JP6546720B2 - Liquefaction countermeasure method by ground consolidation using injection method - Google Patents
Liquefaction countermeasure method by ground consolidation using injection method Download PDFInfo
- Publication number
- JP6546720B2 JP6546720B2 JP2014083438A JP2014083438A JP6546720B2 JP 6546720 B2 JP6546720 B2 JP 6546720B2 JP 2014083438 A JP2014083438 A JP 2014083438A JP 2014083438 A JP2014083438 A JP 2014083438A JP 6546720 B2 JP6546720 B2 JP 6546720B2
- Authority
- JP
- Japan
- Prior art keywords
- ground
- injection
- liquefaction
- split
- injection pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002347 injection Methods 0.000 title claims description 89
- 239000007924 injection Substances 0.000 title claims description 89
- 238000000034 method Methods 0.000 title claims description 73
- 238000007596 consolidation process Methods 0.000 title claims description 13
- 210000003462 vein Anatomy 0.000 claims description 40
- 238000010276 construction Methods 0.000 claims description 18
- 239000004570 mortar (masonry) Substances 0.000 claims description 13
- 239000004576 sand Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 12
- 238000007711 solidification Methods 0.000 claims description 11
- 230000008023 solidification Effects 0.000 claims description 11
- 239000000243 solution Substances 0.000 claims description 10
- 230000003014 reinforcing effect Effects 0.000 claims description 7
- 230000035515 penetration Effects 0.000 claims description 6
- 230000002265 prevention Effects 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 239000002689 soil Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims 1
- 230000002787 reinforcement Effects 0.000 claims 1
- 230000006872 improvement Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000005056 compaction Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000013019 agitation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Foundations (AREA)
Description
本発明は、注入工法を用いた地盤の密実化による液状化対策工法に関するものである。特に、液状化が懸念される緩い砂質土地盤において、既設の盛土や、橋梁の基礎などに対して液状化対策する際に、薬液注入工法によって地盤を密実化させる、簡易で経済的な液状化対策工法に関するものである。 TECHNICAL FIELD The present invention relates to a liquefaction countermeasure method by the solidification of the ground using a pouring method. In particular, in the case of loose sandy land where liquefaction is a concern, when taking measures against liquefaction against the existing embankment and foundations of bridges etc., it is simple and economical to solidify the ground by the chemical injection method. It is about the liquefaction measures construction method.
従来、以下のような工法が採用されている。 Conventionally, the following method is employed.
(1) 薬液を脈状に注入する技術(動的注入工法)(下記特許文献1〜3、下記非特許文献1参照)
地盤に対して薬液注入を施す方法として動的に薬液を注入させる技術が提案されている。この方法は砂地盤に対しては品質が高い浸透注入を施すことを目的とし、粘性土地盤や岩盤地盤に対しては、水みちやクラックなどに対して脈状に注入を施すことを目的に行われるものである。
(1) Technique for injecting a drug solution in a pulse form (dynamic injection method) (see the following
As a method for injecting a chemical solution to the ground, a technique for dynamically injecting a chemical solution has been proposed. The purpose of this method is to perform high quality infiltration injection into sand ground, and in viscous soil and rock foundation, it is intended to inject water into water and cracks, etc. It will be done.
これに対して、砂質土地盤を対象として、低注入量で地盤の密実化を可能とする脈状改良工法もライト工業株式会社で開発中である。 On the other hand, a vein improvement method is also under development at Light Industries Co., Ltd., which enables the soil to be made solid with a low injection amount for sandy land.
(2) 薬液注入工法による液状化対策
これまでの薬液注入による液状化地盤対策工法としては、飽和地盤中に薬液を浸透注入させて水と置換し、液状化地盤を固化させる浸透固化工法が挙げられる。また、対象地盤を薬液やセメントと混合することで地盤の剛性・強度を高める深層混合処理工法や高圧噴射攪拌工法がある。しかしながら、これらの場合には液状化対象地盤を100%改良することにより対策しようとするものであるため、得られる対策効果は大きいが、その分、高コストとなる。
(2) Countermeasures against liquefaction by chemical solution injection method As a countermeasure method against liquefaction ground by chemical solution injection up to now, seepage / solidification method in which a chemical solution is infiltrated into saturated ground and replaced with water to solidify liquefied ground. Be In addition, there are deep layer mixing treatment method and high pressure jet agitation method, which improve the rigidity and strength of the ground by mixing the target ground with chemical solution and cement. However, in these cases, measures are taken by improving the ground to be liquefied by 100%, so the effect of the measures to be obtained is large, but the cost is correspondingly high.
