JP6497071B2 - レーザ測距装置、汚れ検出方法、およびプログラム - Google Patents

レーザ測距装置、汚れ検出方法、およびプログラム Download PDF

Info

Publication number
JP6497071B2
JP6497071B2 JP2014266576A JP2014266576A JP6497071B2 JP 6497071 B2 JP6497071 B2 JP 6497071B2 JP 2014266576 A JP2014266576 A JP 2014266576A JP 2014266576 A JP2014266576 A JP 2014266576A JP 6497071 B2 JP6497071 B2 JP 6497071B2
Authority
JP
Japan
Prior art keywords
light
light receiving
dirt
optical system
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014266576A
Other languages
English (en)
Other versions
JP2016125898A (ja
Inventor
森河 剛
剛 森河
手塚 耕一
耕一 手塚
飯田 弘一
弘一 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014266576A priority Critical patent/JP6497071B2/ja
Publication of JP2016125898A publication Critical patent/JP2016125898A/ja
Application granted granted Critical
Publication of JP6497071B2 publication Critical patent/JP6497071B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、レーザ測距装置、レーザ測距方法、およびレーザ測距プログラムに関する。
近年、レーザを用いて物体までの距離を測定するレーザ測距装置は、対象物までの距離測定だけでなく、様々な用途に用いられるようになってきており、改良が進んでいる。例えば、検知領域に検知すべき反射物が存在しない場合に、レーザレーダセンサの受光素子から出力される受光信号を所定個数積算した積算信号がノイズ基準値として記録される例がある。そして、検知領域内の反射物を検出する際には、積算信号からノイズ基準値を減算した減算信号に基づいて反射物を検出することで、反射物の検出能力の低下を抑制することを意図している。また、センサ画素に対して距離情報と振幅情報を特定するが、光インタフェース上の汚れの存在を、センサ画素に対して特定する振幅情報に基づいて特定する例も知られている。さらに、自車前方を水平方向に走査しながら計測方向を変えて前車までの距離を計測し、計測結果の車間距離を報知するときに、所定値以下の距離計測値があったらそれを無効にする例が知られている。この例では、略同一計測方向の距離計測値が予め設定した時間継続して無効とされた場合には、計測手段に汚れが付着しているとして報知する(例えば、特許文献1〜3参照)。
特開2005−257405号公報 特開2010−534000号公報 特開2000−46948号公報
しかしながら、受光レンズ等に汚れがある場合、ノイズ基準値を減算した信号に基づいて、汚れの有無を判断することは困難である。受光した光の振幅情報に基づいて汚れを特定しようとする場合、振幅情報の低下が対象物の有無などの対象物の状態によるものか、受光レンズなどの光学部品の汚れによるものか判断することは困難である。予め設定した時間以上継続する略同一計測方向の所定値以下の距離計測値を無効にする場合、周辺環境が動かず、計測対象物が常に同じ位置にあり動いていないときには、実際の計測対象物を汚れと判断してしまうことがある。
このように、従来のレーザ測距装置では、受光レンズ等の汚れの有無が正確に判断できないため、反射光が検出されない場合に、対象物がない場合と、受光レンズ等の汚れによる場合とが区別できず、距離が正確に計測できなくなることがある。
ひとつの側面によれば、本発明の目的は、レーザ測距装置の受光レンズ等の受光光学系の汚れの有無あるいは程度を判断できるようにすることである。
ひとつの態様であるレーザ測距装置は、投光部と、複数の受光素子と、処理装置とを有する。投光部は、対象物に光を投光し、対象物に投光される光の方向を異なる方向の複数のビームに変化させる。受光素子は、投光された光に対する対象物からの反射光を、受光光学系を介して受光する。処理装置は、複数の受光素子の各々の受光量に基づいて受光光学系の部分的な汚れの検出を行うものであって、複数のビームの各々についての複数の受光素子の各々の受光量を取得し、複数のビームのうちで複数の受光素子のいずれにおいても反射光が検出されないビームを、光量未検出のビームとして特定し、複数のビームのうちの光量未検出のビーム以外の残りの各ビームについて、複数の受光素子の受光量の和に対する受光素子毎の受光量の比を特定当該残りの各ビームのうちで、特定した比と、受光光学系に汚れがない状態における複数の受光素子の受光量の和に対する受光素子毎の受光量の比とが相違するビームについての受光光学系の光路上に汚れがあると判断し当該判断において光量未検出のビームの周囲のビームについての受光光学系の光路上に汚れがあると判断したものがある場合に、光量未検出のビームについての受光光学系の光路上汚れがあると判断する。
ひとつの実施形態によれば、レーザ測距装置の受光光学系の汚れの有無あるいは程度を判断することが可能になる。
一実施の形態によるレーザ測距装置のハードウエア構成の一例を示す図である。 比較例によるレーザ測距装置における投光レンズの汚れを検出する例を示す図である。 比較例によるレーザ測距装置において受光レンズに汚れがある例を示す図である。 一実施の形態によるレーザ測距装置の測定方法の一例を説明する図である。 一実施の形態によるレーザ測距装置におけるレーザ光の受光例を説明する図である。 一実施の形態による異なる投光方向からの光による入射スポットの例を示す図である。 一実施の形態による受光光量の初期値を示す光量初期値DBの一例を示す図である。 一実施の形態による受光光量の計測値を示す光量計測値DBの一例を示す図である。 一実施の形態による汚れマップの一例を示す図である。 一実施の形態による汚れが検出される状態における受光素子上のビームの状況の一例を示す図である。 一実施の形態による汚れが検出される状態の受光素子上の状況と距離測定結果との関係の一例を示す図である。 一実施の形態による汚れ補正例を示す図である。 一実施の形態によるレーザ測距装置の主な処理を示すフローチャートである。 一実施の形態による汚れマップ作成処理の詳細を示すフローチャートである。 一実施の形態による汚れマップの補正処理の一例を示すフローチャートである。 一実施の形態による汚れ程度判定処理の一例を示すフローチャートである。 変形例による補正を行う汚れマップにおけるパターンの例を示す図(その1)である。 変形例による補正を行う汚れマップにおけるパターンの例を示す図(その2)である。 変形例による補正を行う汚れマップにおけるパターンの例を示す図(その3)である。 標準的なコンピュータのハードウエア構成の一例を示す図である。
以下、図面を参照しながら、一実施の形態によるレーザ測距装置10について説明する。図1は、一実施の形態によるレーザ測距装置10のハードウエア構成の一例を示す図である。レーザ測距装置10は、レーザ光学系20と制御装置50とを有している。レーザ測距装置10は、レーザ光を投光し、例えば対象物60に反射された反射光が受光されるまでの時間を計測して、対象物60の距離を計測する装置である。
