JP6493834B2 - Ground liquefaction countermeasure method - Google Patents

Ground liquefaction countermeasure method Download PDF

Info

Publication number
JP6493834B2
JP6493834B2 JP2015083017A JP2015083017A JP6493834B2 JP 6493834 B2 JP6493834 B2 JP 6493834B2 JP 2015083017 A JP2015083017 A JP 2015083017A JP 2015083017 A JP2015083017 A JP 2015083017A JP 6493834 B2 JP6493834 B2 JP 6493834B2
Authority
JP
Japan
Prior art keywords
ground
injection
chemical solution
liquefaction countermeasure
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015083017A
Other languages
Japanese (ja)
Other versions
JP2015212513A (en
Inventor
舘山 勝
勝 舘山
淳 井澤
淳 井澤
恭平 上田
恭平 上田
寅士良 藤原
寅士良 藤原
中村 宏
宏 中村
淳 川▲崎▼
淳 川▲崎▼
修 入山
修 入山
晃 林田
晃 林田
大西 高明
高明 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
East Japan Railway Co
Original Assignee
Railway Technical Research Institute
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, East Japan Railway Co filed Critical Railway Technical Research Institute
Priority to JP2015083017A priority Critical patent/JP6493834B2/en
Publication of JP2015212513A publication Critical patent/JP2015212513A/en
Application granted granted Critical
Publication of JP6493834B2 publication Critical patent/JP6493834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地盤に注入管を建て込み、当該注入管を通して地盤に薬液(グラウト)を注入する薬液注入作業を繰り返し行い、もって地盤が液状化するのを抑制、あるいは防止する地盤の液状化対策工法に関するものである。   The present invention builds an injection pipe in the ground and repeats a chemical injection operation for injecting a chemical (grouting) into the ground through the injection pipe, thereby suppressing or preventing liquefaction of the ground. It relates to the construction method.

地盤の液状化対策工法としては、地盤に注入管を建て込み、当該注入管を通して地盤に薬液を浸透注入する薬液注入作業を繰り返し行う工法が存在する。しかしながら、この液状化対策工法は、多量の薬液を使用する工法であるため、施工費が高くなるとの問題を抱えている。   As a liquefaction countermeasure method for the ground, there is a method in which an injection pipe is built in the ground, and a chemical liquid injection operation for repeatedly injecting the chemical liquid into the ground through the injection pipe is performed. However, since this liquefaction countermeasure method is a method using a large amount of chemical solution, it has a problem that the construction cost becomes high.

そこで、薬液の使用量を減らし、もって施工費を削減する工法として、意図的に未改良部を散在させる工法が提案されている(特許文献1参照)。この工法は、「改良対象砂地盤に挿入した注入管からの薬液注入により所定の体積の固化体を形成し、この固化体を上下左右方向および前後方向に重ね合わせて改良地盤を形成する工程において、前記注入管から薬液注入をせずに固化体と同じ体積の未改良部を改良地盤中に形成し、この未改良部を二つ以上連続させず、その上下左右および前後を固化体で囲む」とするものである。   Therefore, as a construction method for reducing the usage amount of the chemical solution and thereby reducing the construction cost, a construction method in which unimproved portions are intentionally scattered has been proposed (see Patent Document 1). In this method, a solidified body of a predetermined volume is formed by injecting a chemical solution from an injection pipe inserted into the sand ground to be improved, and this solidified body is overlapped in the vertical and horizontal directions and the front-rear direction to form the improved ground. An unmodified part having the same volume as the solidified body is formed in the improved ground without injecting a chemical solution from the injection tube, and two or more unimproved parts are not continuous, and the solidified body surrounds the top, bottom, left, right, and front and back. ".

しかしながら、この工法は、浸透固結物からなる固化体と同じ体積の未改良部を形成するとするものであるため、薬液の使用量を半分程度にすることができるに過ぎない。したがって、薬液の使用量を更に減らすことができる液状化対策工法の提案が期待されている。   However, since this method is intended to form an unimproved portion having the same volume as the solidified body made of an osmotic solidified product, the amount of chemical used can only be reduced to about half. Therefore, the proposal of the liquefaction countermeasure construction method which can further reduce the usage-amount of a chemical | medical solution is anticipated.

特開2007−217979号公報JP 2007-217979 A

本発明が解決しようとする主たる課題は、薬液の使用量を著しく減らすことができる地盤の液状化対策工法を提供することにある。   The main problem to be solved by the present invention is to provide a ground liquefaction countermeasure method capable of remarkably reducing the amount of chemical used.

この課題を解決するための本発明は、次の通りである。
〔請求項1記載の発明〕
The present invention for solving this problem is as follows.
[Invention of Claim 1]

地盤に注入管を建て込み、当該注入管を通して前記地盤に薬液を注入する薬液注入作業を、繰り返し行う地盤の液状化対策工法であって、
前記薬液の注入を、割裂注入で、かつ注入圧力を周期的に変動させる動的注入で行い、
前記注入管の建込みを、前記地盤の左右方向及び前後方向にそれぞれ所定の間隔をあけて行い、かつ下記(A)及び下記(B)の条件を満たすように行う、
ことを特徴とする地盤の液状化対策工法。
(A)前記地盤の左右方向及び前後方向に関しては、作業領域及び不作業領域が相互に隣接する。
(B)前記地盤の斜め方向に関しては、前記作業領域が連続する。
ここで前記作業領域とは、前記注入管の建込み位置から前記所定の間隔の1/4離れた位置を四辺が通る仮想正方形によって囲まれた領域をいう。前記不作業領域とは、前記作業領域に該当しない領域をいう。
A ground liquefaction countermeasure construction method in which an injection pipe is built in the ground, and a chemical liquid injection work for injecting a chemical liquid into the ground through the injection pipe is repeated,
The chemical solution is injected by split injection and by dynamic injection that periodically changes the injection pressure,
Erection of the injection pipe is performed at predetermined intervals in the left-right direction and the front-rear direction of the ground, and so as to satisfy the following conditions (A) and (B):
The ground liquefaction countermeasure method characterized by this .
(A) With respect to the left-right direction and the front-rear direction of the ground, the work area and the non-work area are adjacent to each other.
(B) Regarding the oblique direction of the ground, the work area is continuous.
Here, the work area refers to an area surrounded by a virtual square whose four sides pass through a position that is a quarter of the predetermined distance from the position where the injection pipe is built. The non-work area is an area that does not correspond to the work area.

〔請求項記載の発明〕
前記薬液の注入率が2%〜15%となるように前記所定の間隔を設定する、
請求項1に記載の地盤の液状化対策工法。
ここで前記薬液の注入率は、「当該薬液の注入量(L)/対策の対象となる地盤の容積(m3)×100」である。
[Invention of Claim 2 ]
The predetermined interval is set so that the injection rate of the chemical solution is 2% to 15%.
The ground liquefaction countermeasure construction method according to claim 1 .
Here, the injection rate of the chemical solution is “the injection amount of the chemical solution (L) / the volume of the ground to be countermeasured (m 3 ) × 100”.

〔請求項記載の発明〕
前記薬液注入作業を、単相式の二重管ストレーナ工法で行う、
請求項1又は請求項2に記載の地盤の液状化対策工法。
[Invention of Claim 3 ]
The chemical solution injection operation is performed by a single-phase double tube strainer method.
The ground liquefaction countermeasure construction method according to claim 1 or claim 2 .

〔請求項記載の発明〕
前記薬液の動的注入を、流量波形の振幅が30%〜100%のサイン波及びパルス波の少なくともいずれか一方となるように行う、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
[Invention of Claim 4 ]
The dynamic injection of the chemical solution is performed so that the amplitude of the flow waveform is at least one of a sine wave and a pulse wave of 30% to 100%.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 3 .

〔請求項記載の発明〕
前記薬液の動的注入を、周波数が0.01Hz〜0.5Hzとなるように行う、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
[Invention of Claim 5 ]
Dynamic injection of the chemical solution is performed so that the frequency is 0.01 Hz to 0.5 Hz.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 4 .

〔請求項記載の発明〕
前記薬液として、ゲルタイムが前記動的注入の0.1周期〜3周期に該当する薬液を使用する、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
[Invention of Claim 6 ]
As the drug solution, a drug solution whose gel time corresponds to 0.1 cycle to 3 cycles of the dynamic injection is used.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 5 .

〔請求項記載の発明〕
前記薬液として、ゲルタイムが2.5〜40secの薬液を使用する、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
[Invention of Claim 7 ]
As the chemical solution, a chemical solution having a gel time of 2.5 to 40 sec is used.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 5 .

参考となる発明〕
前記薬液として、ゲルタイムが当該薬液0.5L〜5L(Lは薬液の注入量を示す)の注入時間に該当する薬液を使用する、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
[ Reference invention]
As the chemical solution, a chemical solution whose gel time corresponds to an injection time of the chemical solution 0.5L to 5L (L indicates an injection amount of the chemical solution) is used.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 5 .

