JP2022092808A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2022092808A
JP2022092808A JP2020205728A JP2020205728A JP2022092808A JP 2022092808 A JP2022092808 A JP 2022092808A JP 2020205728 A JP2020205728 A JP 2020205728A JP 2020205728 A JP2020205728 A JP 2020205728A JP 2022092808 A JP2022092808 A JP 2022092808A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
current collector
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020205728A
Other languages
Japanese (ja)
Inventor
英輝 萩原
Hideki Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020205728A priority Critical patent/JP2022092808A/en
Publication of JP2022092808A publication Critical patent/JP2022092808A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an all-solid battery capable of suppressing fluctuation in restraint pressure associated with charge and discharge.SOLUTION: Provided is an all-solid battery having a negative electrode current collector, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector in this order. The negative electrode active material layer contains an Si-based active material as a negative electrode active material. The negative electrode current collector is a nickel foil having a through-hole penetrating in a thickness direction, an opening area ratio by the through-hole being 16% or more and 40% or less.SELECTED DRAWING: Figure 1

Description

本開示は、全固体電池に関する。 The present disclosure relates to an all-solid-state battery.

全固体電池は、正極層および負極層の間に固体電解質層を有する電池であり、可燃性の有機溶媒を含む電解液を有する液系電池に比べて、安全装置の簡素化が図りやすいという利点を有する。 The all-solid-state battery is a battery having a solid electrolyte layer between the positive electrode layer and the negative electrode layer, and has an advantage that the safety device can be easily simplified as compared with a liquid-based battery having an electrolytic solution containing a flammable organic solvent. Have.

電池の集電体として、多数の貫通孔を有した金属箔を使用することが提案されている(特許文献1~3)。例えば特許文献1では、貫通孔を設けることにより、活物質層の集電体からの離脱を抑制している。また、電池の負極層に用いられる負極活物質として、Siを含有する活物質(Si系活物質)が知られている(特許文献4)。 It has been proposed to use a metal foil having a large number of through holes as a current collector of a battery (Patent Documents 1 to 3). For example, in Patent Document 1, by providing a through hole, the active material layer is suppressed from being separated from the current collector. Further, as a negative electrode active material used for the negative electrode layer of a battery, an active material containing Si (Si-based active material) is known (Patent Document 4).

特開平05-290853号公報Japanese Unexamined Patent Publication No. 05-290853 特開2017-004914号公報Japanese Unexamined Patent Publication No. 2017-004914 特開2000-294250号公報Japanese Unexamined Patent Publication No. 2000-294250 特開2020-091974号公報Japanese Unexamined Patent Publication No. 2020-091974

Si系活物質は、体積当たりの理論容量が大きいという利点を有するが、その反面、充放電による体積変化が大きい。全固体電池は液系電池と比べて電極のヤング率が高いため、膨張収縮が大きいSi系活物質を負極活物質として用いた場合、全固体電池の拘束圧の変動が大きくなる恐れがある。拘束圧の変動が大きいと、負極活物質層の剥がれや滑落による短絡が生じる場合がある。 The Si-based active material has an advantage that the theoretical capacity per volume is large, but on the other hand, the volume change due to charge / discharge is large. Since the young rate of the electrode of the all-solid-state battery is higher than that of the liquid-based battery, when a Si-based active material having a large expansion and contraction is used as the negative electrode active material, the fluctuation of the restraining pressure of the all-solid-state battery may be large. If the fluctuation of the confining pressure is large, a short circuit may occur due to peeling or sliding of the negative electrode active material layer.

本開示は、上記実情に鑑みてなされものであり、充放電に伴う拘束圧変動を抑制可能な全固体電池を提供することを主目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide an all-solid-state battery capable of suppressing fluctuations in restraining pressure due to charging and discharging.

上記課題を解決するために、本開示においては、負極集電体、負極活物質層、固体電解質層、正極活物質層、および正極集電体をこの順に有する全固体電池であって、上記負極活物質層は負極活物質としてSi系活物質を含有し、上記負極集電体は、厚み方向に貫通する貫通孔を有し、上記貫通孔による開口面積率が16%以上40%以下であるニッケル箔である、全固体電池を提供する。 In order to solve the above problems, in the present disclosure, an all-solid-state battery having a negative electrode current collector, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector in this order is the negative electrode. The active material layer contains a Si-based active material as a negative electrode active material, and the negative electrode current collector has through holes penetrating in the thickness direction, and the opening area ratio of the through holes is 16% or more and 40% or less. Provided is an all-solid-state battery which is a nickel foil.

