte layer 30 having the sulfide solid electrolyte dispersed uniformly can be formed. From the viewpoint, when the solid electrolyte layer 30 contains a binder, the content is preferably 5 wt% or less. Further, when a separate layer is produced through a process of applying a slurry-like sulfide solid electrolyte composition prepared by dispersing the sulfide solid electrolyte or the like in a liquid to a substrate such as the negative electrode 10 or the positive electrode 20, Examples of the liquid for dispersing the solid electrolyte and the like include heptane and the like, and a nonpolar solvent can be preferably used. The content of the sulfide solid electrolyte in the solid electrolyte layer 30 is a mass percentage, for example, 60 wt% or more, preferably 70 wt% or more, and particularly preferably 80 wt% or more. The thickness of the solid electrolyte layer 30 varies greatly depending on the configuration of the battery. For example, the thickness is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. In order to easily improve the performance of the all-solid-state battery 100, the solid electrolyte layer 30 is preferably manufactured through a pressing process. In this invention, the pressure at the time of pressing the solid electrolyte layer 30 can be about 100 Mpa, for example.

実施例を参照しつつ、本発明について、さらに説明を続ける。   The present invention will be further described with reference to examples.

実施例1〜20及び比較例1〜10に係る全固体電池を以下のように作製し、セル体積エネルギー密度及び容量維持率を評価した。その結果を表1〜4に示した。また、表1〜4のそれぞれをグラフにしたものを図3〜6に示した。   All-solid batteries according to Examples 1 to 20 and Comparative Examples 1 to 10 were produced as follows, and the cell volume energy density and the capacity retention rate were evaluated. The results are shown in Tables 1-4. Moreover, what graphed each of Tables 1-4 was shown in FIGS.

<実施例1>
(硫化物固体電解質の合成)
LiS(真密度1.66g/cm、日本化学工業株式会社製)とP(真密度2.1m、アルドリッチ社製)を出発原料とした。LiSを0.7656g、Pを1.2344g秤量し、メノウ乳鉢で5分混合した後、ヘプタン(関東化学株式会社製)を4g入れ遊星型ボールミル機(フリッチュ社製P7。以下において同じ。)を用いて40分間メカニカルミリングを行うことで、硫化物固体電解質を得た。
<Example 1>
(Synthesis of sulfide solid electrolyte)
LiS 2 (true density 1.66 g / cm 3 , manufactured by Nippon Chemical Industry Co., Ltd.) and P 2 S 5 (true density 2.1 m 3 , manufactured by Aldrich) were used as starting materials. 0.7656 g of LiS 2 and 1.2344 g of P 2 S 5 were weighed and mixed in an agate mortar for 5 minutes, and then 4 g of heptane (manufactured by Kanto Chemical Co., Inc.) was put into a planetary ball mill (P7 manufactured by Fritsch). The same was performed for 40 minutes to obtain a sulfide solid electrolyte.

(負極合剤の作製)
Si粉末(真密度2.33g/cm)及び炭素材料(真密度2.0g/cm)を質量比20:80となるように秤量した。得られたSi粉末及び炭素材料を遊星型ボールミル機に入れ、270rpmで24時間に亘ってメカニカルアロイングを行った。その後、目開きが20μmのふるいに通すことで、粗大粒子を取り除き、負極活物質を得た。この負極活物質の粒子径(D50)は、レーザー式粒度分布計(堀場製作所社製)を用いて測定した。また、負極活物質に含有するSiの粒子径は、TEM(JEOL社製)を用いて算出した。次に、得られた負極活物質5.05mgと硫化物固体電解質5.14mgとを混合することにより、負極合剤を作製した。
(Preparation of negative electrode mixture)
Si powder (true density 2.33 g / cm 3 ) and carbon material (true density 2.0 g / cm 3 ) were weighed so as to have a mass ratio of 20:80. The obtained Si powder and carbon material were put into a planetary ball mill and mechanical alloying was performed at 270 rpm for 24 hours. Then, coarse particles were removed by passing through a sieve having an opening of 20 μm to obtain a negative electrode active material. The particle size (D 50 ) of this negative electrode active material was measured using a laser particle size distribution meter (manufactured by Horiba, Ltd.). Moreover, the particle diameter of Si contained in the negative electrode active material was calculated using TEM (manufactured by JEOL). Next, 5.05 mg of the obtained negative electrode active material and 5.14 mg of sulfide solid electrolyte were mixed to prepare a negative electrode mixture.

(正極合剤の作製)
LiNbOの表面処理を施したLiNi3/5Co1/5Mn1/5を正極活物質として使用した。この正極活物質を12.03g、導電性カーボンである気相成長炭素繊維(VGCF)(昭和電工株式会社製)0.51mgと、硫化物固体電解質5.14mgとを混合することにより、正極合剤を作製した。
(Preparation of positive electrode mixture)
LiNi 3/5 Co 1/5 Mn 1/5 O 2 subjected to surface treatment of LiNbO 3 was used as the positive electrode active material. By mixing 12.03 g of this positive electrode active material, 0.51 mg of vapor-grown carbon fiber (VGCF) (manufactured by Showa Denko KK) which is conductive carbon, and 5.14 mg of a sulfide solid electrolyte, An agent was prepared.