〔請求項記載の発明〕
前記薬液として、2液以上を混合する混合型の薬液で、かつ混合時の粘度が1mPa・s〜100mPa・sの薬液を使用する、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
[Invention of Claim 8 ]
As the chemical solution, a mixed type chemical solution in which two or more liquids are mixed, and a chemical solution having a viscosity at the time of mixing of 1 mPa · s to 100 mPa · s, is used.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 7 .

参考となる発明〕
前記薬液として、懸濁型の薬液で、かつメジアン径1μm以上の粒子濃度が200kg/m3〜760kg/m3の薬液を使用する、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
[ Reference invention]
As the chemical, a suspension-type chemical and particulate concentration of the above median diameter 1μm to use chemical 200kg / m 3 ~760kg / m 3 ,
The ground liquefaction countermeasure construction method according to any one of claims 1 to 8 .

〔請求項記載の発明〕
前記薬液は、
(1)高炉スラグ又は前記高炉スラグを含むセメントと、消石灰とを主体とする第1の液
(2)水ガラスを主体とする第2の液
の両液を接触させたものである、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
[Invention of Claim 9 ]
The chemical solution is
(1) A blast furnace slag or a cement containing the blast furnace slag and a first liquid mainly composed of slaked lime (2) a second liquid mainly composed of water glass are brought into contact with each other.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 8 .

〔請求項10記載の発明〕
地盤に注入管を建て込む前に行う地盤の削孔において、削孔水を10L/min以上で吐出する請求項1記載の地盤の液状化対策工法。
[Invention of Claim 10 ]
The ground liquefaction countermeasure construction method according to claim 1, wherein the drilling water is discharged at a rate of 10 L / min or more in the ground drilling performed before the injection pipe is built in the ground.

〔請求項11記載の発明〕
前記薬液注入作業の一部を、高圧噴射攪拌作業に替えて行う、
請求項1に記載の地盤の液状化対策工法。
ここで前記高圧噴射攪拌作業とは、前記地盤に前記注入管に変えて回転ロッドを建て込み、当該回転ロッドを回転させつつ硬化材を噴射させて柱状の改良体を造成する作業をいう。
[Invention of Claim 11 ]
A part of the chemical solution injection work is performed instead of the high-pressure jet stirring work.
The ground liquefaction countermeasure construction method according to claim 1.
Here, the high-pressure jet agitation operation refers to an operation in which a rotating rod is built in the ground instead of the injection pipe, and a hardened material is injected while rotating the rotating rod to form a columnar improvement body.

〔請求項12記載の発明〕
前記薬液注入作業及び前記高圧噴射撹拌作業の少なくとも一方の作業後において、当該作業により形成された削孔にモルタル、セメントミルクおよび薬液の少なくともいずれか一つを置換充填する、
請求項11に記載の地盤の液状化対策工法。
ここで前記薬液は、
(1)高炉スラグ又は前記高炉スラグを含むセメントと、消石灰とを主体とする第1の液
(2)水ガラスを主体とする第2の液
の両液を接触させたものである。
[Invention of Claim 12 ]
After at least one of the chemical solution injection operation and the high-pressure jet stirring operation, the hole formed by the operation is replaced and filled with at least one of mortar, cement milk, and chemical solution.
The ground liquefaction countermeasure method according to claim 11 .
Here, the chemical solution is
(1) A blast furnace slag or a cement containing the blast furnace slag and a first liquid mainly composed of slaked lime (2) a second liquid mainly composed of water glass are brought into contact with each other.

本発明によると、薬液の使用量を著しく減らすことができる地盤の液状化対策工法となる。   According to the present invention, it is a ground liquefaction countermeasure method that can significantly reduce the amount of chemical used.

注入管の建込み位置、及び脈状固結物の広がりを説明するための概念図である。It is a conceptual diagram for demonstrating the installation position of an injection tube, and the breadth of a vein-like solidified substance. 第1の例に係る注入管の建込み位置を説明するための概念平面図(1)、第2の例に係る注入管の建込み位置を説明するための概念平面図(2)、及び第3の例に係る注入管及び回転ロッドの建込み位置を説明するための概念平面図(3)である。A conceptual plan view (1) for explaining the erected position of the injection pipe according to the first example, a conceptual plan view (2) for explaining the erected position of the injection pipe according to the second example, and the first It is a conceptual top view (3) for demonstrating the construction position of the injection pipe and rotation rod which concern on the example of 3. FIG. 第2の例に係る注入管の建込み位置を説明するための概念断面図(1)、及び第3の例に係る注入管及び回転ロッドの建込み位置を説明するための概念断面図(2)である。Conceptual sectional view (1) for explaining the erected position of the injection pipe according to the second example, and conceptual sectional view (2) for explaining the erected position of the injection pipe and the rotating rod according to the third example ). 液状化対策前の地盤と液状化対策後の地盤のN値を示したグラフである。It is the graph which showed the N value of the ground before a liquefaction countermeasure, and the ground after a liquefaction countermeasure. 液状化対策前の地盤と液状化対策後の地盤のN値を示したグラフである。It is the graph which showed the N value of the ground before a liquefaction countermeasure, and the ground after a liquefaction countermeasure.

次に、発明を実施するための形態を説明する。
本形態に係る地盤の液状化対策工法においては、図1に示すように、地盤Gに注入管10を建て込み、当該注入管10を通して地盤Gに薬液を注入する。この薬液の注入は、割裂注入で、かつ注入圧力を周期的に変動させる動的注入で行う。ここで割裂注入とは、注入圧により地盤が割裂し、そのなかに注入材が侵入して薬液の脈を形成し、その脈が地盤中に伸びていく注入形態をいう。
Next, modes for carrying out the invention will be described.
In the ground liquefaction countermeasure method according to this embodiment, as shown in FIG. 1, the injection pipe 10 is built in the ground G, and the chemical solution is injected into the ground G through the injection pipe 10. This chemical injection is performed by split injection and by dynamic injection that periodically changes the injection pressure. Here, the split injection refers to an injection form in which the ground is split by the injection pressure, the injected material enters into it to form a chemical solution pulse, and the pulse extends into the ground.

従来の工法においては、薬液の注入を浸透注入で行っていたため、薬液の使用量を十分に減らすことができなかった。すなわち、浸透注入では、地盤間隙の全てを薬液に置換する必要があるため、改良対象地盤の容積の40%程度の注入率を要していた。これに対し、本形態の工法においては、非浸透薬液を意図的に割裂注入する(地盤Gの弱い部分に裂け目を形成する等しながら脈状に、あるいは面状に注入する)ことで、地盤密度を上昇させ、対液状化性能を向上させる。そのため、薬液の必要量は改良対象地盤の容積の10%程度となり、浸透注入と比べて、薬液量を減らすことができる。   In the conventional construction method, since the chemical solution is injected by osmotic injection, the amount of the chemical solution used cannot be reduced sufficiently. That is, in the osmotic injection, since it is necessary to replace the entire ground gap with the chemical solution, an injection rate of about 40% of the volume of the ground to be improved is required. On the other hand, in the construction method of the present embodiment, the non-penetrating chemical solution is intentionally split and injected (injected in a pulse shape or in a planar shape while forming a tear in a weak portion of the ground G). Increase density and improve liquefaction performance. Therefore, the required amount of the chemical solution is about 10% of the volume of the ground to be improved, and the amount of the chemical solution can be reduced as compared with the osmotic injection.

また、薬液の注入を割裂注入で行うと、脈状固結物(ホモゲル)Sが形成されるところ、この脈状固結物Sの強度は、例えば、材令28日で2000kN/m2以上にまで高めることができる。したがって、本形態の工法によると、いわば地盤G中に木の枝が延びた状態、あるいは格子が組まれた状態になり、地盤Gの液状化抵抗を向上することができる。しかも、薬液の割裂注入に伴って地盤Gが圧密化され、地盤G自体の強度が向上するため、地盤Gの液状化抵抗がより向上する。なお、従来の浸透注入によって形成された浸透固結物(サンドゲル)は、その強度が100kN/m2程度である。 In addition, when the chemical solution is injected by split injection, a vein-like solid (homgel) S is formed. The strength of this vein-like solid S is, for example, 2000 kN / m 2 or more at 28 days of age. Can be increased to. Therefore, according to the construction method of the present embodiment, so-called a state where tree branches extend in the ground G or a state where a lattice is assembled, the liquefaction resistance of the ground G can be improved. In addition, the ground G is consolidated with the split injection of the chemical solution, and the strength of the ground G itself is improved, so that the liquefaction resistance of the ground G is further improved. In addition, the intensity | strength of the osmosis | solidification solid body (sand gel) formed by the conventional osmotic injection | pouring is about 100 kN / m < 2 >.