本開示によれば、貫通孔を有し、所定の開口面積率を有するニッケル箔を負極集電体として使用することで、充放電に伴うSi系活物質の膨張収縮に起因する拘束圧の変動が抑制された全固体電池を提供することができる。 According to the present disclosure, by using a nickel foil having a through hole and a predetermined opening area ratio as a negative electrode current collector, fluctuations in the restraining pressure due to expansion and contraction of the Si-based active material due to charging and discharging are performed. It is possible to provide an all-solid-state battery in which the amount of electricity is suppressed.

本開示においては、充放電に伴う拘束圧の変動が抑制された全固体電池を提供できるという効果を奏する。 In the present disclosure, it is possible to provide an all-solid-state battery in which fluctuations in restraining pressure due to charging and discharging are suppressed.

本開示における全固体電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the all-solid-state battery in this disclosure. 本開示における全固体電池の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the all-solid-state battery in this disclosure. 実施例および比較例における拘束圧変動の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the restraint pressure fluctuation in an Example and a comparative example.

以下、本開示における全固体電池について、詳細に説明する。 Hereinafter, the all-solid-state battery in the present disclosure will be described in detail.

図1は、本開示の全固体電池の一例を示す概略断面図である。図1に示される全固体電池10は、厚さ方向において、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、および正極集電体5をこの順に有する。本開示においては、負極活物質層2が、負極活物質としてSi系活物質を含有し、負極集電体1が、厚み方向に貫通する貫通孔を有し、貫通孔による開口面積率が16%以上40%以下であるニッケル箔であることを特徴とする。 FIG. 1 is a schematic cross-sectional view showing an example of the all-solid-state battery of the present disclosure. The all-solid-state battery 10 shown in FIG. 1 has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order in the thickness direction. In the present disclosure, the negative electrode active material layer 2 contains a Si-based active material as the negative electrode active material, the negative electrode current collector 1 has a through hole penetrating in the thickness direction, and the opening area ratio by the through hole is 16. It is characterized by being a nickel foil having a percentage of% or more and 40% or less.

上述したように、Si系活物質を負極活物質として用いた従来の全固体電池は、電極のヤング率が高いため、充放電時のSi系活物質の膨張収縮が、電池全体に影響するため、全固体電池の拘束圧の変動が大きい。 As described above, since the conventional all-solid-state battery using the Si-based active material as the negative electrode active material has a high young rate of the electrode, the expansion and contraction of the Si-based active material during charging and discharging affects the entire battery. , The fluctuation of the restraining pressure of the all-solid-state battery is large.

これに対し、本開示における全固体電池は、負極集電体が、厚み方向に貫通する貫通孔を有し、貫通孔による開口面積率が16%以上のニッケル箔である。本開示においては、貫通孔による開口面積率が所定の値以上のニッケル箔を使用することにより、例えば充電時において、Si系活物質の膨張により積層方向の圧力がかかった際に、貫通孔を押し潰すようにニッケル箔を弾性変形させることができる。そのため、Si系活物質の膨張収縮に起因する全固体電池の拘束圧の変動を抑制することができる。また、Si系活物質の膨張収縮に起因する負極活物質層のワレや剥がれ、滑落を抑制することができる。一方、開口面積率が40%以下であることにより、ニッケル箔が十分な強度を有するため、電池製造時のプレスによる破れ等を抑制することができる。更に、本開示における全固体電池は、負極集電体の貫通孔内に活物質を充填することができるため、負極容量を増大させることができる。また、負極集電体と負極活物質層との密着性を向上させることもできる。 On the other hand, in the all-solid-state battery in the present disclosure, the negative electrode current collector is a nickel foil having through holes penetrating in the thickness direction and having an opening area ratio of 16% or more through the through holes. In the present disclosure, by using a nickel foil having an opening area ratio of through holes of a predetermined value or more, for example, during charging, when pressure is applied in the stacking direction due to expansion of the Si-based active material, the through holes are formed. The nickel foil can be elastically deformed so as to be crushed. Therefore, it is possible to suppress fluctuations in the restraining pressure of the all-solid-state battery due to expansion and contraction of the Si-based active material. In addition, cracking, peeling, and slipping of the negative electrode active material layer due to expansion and contraction of the Si-based active material can be suppressed. On the other hand, when the opening area ratio is 40% or less, the nickel foil has sufficient strength, so that tearing or the like due to a press during battery manufacturing can be suppressed. Further, in the all-solid-state battery in the present disclosure, since the active material can be filled in the through hole of the negative electrode current collector, the negative electrode capacity can be increased. It is also possible to improve the adhesion between the negative electrode current collector and the negative electrode active material layer.