(全固体電池の作製)
1cmのセラミック製の型に硫化物固体電解質を18mg秤量し、0.98MPaでプレスすることにより固体電解質層を作製した。固体電解質層の片側に正極合剤15.7mgを入れ、4.5MPaでプレスすることにより正極を作製した。固体電解質層の正極が作製された側とは反対側に、負極合剤5.14mgを入れ、4.5MPaでプレスすることにより、空隙率20%の負極を作製した。そして、正極の表面に正極集電体としてアルミ箔を、負極の表面に負極集電体として銅箔をそれぞれ配置し、実施例1に係る全固体電池を作製した。
(Production of all-solid battery)
A solid electrolyte layer was prepared by weighing 18 mg of a sulfide solid electrolyte into a 1 cm 2 ceramic mold and pressing it at 0.98 MPa. A positive electrode was prepared by putting 15.7 mg of the positive electrode mixture on one side of the solid electrolyte layer and pressing it at 4.5 MPa. A negative electrode mixture with a porosity of 20% was prepared by placing 5.14 mg of a negative electrode mixture on the side opposite to the side on which the positive electrode of the solid electrolyte layer was prepared, and pressing the mixture at 4.5 MPa. Then, an aluminum foil as a positive electrode current collector was disposed on the surface of the positive electrode, and a copper foil as a negative electrode current collector was disposed on the surface of the negative electrode, whereby an all-solid battery according to Example 1 was produced.

<実施例2>
負極合剤を作製する際に、Si粉末と炭素材料との質量比を、Si粉末:炭素材料=30:70にしたこと以外は、実施例1と同様に、実施例2に係る全固体電池を作製した。
<Example 2>
The all-solid-state battery according to Example 2 is the same as Example 1 except that the mass ratio of Si powder and carbon material is set to Si powder: carbon material = 30: 70 when the negative electrode mixture is produced. Was made.

<実施例3>
負極合剤を作製する際に、Si粉末と炭素材料との質量比を、Si粉末:炭素材料=50:50にしたこと以外は、実施例1と同様に、実施例3に係る全固体電池を作製した。
<Example 3>
The all solid state battery according to Example 3 in the same manner as in Example 1 except that the mass ratio of Si powder and carbon material was set to Si powder: carbon material = 50: 50 when the negative electrode mixture was produced. Was made.

<実施例4>
負極合剤を作製する際に、Si粉末と炭素材料との質量比を、Si粉末:炭素材料=70:30にしたこと以外は、実施例1と同様に、実施例4に係る全固体電池を作製した。
<Example 4>
The all-solid-state battery according to Example 4 is the same as Example 1 except that the mass ratio of Si powder to carbon material is set to Si powder: carbon material = 70: 30 when the negative electrode mixture is produced. Was made.

<実施例5>
負極合剤を作製する際に、Si粉末と炭素材料との質量比を、Si粉末:炭素材料=95:5にしたこと以外は、実施例1と同様に、実施例5に係る全固体電池を作製した。
<Example 5>
The all-solid-state battery according to Example 5 is the same as Example 1 except that the mass ratio of Si powder and carbon material is Si powder: carbon material = 95: 5 when the negative electrode mixture is produced. Was made.

<実施例6>
負極合剤を作製する際に、負極活物質の粒子径を1μmにした以外は、実施例3と同様に、実施例6に係る全固体電池を作製した。
<Example 6>
An all-solid-state battery according to Example 6 was produced in the same manner as in Example 3 except that the negative electrode active material had a particle diameter of 1 μm when the negative electrode mixture was produced.

<実施例7>
負極合剤を作製する際に、負極活物質の粒子径を6μmにした以外は、実施例3と同様に、実施例7に係る全固体電池を作製した。
<Example 7>
An all-solid-state battery according to Example 7 was produced in the same manner as in Example 3 except that the negative electrode active material had a particle diameter of 6 μm when the negative electrode mixture was produced.

<実施例8>
負極合剤を作製する際に、負極活物質の粒子径を8μmにした以外は、実施例3と同様に、実施例8に係る全固体電池を作製した。
<Example 8>
An all solid state battery according to Example 8 was prepared in the same manner as in Example 3 except that the negative electrode active material had a particle diameter of 8 μm when the negative electrode mixture was prepared.

<実施例9>
負極合剤を作製する際に、負極活物質の粒子径を10μmにした以外は、実施例3と同様に、実施例9に係る全固体電池を作製した。
<Example 9>
An all-solid battery according to Example 9 was produced in the same manner as in Example 3 except that the negative electrode active material had a particle diameter of 10 μm when the negative electrode mixture was produced.

<実施例10>
負極合剤を作製する際に、負極活物質の粒子径を15μmにした以外は、実施例3と同様に、実施例10に係る全固体電池を作製した。
<Example 10>
An all-solid battery according to Example 10 was produced in the same manner as in Example 3 except that the negative electrode active material had a particle diameter of 15 μm when the negative electrode mixture was produced.

<実施例11>
負極合剤を作製する際に、Siの粒子径を5nmにした以外は、実施例3と同様に、実施例11に係る全固体電池を作製した。
<Example 11>
An all-solid-state battery according to Example 11 was produced in the same manner as in Example 3 except that the particle size of Si was changed to 5 nm when producing the negative electrode mixture.