さらに、本形態の工法においては、薬液の注入を動的注入で行うため、注入圧力が下がった際に、地盤Gに注入した薬液のゲル化が進む。そして、その後、注入圧力が高まると、ゲル化が進んだ薬液に、続けて注入された薬液がぶつかることになる。したがって、本形態のように割裂注入を動的注入で行うと、最初に割裂した脈が閉塞し、新たな割裂によって新たな脈が形成されるといった具合に脈が形成されることになるため、脈状固結物Sが極めて複雑な軌跡を描くようになる。結果、地盤G中にいわば木の枝が緻密に行き渡った状態となり、地盤Gの液状化抵抗がいっそう向上する。   Furthermore, in the construction method of this embodiment, since the chemical solution is injected by dynamic injection, the chemical solution injected into the ground G progresses when the injection pressure is lowered. Then, when the injection pressure increases thereafter, the injected chemical liquid collides with the chemical liquid that has been gelled. Therefore, when split injection is performed by dynamic injection as in this embodiment, the pulse that was initially split is blocked, and a new pulse is formed by a new split, so that the pulse is formed. The vein-like solid object S comes to draw a very complicated locus. As a result, so-called tree branches are densely distributed in the ground G, and the liquefaction resistance of the ground G is further improved.

本形態の工法においては、注入管10を使用した薬液注入作業を、注入管10の建込み位置を変えながら繰り返し行う。注入管10の建込みは、例えば、第1の例である図2の(1)に示すように、地盤Gの左右方向及び前後方向にそれぞれ所定の間隔Lをあけて行う。この所定の間隔Lは、例えば、地盤Gの液状化抵抗をどの程度向上させるか等を考慮して設定することができる。   In the construction method of this embodiment, the chemical solution injection operation using the injection tube 10 is repeated while changing the position where the injection tube 10 is installed. For example, as shown in FIG. 2 (1) as the first example, the injection pipe 10 is erected at predetermined intervals L in the left-right direction and the front-rear direction of the ground G. The predetermined interval L can be set in consideration of, for example, how much the liquefaction resistance of the ground G is improved.

なお、現在、地盤Gの液状化抵抗をどの程度向上させるかについて詳細な取決め等は存在しない。しかしながら、今後は、地盤Gの用途、例えば、地盤Gの上に建物が存在するのか、道路や線路が敷設されているのか、滑走路が存在するのか、空き地に過ぎないのか、等を考慮して適宜決定されることが予想される。   At present, there is no detailed agreement on how much to improve the liquefaction resistance of the ground G. However, in the future, considering the use of the ground G, for example, whether there are buildings on the ground G, whether roads and tracks are laid, runways exist, or are only vacant land, etc. It is expected to be determined as appropriate.

以上の図2の(1)に示す形態等においても、薬液の注入を割裂注入で、かつ動的注入で行うことによる作用効果が奏せられる。しかるに、施工の対象となる地盤Gの全体に渡って液状化抵抗を均一に向上させるという観点からは、第2の例である図2の(2)に示すように、注入管10の建込みを、下記(A)及び下記(B)の条件を満たすように行うのが好ましい。   Also in the embodiment shown in FIG. 2 (1) and the like, the effect of performing the injection of the chemical solution by split injection and dynamic injection is exhibited. However, from the viewpoint of uniformly improving the liquefaction resistance over the entire ground G to be constructed, as shown in FIG. Is preferably performed so as to satisfy the following conditions (A) and (B).

(A)地盤Gの左右方向及び前後方向に関しては、作業領域X及び不作業領域Yが相互に隣接する。
(B)地盤Gの斜め方向に関しては、作業領域Xが連続する。
ここで作業領域Xとは、図1にも示すように、注入管10の建込み位置から上記所定の間隔Lの1/4離れた位置を四辺が通る仮想正方形Dによって囲まれた領域をいう。また、不作業領域Yとは、作業領域Xに該当しない領域をいう。なお、上記左右方向や前後方向、斜め方向は、特定の方向を意味するものではなく、地盤Gの表面に沿った相対的な方向である。
(A) Regarding the left-right direction and the front-rear direction of the ground G, the work area X and the non-work area Y are adjacent to each other.
(B) Regarding the oblique direction of the ground G, the work area X is continuous.
Here, as shown in FIG. 1, the work area X is an area surrounded by a virtual square D whose four sides pass through a position that is a quarter of the predetermined distance L from the position where the injection tube 10 is built. . The non-work area Y is an area that does not correspond to the work area X. In addition, the said left-right direction, the front-back direction, and the diagonal direction do not mean a specific direction, but are relative directions along the surface of the ground G.

これら(A)及び(B)の条件を満たさない前者の形態(図2の(1)の形態等)においては、左右方向及び前後方向に不作業領域Yが連続する完全不作業領域Y1が存在することになる。このような形態であっても、前述した通り、割裂注入、かつ動的注入であることによる最低限の作用効果は得られるが、完全不作業領域Y1部分の液状化抵抗が相対的に弱くなる。したがって、上記(A)及び(B)の条件を満たす後者の形態(図2の(2)の形態)によるのがより好ましい。   In the former form (form (1) of FIG. 2 etc.) that does not satisfy these conditions (A) and (B), there is a complete non-work area Y1 in which the non-work area Y continues in the left-right direction and the front-back direction. Will do. Even in such a form, as described above, the minimum operation and effect due to split injection and dynamic injection can be obtained, but the liquefaction resistance of the completely unworked region Y1 portion becomes relatively weak. . Therefore, it is more preferable to use the latter form (form (2) of FIG. 2) that satisfies the above conditions (A) and (B).

また、上記(A)及び(B)の条件を満たす後者の形態によると、薬液の種類や注入量、注入速度等を適宜制御する等によって、図3の(1)にも示すように、地盤Gの斜め方向に関して相互に隣接する注入管10を通して注入された脈状固結部Sが、相互に絡み合う状態とすることができる(この脈状固結物Sが絡み合う部分を、符号Wで示す。)。したがって、後者の形態によると、地盤Gの液状化抵抗をよりいっそう向上させることができる。   Further, according to the latter form satisfying the above conditions (A) and (B), as shown in (1) of FIG. The vein-like consolidated portions S injected through the injection pipes 10 adjacent to each other in the oblique direction of G can be in an intertwined state (the portion where this vein-like consolidated matter S is intertwined is indicated by the symbol W. .) Therefore, according to the latter form, the liquefaction resistance of the ground G can be further improved.

なお、この例から明らかなように、作業領域Xと、薬液の注入領域(あるいは脈状固結物Sが形成された領域)とは異なる領域となる可能性がある。作業領域Xとは、単に上記のようにして定義された領域に過ぎない。同様に、不作業領域Yと、薬液が注入されていない領域(あるいは脈状固結物Sが形成されていない領域)とは異なる領域となる可能性がある。   As is clear from this example, there is a possibility that the work area X and the chemical solution injection area (or the area where the pulmonary solid S is formed) are different areas. The work area X is merely an area defined as described above. Similarly, there is a possibility that the non-work area Y and the area where the chemical solution is not injected (or the area where the pulmonary solid S is not formed) are different areas.

本形態の液状化対策工法においては、上記所定の間隔Lをどの程度とするかは特に限定されない。ただし、薬液の注入率が2%〜15%となるように当該所定の間隔Lを設定するのが好ましく、10%となるように所定の間隔Lを設定するのがより好ましい。   In the liquefaction countermeasure method of this embodiment, there is no particular limitation on how much the predetermined interval L is set. However, it is preferable to set the predetermined interval L so that the injection rate of the chemical solution is 2% to 15%, and it is more preferable to set the predetermined interval L so as to be 10%.

なお、薬液の注入率は、「当該薬液の注入量(L)/対策の対象となる地盤の容積(m3)×100」である。したがって、薬液の注入率は、所定の間隔Lを変化させることによって変化させることができるほか、注入管10の建込み位置ごとの薬液の注入量を変化させることによっても変化させることができる。つまり、所定の間隔Lを長くし、あるいは各建込み位置における薬液の注入量を減らすと、注入率が下がることになる。他方、所定の間隔Lを短くし、あるいは各建込み位置における薬液の注入量を増やすと、注入率が上がることになる。 The injection rate of the chemical solution is “the injection amount of the chemical solution (L) / the volume of the ground to be countermeasured (m 3 ) × 100”. Therefore, the injection rate of the chemical solution can be changed by changing the predetermined interval L, and can also be changed by changing the injection amount of the chemical solution for each installation position of the injection tube 10. That is, if the predetermined interval L is increased or the injection amount of the chemical solution at each erection position is decreased, the injection rate is lowered. On the other hand, when the predetermined interval L is shortened or the injection amount of the chemical solution at each erection position is increased, the injection rate is increased.

本発明者等は、所定の間隔Lを1.5mに設定し、試験の対象となる地盤全体に対する薬液の注入率を10%として薬液注入試験を行った。この試験の結果、地盤のN値が上昇することが確認された。また、この地盤に対して、バイブロを用いた簡易液状化試験を行ったところ、液状化現象は発生しなかった。   The inventors set the predetermined interval L to 1.5 m, and performed a chemical injection test with a chemical injection rate of 10% for the entire ground to be tested. As a result of this test, it was confirmed that the N value of the ground increased. Further, when this ground was subjected to a simple liquefaction test using vibro, no liquefaction phenomenon occurred.