1.負極集電体
本開示における負極集電体は、厚み方向に貫通する貫通孔を有するニッケル箔である。貫通孔による開口面積率は、16%以上であり、24%以上であってもよい。上記値以上であれば、全固体電池の拘束圧の変動を抑制することができる。上記値より小さいと、貫通孔による拘束圧の変動の抑制効果を十分に得ることができない。本明細書において、開口面積率とは、ニッケル箔の平面図での、ニッケル箔全体(貫通孔を含む)の面積に対する、貫通孔の面積の合計である。
1. 1. Negative electrode current collector The negative electrode current collector in the present disclosure is a nickel foil having through holes penetrating in the thickness direction. The opening area ratio by the through hole is 16% or more, and may be 24% or more. If it is equal to or more than the above value, the fluctuation of the restraining pressure of the all-solid-state battery can be suppressed. If it is smaller than the above value, the effect of suppressing the fluctuation of the restraining pressure due to the through hole cannot be sufficiently obtained. In the present specification, the opening area ratio is the total area of the through holes with respect to the area of the entire nickel foil (including the through holes) in the plan view of the nickel foil.

一方、貫通孔による開口面積率は、40%以下であり、32%以下であってもよい。上記値以下であれば、集電体の強度の低下を抑制することができ、例えば電池製造時における箔破れを抑制することができる。 On the other hand, the opening area ratio due to the through hole is 40% or less, and may be 32% or less. When it is not more than the above value, the decrease in the strength of the current collector can be suppressed, and for example, the foil tearing at the time of manufacturing the battery can be suppressed.

ニッケル箔における貫通孔の数は、1つ以上であれば特に限定されないが、例えば2つ以上であり、10以上、100以上であってもよい。また、貫通孔の数が2つ以上である場合、貫通孔はニッケル箔において一部の領域に偏らず、満遍なく散らばって配置されていることが好ましい。複数の貫通孔が満遍なく散らばって配置されることで、拘束圧の変動を偏りなく抑制できるからである。 The number of through holes in the nickel foil is not particularly limited as long as it is one or more, but for example, it may be two or more, and may be 10 or more or 100 or more. Further, when the number of through holes is two or more, it is preferable that the through holes are not biased to a part of the region in the nickel foil and are evenly distributed. This is because the fluctuation of the restraining pressure can be suppressed evenly by arranging the plurality of through holes evenly distributed.

負極集電体の貫通孔の孔径(開口径)は、特に制限されない。負極集電体の開口径の下限は、例えば1μm以上であり、10μm以上であってもよい。上限としては、例えば300μm以下であり、200μm以下であってもよい。なお、ここでいう開口径とは、貫通孔の開口部の外接円の直径である。外接円の直径は、顕微鏡などにより集電体の表面観察を行い、平均化した値である。 The hole diameter (opening diameter) of the through hole of the negative electrode current collector is not particularly limited. The lower limit of the opening diameter of the negative electrode current collector is, for example, 1 μm or more, and may be 10 μm or more. The upper limit is, for example, 300 μm or less, and may be 200 μm or less. The opening diameter referred to here is the diameter of the circumscribed circle of the opening of the through hole. The diameter of the circumscribed circle is a value averaged by observing the surface of the current collector with a microscope or the like.

貫通孔の形状としては、特に限定されないが、丸形、四角形、菱形、亀甲形状、六角形、角型、星形、十文字形などが挙げられる。 The shape of the through hole is not particularly limited, and examples thereof include a round shape, a quadrangle shape, a rhombus shape, a hexagonal shape, a hexagonal shape, a square shape, a star shape, and a cross shape.

負極集電体であるニッケル箔の厚みとしては、特に限定されないが、例えば、10μm以上であり、20μm以上であってもよい。一方、例えば、50μm以下であり、40μm以下であってもよい。負極集電体と負極活物質層とは直接接触していることが好ましい。 The thickness of the nickel foil as the negative electrode current collector is not particularly limited, but may be, for example, 10 μm or more, or 20 μm or more. On the other hand, for example, it may be 50 μm or less and 40 μm or less. It is preferable that the negative electrode current collector and the negative electrode active material layer are in direct contact with each other.

2.負極活物質層
本開示における負極活物質層は、負極活物質としてSi系活物質を含有する。Si系活物質は、Liと合金化可能な活物質であることが好ましい。Si系活物質としては、例えば、Si単体、Si合金、Si酸化物を挙げることができる。Si合金は、Si元素を主成分として含有することが好ましい。Si合金中のSi元素の割合は、例えば、50mol%以上であってもよく、70mol%以上であってもよく、90mol%以上であってもよい。
2. 2. Negative electrode active material layer The negative electrode active material layer in the present disclosure contains a Si-based active material as a negative electrode active material. The Si-based active material is preferably an active material that can be alloyed with Li. Examples of the Si-based active material include simple substances of Si, Si alloys, and Si oxides. The Si alloy preferably contains a Si element as a main component. The ratio of the Si element in the Si alloy may be, for example, 50 mol% or more, 70 mol% or more, or 90 mol% or more.