<実施例12>
負極合剤を作製する際に、Siの粒子径を10nmにした以外は、実施例3と同様に、実施例12に係る全固体電池を作製した。
<Example 12>
An all-solid-state battery according to Example 12 was produced in the same manner as in Example 3, except that the particle diameter of Si was changed to 10 nm when producing the negative electrode mixture.

<実施例13>
負極合剤を作製する際に、Siの粒子径を27nmにした以外は、実施例3と同様に、実施例13に係る全固体電池を作製した。
<Example 13>
An all-solid-state battery according to Example 13 was produced in the same manner as Example 3 except that the particle size of Si was changed to 27 nm when producing the negative electrode mixture.

<実施例14>
負極合剤を作製する際に、Siの粒子径を76nmにした以外は、実施例3と同様に、実施例14に係る全固体電池を作製した。
<Example 14>
An all-solid battery according to Example 14 was produced in the same manner as in Example 3 except that the particle diameter of Si was changed to 76 nm when producing the negative electrode mixture.

<実施例15>
負極合剤を作製する際に、Siの粒子径を94nmにした以外は、実施例3と同様に、実施例15に係る全固体電池を作製した。
<Example 15>
An all-solid-state battery according to Example 15 was produced in the same manner as in Example 3 except that the particle size of Si was set to 94 nm when producing the negative electrode mixture.

<実施例16>
負極を作製する際に、負極の空隙率を5%とした以外は、実施例3と同様に、実施例16に係る全固体電池を作製した。
<Example 16>
An all solid state battery according to Example 16 was produced in the same manner as in Example 3 except that the negative electrode had a porosity of 5% when the negative electrode was produced.

<実施例17>
負極を作製する際に、負極の空隙率を9%とした以外は、実施例3と同様に、実施例17に係る全固体電池を作製した。
<Example 17>
An all solid state battery according to Example 17 was produced in the same manner as Example 3 except that the porosity of the negative electrode was changed to 9% when the negative electrode was produced.

<実施例18>
負極を作製する際に、負極の空隙率を17%とした以外は、実施例3と同様に、実施例18に係る全固体電池を作製した。
<Example 18>
An all-solid-state battery according to Example 18 was produced in the same manner as in Example 3 except that the negative electrode had a porosity of 17% when the negative electrode was produced.

<実施例19>
負極を作製する際に、負極の空隙率を25%とした以外は、実施例3と同様に、実施例19に係る全固体電池を作製した。
<Example 19>
An all-solid-state battery according to Example 19 was produced in the same manner as in Example 3 except that the negative electrode had a porosity of 25% when the negative electrode was produced.

<実施例20>
負極を作製する際に、負極の空隙率を30%とした以外は、実施例3と同様に、実施例20に係る全固体電池を作製した。
<Example 20>
An all solid state battery according to Example 20 was produced in the same manner as Example 3 except that the porosity of the negative electrode was changed to 30% when producing the negative electrode.

<比較例1>
負極合剤を作製する際に、Si粉末と炭素材料との質量比を、Si粉末:炭素材料=0:100にしたこと以外は、実施例1と同様に、比較例1に係る全固体電池を作製した。尚、比較例1に係る負極活物質の粒子径は10μmであった。
<Comparative Example 1>
The all-solid-state battery according to Comparative Example 1 is the same as Example 1 except that the mass ratio of Si powder to carbon material is set to Si powder: carbon material = 0: 100 when producing the negative electrode mixture. Was made. The particle diameter of the negative electrode active material according to Comparative Example 1 was 10 μm.

<比較例2>
負極合剤を作製する際に、Si粉末と炭素材料との質量比を、Si粉末:炭素材料=10:90にしたこと以外は、実施例1と同様に、比較例2に係る全固体電池を作製した。
<Comparative example 2>
The all-solid-state battery according to Comparative Example 2 is the same as Example 1 except that the mass ratio of Si powder to carbon material is set to Si powder: carbon material = 10: 90 when the negative electrode mixture is produced. Was made.

<比較例3>
負極合剤を作製する際に、Si粉末と炭素材料との質量比を、Si粉末:炭素材料=98:2にしたこと以外は、実施例1と同様に、比較例3に係る全固体電池を作製した。
<Comparative Example 3>
The all-solid-state battery according to Comparative Example 3 is the same as Example 1 except that the mass ratio of Si powder and carbon material is Si powder: carbon material = 98: 2 when the negative electrode mixture is prepared. Was made.

<比較例4>
負極合剤を作製する際に、Si粉末と炭素材料との質量比を、Si粉末:炭素材料=100:0にしたこと以外は、実施例1と同様に、比較例4に係る全固体電池を作製した。
<Comparative example 4>
The all-solid-state battery according to Comparative Example 4 is the same as Example 1 except that the mass ratio of Si powder to carbon material is set to Si powder: carbon material = 100: 0 when the negative electrode mixture is produced. Was made.

<比較例5>
負極合剤を作製する際に、負極活物質の粒子径を20μmにした以外は、実施例3と同様に、比較例5に係る全固体電池を作製した。
<Comparative Example 5>
An all-solid battery according to Comparative Example 5 was produced in the same manner as in Example 3 except that the negative electrode active material had a particle size of 20 μm when the negative electrode mixture was produced.