(薬液(グラウト))
地盤Gに注入する薬液としては、硬化剤(A液)及び反応剤(B液)を混合するタイプの薬液を使用することができる。硬化剤としては、例えば、セメントスラリー、セメントベントナイトスラリー、スラグスラリー、スラグセメントスラリー等を使用することができる。また、反応剤としては、例えば、水ガラス溶液、アルミニウム塩溶液等を使用することができる。
(Chemical solution (grouting))
As a chemical solution to be injected into the ground G, a chemical solution in which a curing agent (A solution) and a reactive agent (B solution) are mixed can be used. As the curing agent, for example, cement slurry, cement bentonite slurry, slag slurry, slag cement slurry and the like can be used. Moreover, as a reactive agent, a water glass solution, an aluminum salt solution, etc. can be used, for example.

ただし、割裂かつ動的注入を行う本形態の薬液としては、2液以上を混合する混合型の薬液、あるいは懸濁型の薬液を使用するのが好ましく、スラグセメントスラリー(A液)と水ガラス溶液(B液)とを混合するタイプの瞬結性懸濁型の可塑性グラウトを使用するのがより好ましい。この可塑性グラウトは、スラグにアルカリが反応して硬化する薬液であり、可塑性及び恒久性を有している。したがって、動的注入による効果がいかんなく発揮され、脈状固結物を複雑に形成することができる。   However, as the chemical solution of this embodiment for splitting and dynamic injection, it is preferable to use a mixed type chemical solution or a suspension type chemical solution in which two or more liquids are mixed. Slag cement slurry (A solution) and water glass It is more preferable to use an instant-sustaining suspension type plastic grout mixed with the solution (liquid B). This plastic grout is a chemical solution that hardens when an alkali reacts with slag, and has plasticity and durability. Therefore, the effect by dynamic injection is fully exhibited, and the vein-like solidified substance can be formed in a complicated manner.

混合型の薬液は、混合時の粘度が1mPa・s〜100mPa・sであるのが好ましい。混合時の粘度が高過ぎると、注入の際にかかる抵抗が大きくなり過ぎ、注入圧力、割裂する力も大きくなり過ぎるため、複雑な脈を形成するに適さなくなる。なお、混合時の粘度が低すぎると粒子濃度を低くすることになるため、割裂注入ではなく浸透注入になってしまうおそれがある。   The mixed chemical solution preferably has a viscosity at the time of mixing of 1 mPa · s to 100 mPa · s. If the viscosity at the time of mixing is too high, the resistance applied at the time of injection becomes too high, and the injection pressure and splitting force become too high, making it unsuitable for forming a complex pulse. Note that if the viscosity at the time of mixing is too low, the particle concentration will be lowered, and there is a risk of penetration injection rather than split injection.

また、懸濁型の薬液は、メジアン径1μm以上の粒子を基準とする粒子濃度が200kg/m3〜760kg/m3であるのが好ましい。粒子濃度が高過ぎると、薬液の注入口付近において砂層にマッドフィルムが形成されてしまい、地盤Gを割裂せず、地盤G全体を押してしまうため、固結物が球状、あるいは厚い板状になり、脈状にならなくなるおそれがある。 Further, suspension type of chemical is preferably particle concentration relative to the median size 1μm or more of the particles is 200kg / m 3 ~760kg / m 3 . If the particle concentration is too high, a mud film will be formed in the sand layer near the injection port of the chemical solution, and the ground G will not be split and the entire ground G will be pushed, so the consolidated product will be spherical or thick plate-like There is a risk that it will not become a pulse.

前記メジアン径(「中位径」)は、例えば以下の方法を用いて定める。詳述すると、粒径が500ミクロン以上の場合は、JIS M 8801 石炭試験方法に記載された方法でふるい分けをし、ふるい分け結果をロジンラムラー分布で表し、積算質量(ふるい上)が50%に相当する時の粒子径をメジアン径(D50)として定める。また、脱水物の粒径が500ミクロン未満の場合は、レーザー回折式粒度分布測定装置(例えば、商品名SALD−3100、島津製作所社製)を用いて粒度分布を測定し、累積体積が50%に相当する時の粒子径をメジアン径(D50)として定める。なお、メジアン径を求める際に用いる分散媒はIPAであり、超音波を用いて分散を行う。 The median diameter (“median diameter”) is determined using, for example, the following method. More specifically, when the particle size is 500 microns or more, screening is performed according to the method described in JIS M 8801 Coal Testing Method, and the screening result is expressed as a Rosin-Rammler distribution, and the integrated mass (on the screen) corresponds to 50%. The particle diameter at the time is defined as the median diameter (D 50 ). When the particle size of the dehydrated product is less than 500 microns, the particle size distribution is measured using a laser diffraction type particle size distribution measuring device (for example, trade name SALD-3100, manufactured by Shimadzu Corporation), and the cumulative volume is 50%. Is defined as the median diameter (D 50 ). In addition, the dispersion medium used when calculating | requiring a median diameter is IPA, and it disperse | distributes using an ultrasonic wave.

なお、薬液には、必要に応じて、分散剤、強度促進剤、増粘剤等の添加剤を配合することもできる。   In addition, additives, such as a dispersing agent, a strength accelerator, and a thickener, can also be mix | blended with a chemical | medical solution as needed.

ところで、前述したように、動的注入によると、注入圧力が下がった際に地盤Gに注入した薬液のゲル化が進み、当該ゲル化が進んだ薬液に続けて注入した薬液がぶつかることになるため、脈状固結物Sが極めて複雑な軌跡を描くようになる。しかるに、薬液のゲルタイム(ゲル化時間)が長過ぎると、薬液のゲル化が十分に進まず、脈状固結物Sを複雑化するのに適さなくなる。また、地盤の改良範囲を限定することができない。さらに、脈状固結物Sの厚みが薄く、圧密効果が優れない。他方、ゲルタイムが短過ぎると、地盤への変位の影響が大きくなりやすい。また、脈状固結物Sが広がりにくく、脈状固結物Sが形成されづらい。さらに、注入口付近に薬液が留まり、球状、あるいは厚い板状の固結物になりやすくなる等の問題が生じる。   By the way, as described above, according to the dynamic injection, when the injection pressure is lowered, the chemical solution injected into the ground G progresses, and the injected chemical solution collides with the chemical solution that has advanced the gelation. For this reason, the vein-like solidified substance S comes to draw a very complicated locus. However, when the gel time (gelation time) of the chemical solution is too long, the gelation of the chemical solution does not proceed sufficiently and is not suitable for complicating the pulmonary solid S. Moreover, the improvement range of the ground cannot be limited. Furthermore, the thickness of the vein-like consolidated product S is thin, and the consolidation effect is not excellent. On the other hand, if the gel time is too short, the influence of displacement on the ground tends to increase. Further, the vein-like solid S is difficult to spread, and the vein-like solid S is difficult to be formed. Furthermore, there is a problem that the chemical solution stays in the vicinity of the injection port and tends to become a spherical or thick plate-like consolidated product.

以上のことから、薬液としては、ゲルタイムが動的注入の0.1周期〜3周期に該当する薬液(例えば、1周期が20秒の場合は、ゲルタイムが2秒〜1分の薬液)、あるいはゲルタイムが当該薬液0.5L〜5Lの注入時間(10L/分の場合、ゲルタイムが3〜18秒)に該当する薬液を使用するのが好ましい。   From the above, as a chemical solution, a gel solution having a gel time corresponding to 0.1 cycle to 3 cycles of dynamic injection (for example, a drug solution having a gel time of 2 seconds to 1 minute when one cycle is 20 seconds), or It is preferable to use a chemical solution whose gel time corresponds to the injection time of 0.5 L to 5 L of the chemical solution (in the case of 10 L / min, the gel time is 3 to 18 seconds).

動的注入では、最大吐出時のエネルギーが高く、この最大吐出時に脈状固結物Sが形成される。薬液を1回吐出することにより、幅10cm〜50cm、厚さ0.2cm〜1cmの板状の脈状固結物Sが形成されると仮定すると、脈状固結物Sの到達距離は、以下の式(1)により表すことができる。
(式1)
脈状固結物到達距離(cm)=薬液ゲルタイム(sec)×最大吐出流量(L/min)×1〜2
In the dynamic injection, the energy at the time of maximum discharge is high, and the pulmonary solid S is formed at the time of this maximum discharge. Assuming that a plate-like vein-like solid S having a width of 10 cm to 50 cm and a thickness of 0.2 cm to 1 cm is formed by discharging the chemical solution once, the reach distance of the vein-like solid S is: It can be represented by the following formula (1).
(Formula 1)
Reach distance (cm) = chemical solution gel time (sec) × maximum discharge flow rate (L / min) × 1-2

地盤を均質に改良するため、隣り合う注入管10の間隔(ピッチ)を1〜4mにすることが好ましい。したがって、要求される脈状固結物到達距離は、50cm〜200cmとなる。   In order to improve the ground uniformly, the interval (pitch) between adjacent injection pipes 10 is preferably 1 to 4 m. Accordingly, the required reach distance of the vein-like consolidated object is 50 cm to 200 cm.