Si系活物質の含有量は、例えば20重量%以上であり、30重量%以上であってもよく、40重量%以上であってもよい。一方、Si系活物質の割合は、例えば80重量%以下であり、70重量%以下であってもよく、60重量%以下であってもよい。 The content of the Si-based active material is, for example, 20% by weight or more, 30% by weight or more, or 40% by weight or more. On the other hand, the ratio of the Si-based active material is, for example, 80% by weight or less, 70% by weight or less, or 60% by weight or less.

Si系活物質の平均粒径(D50)は、特に限定されないが、例えば5μm以上であり、10μm以上であってもよい。一方、平均粒径(D50)は、例えば20μm以下であり、15μm以下であってもよい。なお、平均粒径(D50)は、例えば、レーザー回折式粒度分布計、走査型電子顕微鏡(SEM)による測定から算出できる。 The average particle size (D 50 ) of the Si-based active material is not particularly limited, but is, for example, 5 μm or more, and may be 10 μm or more. On the other hand, the average particle size (D 50 ) is, for example, 20 μm or less, and may be 15 μm or less. The average particle size (D 50 ) can be calculated from, for example, measurement by a laser diffraction type particle size distribution meter or a scanning electron microscope (SEM).

また、本開示における負極活物質層は、必要に応じて、導電材、バインダーおよび固体電解質の少なくとも一つを更に含有していてもよい。導電材としては、例えば、炭素材料、金属粒子、導電性ポリマーが挙げられる。炭素材料としては、例えば、アセチレンブラック(AB)、ケッチェンブラック(KB)等の粒子状炭素材料;炭素繊維、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の繊維状炭素材料が挙げられる。また、バインダーとしては、例えば、ブチレンゴム(BR)、スチレンブタジエンゴム(SBR)等のゴム系バインダー;ポリフッ化ビニリデン(PVDF)等のフッ化物系系バインダーが挙げられる。固体電解質については、「3.固体電解質層」で説明する。また、負極活物質層の厚さは、例えば0.1μm以上1000μm以下である。 Further, the negative electrode active material layer in the present disclosure may further contain at least one of a conductive material, a binder and a solid electrolyte, if necessary. Examples of the conductive material include carbon materials, metal particles, and conductive polymers. Examples of the carbon material include particulate carbon materials such as acetylene black (AB) and Ketjen black (KB); and fibrous carbon materials such as carbon fibers, carbon nanotubes (CNT), and carbon nanofibers (CNF). .. Examples of the binder include rubber-based binders such as butylene rubber (BR) and styrene-butadiene rubber (SBR); and fluoride-based binders such as polyvinylidene fluoride (PVDF). The solid electrolyte will be described in "3. Solid electrolyte layer". The thickness of the negative electrode active material layer is, for example, 0.1 μm or more and 1000 μm or less.

3.固体電解質層
固体電解質層は、上記正極活物質層および上記負極活物質層の間に形成される層であり、少なくとも固体電解質を含有する層である。また、固体電解質層は、固体電解質のみを含有していてもよく、さらにバインダーを含有していてもよい。
3. 3. Solid electrolyte layer The solid electrolyte layer is a layer formed between the positive electrode active material layer and the negative electrode active material layer, and is a layer containing at least a solid electrolyte. Further, the solid electrolyte layer may contain only the solid electrolyte, or may further contain a binder.

固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質等の無機固体電解質;ポリマー電解質等の有機高分子電解質が挙げられる。これらの中でも、特に、硫化物固体電解質が好ましい。固体電解質層の厚さは、例えば0.1μm以上1000μm以下である。 Examples of the solid electrolyte include inorganic solid electrolytes such as sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, and halide solid electrolytes; and organic polymer electrolytes such as polymer electrolytes. Among these, a sulfide solid electrolyte is particularly preferable. The thickness of the solid electrolyte layer is, for example, 0.1 μm or more and 1000 μm or less.

4.正極活物質層
正極活物質層は、少なくとも正極活物質を含有し、必要に応じて導電材および固体電解質、バインダーを含有していてもよい。正極活物質としては例えば、酸化物活物質が挙げられる。酸化物活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、LiMn、LiTi12、Li(Ni0.5Mn1.5)O等のスピネル型活物質、LiFePO、LiMnPO、LiNiPO、LiCoPO等のオリビン型活物質が挙げられる。正極活物質の表面には、イオン伝導性酸化物が被覆されていてもよい。イオン伝導性酸化物としては、例えばLiNbOが挙げられる。
4. Positive electrode active material layer The positive electrode active material layer contains at least a positive electrode active material, and may contain a conductive material, a solid electrolyte, and a binder, if necessary. Examples of the positive electrode active material include an oxide active material. Examples of the oxide active material include rock salt layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , Li 4 Examples thereof include spinel-type active materials such as Ti 5 O 12 and Li (Ni 0.5 Mn 1.5 ) O 4 , and olivine-type active materials such as LiFePO 4 , LiMnPO 4 , LiNiPO 4 , and LiCoPO 4 . The surface of the positive electrode active material may be coated with an ion conductive oxide. Examples of the ion conductive oxide include LiNbO 3 .