<比較例6>
負極合剤を作製する際に、負極活物質の粒子径を128nmにした以外は、実施例3と同様に、比較例6に係る全固体電池を作製した。
<Comparative Example 6>
An all-solid battery according to Comparative Example 6 was produced in the same manner as in Example 3 except that the negative electrode active material had a particle diameter of 128 nm when the negative electrode mixture was produced.

<比較例7>
負極合剤を作製する際に、Siの粒子径を231nmにした以外は、実施例3と同様に、比較例7に係る全固体電池を作製した。
<Comparative Example 7>
An all-solid-state battery according to Comparative Example 7 was prepared in the same manner as in Example 3 except that the particle size of Si was 231 nm when the negative electrode mixture was prepared.

<比較例8>
負極を作製する際に、負極の空隙率を3%とした以外は、実施例3と同様に、比較例8に係る全固体電池を作製した。
<Comparative Example 8>
An all-solid-state battery according to Comparative Example 8 was produced in the same manner as in Example 3 except that the porosity of the negative electrode was changed to 3% when producing the negative electrode.

<比較例9>
負極を作製する際に、負極の空隙率を35%とした以外は、実施例3と同様に、比較例9に係る全固体電池を作製した。
<Comparative Example 9>
An all-solid battery according to Comparative Example 9 was prepared in the same manner as in Example 3 except that the negative electrode had a porosity of 35% when the negative electrode was prepared.

<比較例10>
負極を作製する際に、負極の空隙率を38%とした以外は、実施例3と同様に、比較例10に係る全固体電池を作製した。
<Comparative Example 10>
An all-solid-state battery according to Comparative Example 10 was produced in the same manner as in Example 3 except that the negative electrode had a porosity of 38% when the negative electrode was produced.

次に実施例1〜20及び比較例1〜10に係る全固体電池について、セル体積エネルギー密度及び容量維持率の評価を行った。   Next, the cell volume energy density and the capacity retention rate were evaluated for all solid state batteries according to Examples 1 to 20 and Comparative Examples 1 to 10.

(セル体積エネルギー密度の評価)
セル体積エネルギー密度は、以下の式から算出した。
(セル体積エネルギー密度)=(初回放電容量)×(初回放電電圧)÷(負極体積)
なお、表1〜4及び図3〜6では、比較例1のセル体積エネルギー密度を100として、それぞれのセル体積エネルギー密度を相対値として表している。
(Evaluation of cell volume energy density)
The cell volume energy density was calculated from the following formula.
(Cell volume energy density) = (initial discharge capacity) × (initial discharge voltage) ÷ (negative electrode volume)
In addition, in Tables 1-4 and FIGS. 3-6, the cell volume energy density of the comparative example 1 is set to 100, and each cell volume energy density is represented as a relative value.

(容量維持率の評価)
下記の方法で充放電を行い、701サイクル目の放電容量を分子とし、1サイクル目の放電容量を分母として、容量維持率を算出した。
・1サイクル目:0.25mAで4.4Vまで定電圧定電流(CC/CV)充電した後に、0.25mAで3.0Vまで定電圧定電流(CC/CV)放電を行った。
・2〜700サイクル:1.5mAで4.4Vまで定電圧定電流(CC/CV)充電した後に、0.25mAで3.0Vまで定電圧定電流(CC/CV)放電を行った。
・701サイクル目:0.35mAで4.4Vまで定電圧定電流(CC/CV)充電した後に、0.25mAで3.0Vまで定電圧定電流(CC/CV)放電を行った。
(Evaluation of capacity maintenance rate)
Charging / discharging was performed by the following method, and the capacity retention rate was calculated using the discharge capacity at the 701st cycle as the numerator and the discharge capacity at the first cycle as the denominator.
First cycle: After constant voltage constant current (CC / CV) charge to 4.4 V at 0.25 mA, constant voltage constant current (CC / CV) discharge was performed to 3.0 V at 0.25 mA.
-2 to 700 cycles: After constant voltage constant current (CC / CV) charging to 4.4 V at 1.5 mA, constant voltage constant current (CC / CV) discharging was performed to 3.0 V at 0.25 mA.
-701st cycle: After constant voltage constant current (CC / CV) charge to 4.4V at 0.35 mA, constant voltage constant current (CC / CV) discharge was performed to 3.0V at 0.25 mA.

Figure 0006497282
Figure 0006497282

表1は、セル体積エネルギー密度及び容量維持率と、負極活物質におけるSiの質量百分率との関係を説明する表であり、実施例1〜5及び比較例1〜4の結果をまとめている。また、表1に示したセル体積エネルギー密度及び容量維持率と、負極活物質におけるSiの質量百分率との関係を図3に示した。図3の縦軸はセル体積エネルギー密度及び容量維持率であり、横軸は負極活物質におけるSiの質量百分率(wt%)である。   Table 1 is a table for explaining the relationship between the cell volume energy density and the capacity retention ratio and the mass percentage of Si in the negative electrode active material, and summarizes the results of Examples 1 to 5 and Comparative Examples 1 to 4. Moreover, the relationship between the cell volume energy density and capacity retention ratio shown in Table 1 and the mass percentage of Si in the negative electrode active material is shown in FIG. The vertical axis in FIG. 3 is the cell volume energy density and the capacity retention rate, and the horizontal axis is the mass percentage (wt%) of Si in the negative electrode active material.