レーザ光学系20は、レーザ光を投光し、反射光を受光する装置である。レーザ光学系20は、投光部30および受光部40を有している。投光部30は、レーザダイオード31、コリメートレンズ33、駆動ミラー35、投光レンズ37を有している。レーザダイオード31は、半導体レーザであり、所定の波長のコヒーレント光を出力する。レーザダイオード31から出力されるレーザ光は、例えば、一定時間毎に出力されるパルス光である。コリメートレンズ33は、レーザダイオード31から出力される光ビームを平行にするレンズである。駆動ミラー35は、不図示の駆動系により駆動方向64のように角度が変更されることで、投光レンズ37への光路66の方向を変更するためのミラーである。駆動ミラー35は、例えば、ガルバノミラー、Micro Electro Mechanical System(MEMS)ミラー等であってもよい。投光レンズ37は、光路68のように、光路66に応じた方向へレーザ光をさらに屈折させるレンズである。
受光部40は、受光レンズ42、集光レンズ44、受光器46を有している。受光レンズ42は、対象物60などからの反射光を受光して屈折させ、集光レンズ44に入射させるためのレンズである。集光レンズ44は、受光レンズ42からの入射光を集光して、受光器46の受光素子上に、所定の大きさのスポットに集光させるためのレンズである。受光器46は、ビームを受光する受光面が複数の受光素子に分割され、ある投光方向からのビームを複数の受光素子に跨って受光する。受光素子は、例えばフォトダイオードであり、受光した光を変換して電気信号として出力する。受光器46の詳細は、後述される。なお、このとき、受光レンズ42の所定の位置を通った光は、受光器46の対応する位置で受光される。
制御装置50は、レーザ光学系20における、レーザダイオード31の発光、駆動ミラー35の角度変更を制御する。また、制御装置50は、例えば、レーザダイオード31がレーザ光を出射してから、受光器46が、対象物60で反射された反射光を受光するまでの時間を計測することで、対象物60までの距離を算出する。また、制御装置50は、後述する受光レンズ42、集光レンズ44、または、例えば受光部40の入射側に備えられる不図示の受光窓などの受光光学系に汚れがない状態での受光器46での光検出結果と、計測中の光検出結果とを比較する。光検出結果としては、全受光量に対する一つの受光素子の受光量の比が用いられる。上述のように、受光レンズ42の所定の位置を通った光は、常に受光器46の対応する位置で受光される。このため、一つの受光素子の測定時の光量比を汚れがないときの同じ受光素子の光量比と比較することで、制御装置50は、受光レンズ42、集光レンズ44等の受光光学系(単に受光レンズ42等ということがある)の汚れを検出する。さらに、制御装置50は、検出した結果を出力する処理を行う。汚れの検出の詳細は、後述される。
制御装置50は、処理装置52、記憶装置54、および出力装置56を有している。処理装置52は、制御装置50の動作を制御する装置であり、例えば、プロセッサ、Field−programable Gate Array(FPGA)、マイクロコンピュータ等の処理装置としてもよい。記憶装置54は、情報を記憶する装置であり、後述する各種データベースや、制御装置50の動作を制御するための制御プログラムを記憶するようにしてもよい。制御装置50は、処理装置52が、記憶装置54に記憶された制御プログラムを読み込んで実行することにより制御されるようにしてもよい。出力装置56は、制御装置50による処理結果を出力する装置であり、表示装置、音声出力装置、印刷機などとしてもよい。なお、レーザ光学系20における各光学部品については、それぞれ専用の駆動装置を別途備える例など変形が考えられるが、以下の説明では、制御装置50が全ての制御を行うとして説明する。
ここで、図1に示したレーザ測距装置10の比較例として、レーザ測距装置15について説明する。図2は、比較例によるレーザ測距装置15における投光レンズの汚れを検出する例を示す図である。図3は、比較例によるレーザ測距装置15において受光レンズに汚れがある例を示す図である。
図2、図3に示すように、レーザ測距装置15は、レーザ測距装置10のレーザ光学系20の構成に加え、汚れ検知素子70を有している。汚れ検知素子70は、例えばフォトダイオードである。図2に示すように、汚れ検知素子70は、例えば投光レンズ37に汚れ72があった場合、投光レンズ37に付着した汚れ72から反射、散乱して戻ってくる光を受光することで検知する。しかしながら、レーザ測距装置10、レーザ測距装置15のように、投光系と受光系とが別の光学系を備えた投受光分離構造の場合、受光レンズ42等に付着した汚れを検出するのは困難である。例えば、図3に示したように受光レンズ42に汚れ80が付着している場合、投受光分離構造であるため、光路82のように、受光レンズ42に付着した汚れを、汚れ検知素子70によって検出することができない。
図4は、一実施の形態によるレーザ測距装置の測定方法の一例を説明する図である。図4に示すように、信号S1に対応してレーザが出射され、信号S2のように受光された場合、処理装置52は、信号S1から信号S2までの時間ΔTを算出する。このとき、対象物までの距離は、距離=(c×ΔT)/2(ここでcは光速)で表される。例えば、投光レンズ37からのレーザの投光方向が変更されることで、ビームL1、L2、・・・で表わされるように、スキャンが行われる。例えば制御装置50は、図4のビームL1、L2、・・・のそれぞれについて、時間ΔTを算出して、対象物の距離を算出する。
図5は、一実施の形態によるレーザ測距装置10におけるレーザ光の受光例を説明する図である。図5に示すように、受光器46は、複数に分割された受光素子PD1、PD2、・・・、PD9を有している。図5の例では、受光素子は9個となっているが、これは一例であり、以下、受光器46の受光素子の数をM個(Mは、1以上の整数)とする。複数の受光素子のいずれか一つを受光素子PDmということがある。また、“m”を、受光素子番号ということがある。このような構成とすることで、例えば光路90のレーザ光は、集光レンズ44により集光され、入射スポット92として受光器46に受光される。
図5に示したような構成において、例えば、受光レンズ42の所定の位置を通った戻り光は、受光器46の特定位置に入射する。このとき、上述のように、レーザ測距装置10では、入射スポット92は、複数の受光素子PDmに跨るように受光される。よって、特定位置にある複数の受光素子PDmが、戻り光を受光する。図5の例では、受光素子PD1、PD2、PD4、PD5に跨って入射スポット92が受光されている。図5の例では、受光素子PDmが略正方形であり、入射スポット92が円形である場合、受光素子PDmの正方形の一辺の長さaと、入射スポット92の直径bとが、a<bであるようにすることで、入射スポット92は、複数の受光素子PDmに跨って受光される。
ここで、入射スポット92が一つの受光素子PDmより小さい場合を考えると、入射スポット92の光が一つの受光素子PDmのみで受光されることが考えられる。よって、受光レンズ42の入射スポット92の光路上に汚れがあると、本来光を受光するべき当該受光素子PDmで、光が検出されないことがある。光が検出されない場合には、汚れにより検出されない場合と、対象物が存在しないために検出されない場合とが含まれ、どちらの場合であるかは判断が困難である。この例では、当該受光素子PDmの周囲の受光素子PDmでも、光量の大小にかかわらず入射スポット92は検出されないので、光は検出されない。このため、入射スポット92が一つの受光素子PDmのみで受光される場合、入射スポット92に対応する場所の汚れによる光量の変化を検出できないことがある。