正極活物質層における正極活物質の割合は、例えば20重量%以上であり、30重量%以上であってもよく、40重量%以上であってもよい。一方、正極活物質の割合は、例えば80重量%以下であり、70重量%以下であってもよく、60重量%以下であってもよい。また、正極活物質層の厚さは、例えば0.1μm以上1000μm以下である。 The ratio of the positive electrode active material in the positive electrode active material layer is, for example, 20% by weight or more, 30% by weight or more, or 40% by weight or more. On the other hand, the ratio of the positive electrode active material is, for example, 80% by weight or less, 70% by weight or less, or 60% by weight or less. The thickness of the positive electrode active material layer is, for example, 0.1 μm or more and 1000 μm or less.

固体電解質、導電材、およびバインダーについては、上記「1.負極活物質層」に記載した内容と同様であるので、ここでの記載は省略する。 The solid electrolyte, the conductive material, and the binder are the same as those described in "1. Negative electrode active material layer" above, and thus the description thereof is omitted here.

5.正極集電体
正極集電体の材料としては、特に限定されないが、例えば、SUS、アルミニウム、ニ
ッケル、鉄、チタンおよびカーボンが挙げられる。
5. Positive Electrode Collector The material of the positive electrode current collector is not particularly limited, and examples thereof include SUS, aluminum, nickel, iron, titanium, and carbon.

6.全固体電池の具体的態様
本開示における全固体電池の種類は特に限定されないが、典型的にはリチウムイオン電池である。また、本開示における全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。
6. Specific Embodiment of All-Solid State Battery The type of all-solid-state battery in the present disclosure is not particularly limited, but is typically a lithium ion battery. Further, the all-solid-state battery in the present disclosure may be a primary battery or a secondary battery, but a secondary battery is preferable. This is because it can be repeatedly charged and discharged and is useful as an in-vehicle battery, for example.

本開示における全固体電池は、単電池であってもよく、積層電池であってもよい。積層電池は、モノポーラ型積層電池(並列接続型の積層電池)であってもよく、バイポーラ型積層電池(直列接続型の積層電池)であってもよい。電池の形状としては、例えば、コイン型、ラミネート型、円筒型、角型が挙げられる。 The all-solid-state battery in the present disclosure may be a single battery or a laminated battery. The laminated battery may be a monopolar type laminated battery (parallel connection type laminated battery) or a bipolar type laminated battery (series connection type laminated battery). Examples of the shape of the battery include a coin type, a laminated type, a cylindrical type, and a square type.

図2は、本開示における全固体電池の別の一例を示す概略断面図であり、複数の発電単位が並列接続された状態を示す概略断面図である。図2に示す全固体電池100は、負極集電体1と、負極集電体1の一方の面s11から順に配置された、第1負極活物質層2a、第1固体電解質層3a、第1正極活物質層4aおよび第1正極集電体5aと、負極集電体1の他方の面s12から順に配置された、第2負極活物質層2b、第2固体電解質層3b、第2正極活物質層4bおよび第2正極集電体5bと、を有する。第1正極集電体5aおよび第2正極集電体5bは接続され、正極タブ5tを構成している。負極集電体1には負極タブ1tが接続されている。また、第2正極集電体5bと、負極(負極集電体1、第1負極活物質層2a、第2負極活物質層2b)の側面との間には、短絡を防止するため絶縁性保護層7が配置されている。 FIG. 2 is a schematic cross-sectional view showing another example of the all-solid-state battery in the present disclosure, and is a schematic cross-sectional view showing a state in which a plurality of power generation units are connected in parallel. In the all-solid-state battery 100 shown in FIG. 2, the negative electrode current collector 1 and the first negative electrode active material layer 2a, the first solid electrolyte layer 3a, and the first are arranged in order from one surface s11 of the negative electrode current collector 1. The second negative electrode active material layer 2b, the second solid electrolyte layer 3b, and the second positive electrode activity arranged in order from the positive electrode active material layer 4a and the first positive electrode current collector 5a and the other surface s12 of the negative electrode current collector 1. It has a material layer 4b and a second positive electrode current collector 5b. The first positive electrode current collector 5a and the second positive electrode current collector 5b are connected to form a positive electrode tab 5t. A negative electrode tab 1t is connected to the negative electrode current collector 1. Further, an insulating property is provided between the second positive electrode current collector 5b and the side surface of the negative electrode (negative electrode current collector 1, first negative electrode active material layer 2a, second negative electrode active material layer 2b) to prevent a short circuit. The protective layer 7 is arranged.