図10は従来の格子状地盤改良の一例を示す模式図である。 FIG. 10 is a schematic view showing an example of the conventional grid-like ground improvement.
この図において、101は非液状化層、102は液状化層、103は杭であり、格子状地盤改良を行った例もある。 In this figure, 101 is a non-liquefied layer, 102 is a liquefied layer, and 103 is a pile, and there is also an example in which grid-like ground improvement is performed.
上記した工法では、格子状に地盤改良し、コストを低減することができるが、施工機械が大きく、既設構造物を対象とした狭隘箇所での施工が困難である。 In the above-described method, the ground can be improved in a grid form, and the cost can be reduced. However, the construction machine is large, and it is difficult to construct the narrow structure for the existing structure.
次に、液状化地盤中に裂け目を形成しながら薬液を割裂注入することにより、地盤内に注入固化物を形成する液状化対策工法の特許(特許2)もある。この特許は、理想的には液状化が懸念される砂地盤に対して浸透注入を行いたいのだが、実際は地盤の不均一性や細粒分の混入などによって、割裂注入となってしまうことが多いので、割裂状の注入固化物を多数形成させ、その拘束によって地盤の剛性を増加させ、液状化抵抗を増大させる効果を狙ったものである。したがって、所定の液状化対策効果を得るためには、注入量は比較的大きくなり、その分、高コストとなる。また、地震による地盤の変形を受けて、割裂状の注入固化体が損傷した場合には、地盤剛性の向上効果は低下する。 Next, there is also a patent (patent 2) of a liquefaction preventing construction method of forming a solidified injection material in the ground by splitting and injecting a chemical solution while forming a split in the liquefied ground. Although this patent ideally wants to carry out osmosis injection to the sand ground where there is concern about liquefaction, in fact it may become split injection due to non-uniformity of the ground, mixing of fine particles, etc. Since the content is large, it is intended to form a large number of split-like injection-solidified materials, thereby increasing the rigidity of the ground by its restraint and increasing the liquefaction resistance. Therefore, in order to obtain a predetermined liquefaction countermeasure effect, the injection amount becomes relatively large, and accordingly, the cost becomes high. In addition, when the split-like injection-solidified body is damaged due to the deformation of the ground due to the earthquake, the improvement effect of the ground rigidity decreases.
(3) 密実化による液状化対策
一方、地盤の密実化による既存の液状化対策工法としては、静的又は動的砂締固め杭工法(SCP工法:サンドコンパクションパイル工法)や圧入式締固め工法(CPG工法:コンパクショングラウチング工法)、振動を与えて地盤を締固めるロッドコンパクション工法や重錘落下締固め工法が挙げられるが、これらはいずれも大型機械が必要となり、狭隘箇所での施工に向かない。また、所定の液状化対策効果を得るためには高コストになるなどの問題がある。また、施工中の騒音や振動、地盤変位も大きいため、鉄道など変位制限が厳しい箇所での施工に不適である。
(3) Countermeasures against liquefaction through consolidation Realization On the other hand, static or dynamic sand compaction pile methods (SCP method: sand compaction pile method) and press-fit clamps as existing liquefaction countermeasure methods through consolidation of ground The compaction method (CPG method: compaction grouting method), the rod compaction method which applies vibration to compact the ground, and the weight drop compaction method can be mentioned, but all of these require a large-sized machine, and for construction at narrow places Not suitable. In addition, there are problems such as high cost in order to obtain a predetermined liquefaction countermeasure effect. In addition, since noise and vibration during construction and ground displacement are large, it is unsuitable for construction at locations where displacement restrictions are severe, such as railways.