表1に示したように、実施例1〜5に係る全固体電池のセル体積エネルギー密度は103〜135の範囲にあり、比較例1に係る全固体電池のセル体積エネルギー密度よりも高かった。特に、実施例5に係る全固体電池のセル体積エネルギー密度は135であり、非常に高い値であった。また、実施例1〜5に係る全固体電池の容量維持率は75%〜85%の範囲にあり、優れていた。すなわち、負極活物質におけるSiの質量百分率が20wt%〜95wt%の範囲にある全固体電池は、高いセル体積エネルギー密度と優れた容量維持率とを両立することが分かった。これに対して、負極活物質におけるSiの質量百分率が10wt%である比較例2に係る全固体電池のセル体積エネルギー密度は、比較例1に係る全固体電池のセル体積エネルギー密度よりも低かった。また、負極活物質におけるSiの質量百分率が98wt%を超える比較例3、4に係る全固体電池では、セル体積エネルギー密度は非常に高い値を示していたが、容量維持率はそれぞれ46%、30%という低い値であった。すなわち、比較例1〜4に係る全固体電池は、高いセル体積エネルギー密度と優れた容量維持率とを両立できていなかった。   As shown in Table 1, the cell volume energy density of the all solid state batteries according to Examples 1 to 5 was in the range of 103 to 135, and was higher than the cell volume energy density of the all solid state battery according to Comparative Example 1. In particular, the cell volume energy density of the all solid state battery according to Example 5 was 135, which was a very high value. Moreover, the capacity maintenance rate of the all-solid-state battery which concerns on Examples 1-5 was in the range of 75%-85%, and was excellent. That is, it was found that an all solid state battery having a mass percentage of Si in the negative electrode active material in the range of 20 wt% to 95 wt% achieves both a high cell volume energy density and an excellent capacity retention rate. On the other hand, the cell volume energy density of the all solid state battery according to Comparative Example 2 in which the mass percentage of Si in the negative electrode active material is 10 wt% was lower than the cell volume energy density of the all solid state battery according to Comparative Example 1. . Further, in the all solid state batteries according to Comparative Examples 3 and 4 in which the mass percentage of Si in the negative electrode active material exceeded 98 wt%, the cell volume energy density showed a very high value, but the capacity retention rate was 46%, The value was as low as 30%. That is, the all-solid-state batteries according to Comparative Examples 1 to 4 could not achieve both a high cell volume energy density and an excellent capacity maintenance rate.

Figure 0006497282
Figure 0006497282

表2は、セル体積エネルギー密度及び容量維持率と、負極活物質の粒子径との関係を説明する表であり、実施例3、6〜10及び比較例5の結果をまとめている。また、表2に示したセル体積エネルギー密度及び容量維持率と、負極活物質の粒子径との関係を図4に示した。図4の縦軸はセル体積エネルギー密度及び容量維持率であり、横軸は負極活物質の粒子径(μm)である。   Table 2 is a table for explaining the relationship between the cell volume energy density and capacity retention rate and the particle size of the negative electrode active material, and summarizes the results of Examples 3, 6 to 10, and Comparative Example 5. Moreover, the relationship between the cell volume energy density and capacity retention ratio shown in Table 2 and the particle diameter of the negative electrode active material is shown in FIG. The vertical axis in FIG. 4 is the cell volume energy density and capacity retention rate, and the horizontal axis is the particle diameter (μm) of the negative electrode active material.

表2に示したように、実施例3、6〜10に係る全固体電池のセル体積エネルギー密度は113〜116の範囲にあり、比較例1に係る全固体電池のセル体積エネルギー密度よりも高かった。また、実施例3、6〜10に係る全固体電池の容量維持率は70%〜84%の範囲にあり、優れていた。すなわち、負極活物質の粒子径が1μm〜25μmの範囲にある全固体電池は、高いセル体積エネルギー密度と優れた容量維持率とを両立することが分かった。それに対して、負極活物質の粒子径が20μmである比較例5に係る全固体電池は、セル体積エネルギー密度は実施例9、10に係る全固体電池と同等の値を示していたが、容量維持率は32%という低い値であった。すなわち、比較例5に係る全固体電池は、高いセル体積エネルギー密度と優れた容量維持率とを両立できていなかった。   As shown in Table 2, the cell volume energy density of the all solid state batteries according to Examples 3 and 6 to 10 is in the range of 113 to 116, which is higher than the cell volume energy density of the all solid state battery according to Comparative Example 1. It was. Moreover, the capacity maintenance rate of the all-solid-state battery which concerns on Example 3, 6-10 was in the range of 70%-84%, and was excellent. That is, it was found that an all solid state battery having a negative electrode active material particle size in the range of 1 μm to 25 μm achieves both a high cell volume energy density and an excellent capacity retention rate. In contrast, the all-solid battery according to Comparative Example 5 in which the particle size of the negative electrode active material was 20 μm had a cell volume energy density equivalent to that of the all-solid battery according to Examples 9 and 10, but the capacity The maintenance rate was as low as 32%. That is, the all-solid-state battery according to Comparative Example 5 could not achieve both a high cell volume energy density and an excellent capacity retention rate.