本開示においては、負極活物質層2が、負極活物質としてSi系活物質を含有し、負極集電体1が、厚み方向に貫通する貫通孔を有し、貫通孔による開口面積率が16%以上40%以下であるニッケル箔である。このようなニッケル箔は、例えば充電時において、第1負極活物質層2aおよび第2負極活物質層2b中のSi系活物質の膨張により積層方向の圧力がかかった際に、貫通孔を押し潰すように弾性変形させることができる。そのため、Si系活物質の膨張収縮に起因する全固体電池の拘束圧の変動を抑制することができる。 In the present disclosure, the negative electrode active material layer 2 contains a Si-based active material as the negative electrode active material, the negative electrode current collector 1 has a through hole penetrating in the thickness direction, and the opening area ratio by the through hole is 16. % Or more and 40% or less of the nickel foil. Such a nickel foil pushes through holes when pressure is applied in the stacking direction due to expansion of the Si-based active material in the first negative electrode active material layer 2a and the second negative electrode active material layer 2b, for example, during charging. It can be elastically deformed to be crushed. Therefore, it is possible to suppress fluctuations in the restraining pressure of the all-solid-state battery due to expansion and contraction of the Si-based active material.

例えば無機固体電解質を含有する全固体電池では、良好なイオン伝導パスを形成するために、電極体に対して、非常に高い圧力でプレスを行う必要がある。この際、図2に示す全固体電池は、負極集電体を基準にして、他の層の構成が対称であることから、正極活物質層および負極活物質層の伸縮性の違いによる応力の発生が生じにくいという利点がある。 For example, in an all-solid-state battery containing an inorganic solid electrolyte, it is necessary to press the electrode body at a very high pressure in order to form a good ion conduction path. At this time, in the all-solid-state battery shown in FIG. 2, since the configurations of the other layers are symmetrical with respect to the negative electrode current collector, the stress due to the difference in elasticity between the positive electrode active material layer and the negative electrode active material layer is increased. There is an advantage that it is unlikely to occur.

なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示における特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示における技術的範囲に包含される。 The present disclosure is not limited to the above embodiment. The above embodiment is an example, and any object having substantially the same structure as the technical idea described in the claims of the present disclosure and having the same effect and effect is the present invention. Included in the technical scope of the disclosure.

[評価用セルの作製]
(実施例1)
Si系負極活物質(Si単体)と、分散媒(酪酸ブチル)と、バインダー(PVdF系バインダーの5wt%酪酸ブチル溶液)と、硫化物固体電解質(LiBr、LiIを含有するLiS-P系ガラスセラミック)と、導電材(VGCF)とを混合することでペースト状の負極組成物を調製した。この組成物を、貫通孔を有するNi箔(負極集電体 開口面積率 16% 厚み24μm)上に塗工して乾燥させることで、負極活物質層を形成した。
[Preparation of evaluation cell]
(Example 1)
Si - based negative electrode active material (Si alone), dispersion medium (butyl butyrate), binder (5 wt% butyl butyrate solution of PVdF-based binder), and sulfide solid electrolyte (Li 2SP 2 containing LiBr and LiI). A paste - like negative electrode composition was prepared by mixing S5 glass ceramic) and a conductive material (VGCF). This composition was applied onto a Ni foil having through holes (negative electrode current collector opening area ratio 16%, thickness 24 μm) and dried to form a negative electrode active material layer.

正極活物質(LiNi1/3Co1/3Mn1/3)と、分散媒(酪酸ブチル)と、バインダー(PVdF系バインダーの5wt%酪酸ブチル溶液)と、硫化物固体電解質(LiBr、LiIを含有するLiS-P系ガラスセラミック)と、導電材(VGCF)とを混合することで、ペースト状の正極組成物を調製した。この組成物を厚み10μmのアルミ箔(正極集電体)上に塗工して乾燥させることで、正極活物質層を形成した。 Positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), dispersion medium (butyl butyrate), binder (5 wt% butyl butyrate solution of PVdF-based binder), and sulfide solid electrolyte (LiBr, A Li 2 SP 2 S 5 series glass ceramic containing LiI) and a conductive material (VGCF) were mixed to prepare a paste-like positive electrode composition. This composition was applied onto an aluminum foil (positive electrode current collector) having a thickness of 10 μm and dried to form a positive electrode active material layer.