このように、
(1) これまでに液状化対策工法として適用されてきた地盤改良工法は、液状化対象地盤を100%改良することを基本とするため、高コストである。
in this way,
(1) The ground improvement method, which has been applied as a liquefaction countermeasure method, is expensive because it is based on improving the ground to be liquefied by 100%.
(2) 割裂状に注入固化物を配置する方法も提案されているが、注入固化物だけによって地盤の剛性を高めるためには、それでも高改良率となる。このため、抜本的な低コスト化を実現できない。 (2) A method is also proposed for placing the injection-solidified material in the form of splits, but in order to increase the rigidity of the ground solely by the injected-solidified material, there is still a high improvement rate. Therefore, drastic cost reduction can not be realized.
(3) 従来の密実化による液状化対策工法は、いずれも大型機械を必要とし、施工中の騒音や振動、変形も大きく、鉄道のような変位制限が厳しく箇所、都市部のような騒音振動の制限箇所、施工スペースが狭隘な箇所での施工は困難である。 (3) The conventional liquefaction prevention methods by dense realization all require large machines, noise, vibration and deformation during construction are also large, and displacement restrictions such as railways are severe and noises such as locations and urban areas It is difficult to construct in places where vibration is limited and where construction space is narrow.
本発明は、上記状況に鑑みて、砂地盤の密実化を図り、簡易で経済的な液状化対策を可能とする、注入工法を用いた地盤の密実化による液状化対策工法を提供することを目的とする。 In view of the above situation, the present invention provides a liquefaction countermeasure method by the consolidation of the ground using the injection method, which aims to make the sand ground compact and enable a simple and economical liquefaction countermeasure. The purpose is
本発明は、上記目的を達成するために、
〔1〕注入工法を用いた地盤の密実化による液状化対策工法において、注入管の先端を閉塞した状態で、静的もしくは打撃貫入して注入管を立て込み、次に、薬液を、最大値が地盤の限界注入速度より大きな値となる振幅で注入速度が変動するように、動的に注入することにより、砂地盤においても積極的に割裂脈を発生させ、この割裂脈を直行方向に押し広げ、この割裂脈とこの割裂脈の間に挟まれた未注入地盤の密実化を図ることを特徴とする。
The present invention achieves the above object by
[1] In liquefaction countermeasure method according dense Mika Ground Using grouting, the tip of the injection tube in a state of closing, Tatekomi the injection tube and static or blow penetration, then the chemical, maximum By injecting dynamically so that the injection rate fluctuates at an amplitude where the value becomes larger than the limit injection rate of the ground, split veins are positively generated also in sand ground, and this split vein is made in the orthogonal direction It is characterized in that it spreads out and achieves unification of the uninjected ground sandwiched between this split vein and this split vein.
〔2〕上記〔1〕記載の注入工法を用いた地盤の密実化による液状化対策工法において、前記注入工法では、注入管を存置させ、この注入管を幹として割裂脈同士の連結性を高めることを特徴とする。 [2] In the method for preventing liquefaction by solidification of the ground using the injection method according to the above-mentioned [1], in the injection method, the injection pipe is made to exist and the connectivity between the split veins is made using the injection pipe as a trunk It is characterized by raising.
〔3〕上記〔1〕記載の注入工法を用いた地盤の密実化による液状化対策工法において、前記注入管を引き抜く際にモルタル等で置き換えることを特徴とする。 [3] A liquefaction preventing construction method based on the consolidation of the ground using the injection method according to the above [1], characterized in that the injection pipe is replaced with mortar or the like when it is pulled out.
〔4〕上記〔3〕記載の注入工法を用いた地盤の密実化による液状化対策工法において、前記注入管を引き抜き、モルタルで置き換えた後に、モルタル中に鉄筋などの補強体を存置することを特徴とする。 [4] In the method for preventing liquefaction by solidification of the ground using the injection method according to the above [3], after the injection pipe is drawn out and replaced with mortar, a reinforcing body such as a reinforcing bar is left in the mortar It is characterized by
本発明によれば、次のような効果を奏することができる。 According to the present invention, the following effects can be achieved.