また、最大吐出量は、薬液の費用を抑えるとともに、急激に地盤が変位することを抑制するために、5〜20L/minにすることが好ましい。   Further, the maximum discharge amount is preferably set to 5 to 20 L / min in order to suppress the cost of the chemical solution and to suppress the sudden displacement of the ground.

したがって、前記式1に脈状固結物到達距離と最大吐出量の前記値を代入することで、薬液の好ましいゲルタイムは2.5〜40secが求められる。   Therefore, by substituting the values of the pulse solidified object reach distance and the maximum discharge amount into the formula 1, a preferable gel time of the chemical solution is required to be 2.5 to 40 sec.

また、薬液の強度発現が速い場合は、一つの脈状固結物Sを形成した後、ゲルタイム以降に別の新たな脈状固結物Sを形成する。しかし、本発明に用いる前記薬液は、強度発現が遅いため、ゲルタイム以降も塑性変形し、数サイクル同じ脈状固結物Sで押し続けるため、脈状固結物Sの厚みが増す。脈状固結物Sがあまりにも厚くなると、地盤変位に繋がるが、脈状固結物Sの厚さが数センチであれば、圧密効果は高くなり、液状化抑止効果が高くなる。したがって、強度発現の観点から考えると、ゲルタイムを2.5〜20secにすることが好ましい。   In addition, when the strength of the chemical solution is rapidly developed, after forming one vein-like solid S, another new vein-like solid S is formed after the gel time. However, since the chemical solution used in the present invention has a slow strength development, it undergoes plastic deformation after the gel time and continues to be pushed by the same vein-like solid S for several cycles, so that the thickness of the vein-like solid S increases. If the vein-like solid S is too thick, it will lead to ground displacement, but if the thickness of the vein-like solid S is several centimeters, the consolidation effect will be high and the liquefaction suppression effect will be high. Therefore, from the viewpoint of strength development, the gel time is preferably 2.5 to 20 sec.

なお、ゲルタイムが2.5secより短い瞬結薬液は、注入孔の周りに多数の脈状固結物Sを形成し、それが一塊となる。そして、注入孔付近で地盤が大きく変位するため、好ましくない。   In addition, the instantaneous setting chemical | medical solution whose gel time is shorter than 2.5 sec forms many vein-like solidified substances S around an injection hole, and it becomes a lump. And since the ground is largely displaced near the injection hole, it is not preferable.

(注入方法)
薬液注入作業は、二重管ロッドで削孔し、当該二重管ロッドを使用して薬液を注入する単相式の二重管ストレーナ工法によって実施するのが好ましい。従来の液状化対策工法においては、前述したように薬液の浸透注入が行われており、一般的に、二重管ダブルパッカー工法が採用されていた。しかしながら、本形態における薬液注入作業は、薬液の注入を割裂注入で行うため、単相式の二重管ストレーナ工法によることができる。二重管ストレーナ工法によると、二重管ダブルパッカー工法による場合と比べて施工費を大幅に抑えることができる。
(Injection method)
The chemical solution injection operation is preferably performed by a single-phase double tube strainer method in which holes are drilled with a double tube rod and the chemical solution is injected using the double tube rod. In the conventional liquefaction countermeasure construction method, the penetration of the chemical solution is performed as described above, and the double pipe double packer construction method has been generally adopted. However, the chemical solution injection operation in this embodiment can be performed by a single-phase double pipe strainer method because the chemical solution is injected by split injection. According to the double pipe strainer method, the construction cost can be greatly reduced as compared with the case of the double pipe double packer method.

地盤Gに薬液を注入するにあたっては、スラグセメントスラリー等のA液と水ガラス溶液等のB液とを二重管内に別々に送液し、当該二重管の先端で合流させても(2ショット方式)、二重管の口元等において合流させても(1.5ショット方式)よい。   In injecting the chemical solution into the ground G, the liquid A such as slag cement slurry and the liquid B such as a water glass solution are separately fed into the double pipe and merged at the tip of the double pipe (2 Shot method) or at the mouth of a double pipe (1.5 shot method).

薬液の注入圧力は、例えば、0.1〜3.0MPaの範囲で変化させることができる。また、薬液の注入速度は、1L/分〜18L/分とすることができる。薬液の注入圧力を極端に弱くし、あるいは注入速度を極端に遅くすると、薬液が注入孔付近で固結して、注入孔付近の地盤が隆起するなどの著しい地盤変位が生じるとともに、液状化対策効果が低減するおそれがある。また、薬液の使用量を増加させる必要が生じるおそれもある。   The injection pressure of the chemical liquid can be changed, for example, in the range of 0.1 to 3.0 MPa. Moreover, the injection | pouring speed | rate of a chemical | medical solution can be 1 L / min-18 L / min. If the injection pressure of the chemical solution is extremely weak or the injection speed is extremely slow, the chemical solution will solidify in the vicinity of the injection hole, causing significant ground displacement such as the ground near the injection hole rising, and measures against liquefaction The effect may be reduced. Moreover, there is a possibility that the amount of the chemical used needs to be increased.

(動的注入)
本形態の液状化対策工法は、薬液の動的注入を行うものであるが、注入圧力を常に変動する必要はない。例えば、注入開始段階や注入終了段階等において、注入圧力を一時的に一定とすることもできる。また、2液(A液及びB液)を混合するタイプの薬液を使用する場合は、2液それぞれについて注入圧力を周期的に変動させればよい。さらに、例えば、特開2008−231907号公報等に開示されるように、長波の注入圧力の周期的変動に、短波の注入圧力の周期的変動を重畳した注入圧力の変動をもって薬液の注入を行うこともできる。
(Dynamic injection)
The liquefaction countermeasure method of this embodiment performs dynamic injection of a chemical solution, but it is not always necessary to change the injection pressure. For example, the injection pressure can be temporarily fixed at an injection start stage, an injection end stage, or the like. Moreover, what is necessary is just to change injection | pouring pressure periodically about each of 2 liquids, when using the chemical | medical solution of the type which mixes 2 liquids (A liquid and B liquid). Furthermore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-231907, the chemical solution is injected with a fluctuation in the injection pressure in which the periodic fluctuation in the short wave injection pressure is superimposed on the periodic fluctuation in the long wave injection pressure. You can also.

また、薬液の動的注入における流量の波形は、特に限定されず、例えば、サイン波、パルス波とすることができる。ただし、サイン波とした場合は、流量増大過程でのエネルギー上昇の温和であり、構造物等への影響が少ない等の作用効果を奏する。また、パルス波とした場合は、流量増大過程で瞬時にエネルギーが増幅し、割裂を起こしやすい等の作用効果を奏する。   Moreover, the waveform of the flow rate in the dynamic injection of the chemical solution is not particularly limited, and can be, for example, a sine wave or a pulse wave. However, in the case of a sine wave, it is a mild increase in energy in the process of increasing the flow rate, and has effects such as little influence on the structure or the like. In addition, when the pulse wave is used, the energy is instantaneously amplified in the process of increasing the flow rate, and there are effects such as easy splitting.

また、注入圧力の振幅は、30%〜100%とするのが好ましい。このように振幅を大きくすることで緻密かつ複雑な脈を形成することができる。なお、この振幅とは、(流量下限÷流量上限)×100を意味する。   The amplitude of the injection pressure is preferably 30% to 100%. By increasing the amplitude in this way, a dense and complicated pulse can be formed. In addition, this amplitude means (flow rate lower limit / flow rate upper limit) × 100.

さらに、動的注入は、周波数が0.01Hz〜0.5Hzとなるように行うのが好ましい。   Furthermore, the dynamic injection is preferably performed so that the frequency is 0.01 Hz to 0.5 Hz.

(高圧噴射攪拌)
ところで、前述したように地盤Gの液状化抵抗をどの程度向上させるかは地盤Gの用途等を考慮して適宜決定される。したがって、地盤Gの用途によっては、液状化抵抗を大幅に向上させる必要がある場合も存在する。そこで、このような場合は、以上の薬液注入作業の一部を高圧噴射攪拌作業に替えて液状化対策を図るのが好ましい。
(High-pressure jet stirring)
By the way, as described above, how much the liquefaction resistance of the ground G is improved is appropriately determined in consideration of the use of the ground G and the like. Therefore, depending on the use of the ground G, there are cases where it is necessary to significantly improve the liquefaction resistance. Therefore, in such a case, it is preferable to take measures against liquefaction by replacing a part of the above-described chemical solution injection operation with the high-pressure jet stirring operation.