分散媒(ヘプタン)、バインダー(ブタジエンゴムの5wt%ヘプタン溶液)と、硫化物固体電解質(LiBr、LiIを含有するLiS-P系ガラスセラミック)とを混合することで、固体電解質組成物を調製した。この組成物をアルミ箔(基板)に塗工して乾燥することで固体電解質層を形成した。 A solid electrolyte by mixing a dispersion medium (heptane), a binder (a 5 wt% heptane solution of butadiene rubber) and a sulfide solid electrolyte (Li 2SP 2S 5 glass ceramic containing LiBr and LiI). The composition was prepared. This composition was applied to an aluminum foil (substrate) and dried to form a solid electrolyte layer.

固体電解質層が正極活物質層と接するように、固体電解質層を正極活物質層に積層してプレスを行った。そして、固体電解質層の基板(アルミ箔)を剥がして、固体電解質層が負極活物質層と接するように負極活物質層を積層してプレスを行った。このようにして図3(a)に示すような評価用セルを作製した。正極活物質層(密度3.7g/cc)の厚さは70.0μm、固体電解質層の厚さは15.0μm、負極活物質層(密度1.8g/cc)の厚さは45.3μmであった。なお、電極面積は1cmとした。 The solid electrolyte layer was laminated on the positive electrode active material layer and pressed so that the solid electrolyte layer was in contact with the positive electrode active material layer. Then, the substrate (aluminum foil) of the solid electrolyte layer was peeled off, and the negative electrode active material layer was laminated and pressed so that the solid electrolyte layer was in contact with the negative electrode active material layer. In this way, an evaluation cell as shown in FIG. 3A was produced. The thickness of the positive electrode active material layer (density 3.7 g / cc) is 70.0 μm, the thickness of the solid electrolyte layer is 15.0 μm, and the thickness of the negative electrode active material layer (density 1.8 g / cc) is 45.3 μm. Met. The electrode area was 1 cm 2 .

(実施例2~4、比較例1~3)
負極集電体として、表1に示す開口面積率を有するNi箔を使用した以外は、実施例1と同様にして、評価セルを得た。
(Examples 2 to 4, Comparative Examples 1 to 3)
An evaluation cell was obtained in the same manner as in Example 1 except that a Ni foil having an opening area ratio shown in Table 1 was used as the negative electrode current collector.

[拘束圧変動評価]
図3(b)に示すような冶具に上記実施例1で作製した評価セルを4つセットし、ロードセルにより拘束圧の変動を測定し、拘束圧変動の抑制効果について評価した。具体的には、以下の式から拘束圧変動の抑制効果を評価した。結果を表1に示す。
拘束圧変動(ΔMPa/mAh)=(充電終了時の拘束圧(MPa)-充電開始時の拘束圧(MPa))/(セル数×充電終了時の容量(mAh))
同様に、実施例2~4、比較例1~3の評価セルについても評価した。
[Evaluation of restraint pressure fluctuation]
Four evaluation cells prepared in Example 1 above were set in a jig as shown in FIG. 3 (b), fluctuations in the restraint pressure were measured by a load cell, and the effect of suppressing the fluctuations in the restraint pressure was evaluated. Specifically, the effect of suppressing fluctuations in restraint pressure was evaluated from the following equation. The results are shown in Table 1.
Constriction pressure fluctuation (ΔMPa / mAh) = (constraint pressure at the end of charging (MPa) -constraint pressure at the start of charging (MPa)) / (number of cells x capacity at the end of charging (mAh))
Similarly, the evaluation cells of Examples 2 to 4 and Comparative Examples 1 to 3 were also evaluated.

[負極活物質層ワレ]
上記評価セルの2C充放電サイクル評価(n=4)において、10サイクルの充放電を行い、10サイクル目での容量維持率が90%以下となるセルがn=1でも存在する場合を×とし、それ以外を〇と評価した。評価結果が×のセルは、セル解体時に、拘束圧変動が大きいことによる活物質層ワレが確認された。
[Negative electrode active material layer crack]
In the 2C charge / discharge cycle evaluation (n = 4) of the above evaluation cell, the case where 10 cycles of charge / discharge are performed and the capacity retention rate at the 10th cycle is 90% or less exists even at n = 1 is defined as x. , Others were evaluated as 〇. In the cell whose evaluation result was ×, it was confirmed that the active material layer cracked due to the large fluctuation of the restraining pressure at the time of cell dismantling.

[箔破れ]
電池製造時における正極、固体電解質層、負極のプレスにより生じる箔破れの有無を評価した(同プレス条件にてn=5)。n=1でも破れが発生したものを×とし、発生しなかったものを〇と評価した。負極集電箔(Ni箔)破れは、負極集電箔上の負極活物質層用組成物の塗布部と未塗布部との境にて生じた。
[Ripped foil]
The presence or absence of foil tearing caused by pressing the positive electrode, the solid electrolyte layer, and the negative electrode during battery production was evaluated (n = 5 under the same pressing conditions). Those in which tearing occurred even with n = 1 were evaluated as x, and those in which no tear occurred were evaluated as 〇. The tearing of the negative electrode current collector foil (Ni foil) occurred at the boundary between the coated portion and the uncoated portion of the composition for the negative electrode active material layer on the negative electrode current collector foil.