(1) 本発明の注入工法は注入率が5〜10%程度であるため、通常の浸透注入工法の注入率(20〜50%程度)による液状化対策に比べて経済的であり、施工スピードも高い。また、施工機械が小さいため狭隘箇所での施工性にも優れている。 (1) Since the injection method of the present invention has an injection rate of about 5 to 10%, it is more economical than the liquefaction measures based on the injection rate (about 20 to 50%) of the conventional osmotic injection method Also high. In addition, since the construction machine is small, it is also excellent in construction at narrow places.
(2) 基本的には地盤の密実化による液状化対策であるが、地盤に注入することによって、未注入地盤と比べて相対的に透水性の低下が見込めるため、地震時において過剰間隙水圧の上昇も抑制でき、この効果も地盤の液状化の程度を低減することに寄与する。 (2) Basically, it is a countermeasure against liquefaction due to the consolidation of the ground, but by injecting it into the ground, a relative drop in permeability can be expected compared to the uninjected ground, so excessive pore water pressure during the earthquake This effect also contributes to reducing the degree of liquefaction of the ground.
(3) また、地震中のせん断変形で破壊しない程度の幹(注入管の存置、モルタルと鉄筋、地盤改良杭等)を造ることにより、せん断変形の抑制効果も期待できる。 (3) In addition, the effect of suppressing shear deformation can also be expected by constructing a trunk (presence of injection pipe, mortar and reinforcing bar, ground improvement pile, etc.) that does not break due to shear deformation during an earthquake.
注入工法を用いた地盤の密実化による液状化対策工法は、注入管の先端を閉塞した状態で、静的もしくは打撃貫入して注入管を立て込み、次に、薬液を地盤の限界注入速度より大きな振幅で動的に注入することにより、砂地盤においても積極的に割裂脈を発生させ、この割裂脈を直行方向に押し広げ、この割裂脈とこの割裂脈の間に挟まれた未注入地盤の密実化を図る。 In the liquefaction prevention method by the consolidation of the ground using the injection method, the injection pipe is erected by static or impact penetration in a state where the tip of the injection pipe is closed, and then the chemical injection rate is the limit injection speed of the ground. by dynamically injected with a larger amplitude, thereby also generate actively dividing裂脈in sand, spread the split裂脈in orthogonal directions, the split裂脈and unimplanted sandwiched between the split裂脈We aim to make the ground a reality.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
図1は本発明の実施例による注入管立て込みによる密実化の模式図である。 FIG. 1 is a schematic view of the solidification by injection pipe stand-up according to the embodiment of the present invention.
この図において、1は注入管、2はその注入管1の回りの密度の増加を示しており、注入管1は立て込みにより密実化される。また、その際に、通常の小型ボーリングマシーンによる削孔でもよいが、例えば注入管の先端を閉塞した状態で、静的もしくは打撃貫入すると、注入管の貫入時に地盤の密実化が図れる。更に、その際、地盤の限界注入速度より大きな振幅で動的に注入することにより、砂地盤においても積極的に割裂脈を発生させ、割裂脈を直行方向に押し広げ、割裂脈と割裂脈の間に挟まれた未注入地盤の密実化を図ることができる。
In this figure, 1 indicates an injection pipe, 2 indicates an increase in density around the
図2は本発明の実施例による割裂脈の押し広げによる密実化の効果を示す模式図である。 FIG. 2 is a schematic view showing the effect of the disintegration by spreading the split vein according to the embodiment of the present invention.
この図において、11は注入管、12は改良脈(割裂脈)、13は改良脈12の押し広げによる密実部を示している。すなわち、地盤の限界注入速度より大きな振幅で動的に注入する。ここで、従来の動的注入工法(上記特許文献1〜3)は、より高品質に砂地盤に浸透注入を行うことを目的としていたが、本発明の工法では砂地盤においても積極的に割裂脈を発生させ、割裂脈が直行方向に押し広がろうとすることにより効率的に地盤の密実化を図る。地盤を低注入量で効率的に密実化させることを目的とした注入方法や注入剤、ゲルタイムなどの設定を行うことにより、割裂脈と割裂脈の間に挟まれた未注入地盤の密実化を図ることができる。室内実験や土層実験によると、注入率2.5%〜5%で所定の密実化が得られるが、実際の地盤では多少のロスも見込む必要があるものの、それでも5〜10%程度の注入率で、地盤の相対密度Drの10%以上の向上効果が期待でき、これによって地盤の液状化抵抗力が高まる。
In this figure, 11 indicates an injection tube, 12 indicates a modified vein (split vein), and 13 indicates a solid part due to spreading of the modified
図3は改良脈のみと存置した注入管と割裂脈との連結によるせん断変形の抑制効果を示す模式図、図4はモルタル等による注入管の代替案を示す模式図である。 FIG. 3 is a schematic view showing an effect of suppressing shear deformation by connection of an injection pipe and split veins which are kept only with improved veins, and FIG. 4 is a schematic view showing an alternative of the injection pipe by mortar or the like.