Figure 0006497282
Figure 0006497282

表3は、セル体積エネルギー密度及び容量維持率と、Siの粒子径との関係を説明する表であり、実施例3、11〜15及び比較例6〜7の結果をまとめている。また、表3に示したセル体積エネルギー密度及び容量維持率と、Siの粒子径との関係を図5に示した。図5の縦軸はセル体積エネルギー密度及び容量維持率であり、横軸は負極活物質に含有させたSiの粒子径(nm)である。   Table 3 is a table for explaining the relationship between the cell volume energy density and capacity retention rate, and the particle diameter of Si, and summarizes the results of Examples 3, 11-15, and Comparative Examples 6-7. The relationship between the cell volume energy density and capacity retention rate shown in Table 3 and the Si particle diameter is shown in FIG. The vertical axis in FIG. 5 is the cell volume energy density and the capacity retention rate, and the horizontal axis is the particle diameter (nm) of Si contained in the negative electrode active material.

表3に示したように、実施例3、11〜15に係る全固体電池のセル体積エネルギー密度は115〜118の範囲にあり、比較例1に係る全固体電池のセル体積エネルギー密度よりも高かった。また、実施例3、11〜15に係る全固体電池の容量維持率は75%〜85%の範囲にあり、優れていた。すなわち、Siの粒子径が5nm〜94nmの範囲にある全固体電池は、高いセル体積エネルギー密度と優れた容量維持率とを両立することが分かった。それに対して、Siの粒子径がそれぞれ128nm、231nmである比較例6、7に係る全固体電池は、セル体積エネルギー密度は比較例1と比べ高い値を示したが、容量維持率はそれぞれ45%、21%という低い値であった。すなわち、比較例6、7に係る全固体電池では、高いセル体積エネルギー密度と優れた容量維持率とを両立できていなかった。   As shown in Table 3, the cell volume energy density of the all solid state batteries according to Examples 3, 11 to 15 is in the range of 115 to 118, which is higher than the cell volume energy density of the all solid state battery according to Comparative Example 1. It was. Moreover, the capacity maintenance rate of the all-solid-state battery which concerns on Example 3, 11-15 was in the range of 75%-85%, and was excellent. That is, it was found that the all-solid-state battery having a Si particle size in the range of 5 nm to 94 nm achieves both a high cell volume energy density and an excellent capacity retention rate. In contrast, the all solid state batteries according to Comparative Examples 6 and 7 having Si particle sizes of 128 nm and 231 nm, respectively, showed a higher cell volume energy density than that of Comparative Example 1, but the capacity retention ratio was 45 respectively. % And 21%. That is, in the all solid state batteries according to Comparative Examples 6 and 7, a high cell volume energy density and an excellent capacity maintenance rate were not compatible.

Figure 0006497282
Figure 0006497282

表4は、セル体積エネルギー密度及び容量維持率と、空隙率との関係を説明する表であり、実施例3、16〜20及び比較例8〜10の結果をまとめている。また、表4に示したセル体積エネルギー密度及び容量維持率と、空隙率との関係を図6に示した。図6の縦軸はセル体積エネルギー密度及び容量維持率であり、横軸は空隙率(%)である。   Table 4 is a table for explaining the relationship between the cell volume energy density and capacity retention rate and the porosity, and summarizes the results of Examples 3, 16 to 20 and Comparative Examples 8 to 10. Moreover, the relationship between the cell volume energy density and capacity retention rate shown in Table 4 and the porosity is shown in FIG. The vertical axis in FIG. 6 is the cell volume energy density and the capacity retention rate, and the horizontal axis is the porosity (%).

表4に示したように、実施例3、16〜20に係る全固体電池のセル体積エネルギー密度は113〜118の範囲にあり、比較例1に係る全固体電池のセル体積エネルギー密度よりも高かった。また、実施例3、16〜20に係る全固体電池の容量維持率は69%〜84%の範囲にあり、優れていた。すなわち、空孔率が5%〜30%の範囲にある全固体電池は、高いセル体積エネルギー密度と優れた容量維持率とを両立することが分かった。それに対して、比較例9に係る全固体電池は、セル体積エネルギー密度は比較例1に係る全固体電池のセル体積エネルギー密度よりも高かったが、容量維持率が42%という低い値であった。また、比較例10に係る全固体電池は、セル体積エネルギー密度及び容量維持率ともに低い値であった。すなわち、比較例9、10に係る全固体電池では、高いセル体積エネルギー密度と優れた容量維持率とを両立できていなかった。   As shown in Table 4, the cell volume energy density of the all solid state batteries according to Examples 3 and 16 to 20 is in the range of 113 to 118, which is higher than the cell volume energy density of the all solid state battery according to Comparative Example 1. It was. Moreover, the capacity maintenance rate of the all-solid-state battery which concerns on Example 3, 16-20 was in the range of 69%-84%, and was excellent. That is, it was found that an all solid state battery having a porosity in the range of 5% to 30% achieves both a high cell volume energy density and an excellent capacity retention rate. In contrast, the all solid state battery according to Comparative Example 9 had a cell volume energy density higher than that of the all solid state battery according to Comparative Example 1, but the capacity retention rate was a low value of 42%. . Moreover, the all-solid-state battery which concerns on the comparative example 10 was a low value in both cell volume energy density and a capacity | capacitance maintenance factor. That is, in the all solid state batteries according to Comparative Examples 9 and 10, a high cell volume energy density and an excellent capacity maintenance rate were not compatible.