しかし、レーザ測距装置10では、上記のように、入射スポット92が複数の受光素子PDmに跨って受光される。よって、例えば、入射スポット92中央部に対応する受光素子PDmで光が検出されない場合でも、隣接する受光素子PDmで光が検出されることがある。
汚れが入射スポット92よりも大きく、周りの受光素子PDmのいずれでも光が検出されない場合でも、隣接する位置に対象物があれば、駆動ミラー35の角度を変更することで、異なる投光方向からの光が入射スポット92と異なる位置に受光されることがある。
図6は、一実施の形態による異なる投光方向からの光による入射スポットの例を示す図である。図6に示すように、受光器46の異なる場所に、異なる投光方向からの光(ビーム番号n=1〜3)が受光されている。ビーム番号nとは、順に投光される光の番号である。これにより、異なる投光方向からの光の検出状態を参考にすることで、より正確に受光レンズ42の汚れが検出される。このとき、受光される光量と、受光レンズ42に汚れがない場合の光量とが比較される。この比較は、受光器46の複数の受光素子PDm全ての受光光量の和に対する、各受光素子PDmの受光光量の比で行われる。
このように、レーザ測距装置10では、汚れ付着前後の異なる投光方向からの光による各入射スポットの、各受光素子PDmの、受光素子PDm全体の光量の和に対する比を比較することで、受光レンズ42などの受光光学系に付着した汚れが検知される。
図7は、一実施の形態による受光光量の初期値を示す光量初期値Data Base(DB)100の一例を示す図である。光量初期値とは、レンズ受光レンズ42等に汚れがない状態で検出された光量である。光量初期値DB100は、ビーム番号nのビームの、受光素子番号mの受光素子PDmで検出された光量anmを示している。このとき、ビーム番号nは、1からN(Nは、1以上の整数)まで、受光素子番号mは、1からMまでとする。すなわち、光量初期値DB100は、受光光学系に汚れがない場合の、投光方向の異なるN個のビームのそれぞれによる、各受光素子PDmで受光された光量を記録したデータベースである。レーザ測距装置10では、予め、受光光学系に汚れがない場合の受光量の初期値を計測し、例えば制御装置50の記憶装置54に光量初期値DB100として記録させることが好ましい。なお、ビームの数Nは、レーザ測距装置10によりレーザの投光が可能な最大領域分に相当する数であることが好ましい。この最大領域を、例えば1フレームに相当するとしてもよい。以下、N個のビームが1フレームに対応するとして説明する。
図8は、一実施の形態による受光光量の計測値を示す光量計測値DB110の一例を示す図である。光量計測値DB110は、例えば、レーザ測距装置10による距離測定時の投光方向の異なるN個のビームのそれぞれによる、各受光素子PDmで受光された光量bnmを記録したデータベースである。レーザ測距装置10では、例えば制御装置50の記憶装置54に光量計測値DB110を記録させることが好ましい。
図9は、一実施の形態による汚れマップ120の一例を示す図である。汚れマップ120において、縦、横は、受光されるビームの受光器46上の位置に対応する。この位置は、例えば、1フレーム分のビームの受光位置に対応する。汚れマップ120において、フラグFnは、各ビームの受光状況を示す。フラグFnで表わされる各ビームの受光状況としては、戻り光量がないと判断される場合(フラグFn=2)、ビームの初期値と計測値とに相違があると判断される場合(フラグFn=1)、相違がないと判断される場合(フラグFn=0)があるとされる。それぞれの判断は、以下のように行われる。
ケースα)戻り光量がないと判断される場合
ケースαは、同一ビーム番号のbnm(m=1〜M)の合計が“0”、または予め決められた値以下である場合である。ケースαは、光が検出されない状態であり、汚れがあるか、対象物が無い場合である。対応するフラグFn=2を、光量未検出フラグということがある。
ケースβ)ビームの初期値と計測値とに相違があると判断される場合
ケースβは、下記式1で算出される、光量初期値の比Dnmと光量計測値の比Qnmとの相違があると判断される場合である。相違があると判断されるとは、光量初期値の比Dnmと光量計測値の比Qnmとが等しくない場合、あるいは、相違が有意な差であると認められる場合、などである。このケースβは、汚れがあると判断される場合であり、対応するフラグFn=1を汚れフラグということがある。
なお、光量初期値の比Dnmは、初期値計測時のビーム番号nのときの、受光素子番号mの受光素子PDmによる受光光量の、全ての受光素子PDmによる受光光量の和に対する比である。光量計測値の比Qnmとは、ビーム番号nによる計測時の、受光素子番号mの受光素子PDmによる受光光量の、全ての受光素子PDmによる受光光量の和に対する比である。
Dnm=anm/(an1+an2+・・・+anm)・・・(式1)
Qnm=bnm/(bn1+bn2+・・・+bnm)・・・(式2)
ケースγ)ビームの初期値と計測値とに相違がないと判断される場合
ケースγは、上記式1で算出される、光量初期値の比Dnmと光量計測値の比Qnmとの相違がないと判断される場合である。相違がないと判断されるとは、光量初期値の比Dnmと光量計測値の比Qnmとが等しい場合、あるいは、相違があっても有意な差でない場合、などである。
上記のように、汚れマップ120には、「0」、「1」、「2」のいずれかの値が記録されることになる。汚れマップ120へフラグを記録する場合、例えば、全てのフラグの初期値を「0」に設定しておき、ケースαの場合に「2」、ケースβの場合に「1」のフラグを立てる、といった処理を行うようにしてもよい。
次に、図10、図11を参照しながら、汚れが検出される状態の一例について説明する。図10は、一実施の形態による汚れが検出される状態における受光素子上のビームの状況の一例を示す図である。図11は、一実施の形態による汚れが検出される状態の受光素子上の状況と距離測定結果との関係の一例を示す図である。
図10に示すように、受光例122では、ビーム番号n=1〜3の3つのビーム(ビーム1〜3ということがある)が示されている。受光例122は、ビーム1〜3に、汚れ121による光量の低下があることを示している。受光例122を、ビーム毎に示すと、受光例124〜受光例128のようになる。
このとき、ビーム1は、完全には汚れ121により隠れていないが、受光素子PD1、PD2、PD4、PD5で、光量比が初期値と異なっていると考えられる。ビーム2は、汚れ121によりほぼ隠れてしまい、光が検出されないと考えられる。ビーム3は、完全には汚れ121により隠れていないが、受光素子PD2、PD3、PD5、PD6で、光量が初期値と異なっていると考えられる。よって、例えば光量計測値DB115のような結果が得られると考えられる。
光量計測値DB115において、式1、式2に基づき光量比を比較して、上記3つのケースのいずれに該当するかが判断されると、以下のようになる。すなわち、ビーム1は、完全には汚れ121により隠れていないが、光量比Q1mは初期値と比較すると変化していると考えられるため、ケースβと判断される。このとき、例えば、戻り光があって、しかも光量比Q11〜Q1mの一つでも相違があると判断される場合に、ケースβ(フラグFn=1)と判断するようにしてもよい。ビーム2は、戻り光がないと判断される上記ケースα(フラグFn=2)と判断されることが考えられる。ビーム3は、ビーム1と同様に、ケースβ(フラグFn=1)と判断されると考えられる。よって、例えば汚れマップ117が得られる。
図11に示すように、例えば、データ合成例130は、受光光学系に汚れがない場合の測距結果を画像として表わした例である。データ合成例130において、黒の部分は、光が検出されたこと、すなわち、存在する対象物を示している。図10の受光状況が、データ合成例130と同一の対象に対しての受光状況である場合に、データ合成例132の受光例122のように、汚れの部分が特定される。