[判定基準]
[負極活物質層ワレ]の評価結果が〇、かつ、[箔破れ]の評価結果が〇となる特性範囲を〇と評価した。
[criterion]
The characteristic range in which the evaluation result of [negative electrode active material layer crack] was 〇 and the evaluation result of [foil tear] was 〇 was evaluated as 〇.

Figure 2022092808000002
Figure 2022092808000002

表1の結果から、開口面積率が16%以上40%以下であるニッケル箔を負極集電体として使用した本開示の全固体電池(実施例1~4)は、拘束圧の変動を抑制することができ、電池製造時に箔破れが生じなかった。また、本開示における全固体電池では、ニッケル箔の貫通孔に負極活物質が充填されるため負極の目付けが増え、負/正容量比を向上させることができた。 From the results in Table 1, the all-solid-state batteries (Examples 1 to 4) of the present disclosure using a nickel foil having an opening area ratio of 16% or more and 40% or less as a negative electrode current collector suppress fluctuations in restraining pressure. It was possible and no foil tear occurred during battery manufacturing. Further, in the all-solid-state battery in the present disclosure, since the through hole of the nickel foil is filled with the negative electrode active material, the degree of the negative electrode is increased, and the negative / positive capacity ratio can be improved.

1 …負極集電体(貫通孔を有するニッケル箔)
2 …負極活物質層
3 …固体電解質層
4 …正極活物質層
5 …正極集電体
10、100 …全固体電池
1 ... Negative electrode current collector (nickel foil with through holes)
2 ... Negative electrode active material layer 3 ... Solid electrolyte layer 4 ... Positive electrode active material layer 5 ... Positive electrode current collector 10, 100 ... All-solid-state battery

Claims (1)

負極集電体、負極活物質層、固体電解質層、正極活物質層、および正極集電体をこの順に有する全固体電池であって、
前記負極活物質層は負極活物質としてSi系活物質を含有し、
前記負極集電体は、厚み方向に貫通する貫通孔を有し、前記貫通孔による開口面積率が16%以上40%以下であるニッケル箔である、全固体電池。
An all-solid-state battery having a negative electrode current collector, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector in this order.
The negative electrode active material layer contains a Si-based active material as a negative electrode active material, and the negative electrode active material layer contains a Si-based active material.
The negative electrode current collector is an all-solid-state battery which is a nickel foil having a through hole penetrating in the thickness direction and having an opening area ratio of 16% or more and 40% or less.
JP2020205728A 2020-12-11 2020-12-11 All-solid battery Pending JP2022092808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020205728A JP2022092808A (en) 2020-12-11 2020-12-11 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020205728A JP2022092808A (en) 2020-12-11 2020-12-11 All-solid battery

Publications (1)

Publication Number Publication Date
JP2022092808A true JP2022092808A (en) 2022-06-23

Family

ID=82069031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020205728A Pending JP2022092808A (en) 2020-12-11 2020-12-11 All-solid battery

Country Status (1)

Country Link
JP (1) JP2022092808A (en)

Similar Documents

Publication Publication Date Title
JP6497282B2 (en) Negative electrode for all-solid-state battery
US10141762B2 (en) All-solid-state battery system
US10910677B2 (en) Stacked battery
US11075409B2 (en) Stacked battery
US10559845B2 (en) Stacked battery
KR20170071408A (en) All-solid-state battery and method of manufacturing the same
WO2023093576A1 (en) Pole piece and lithium ion battery
JP7070321B2 (en) All solid state battery
JP2018106984A (en) All-solid-state lithium ion battery
JP7069727B2 (en) Negative electrode layer
WO2012147647A1 (en) Lithium ion secondary cell
KR20210007149A (en) A composite anode for all-solid state battery
JP7218751B2 (en) All-solid battery
KR20220008907A (en) All-solid-state battery and manufacturing method thereof
US20220115691A1 (en) Method for producing all solid-state battery, and all solid-state battery
US20220320512A1 (en) All solid state battery
JP7248043B2 (en) All-solid battery
JP7347454B2 (en) Negative electrode active material layer
JP2022092808A (en) All-solid battery
JP7159665B2 (en) All-solid battery
JP7331873B2 (en) All-solid battery
JP2019096541A (en) All-solid battery
JP7428156B2 (en) All solid state battery
JP7040429B2 (en) Negative electrode
US20220320580A1 (en) All-solid-state battery