割裂脈は、実際には地震中の地盤のせん断変形を抑制する効果も期待できるが、地震中に地盤がせん断変形する際に、割裂脈が折れて不連続となることが懸念されるため、せん断変形の抑制効果は小さいと思われる。そこで、本発明の注入工法では、図3(a)に示すように、一般的には注入管は割裂脈21から引き抜かれるが、本発明では注入管を存置することも可とする。これによって、図3(b)に示すように、注入管を幹として割裂脈同士の連結性が高まるため、地盤のせん断変形の抑制効果や、既設構造物(盛土や基礎)の支持力向上効果も期待できる。
The split vein can be expected to actually suppress the shear deformation of the ground during the earthquake, but there is concern that the split vein will break and become discontinuous when the ground is sheared during the earthquake, The suppression effect of shear deformation seems to be small. Therefore, in the injection method of the present invention, as shown in FIG. 3 (a), the injection pipe is generally withdrawn from the
もしくは注入管の存置に変えて、図4に示すように、割裂脈31と密実部32を形成した注入管33を引き抜く際にモルタル34等で置き換え、鉄筋35などを存置しても同様の効果が得られる。ここで鉄筋35は、モルタル34の引張りや曲げによる破壊を阻止するために設置するものである。また、注入とは別工程で、十分な強度を有する噴射攪拌工法や機械式攪拌工法などで杭状に地盤改良(改良率5〜10%程度)しても同様の効果が得られる。
Alternatively, as shown in FIG. 4, the injection tube 33 in which the
このように、本発明の注入工法を用いた地盤の密実化による液状化対策工法において、注入工法で、注入管を存置させることにより、この注入管を幹として割裂脈同士の連結性を高めることができる。 As described above, in the liquefaction prevention method by the consolidation of the ground using the injection method of the present invention, the injection pipe is used as the injection pipe, and the connection between the split veins is enhanced by using the injection pipe as a trunk. be able to.
また、注入管を引き抜く際にモルタル等で置き換えるようにしてもよい。さらに、注入管を引き抜き、鉄筋などの補強体を存置するようにしてもよい。更には、地盤改良杭を用いるようにしてもよい。 Further, when the injection pipe is pulled out, it may be replaced by mortar or the like. Furthermore, the injection pipe may be pulled out and a reinforcing body such as a reinforcing bar may be left. Furthermore, a ground improvement pile may be used.
図5は本発明の実施例を示す脈状改良体(3回目)を示す図面代用写真である。図6は脈状改良体施工前後のミニラム試験結果を示す図である。 FIG. 5 is a drawing-substituting photograph showing a vein-shaped improved body (third time) showing an example of the present invention. FIG. 6 is a diagram showing the results of the mini ram test before and after construction of the vein-shaped improved body.
縦5.0m×横4.0m×深さ4.0mの土槽を用いて脈状薬液注入を実施し、出来形の評価およびミニラムサウンディングによる地盤改良効果の評価を行った。 Pulsed chemical solution injection was carried out using a 5.0 m long x 4.0 m wide x 4.0 m deep earth tank, and the evaluation of the finished shape and the ground improvement effect by mini-ram sounding were evaluated.
図5に示すように、動的注入によって脈状改良が可能であることが確認できている。また、図6に示すように、注入前後でN値の増加が確認できている。 As shown in FIG. 5, it has been confirmed that dynamic improvement is possible by pulse injection. Further, as shown in FIG. 6, an increase in N value can be confirmed before and after the injection.