この高圧噴射攪拌作業(工法)とは、図2の(3)や図3の(2)に示すように、地盤Gに上記注入管10に変えて回転ロッド20を建て込み、当該回転ロッド20を回転させつつセメントミルク等の硬化材を噴射させて柱状の改良体Tを造成する作業をいう。この点、本形態の薬液注入方法(作業)によると地盤G中に木の枝が延びた状態になると先に説明したが、この高圧噴射攪拌作業を併用する形態によると、改良体Tを木の幹とし、この幹から木の枝たる脈状固結物Sが延びた状態になる。したがって、地盤Gの液状化抵抗が極めて向上する。   As shown in FIG. 2 (3) and FIG. 3 (2), this high-pressure jet agitation operation (construction method) is a construction in which a rotating rod 20 is installed in the ground G in place of the injection tube 10, and the rotating rod 20 The column-shaped improvement body T is created by spraying a hardener such as cement milk while rotating. In this respect, according to the chemical injection method (work) of the present embodiment, it has been described above that a tree branch extends into the ground G. However, according to the embodiment in which this high-pressure jet stirring operation is used together, the improved body T is From this trunk, a vein-like solidified substance S, which is a tree branch, extends. Therefore, the liquefaction resistance of the ground G is greatly improved.

この高圧噴射攪拌作業は、例えば、CCP工法と同様の手順で進めることができる。   This high-pressure jet stirring operation can be performed in the same procedure as in the CCP method, for example.

硬化材の噴射圧力は、例えば5MPa〜50MPa、好ましくは40MPaとすることができる。また、回転ロッド20の引上げ速度は、例えば、30秒/m〜6分/m、好ましくは1分/m〜3分/mとすることができる。このような噴射圧力及び引上げ速度で高圧噴射攪拌作業を行うことで、例えば、直径600mm〜1000mmにも及ぶ改良体Tを造成することができる。なお、一般的なCCP工法においては、硬化材の噴射圧力が20MPa、回転ロッドの引上げ速度が2分/m〜6分/mとされており、直径300mm〜500mmの改良体が造成されている。なお、回転ロッド20の回転速度は、例えば、10rpm〜40rpmとすることができる。   The injection pressure of the curing material can be, for example, 5 MPa to 50 MPa, preferably 40 MPa. The pulling speed of the rotating rod 20 can be set to, for example, 30 seconds / m to 6 minutes / m, preferably 1 minute / m to 3 minutes / m. By performing the high-pressure jet stirring operation at such jet pressure and pulling speed, for example, an improved body T having a diameter of 600 mm to 1000 mm can be created. In the general CCP method, the injection pressure of the curing material is 20 MPa, the pulling speed of the rotating rod is 2 minutes / m to 6 minutes / m, and an improved body having a diameter of 300 mm to 500 mm is created. . In addition, the rotational speed of the rotating rod 20 can be 10 rpm-40 rpm, for example.

薬液注入作業(脈状固結物Sの造成)と高圧噴射作業(改良体Tの造成)とのいずれを先に行うかは特に限定されないが、高圧噴射作業を先に行う方が好ましい。高圧噴射作業を先に行って改良体Tを形成し、その後に薬液注入作業を行うことで、改良体Tと脈状固結物Sが一体となり、液状化抑止効果の相乗効果が得られるからである。また、薬液注入による脈状固結物Sが高圧噴射の切削力で破壊されることも防止できるからである。   It is not particularly limited which of the chemical solution injection operation (formation of the vein-like solid S) and the high-pressure injection operation (formation of the improved body T) is performed first, but it is preferable to perform the high-pressure injection operation first. Since the improved body T is formed by performing the high-pressure jetting operation first, and then the chemical solution injection operation is performed, the improved body T and the pulmonary solid S are integrated, and a synergistic effect of the liquefaction suppression effect is obtained. It is. Moreover, it is because it can prevent that the pulse-like solidified substance S by chemical | medical solution injection | pouring is destroyed by the cutting force of high pressure injection.

また、既存の構造物の直下等における作業は、斜め打ち作業が容易な薬液注入作業による方が適している。したがって、構造物周りでは薬液注入作業を行うことを前提として、注入管10及び回転ロッド20の建込み位置を設定するのが好ましい。   Further, the work just under an existing structure or the like is more suitable by a chemical liquid injection work that facilitates an oblique work. Therefore, it is preferable to set the erection positions of the injection tube 10 and the rotating rod 20 on the assumption that the chemical solution injection operation is performed around the structure.

(削孔)
本発明に係る液状化対策工法は、まず地盤を削孔し、その削孔孔に注入管を建て込む。この削孔作業において、削孔水の吐出量を10L/min以上にすることが好ましい。10L/min以上にすることで、薬液を注入する前に、削孔水で地盤を割裂させることができる。その結果、後に薬液を注入した際に、脈状固結物Sが形成されやすくなる。
(Drilling)
In the liquefaction countermeasure method according to the present invention, first, the ground is drilled, and an injection pipe is built into the drilled hole. In this drilling operation, it is preferable to set the discharge amount of drilling water to 10 L / min or more. By making it 10 L / min or more, the ground can be split with the drilling water before the chemical solution is injected. As a result, when the chemical solution is injected later, the pulmonary solid S is easily formed.

また削孔時において、ロッドを下方へ押した際の削孔水の瞬間吐出圧力を0.2MPa以上にすることが好ましい。0.2MPa以上にすることで、削孔水の吐出量を10L/min以上にした場合と同様の効果を得ることができる。   Further, at the time of drilling, the instantaneous discharge pressure of the drilling water when the rod is pushed downward is preferably 0.2 MPa or more. By setting it to 0.2 MPa or more, it is possible to obtain the same effect as when the discharge amount of drilling water is 10 L / min or more.

(置換充填)
本形態においては、以上の薬液注入作業や高圧噴射撹拌作業後において、当該作業により形成された削孔孔に、モルタル、セメントミルクおよび薬液の少なくともいずれか一つを置換充填するとより好ましいものとなる。なお、前記薬液は、(1)高炉スラグ又は前記高炉スラグを含むセメントと、消石灰とを主体とする第1の液と(2)水ガラスを主体とする第2の液の両液を接触させたものである。そこで、次に、置換充填について説明する。
(Replacement filling)
In the present embodiment, it is more preferable to replace and fill at least one of mortar, cement milk and chemical liquid into the hole formed by the work after the above chemical liquid injection work or high-pressure jet stirring work. . In addition, the said chemical | medical solution makes both liquids of (1) the 1st liquid mainly composed of blast furnace slag or the cement containing the said blast furnace slag, and (2) 2nd liquid mainly composed of water glass contact. It is a thing. Next, replacement filling will be described.

通常、薬液注入作業や高圧噴射撹拌作業後においては、当該作業により形成された削孔孔を固化する等の処理は行わない。しかるに、本形態においては、削孔孔をモルタルやセメントミルクで置換充填し、この置換充填により形成された固化体を、先立って形成された地盤中に存在する脈状固化体と連続する「幹」とすることで、地震波によるせん断変形の抵抗性を増加することができる。   Usually, after a chemical solution injection operation or a high-pressure jet agitation operation, a process such as solidification of a hole formed by the operation is not performed. However, in this embodiment, the hole is replaced and filled with mortar or cement milk, and the solidified body formed by this replacement filling is a “stem” that is continuous with the pulmonary solidified body existing in the previously formed ground. The resistance to shear deformation due to seismic waves can be increased.

なお、モルタル、セメントミルクおよび前記薬液の少なくともいずれか一つで置換する際に、削孔内に鉄筋やH鋼等の構造体を挿入すると、より強いせん断変形抵抗性を得ることができる。   In addition, when replacing with at least any one of mortar, cement milk, and the said chemical | medical solution, if a structure, such as a reinforcing bar and H steel, is inserted in a drilling hole, stronger shear deformation resistance can be obtained.