1 硫化物固体電解質
2 負極活物質
3 空隙
4 微粒子
5 炭素材料
10 負極
10a 負極集電体
20 正極
20a 正極集電体
30 固体電解質層
100 全固体電池
DESCRIPTION OF SYMBOLS 1 Sulfide solid electrolyte 2 Negative electrode active material 3 Cavity 4 Fine particle 5 Carbon material 10 Negative electrode 10a Negative electrode collector 20 Positive electrode 20a Positive electrode collector 30 Solid electrolyte layer 100 All-solid-state battery

Claims (1)

硫化物固体電解質と負極活物質とを有する全固体電池用の負極であって、
前記負極活物質はSiを含有する炭素材料を有する複合粒子であり、
前記Siの粒子径が94nm以下、且つ、前記負極活物質の粒子径が15μm以下であり、
前記負極の空隙率が5%〜30%であり、
前記負極活物質における前記Siの質量百分率が20wt%〜95wt%である、
全固体電池用負極。
A negative electrode for an all-solid battery having a sulfide solid electrolyte and a negative electrode active material,
The negative electrode active material is a composite particle having a carbon material containing Si ,
The particle diameter of the Si is 94 nm or less, and the particle diameter of the negative electrode active material is 15 μm or less;
Wherein Ri anode porosity of 5% to 30% der,
The mass percentage of Si in the negative electrode active material is 20 wt% to 95 wt%.
Negative electrode for all solid state batteries.
JP2015178567A 2015-09-10 2015-09-10 Negative electrode for all-solid-state battery Active JP6497282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178567A JP6497282B2 (en) 2015-09-10 2015-09-10 Negative electrode for all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178567A JP6497282B2 (en) 2015-09-10 2015-09-10 Negative electrode for all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2017054720A JP2017054720A (en) 2017-03-16
JP6497282B2 true JP6497282B2 (en) 2019-04-10

Family

ID=58317102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178567A Active JP6497282B2 (en) 2015-09-10 2015-09-10 Negative electrode for all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6497282B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12080878B2 (en) 2020-10-15 2024-09-03 Samsung Sdi Co., Ltd. Anode layer for all-solid secondary battery, all-solid secondary battery including the same, and method of manufacturing all-solid secondary battery