図10を参照しながら説明したように、ビーム2は、ケースαであり、戻り光が計測されていないケースである。汚れマップ117の状態では、このビーム2の状況が、受光光学系の汚れによるものか、対象物が存在しないために戻り光が検出されないのか不明である。しかし、汚れマップ117を、データ合成例130と比較対照することで、ビーム2は、対象物上の点と対応している可能性が高い。すなわち、データ合成例132において、ビーム2に対応する点だけ対象物がないことは考えづらいことが分かる。このように、周囲のビームの受光状況を参照することで、汚れにより戻り光が検出されない可能性が高いことがわかるので、汚れがあると判断される。具体的には、汚れマップ117などにおいて、フラグFn=2の周囲のビームが、汚れが検出されているビームである場合、フラグFn=2は、汚れを検出した場合のフラグFn=1と補正されることが好ましい。フラグ値Fn=2の周囲が汚れフラグ(フラグ値Fn=1)または汚れではないが光量が検出されているフラグ(フラグ値Fn=1)のとき、汚れフラグに補正されるようにしてもよい。また、周囲とは、上下左右の全てであってもよいし、上下のみ、または左右のみであってもよい。
図12は、一実施の形態による汚れ補正例140を示す図である。汚れ補正例140は、汚れマップの一部である。ここで、汚れが検出されているのは、汚れフラグ142、144、146、148、150154、156、158に対応するビームである。汚れ補正例140では、光量未検出フラグ150は、周囲(例えば、上下左右)を、汚れフラグ142、148、156、152に囲まれている。このように、周囲を汚れフラグで囲まれた光量未検出フラグは、図11の例で説明したように、周囲のビームでは光量が検出され、しかも汚れが検出されているので、一つのビームの位置だけが対象物がないとは考えづらい。よって、この光量未検出フラグ150は、汚れによるものであると判断し、光量未検出フラグ150は、汚れフラグに補正されることが好ましい。
以下、フローチャートを参照しながら、一実施の形態によるレーザ測距装置10による処理について説明する。以下のレーザ測距装置10による処理は、制御装置50がレーザ光学系20を制御して行う距離の計測において検出される、戻り光の光量を用いて行われる。
図13は、一実施の形態によるレーザ測距装置の主な処理を示すフローチャートである。図13に示すように、レーザ測距装置10では、まず、制御装置50の処理装置52が、距離測定処理の際に比較判定用データベース作成を行う(S191)。このとき、図7に示した光量初期値DB100は、既に生成され、例えば記憶装置54に記憶されているものとする。
なお、光量初期値DB100の生成は、例えば、以下のようにして行われる。すなわち、処理装置52は、受光レンズ42等の受光光学系に汚れが付着していない状態で、レーザ光学系20を制御して、投光する光の方向を順次変化させながら、測定対象物からの戻り光を受光する。このとき、測定対象物は、投光範囲のすべてにおいて戻り光が検出される対象物であることが好ましい。各投光方向からの戻り光(ビーム番号n)を受光した各受光素子PDmの受光量を、光量初期値DB100において光量anmとして記憶させる。なお、光量初期値DB100は、少なくとも1フレーム分(本実施の形態では、ビームN個分)の測定を行った結果を含むことが好ましい。
実際の距離測定では、レーザ測距装置10において処理装置52は、まず、駆動ミラー35を駆動することによりレーザ光の投光方向をスキャンしながらビーム番号nの光毎に、各受光素子PDmでの戻り光量bnmの測定を行わせる。処理装置52は、測定された結果を受け付け、光量計測値DB110に光量bnmとして記憶させることで、光量計測値DB110を生成する。なお、光量計測値DB110は、少なくとも1フレーム分の測定を行った結果を含むことが好ましい。
このとき、レーザ測距装置10では、処理装置52が、レーザダイオード31が発光してから受光されるまでの時間に基づき対象物の距離を算出することで、距離の測定が行われる。
続いて、処理装置52は、例えば、光量初期値DB100と光量計測値DB110とに基づき、汚れマップ120を生成する処理を行う(S192)。さらに、処理装置52は、作成された汚れマップを修正する汚れマップ修正処理を行う(S193)。処理装置52は、修正後の汚れマップに基づき、汚れ程度判定処理を行う(S194)。なお、汚れマップ生成処理、汚れマップ修正処理、汚れ程度判定処理の詳細は、後述される。
処理装置52は、汚れ程度判定処理の結果等を出力する(S195)。レーザ測距装置10は、出力処理を行う(S195)。レーザ測距装置10は、汚れ程度判定処理の処理結果を出力する。例えば、汚れの程度が所定以上の場合、受光レンズ42等の清掃を促す表示を行うなどとしてもよい。清掃を促す表示を行った場合には、例えば、再度の計測を行うなどの処理を追加するようにしてもよい。また、汚れの程度が所定以下の場合のみ、対象物の距離測定の結果を出力するようにしてもよい。
次に、図14を参照しながら、汚れマップ作成処理の詳細について説明する。図14は、一実施の形態による汚れマップ作成処理の詳細を示すフローチャートである。処理装置52は、まず、ビーム番号n=1と設定する(S201)。処理装置52は、光量計測値DB110において、ビーム番号n=1の光量bn1〜bnmの少なくともひとつで光量が検出されているかを判定する(S202)。検出されていない場合(S202:NO)、処理装置52は、対応するビーム番号n=1のフラグFn=2と設定し(S203)、例えば汚れマップ120に記憶させ、S207に処理を進める。
光量が検出されている場合(S202:YES)、処理装置52は、n=1、m=1〜MのM個の、上述の光量計測値の比Qnmを算出し、それぞれ光量初期値の比Dnmと相違があるか否かを判断する(S204)。相違があるか否かの判断では、互いに等しいときに相違がないと判断してもよい。また、ある値よりも互いの差が大きいときに、相違があると判断してもよい。上記の例は、M個の光量の比の値を全て比較する例であるが、予め光を検出する受光素子PDmがシミュレーションなどにより判っている場合、光を検出する受光素子PDmについてのみ比較を行うようにしてもよい。
相違がないと判断された場合(S204:NO)、処理装置52は、フラグFn=0と設定し(S205)、例えば汚れマップ120のビーム番号nに対応するフラグFnとして記憶させ、処理をS207に進める。相違があると判断された場合(S204:YES)、処理装置52は、フラグFn=1と設定し(S206)、例えば汚れマップ120のビーム番号nに対応するフラグFnとして記憶させ、処理をS207に進める。
処理装置52は、n=n+1とする(S207)。さらに、処理装置52は、n≦Nの場合(S208:NO)、S202から処理を繰り返す。n>Nとなると、処理装置52は、処理を終了する(S208:YES)。ここで、Nは、1フレーム分のビーム数である。以上の処理により、例えば汚れマップ120が生成される。
次に、汚れマップ120の補正処理について説明する。図15は、一実施の形態による汚れマップの補正処理の一例を示すフローチャートである。処理装置52は、汚れマップ120において、汚れフラグ(フラグFn=1)があるかを判別する(S211)。フラグFn=1のフラグがなければ(S211:NO)、処理装置52は、図13に処理を戻す。
例えば汚れマップ120において、いずれかのフラグFn=1の場合(S211:YES)、処理装置52は、光量未検知フラグ(フラグFn=2)があるか判別する(S212)。光量未検知フラグがなければ(S212:NO)、処理装置52は、図13に処理を戻す。