次に実施例及び比較例を示し、本発明の効果を説明する。
(薬液試験)
本発明に用いる薬液と従来の薬液の比較試験を行った。
まず、本発明の実施例1として、下記表1のA液とB液をビーカー内で混合し、ゲル化させた。この混合薬液のゲルタイムは5秒〜8秒である。

Figure 0006493834
Next, examples and comparative examples will be shown to explain the effects of the present invention.
(Chemical solution test)
A comparison test between the chemical solution used in the present invention and a conventional chemical solution was performed.
First, as Example 1 of this invention, the A liquid and B liquid of following Table 1 were mixed within the beaker, and it was made to gelatinize. The gel time of this mixed drug solution is 5 to 8 seconds.
Figure 0006493834

次に、本発明の実施例2として、下記表2のC液とD液をビーカー内で混合し、ゲル化させた。この混合薬液のゲルタイムは8秒〜12秒である。

Figure 0006493834
Next, as Example 2 of this invention, the C liquid and D liquid of following Table 2 were mixed within the beaker, and it was made to gelatinize. The gel time of this mixed drug solution is 8 seconds to 12 seconds.
Figure 0006493834

そして、比較例として、下記表3のE液とF液をビーカー内で混合し、ゲル化させた。この混合薬液のゲルタイムは40秒〜50秒である。

Figure 0006493834
And as a comparative example, E liquid and F liquid of following Table 3 were mixed within the beaker, and it was made to gelatinize. The gel time of this mixed drug solution is 40 seconds to 50 seconds.
Figure 0006493834

前記実施例1、実施例2、比較例の各地盤のベーンせん断強度、換算一軸強度を表4に示す。ここに、ベーンせん断強度は、地盤工学会基準(JGS 1411−2003)「原位置ベーンせん断試験方法」に基づいて行った。

Figure 0006493834
Table 4 shows the vane shear strength and the converted uniaxial strength of each board in Examples 1, 2 and Comparative Examples. Here, the vane shear strength was performed based on the “In-situ Vane Shear Test Method” of the Geotechnical Society Standard (JGS 1411-2003).
Figure 0006493834

実施例1と実施例2では、時間の経過に伴って、ベーンせん断強度が徐々に上がることが分かる。強度の上昇が緩やかであるため、割裂注入の脈状固結物Sを広範囲に広げることができる。   In Example 1 and Example 2, it can be seen that the vane shear strength gradually increases with time. Since the increase in strength is gradual, it is possible to spread the vein-like solid S for split injection over a wide range.

他方で比較例では、薬液が30秒程度で固まらず、パッキング効果が弱いという問題がある。   On the other hand, the comparative example has a problem that the chemical solution does not solidify in about 30 seconds and the packing effect is weak.

また、1分から3分にかけて、ベーンせん断強度が急上昇している。このように急激な強度の発現が起きると、注入口まわりに薬液が固まってしまい、脈状固結物Sが広がりにくいという問題がある。さらに、注入口まわりの地盤が隆起し、地盤が変形してしまうという問題もある。   In addition, the vane shear strength rapidly increases from 1 minute to 3 minutes. When such rapid development of strength occurs, there is a problem that the chemical solution is solidified around the injection port and the pulmonary solid S is difficult to spread. Furthermore, there is a problem that the ground around the injection port is raised and the ground is deformed.

以上の結果から、A液に消石灰や混和剤を含ませる形態が好ましいと解る。   From the above results, it can be understood that a form in which slaked lime or an admixture is included in the liquid A is preferable.

(ピエゾドライブコーン試験)
また、本発明により液状化対策した地盤に対して、ピエゾドライブコーン試験を行った。この試験の詳細を下記に記す。なおピエゾドライブコーン(Piezo Drive Cone、「PDC」ともいう。)試験とは、地盤の貫入抵抗(N値)の計測と細粒分含有率(FC)の推定を原位置で行う地盤調査方法である。
(Piezo Drive Cone Test)
In addition, a piezo drive cone test was performed on the ground subjected to liquefaction countermeasures according to the present invention. Details of this test are described below. The Piezo Drive Cone (also referred to as “PDC”) test is a ground survey method that measures the penetration resistance (N value) of the ground and estimates the fine particle content (FC) in situ. is there.

なお、液状化対策において、動的注入の条件を振幅50%、周期20秒とした。   In the liquefaction countermeasure, the dynamic injection conditions were an amplitude of 50% and a period of 20 seconds.

図4および図5に、液状化対策前の地盤と液状化対策後の地盤のN値を示した。なお、地盤を改良した領域は、深度3m〜6mである。なお、計測した値は、深度0.5mごとに平均化して示している。また、前後方向または左右方向に隣り合う注入管10の間隔(ピッチ)は、図4が1.5m、図5が2.0mである。さらに、A1およびB1は、前記所定の間隔Lの1/4離れた位置を指し、A2およびB2は、斜め方向に隣り合う注入管の中点を指す。   4 and 5 show the N values of the ground before the liquefaction countermeasure and the ground after the liquefaction countermeasure. In addition, the area | region which improved the ground is depth 3m-6m. Note that the measured values are shown averaged for every 0.5 m depth. Moreover, the space | interval (pitch) of the injection pipe 10 adjacent to the front-back direction or the left-right direction is 1.5 m in FIG. 4, and 2.0 m in FIG. Further, A1 and B1 indicate positions that are a quarter of the predetermined distance L, and A2 and B2 indicate midpoints of the injection tubes that are adjacent in the oblique direction.

液状化対策をした地盤は、対策前に比べて、全体的に換算N値が増加したことを確認できた。   The ground with liquefaction countermeasures was able to confirm that the converted N value increased overall compared to before the countermeasures.

本発明は、地盤に注入管を建て込み、当該注入管を通して地盤に薬液を注入する薬液注入作業を繰り返し行い、もって地盤が液状化するのを抑制、あるいは防止する地盤の液状化対策工法として適用可能である。   The present invention is applied as a ground liquefaction countermeasure method that suppresses or prevents liquefaction of the ground by repeatedly performing a chemical liquid injection operation in which an injection pipe is built in the ground and a chemical liquid is injected into the ground through the injection pipe. Is possible.

10…注入管、20…回転ロッド、G…地盤、S…脈状固結物、T…改良体、X…作業領域、Y…不作業領域。   DESCRIPTION OF SYMBOLS 10 ... Injection pipe | tube, 20 ... Rotating rod, G ... Ground, S ... Pulse-shaped solidified substance, T ... Improvement body, X ... Working area | region, Y ... Non-working area | region.

Claims (12)