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193994A1 (en) * 2017-04-18 2018-10-25 トヨタ自動車株式会社 All-solid lithium ion secondary battery
JP6760224B2 (en) * 2017-07-20 2020-09-23 トヨタ自動車株式会社 Negative electrode active material for all-solid-state batteries
JP6946836B2 (en) * 2017-08-10 2021-10-13 トヨタ自動車株式会社 Lithium solid-state battery and manufacturing method of lithium solid-state battery
JP6819533B2 (en) * 2017-10-03 2021-01-27 トヨタ自動車株式会社 Negative electrode mixture for all-solid-state lithium-ion secondary batteries
KR102259971B1 (en) * 2017-10-20 2021-06-02 주식회사 엘지에너지솔루션 An anode for all-solid type batteries including solid electrolyte
JP6926943B2 (en) * 2017-10-25 2021-08-25 トヨタ自動車株式会社 Negative electrode active material layer for solid-state batteries
JP6834921B2 (en) * 2017-11-28 2021-02-24 トヨタ自動車株式会社 Manufacturing method of sulfide solid-state battery and sulfide solid-state battery
EP3496188B1 (en) 2017-12-08 2021-03-31 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid-state battery
JP6996414B2 (en) * 2017-12-08 2022-01-17 トヨタ自動車株式会社 Manufacturing method of sulfide solid-state battery
JP7069727B2 (en) * 2018-01-10 2022-05-18 トヨタ自動車株式会社 Negative electrode layer
JP6881382B2 (en) * 2018-04-03 2021-06-02 トヨタ自動車株式会社 All solid state battery
JP7008266B2 (en) 2018-04-27 2022-02-10 トヨタ自動車株式会社 All-solid-state battery and its manufacturing method
JP7085124B2 (en) 2018-04-27 2022-06-16 トヨタ自動車株式会社 Sulfide solid-state battery and sulfide solid-state battery system equipped with it
US20210184218A1 (en) * 2018-05-25 2021-06-17 Lg Chem, Ltd. Complex Particles for Negative Electrode Active Material and Negative Electrode for All-Solid Type Battery Comprising the Same
JP7251069B2 (en) * 2018-08-02 2023-04-04 トヨタ自動車株式会社 All-solid-state battery and manufacturing method thereof
KR102131262B1 (en) * 2018-08-14 2020-08-05 울산과학기술원 an anode active material, a method of preparing the anode active material, and Lithium secondary battery comprising an anode including the anode active material
JP6988738B2 (en) * 2018-08-21 2022-01-05 トヨタ自動車株式会社 Negative electrode for sulfide all-solid-state battery and sulfide all-solid-state battery
JP7040429B2 (en) * 2018-12-04 2022-03-23 トヨタ自動車株式会社 Negative electrode
WO2020129879A1 (en) * 2018-12-20 2020-06-25 昭和電工株式会社 All-solid lithium ion battery negative electrode mixture and all-solid lithium ion battery
JP7156048B2 (en) 2019-01-17 2022-10-19 トヨタ自動車株式会社 Sulfide solid electrolyte particles and all-solid battery
JP7196625B2 (en) 2019-01-17 2022-12-27 トヨタ自動車株式会社 Sulfide solid electrolyte particles, manufacturing method thereof, and all-solid battery
JP7107880B2 (en) * 2019-04-01 2022-07-27 トヨタ自動車株式会社 Negative electrode mixture layer
JP7226359B2 (en) * 2019-04-17 2023-02-21 トヨタ自動車株式会社 Negative electrode for all-solid-state battery
CN110233282B (en) * 2019-06-19 2021-09-07 浙江锋锂新能源科技有限公司 All-solid-state battery with silicon cathode and sulfide solid electrolyte
KR20220028025A (en) * 2019-06-28 2022-03-08 데이진 가부시키가이샤 An active material layer for an all-solid lithium secondary battery comprising fibrous carbon, and an all-solid lithium secondary battery
KR102325877B1 (en) 2019-07-26 2021-11-12 도요타 지도샤(주) Anode active material, method for producing anode active material, and battery
US20220344720A1 (en) * 2019-10-23 2022-10-27 Tdk Corporation All-solid-state battery
DE112020005159T5 (en) * 2019-10-23 2022-07-14 Tdk Corporation SOLID STATE ACCUMULATOR
CN114730880A (en) * 2019-12-26 2022-07-08 日本瑞翁株式会社 Binder composition for secondary battery, slurry composition for secondary battery, solid electrolyte-containing layer, all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP7376396B2 (en) * 2020-03-10 2023-11-08 トヨタ自動車株式会社 All-solid-state battery manufacturing method
JP7268633B2 (en) 2020-04-07 2023-05-08 トヨタ自動車株式会社 Method for producing active material
JP2022131191A (en) 2021-02-26 2022-09-07 トヨタ自動車株式会社 Manufacturing method of all-solid battery
JP7484790B2 (en) * 2021-03-30 2024-05-16 トヨタ自動車株式会社 All-solid-state battery
WO2023017587A1 (en) * 2021-08-11 2023-02-16 Dic株式会社 Material for secondary batteries, negative electrode active material and secondary battery
JP7567769B2 (en) 2021-12-22 2024-10-16 トヨタ自動車株式会社 Anode for all-solid-state batteries
CN114447299B (en) * 2022-01-14 2024-05-31 中国科学院宁波材料技术与工程研究所 Method for relieving negative electrode lithium precipitation during charging of all-solid-state lithium ion battery
CN115347148A (en) * 2022-08-22 2022-11-15 上海屹锂新能源科技有限公司 Sulfide all-solid-state battery based on silicon-rich cathode and preparation method thereof
CN117374373A (en) * 2023-11-23 2024-01-09 高能时代(珠海)新能源科技有限公司 All-solid-state soft-package battery
CN117542963A (en) * 2023-12-08 2024-02-09 高能时代(珠海)新能源科技有限公司 Silicon cathode, silicon-based all-solid-state soft-package battery and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841384B2 (en) * 2011-09-20 2016-01-13 出光興産株式会社 Negative electrode composite and all solid lithium ion battery using the same
JP2013105701A (en) * 2011-11-16 2013-05-30 Idemitsu Kosan Co Ltd Lithium ion battery charging method, lithium ion battery charging/discharging control system, and lithium ion battery charging/discharging control circuit
JP6338840B2 (en) * 2013-10-07 2018-06-06 古河機械金属株式会社 Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12080878B2 (en) 2020-10-15 2024-09-03 Samsung Sdi Co., Ltd. Anode layer for all-solid secondary battery, all-solid secondary battery including the same, and method of manufacturing all-solid secondary battery

Also Published As

Publication number Publication date
JP2017054720A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6497282B2 (en) Negative electrode for all-solid-state battery
KR102104009B1 (en) Lithium solid battery
JP6946836B2 (en) Lithium solid-state battery and manufacturing method of lithium solid-state battery
CN110797567B (en) All-solid-state battery and method for manufacturing same
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
JP6183360B2 (en) Electrode of lithium ion secondary battery and lithium ion secondary battery using the same
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2015005398A (en) Positive electrode for all-solid lithium ion battery
US20160351899A1 (en) Device for producing composite active material powder and method for producing composite active material powder
JP7107880B2 (en) Negative electrode mixture layer
JP2019160407A (en) All-solid battery
KR20240045188A (en) All solid state battery and method for producing all solid state battery
JP2016081905A (en) Solid electrolyte layer
Li et al. Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries
JP2020119811A (en) Negative electrode layer
JP2011040282A (en) All-solid secondary battery
JP6988738B2 (en) Negative electrode for sulfide all-solid-state battery and sulfide all-solid-state battery
JP2022092808A (en) All-solid battery
JP2020013702A (en) All-solid battery
CN114824155B (en) All-solid battery
CN113036084B (en) All-solid battery and method for manufacturing all-solid battery
WO2023007939A1 (en) Negative electrode material, negative electrode, battery, and method for producing same
JP7040429B2 (en) Negative electrode
KR20230145677A (en) Electrode slurry comprising cluster composite and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R151 Written notification of patent or utility model registration

Ref document number: 6497282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151