光量未検知フラグがある場合(S212:YES)、処理装置52は、光量未検知フラグの汚れマップにおける周囲は、汚れフラグであるか判断する(S213)。周囲とは、上述のように、例えば汚れマップ120における上下左右のフラグFnである。例えば、周囲のいずれか一箇所でも汚れフラグでない場合(S213:NO)、処理装置52は、図13に処理を戻す。
光量未検出フラグの周囲が汚れフラグであると判断されると(S213:YES)、処理装置52は、当該光量未検出フラグ(フラグFn=2)を、汚れフラグ(フラグFn=1)と補正し(S214)、図13に処理を戻す。
続いて、補正された例えば汚れマップ120を用いた、汚れ程度判定処理について説明する。図16は、一実施の形態による汚れ程度判定処理の一例を示すフローチャートである。図16に示すように、処理装置52は、補正済みの汚れマップにおいて、汚れフラグ(フラグFn=1)があるか否かを判断し(S231)、一つもなければ(S231:NO)、図13に処理を戻す。
S231で、汚れフラグが一つでもある場合(S231)、処理装置52は、例えば、互いに所定の位置関係の所定数以上の汚れフラグがあるかを判断する(S232)。所定の位置関係とは、例えば、汚れマップ120において、互いに上下左右のいずれかに隣接する場合、複数のビームを含む所定の矩形領域内に位置する場合等である。例えば、複数の汚れフラグが、縦c個、および/または横d個以上に亘って互いに隣接している場合や、縦e個横f個の矩形領域に汚れフラグがg個以上ある場合等を、所定の位置関係とするようにしてもよい。S232の判断がNOのとき、処理装置52は、図13に処理を戻す。
S232の判断がYESのとき、処理装置52は、例えば、汚れの程度を示す情報を出力することなどで汚れを報知することを決定し(S233)、汚れマップをリセットし(S234)、図13に処理を戻す。
以上説明したように、一実施の形態によるレーザ測距装置10においては、対象物に照射された光の反射光を、受光光学系を介して複数の受光素子PDmに跨るように受光して、複数の受光素子PDmの受光量の和に対する受光素子毎の光量計測値の比が特定される。レーザ測距装置10は、予め特定された受光光学系の反射光の光路上に汚れがない場合の受光素子PDm毎の受光量の光量初期値の比と相違があると判断された場合に、対象物の距離を測定する受光光学系に汚れがあると判断する。
このように、レーザ測距装置10では、受光される光の入射スポットが、複数の受光素子PDmに跨るように設定される。よって、複数の受光素子PDmにより一つのビームが受光される。また、レーザ測距装置10により、予め、受光光学系に汚れがない状態で、異なる投光方向からの戻り光を複数の受光素子PDmのそれぞれで受光した光量anmを示す光量初期値DB100が記憶される。レーザ測距装置10で、例えば、レーザの投光方向をスキャンしながら実際の距離計測を行う際に、処理装置52は、ビーム毎、受光素子PDm毎の光量bnmを光量計測値DB110として記憶させる。
処理装置52は、1フレーム分のビームに関して、光量初期値DB100における光量初期値の比Dnmと光量計測値DB110における光量計測値の比Qnmとに基づき光量の比を比較することで、例えば汚れマップ120を生成する。汚れマップ120では、ビーム毎に、いずれの受光素子PDmでも光量が検出されていない場合、光量未検出フラグ(フラグFn=2)となる。光量初期値DB100による光量初期値の比Dnmと光量計測値DB110による光量計測値の比Qnmとが、同一のビームで一つでも相違していると判断されると、汚れフラグ(フラグFn=1)が記憶される。光量が検出され、光量初期値の比Dnmと光量計測値の比Qnmとが相違していないと判断されると、フラグFn=0となる。さらに、処理装置52は、汚れマップ120において、フラグFn=1に周囲を囲まれたフラグFn=2を、フラグFn=1と補正する。
補正された汚れマップ120において、例えば所定の領域に所定の数以上の汚れフラグがある場合、処理装置52は、この汚れの程度は、例えば、対象物の距離、あるいは存在の有無などを正確に判断できない程度であると判断する。このとき処理装置52は、例えば汚れの程度を示す情報を表示装置に出力するなどの処理を行う。場合によって、処理装置52は、受光光学系の清掃を促す表示を行うなどとするようにしてもよい。
以上のように、一実施の形態によるレーザ測距装置10によれば、複数の受光素子PDmに一つのビームの入射スポットが跨るように受光される。よって、汚れが入射ビームスポットより小さい場合にも、複数の受光素子のいずれかで、戻り光が検出されることがある。また、ビーム毎の汚れの判断を、受光光学系に汚れがない状態の受光素子PDm毎の光量初期値の比と、距離測定時の受光素子PDm毎の光量計測値の比との比較に基づき行うので、戻り光量には影響されずに判断を行うことができる。
汚れがビームスポットより大きい場合にも、光の投光方向を変化させて、例えば隣り合うビームスポットでの判断結果を参照して汚れの補正を行う。例えば、汚れで戻り光が非常に少なくなっているため、光量未検出フラグとなっている場合、周囲が汚れフラグであれば、汚れフラグに補正される。よって、汚れが検出されなかったり、汚れの程度が正確に判定されなかったりといった状況を回避できる。さらに、汚れマップの生成を行うことで、汚れの領域の把握が可能になる。また、汚れマップ上の所定の位置関係の汚れフラグの数が所定以上の場合に、汚れの程度を報知が必要な程度であると判断するなど、汚れの程度を正確に判断可能である。また、汚れの程度を報知することで、清掃を促すこともでき、より正確に距離測定を行えるレーザ測距装置10とすることもできる。例えば、処理装置52は、距離測定の正確性を低下させると判断される、予め決められた条件に当てはまる場合に、汚れがあることを報知するようにしてもよい。
上記のようなレーザ測距装置10によれば、例えば、対象物が常に変わる移動体に備えられる場合にも、戻り光量の大小にかかわらず汚れ検出が可能となる。汚れ検出には、測定される距離を利用しないので、停止している状態でも、移動している状態でも、実際の測定対象物を汚れと誤検出することや、対象物の未検知を防止でき、距離測定の信頼性が向上する。
レーザ測距装置10では、対象物からの戻り光の光量を検出しているので、レーザ測距装置10のように投光部30と受光部40とが互いに分離している構造において、受光光学系の汚れを検出することが可能である。このとき、距離測定用の受光素子PDmで光の検出を行っているので、特別な部品が必要となるわけでなく、簡易に汚れ検出を行うことができる。また、レーザ測距装置10と構成の異なる光学系を採用している測距装置にも、適用できる。例えば、駆動ミラー35の駆動範囲が広かったり、さらに走査範囲を拡大するレンズが備えられたりして、広い範囲の距離測定を行える光学系を備えたレーザ測距装置などにも適用が可能である。
(変形例)
以下、汚れの補正を行うパターンの変形例について説明する。本変形例において、補正処理の際に採用するパターン以外は、上記実施の形態と同様であるので、重複説明を省略する。
図17、図18、図19は、変形例による補正を行う汚れマップにおけるパターンの例を示す図である。図17に示すように、汚れ補正例250は、光量未検出フラグ(フラグFn=2)の上下左右が汚れフラグ(フラグFn=1)であるパターンである。これは、上記実施の形態においても説明した補正パターンである。このパターンがあるとき、光量未検出フラグは、汚れフラグに補正される。
図18は、光量未検出フラグが、光の走査範囲の端にある例である。この汚れ補正例260は、光量未検出フラグの上下左右のうち、存在する場所が全て汚れフラグである例である。このパターンがあるとき、光量未検出フラグは、汚れフラグに補正される。
図19は、光量未検出フラグが連続している例である。この汚れ補正例270の場合、連続した光量未検出フラグの上下左右の存在する場所全てが、光量未検出フラグ、または汚れフラグとなっている。このパターンがあるとき、光量未検出フラグは、汚れフラグに補正される。