地盤に注入管を建て込み、当該注入管を通して前記地盤に薬液を注入する薬液注入作業を、繰り返し行う地盤の液状化対策工法であって、
前記薬液の注入を、割裂注入で、かつ注入圧力を周期的に変動させる動的注入で行い、
前記注入管の建込みを、前記地盤の左右方向及び前後方向にそれぞれ所定の間隔をあけて行い、かつ下記(A)及び下記(B)の条件を満たすように行う、
ことを特徴とする地盤の液状化対策工法。
(A)前記地盤の左右方向及び前後方向に関しては、作業領域及び不作業領域が相互に隣接する。
(B)前記地盤の斜め方向に関しては、前記作業領域が連続する。
ここで前記作業領域とは、前記注入管の建込み位置から前記所定の間隔の1/4離れた位置を四辺が通る仮想正方形によって囲まれた領域をいう。前記不作業領域とは、前記作業領域に該当しない領域をいう。
A ground liquefaction countermeasure construction method in which an injection pipe is built in the ground, and a chemical liquid injection work for injecting a chemical liquid into the ground through the injection pipe is repeated,
The chemical solution is injected by split injection and by dynamic injection that periodically changes the injection pressure,
Erection of the injection pipe is performed at predetermined intervals in the left-right direction and the front-rear direction of the ground, and so as to satisfy the following conditions (A) and (B):
The ground liquefaction countermeasure method characterized by this .
(A) With respect to the left-right direction and the front-rear direction of the ground, the work area and the non-work area are adjacent to each other.
(B) Regarding the oblique direction of the ground, the work area is continuous.
Here, the work area refers to an area surrounded by a virtual square whose four sides pass through a position that is a quarter of the predetermined distance from the position where the injection pipe is built. The non-work area is an area that does not correspond to the work area.
前記薬液の注入率が2%〜15%となるように前記所定の間隔を設定する、
請求項1に記載の地盤の液状化対策工法。
ここで前記薬液の注入率は、「当該薬液の注入量(L)/対策の対象となる地盤の容積(m3)×100」である。
The predetermined interval is set so that the injection rate of the chemical solution is 2% to 15%.
The ground liquefaction countermeasure construction method according to claim 1 .
Here, the injection rate of the chemical solution is “the injection amount of the chemical solution (L) / the volume of the ground to be countermeasured (m 3 ) × 100”.
前記薬液注入作業を、単相式の二重管ストレーナ工法で行う、
請求項1又は請求項2に記載の地盤の液状化対策工法。
The chemical solution injection operation is performed by a single-phase double tube strainer method.
The ground liquefaction countermeasure construction method according to claim 1 or claim 2 .
前記薬液の動的注入を、流量波形の振幅が30%〜100%のサイン波及びパルス波の少なくともいずれか一方となるように行う、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
The dynamic injection of the chemical solution is performed so that the amplitude of the flow waveform is at least one of a sine wave and a pulse wave of 30% to 100%.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 3 .
前記薬液の動的注入を、周波数が0.01Hz〜0.5Hzとなるように行う、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
Dynamic injection of the chemical solution is performed so that the frequency is 0.01 Hz to 0.5 Hz.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 4 .
前記薬液として、ゲルタイムが前記動的注入の0.1周期〜3周期に該当する薬液を使用する、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
As the drug solution, a drug solution whose gel time corresponds to 0.1 cycle to 3 cycles of the dynamic injection is used.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 5 .
前記薬液として、ゲルタイムが2.5〜40secの薬液を使用する、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
As the chemical solution, a chemical solution having a gel time of 2.5 to 40 sec is used.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 5 .
前記薬液として、2液以上を混合する混合型の薬液で、かつ混合時の粘度が1mPa・s〜100mPa・sの薬液を使用する、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
As the chemical solution, a mixed type chemical solution in which two or more liquids are mixed, and a chemical solution having a viscosity at the time of mixing of 1 mPa · s to 100 mPa · s, is used.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 7 .
前記薬液は、
(1)高炉スラグ又は前記高炉スラグを含むセメントと、消石灰とを主体とする第1の液
(2)水ガラスを主体とする第2の液
の両液を接触させたものである、
請求項1〜のいずれか1項に記載の地盤の液状化対策工法。
The chemical solution is
(1) A blast furnace slag or a cement containing the blast furnace slag and a first liquid mainly composed of slaked lime (2) a second liquid mainly composed of water glass are brought into contact with each other.
The ground liquefaction countermeasure construction method according to any one of claims 1 to 8 .
地盤に注入管を建て込む前に行う地盤の削孔において、削孔水を10L/min以上で吐出する請求項1記載の地盤の液状化対策工法。   The ground liquefaction countermeasure construction method according to claim 1, wherein the drilling water is discharged at a rate of 10 L / min or more in the ground drilling performed before the injection pipe is built in the ground. 前記薬液注入作業の一部を、高圧噴射攪拌作業に替えて行う、
請求項1に記載の地盤の液状化対策工法。
ここで前記高圧噴射攪拌作業とは、前記地盤に前記注入管に変えて回転ロッドを建て込み、当該回転ロッドを回転させつつ硬化材を噴射させて柱状の改良体を造成する作業をいう。
A part of the chemical solution injection work is performed instead of the high-pressure jet stirring work.
The ground liquefaction countermeasure construction method according to claim 1.
Here, the high-pressure jet agitation operation refers to an operation in which a rotating rod is built in the ground instead of the injection pipe, and a hardened material is injected while rotating the rotating rod to form a columnar improvement body.
前記薬液注入作業及び前記高圧噴射撹拌作業の少なくとも一方の作業後において、当該作業により形成された削孔にモルタル、セメントミルクおよび薬液の少なくともいずれか一つを置換充填する、
請求項11に記載の地盤の液状化対策工法。
ここで前記薬液は、
(1)高炉スラグ又は前記高炉スラグを含むセメントと、消石灰とを主体とする第1の液
(2)水ガラスを主体とする第2の液
の両液を接触させたものである。
After at least one of the chemical solution injection operation and the high-pressure jet stirring operation, the hole formed by the operation is replaced and filled with at least one of mortar, cement milk, and chemical solution.
The ground liquefaction countermeasure method according to claim 11 .
Here, the chemical solution is
(1) A blast furnace slag or a cement containing the blast furnace slag and a first liquid mainly composed of slaked lime (2) a second liquid mainly composed of water glass are brought into contact with each other.
JP2015083017A 2014-04-15 2015-04-15 Ground liquefaction countermeasure method Active JP6493834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015083017A JP6493834B2 (en) 2014-04-15 2015-04-15 Ground liquefaction countermeasure method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014083292 2014-04-15
JP2014083292 2014-04-15
JP2015083017A JP6493834B2 (en) 2014-04-15 2015-04-15 Ground liquefaction countermeasure method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019018061A Division JP6663053B2 (en) 2014-04-15 2019-02-04 Ground liquefaction countermeasures

Publications (2)

Publication Number Publication Date
JP2015212513A JP2015212513A (en) 2015-11-26
JP6493834B2 true JP6493834B2 (en) 2019-04-03

Family

ID=54696901

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015083017A Active JP6493834B2 (en) 2014-04-15 2015-04-15 Ground liquefaction countermeasure method
JP2019018061A Active JP6663053B2 (en) 2014-04-15 2019-02-04 Ground liquefaction countermeasures

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019018061A Active JP6663053B2 (en) 2014-04-15 2019-02-04 Ground liquefaction countermeasures

Country Status (1)

Country Link
JP (2) JP6493834B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176941B2 (en) * 2018-12-20 2022-11-22 五洋建設株式会社 Method for estimating N value and fine fraction content, soil improvement material and information processing device
CN110644466A (en) * 2019-08-26 2020-01-03 西安圭臬精密科技有限公司 Curing agent-dynamic compaction combined deep garbage miscellaneous fill foundation treatment method
JP7423439B2 (en) 2020-06-23 2024-01-29 清水建設株式会社 Ground water stop method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731189B2 (en) * 1995-09-14 2006-01-05 東急建設株式会社 Chemical injection method
JP3709505B2 (en) * 1995-11-08 2005-10-26 太平洋セメント株式会社 Ground liquefaction prevention method
JPH10168451A (en) * 1996-12-13 1998-06-23 Mitsui Chem Inc Suspension grout and method for grouting and solidifying ground by using it
JPH10311024A (en) * 1997-05-13 1998-11-24 Toyo Constr Co Ltd High pressure injection agitating method
JPH11131467A (en) * 1997-10-29 1999-05-18 Port & Harbour Res Inst Ministry Of Transport Consolidation improvement method of sand ground by chemical injection
JP3957407B2 (en) * 1998-08-21 2007-08-15 東急建設株式会社 Chemical injection method and ground structure
JP3342000B2 (en) * 1999-09-20 2002-11-05 強化土エンジニヤリング株式会社 Liquefaction prevention method for sandy ground by injection method
JP4060721B2 (en) * 2003-01-24 2008-03-12 株式会社錢高組 Ground improvement method for contaminated soil by high pressure jet.
JP2004036388A (en) * 2003-10-03 2004-02-05 Toa Harbor Works Co Ltd Method of preventing runoff of back-filling earth
JP3639294B1 (en) * 2003-12-22 2005-04-20 幸武 塩井 Seismic reinforcement structure for structures
JP4034814B2 (en) * 2006-02-17 2008-01-16 清水建設株式会社 Grout injection method and apparatus
JP4887179B2 (en) * 2007-02-27 2012-02-29 裕治 金子 Ground improvement method and ground improvement equipment
JP5022203B2 (en) * 2007-12-14 2012-09-12 鹿島建設株式会社 Tank ground improvement method
JP5278856B2 (en) * 2009-05-08 2013-09-04 平成テクノス株式会社 Ground improvement method
US8182178B2 (en) * 2009-11-02 2012-05-22 Zhengzhou U-Trust Infrastructure Rehabilitation Ltd. Directional fracture grouting method with polymer for seepage control of dikes and dams
JP6040424B2 (en) * 2012-02-03 2016-12-07 富士化学株式会社 Chemical solution for ground injection and ground improvement method using it
JP6073617B2 (en) * 2012-09-21 2017-02-01 前田建設工業株式会社 Ground improvement body for liquefaction countermeasure and formation method thereof

Also Published As

Publication number Publication date
JP2015212513A (en) 2015-11-26
JP2019070318A (en) 2019-05-09
JP6663053B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
CN103806479B (en) A kind of pile foundation combined casting reinforced construction method of combination water-stop curtain
JP5181239B2 (en) Steel pipe pile and construction method of steel pipe pile
JP6663053B2 (en) Ground liquefaction countermeasures
CN102071693B (en) Construction method of variable section cement-soil gravity type retaining wall
JP5092103B1 (en) Ground improvement method and ground improvement equipment by soil desaturation
KR101421173B1 (en) Drill Stirrer for the Hard Soil Layers
JP5167302B2 (en) Steel pile placing method including deaeration process
JP2008031828A (en) Construction method of foundation of structure
CN105350516B (en) A kind of rock-soil layer material feeding modified reinforcing method
JP5979635B2 (en) Underground cavity filling material and method for producing the filling material
JP5190615B1 (en) Ground improvement method by desaturation of ground
Shen et al. Improvement efficacy of RJP method in Shanghai soft deposit
JP5598886B1 (en) Ground injection method and injection material manufacturing equipment
JP2021095803A (en) Grout monitor for proportional injection, and proportional injection method for cured grout using the same
JP6555849B2 (en) Ground improvement device
JP6871714B2 (en) Reinforcement method for embankment on the back of the abutment
CN109537612A (en) A kind of porous impact stirring diaphram wall Barrier Technology and its construction method
US10655294B2 (en) Apparatuses for constructing displacement aggregate piers
JP6546720B2 (en) Liquefaction countermeasure method by ground consolidation using injection method
JP6106836B1 (en) Aging method for existing spray mortar slopes
JP2012062616A (en) High pressure jet agitation method
JP2013221347A (en) Ground structure and ground improvement method
US11884860B2 (en) Fluidized sand and method of density control
CN204803893U (en) Foundation stabilization single tube revolves slip casting device
JP2017172279A (en) High pressure jet agitation device for ground improvement and ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190222

R150 Certificate of patent or registration of utility model

Ref document number: 6493834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250