以上のように、様々なパターンを補正することで、より正確に汚れの有無および汚れの程度を判断することが可能になり、さらに正確に距離測定を行うことが可能になる。
ここで、上記実施の形態および変形例によるレーザ測距方法の動作をコンピュータに行わせるために共通に適用されるコンピュータの例について説明する。図20は、標準的なコンピュータのハードウエア構成の一例を示すブロック図である。図20に示すように、コンピュータ300は、Central Processing Unit(CPU)302、メモリ304、入力装置306、出力装置308、外部記憶装置312、媒体駆動装置314、ネットワーク接続装置318等がバス310を介して接続されている。コンピュータ300は、例えば、制御装置50として適用するようにしてもよい。
CPU302は、コンピュータ300全体の動作を制御する演算処理装置である。メモリ304は、コンピュータ300の動作を制御するプログラムを予め記憶したり、プログラムを実行する際に必要に応じて作業領域として使用したりするための記憶部である。メモリ304は、例えばRandom Access Memory(RAM)、Read Only Memory(ROM)等である。入力装置306は、コンピュータの使用者により操作されると、その操作内容に対応付けられている使用者からの各種情報の入力を取得し、取得した入力情報をCPU302に送付する装置であり、例えばキーボード装置、マウス装置などである。出力装置308は、コンピュータ300による処理結果を出力する装置であり、表示装置などが含まれる。例えば表示装置は、CPU302により送付される表示データに応じてテキストや画像を表示する。
外部記憶装置312は、例えば、ハードディスクなどの記憶装置であり、CPU302により実行される各種制御プログラムや、取得したデータ等を記憶しておく装置である。媒体駆動装置314は、可搬型記録媒体316に書き込みおよび読み出しを行うための装置である。CPU302は、可搬型記録媒体316に記録されている所定の制御プログラムを、媒体駆動装置314を介して読み出して実行することによって、各種の制御処理を行うようにすることもできる。可搬型記録媒体316は、例えばCompact Disc(CD)−ROM、Digital Versatile Disc(DVD)、Universal Serial Bus(USB)メモリ等である。ネットワーク接続装置318は、有線または無線により外部との間で行われる各種データの授受の管理を行うインタフェース装置である。バス310は、上記各装置等を互いに接続し、データのやり取りを行う通信経路である。
上記実施の形態および変形例によるレーザ測距方法をコンピュータに実行させるプログラムは、例えば外部記憶装置312に記憶させる。CPU302は、外部記憶装置312からプログラムを読み出し、メモリ304を利用してプログラムを実行することで、レーザ測距の動作を行なう。このとき、まず、レーザ測距の処理をCPU302に行わせるための制御プログラムを作成して外部記憶装置312に記憶させておく。そして、入力装置306から所定の指示をCPU302に与えて、この制御プログラムを外部記憶装置312から読み出させて実行させるようにする。また、このプログラムは、可搬型記録媒体316に記憶するようにしてもよい。
なお、本発明は、以上に述べた実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の構成または実施形態を採ることができる。例えば、図1などに示したレーザ測距装置10の構成は、図示した構成に限らず、同様の動作を行える構成であれば良い。例えば、レーザ光学系20は、図示の例に限定されない。例えば、コリメートレンズ33や、集光レンズ44を複数のレンズで構成したり、レーザダイオード31の配置を換え、駆動ミラー35にレーザ光を入射させるための光学部品を追加したりといった変形は可能である。受光器46の受光素子の形状および配置の例は、上記に限定されない。一つの入射スポット92が複数の受光素子に跨って受光される形状および配置であればよい。
レーザの走査例は走査順序例85に限定されず、二次元に走査を行う方法であればよい。各フローチャートに示した処理順は、記載の例に限定されない。また、汚れ補正を行わずに、汚れ程度の判断を行うなど、変形は可能である。
以上の実施の形態および変形例に関し、さらに以下の付記を開示する。
(付記1)
対象物に光を投光する投光部と、
投光された前記光に対する前記対象物からの反射光を、受光光学系を介して受光する複数の受光素子と、
前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比を特定し、特定した比と、前記受光光学系に汚れがない状態における前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比とが相違する場合、前記受光光学系に汚れがあると判断する処理装置と、
を有することを特徴とするレーザ測距装置。
(付記2)
前記投光部は、前記対象物に投光する光の方向を変化させ、
前記処理装置は、さらに、対象物に投光される光の方向が変化する場合、複数の異なる方向へ投光される光毎に前記受光素子毎の受光量の比を特定し、前記光毎の予め特定された前記受光光学系の前記反射光の光路上に汚れがない場合の前記受光素子毎の受光量の比との比較結果に基づき、前記方向の光の光路上の汚れの有無を判断する
ことを特徴とする付記1に記載のレーザ測距装置。
(付記3)
前記処理装置は、さらに、前記反射光が受光されない方向がある場合、前記反射光が受光されない方向の周囲の前記汚れの有無の判断状況に基づき、前記受光光学系の前記反射光が受光されない方向に汚れがあるか否かを判断する
ことを特徴とする付記2に記載のレーザ測距装置。
(付記4)
前記処理装置は、前記汚れがあると判断された前記方向の光の受光位置の位置関係に基づき前記汚れの程度を判断する
ことを特徴とする付記2または付記3に記載のレーザ測距装置。
(付記5)
前記処理装置は、前記汚れがあると判断された前記方向の光の数に基づき前記汚れの程度を判断する
ことを特徴とする付記2から付記4のいずれかに記載のレーザ測距装置。
(付記6)
前記処理装置は、前記汚れの程度が、前記対象物の距離を測定する際に正確性を低下させると判断される場合、清掃が必要であることを示す情報を出力装置に出力させる
ことを特徴とする付記4または付記5に記載のレーザ測距装置。
(付記7)
レーザ測距装置が、
対象物に光を投光し、
投光された前記光に対する前記対象物からの反射光を、受光光学系を介して複数の受光素子で前記光を受光し、
前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比を特定し、
特定された比が、前記受光光学系の前記反射光の光路上に汚れがない状態における前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比と相違する場合に、前記受光光学系に汚れがあると判断する、
ことを特徴とするレーザ測距方法。
(付記8)
さらに、対象物に照射される光の方向が変化する場合、複数の異なる方向へ照射される光毎に前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比を特定し、
特定された前記比と、前記光毎の前記受光光学系に汚れがない状態における前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比との比較結果に基づき、前記方向の光の光路上の汚れの有無を判断する
ことを特徴とする付記7に記載のレーザ測距方法。
(付記9)
さらに、前記反射光が受光されない方向がある場合、前記反射光が受光されない方向の周囲の前記汚れの有無の判断状況に基づき、前記受光光学系の前記反射光が受光されない方向に汚れがあるか否かを判断する
ことを特徴とする付記8に記載のレーザ測距方法。
(付記10)
さらに、前記汚れがあると判断された前記光の受光位置の位置関係に基づき前記汚れの程度を判断する
ことを特徴とする付記8または付記9に記載のレーザ測距方法。
(付記11)
さらに、前記汚れがあると判断された前記方向の光の数に基づき前記汚れの程度を判断する
ことを特徴とする付記8から付記10のいずれかに記載のレーザ測距方法。
(付記12)
さらに、前記汚れの程度が、前記対象物の距離を測定する際に正確性を低下させると判断される場合、清掃が必要であることを示す情報を出力装置に出力させる
ことを特徴とする付記10または付記11に記載のレーザ測距方法。
(付記13)
対象物に投光された光に対する前記対象物からの反射光が、受光光学系を介して複数の受光素子で受光された場合の、前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比を特定し、
特定された比が、前記受光光学系の前記反射光の光路上に汚れがない状態における前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比と相違する場合に、前記受光光学系に汚れがあると判断する
処理をコンピュータに実行させるレーザ測距プログラム。
(付記14)
さらに、前記処理は、対象物に照射される光の方向が変化する場合、複数の異なる方向へ照射される光毎に前記受光素子毎の受光量の比を特定し、
特定された前記比と、前記光毎の前記受光光学系に汚れがない状態における前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比との比較結果に基づき、前記方向の光の光路上の汚れの有無を判断する
処理を含むことを特徴とする付記13に記載のレーザ測距プログラム。
(付記15)
さらに、前記処理は、前記反射光が受光されない方向がある場合、前記反射光が受光されない方向の周囲の前記汚れの有無の判断状況に基づき、前記受光光学系の前記反射光が受光されない方向に汚れがあるか否かを判断する
ことを特徴とする付記14に記載のレーザ測距プログラム。
10 レーザ測距装置
20 レーザ光学系
30 投光部
31 レーザダイオード
33 コリメートレンズ
35 駆動ミラー
37 投光レンズ
40 受光部
42 受光レンズ
44 集光レンズ
46 受光器
50 制御装置
52 処理装置
54 記憶装置
56 出力装置
60 対象物
62 光路
64 駆動方向
70 汚れ検知素子
72、121 汚れ
74 光路
80 汚れ
85 走査順序例
90 光路
92 入射スポット
100 光量初期値DB
110 光量計測値DB
115 光量計測値DB
117、120 汚れマップ
122 受光例
123 汚れ検出範囲
124 受光例
130 データ合成例
140 汚れ補正例
144 汚れフラグ
150 光量未検出フラグ
PDm 受光素子

Claims (6)

  1. 対象物に光を投光し、前記対象物に投光される光の方向を異なる方向の複数のビームに変化させる投光部と、
    投光された前記光に対する前記対象物からの反射光を、受光光学系を介して受光する複数の受光素子と、
    前記複数の受光素子の各々の受光量に基づいて前記受光光学系の部分的な汚れの検出を行う処理装置であって、
    前記複数のビームの各々についての前記複数の受光素子の各々の受光量を取得し、
    前記複数のビームのうちで前記複数の受光素子のいずれにおいても前記反射光が検出されないビームを、光量未検出のビームとして特定し、
    前記複数のビームのうちの前記光量未検出のビーム以外の残りの各ビームについて、前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比を特定し、
    前記残りの各ビームのうちで、特定した比と、前記受光光学系に汚れがない状態における前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比とが相違するビームについての前記受光光学系の光路上に汚れがあると判断し
    前記判断において前記光量未検出のビームの周囲のビームについての前記受光光学系の光路上に汚れがあると判断したものがある場合に、前記光量未検出のビームについての前記受光光学系の光路上汚れがあると判断する
    処理装置と、
    を有することを特徴とするレーザ測距装置。
  2. 前記処理装置は、前記受光光学系の光路上に汚れがあると判断された前記ビームについて前記複数の受光素子における受光位置の位置関係に基づき前記汚れの程度を判断する
    ことを特徴とする請求項に記載のレーザ測距装置。
  3. 前記処理装置は、前記受光光学系の光路上に汚れがあると判断された前記ビームの数に基づき前記汚れの程度を判断する
    ことを特徴とする請求項1または請求項2に記載のレーザ測距装置。
  4. 前記処理装置は、前記汚れの程度が、前記対象物の距離を測定する際に正確性を低下させると判断される場合、清掃が必要であることを示す情報を出力装置に出力させる
    ことを特徴とする請求項または請求項に記載のレーザ測距装置。
  5. レーザ測距装置における受光光学系の部分的な汚れを検出する方法であって、
    前記レーザ測距装置が、
    対象物に光を投光し、
    前記対象物に投光される光の方向を異なる方向の複数のビームに変化させ、
    投光された前記光に対する前記対象物からの反射光を、前記受光光学系を介して複数の受光素子受光し、
    前記複数のビームの各々についての前記複数の受光素子の各々の受光量を取得し、
    前記複数のビームのうちで前記複数の受光素子のいずれにおいても前記反射光が検出されないビームを、光量未検出のビームとして特定し、
    前記複数のビームのうちの前記光量未検出のビーム以外の残りの各ビームについて、前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比を特定し、
    前記残りの各ビームのうちで、特定た比、前記受光光学系汚れがない状態における前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比と相違するビームについての前記受光光学系の光路上に汚れがあると判断し
    前記判断において前記光量未検出のビームの周囲のビームについての前記受光光学系の光路上に汚れがあると判断したものがある場合に、前記光量未検出のビームについての前記受光光学系の光路上汚れがあると判断する、
    ことを特徴とする汚れ検出方法。
  6. レーザ測距装置における受光光学系の部分的な汚れの検出をコンピュータに行わせるためのプログラムであって、
    対象物に光を投光し、前記対象物に投光される光の方向を異なる方向の複数のビームに変化させる投光部によって投光された前記光に対する前記対象物からの反射光前記受光光学系を介して受光した複数の受光素子の各々での受光量を、前記複数のビームの各々について取得し
    前記複数のビームのうちで前記複数の受光素子のいずれにおいても前記反射光が検出されないビームを、光量未検出のビームとして特定し、
    前記複数のビームのうちの前記光量未検出のビーム以外の残りの各ビームについて、前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比を特定し、
    前記残りの各ビームのうちで、特定た比、前記受光光学系汚れがない状態における前記複数の受光素子の受光量の和に対する前記受光素子毎の受光量の比と相違するビームについての前記受光光学系の光路上に汚れがあると判断し
    前記判断において前記光量未検出のビームの周囲のビームについての前記受光光学系の光路上に汚れがあると判断したものがある場合に、前記光量未検出のビームについての前記受光光学系の光路上汚れがあると判断する
    処理を前記コンピュータに実行させるプログラム
JP2014266576A 2014-12-26 2014-12-26 レーザ測距装置、汚れ検出方法、およびプログラム Active JP6497071B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266576A JP6497071B2 (ja) 2014-12-26 2014-12-26 レーザ測距装置、汚れ検出方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266576A JP6497071B2 (ja) 2014-12-26 2014-12-26 レーザ測距装置、汚れ検出方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP2016125898A JP2016125898A (ja) 2016-07-11
JP6497071B2 true JP6497071B2 (ja) 2019-04-10

Family

ID=56359333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266576A Active JP6497071B2 (ja) 2014-12-26 2014-12-26 レーザ測距装置、汚れ検出方法、およびプログラム

Country Status (1)

Country Link
JP (1) JP6497071B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240051293A (ko) * 2016-09-20 2024-04-19 이노비즈 테크놀로지스 엘티디 Lidar 시스템 및 방법
JP2018048896A (ja) * 2016-09-21 2018-03-29 パイオニア株式会社 測定装置、制御装置、およびコンピュータプログラム
JP6775119B2 (ja) * 2017-03-23 2020-10-28 パナソニックIpマネジメント株式会社 距離測定装置
JP6946921B2 (ja) 2017-10-17 2021-10-13 株式会社デンソー 発受光装置の筐体
WO2019146440A1 (ja) * 2018-01-23 2019-08-01 日本電産株式会社 距離測定装置、および移動体
EP3637128A1 (de) * 2018-10-10 2020-04-15 Covestro Deutschland AG Umfeldsensor mit beweglicher umlenkeinrichtung für kraftfahrzeuge
DE102020129663A1 (de) 2020-11-11 2022-05-12 Valeo Schalter Und Sensoren Gmbh Funktionsüberprüfung eines Laserscanners
CN115542296B (zh) * 2021-06-29 2024-03-08 苏州一径科技有限公司 激光雷达的脏污点和脏污检测方法、电子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292260A (ja) * 1995-04-25 1996-11-05 Matsushita Electric Works Ltd 自己診断機能を有する光電センサ
JP3244438B2 (ja) * 1996-11-07 2002-01-07 オムロン株式会社 物体情報検知装置
EP2018047A1 (en) * 2007-06-15 2009-01-21 IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. Method for contamination detection in a TOF range camera
JP5710108B2 (ja) * 2009-07-03 2015-04-30 日本信号株式会社 光測距装置
JP5507135B2 (ja) * 2009-07-08 2014-05-28 Jr東日本メカトロニクス株式会社 支障物検知装置及びこれを備えたプラットホームドアシステム並びに支障物検知方法

Also Published As

Publication number Publication date
JP2016125898A (ja) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6497071B2 (ja) レーザ測距装置、汚れ検出方法、およびプログラム
US11204420B2 (en) Distance measurement apparatus
US10371817B2 (en) Object detecting apparatus
US11681029B2 (en) Detecting a laser pulse edge for real time detection
JP4375064B2 (ja) レーダ装置
US10768281B2 (en) Detecting a laser pulse edge for real time detection
US9891432B2 (en) Object detection device and sensing apparatus
US20210116572A1 (en) Light ranging apparatus
US11835651B2 (en) Light detection and ranging device
JP4894360B2 (ja) レーダ装置
JP2019144186A (ja) 光学的測距装置およびその方法
JP3966301B2 (ja) 車両用レーダ装置
JP2006038487A (ja) 光学式測定装置
KR102074857B1 (ko) 이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법
JP2022531578A (ja) Lidarシステムにおける時間的ジッタ
JP2006105688A (ja) 車両用レーダ装置
JP6186863B2 (ja) 測距装置及びプログラム
JP6805700B2 (ja) 距離測定装置、距離測定方法、及び距離測定プログラム
JP2007132951A (ja) 車両用レーダ装置
JPWO2020021914A1 (ja) 距離測定装置および信頼性判定方法
JP2022168956A (ja) レーザ計測装置およびその計測方法
JP2017156177A (ja) 障害物検出装置および障害物検出方法
JP2019138666A (ja) 測距装置
US20180051979A1 (en) Optical detecting device capable of determining relative position of a reference object or a light source
US20240094392A1 (en) Optical sensing system, optical sensing device, and optical sensing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R150 Certificate of patent or registration of utility model

Ref document number: 6497071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150