鉄道総研所有の中型振動台実験装置を用いて、脈状地盤改良工法による液状化対策の効果確認を実施した(図7および図8)。図7は確認実験模型の図であり、図7(a)は未改良地盤の図、図7(b)は改良地盤(改良率2.5%)の図である。 Using the medium-sized shaking table test equipment owned by the National Railways Research Institute, we confirmed the effectiveness of the measures against liquefaction by the vein ground improvement method (Figure 7 and Figure 8). FIG. 7 is a view of a confirmation experimental model, FIG. 7 (a) is a view of an unmodified ground, and FIG. 7 (b) is a view of an improved ground (improvement rate 2.5%).
図7において、41は砕石層(フィルター砂層)、42は水圧計(100kPa)、43は水圧計(50kPa)、44は加速度計、45は注入口、46はシール、47は脈状改良体である。 In FIG. 7, 41 is a crushed stone layer (filter sand layer), 42 is a water pressure gauge (100 kPa), 43 is a water pressure gauge (50 kPa), 44 is an accelerometer, 45 is an inlet, 46 is a seal, 47 is a pulse reformer is there.
図8は実験結果を示す図であり、図8(a)は入力加速度(gal)に対する経過時間(秒)、図8(b)は沈下量(mm)に対する経過時間(秒)、図8(c)は過剰間隙水圧(kPa)に対する経過時間(秒)である。 FIG. 8 shows experimental results, and FIG. 8 (a) shows the elapsed time (seconds) for the input acceleration (gal), and FIG. 8 (b) shows the elapsed time (seconds) for the amount of settlement (mm). c) is the elapsed time (seconds) for the excess pore water pressure (kPa).
このように構成することにより、目標改良率10%で相対密度が12%増加し、その結果、液状化抵抗が高まり、振動後の地盤変位が1割以下まで低減された。 By configuring in this manner, the relative density increases by 12% at a target improvement rate of 10%. As a result, the liquefaction resistance is increased, and the ground displacement after vibration is reduced to 10% or less.
図9は本発明の実施例を示す脈状地盤改良工法の適用模式図である。 FIG. 9 is a schematic view of an application of the vein ground improvement method showing an embodiment of the present invention.
この図において、51は液状化層、52は改良された脈状地盤(脈状改良体)、53は盛土、54は盛土53上に構築された鉄道の軌道、55は自動車の道路、56は住居(建物)、57はすべり面、58は幹によるすべり抵抗力である。
In this figure, 51 is a liquefaction layer, 52 is an improved vein ground (vein improvement body), 53 is an embankment, 54 is a railway track built on the
このように、液状化層51を改良された脈状地盤(脈状改良体)52で低コストで広範囲に改良することができる。
Thus, the
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 The present invention is not limited to the above-described embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
本発明の注入工法を用いた地盤の密実化による液状化対策工法は、砂地盤の密実化を図り、簡易で経済的な液状化対策を可能とする、注入工法を用いた地盤の密実化による液状化対策工法として利用可能である。 The liquefaction countermeasure method by the solidification of the ground using the injection method of the present invention achieves the solidification of the sand ground and enables the simple and economical measures against the liquefaction. It can be used as a liquefaction countermeasure method by realization.
1,11,33 注入管
2 注入管回りの密度の増加
12,21,31 改良脈(割裂脈)
13,32 密実部
34 モルタル
35 鉄筋
41 砕石層
42 水圧計(100kPa)
43 水圧計(50kPa)
44 加速度計
45 注入口
46 シール
47 脈状改良体
51 液状化層
52 改良された脈状地盤(脈状改良体)
53 盛土
54 盛土上に構築された鉄道の軌道
55 自動車の道路
56 住居(建物)
57 すべり面
58 幹によるすべり抵抗力
1,11,33
13, 32
43 water pressure gauge (50 kPa)
44
53
57
Claims (4)
(b)次に、薬液を、最大値が地盤の限界注入速度より大きな値となる振幅で注入速度が変動するように、動的に注入することにより、砂地盤においても積極的に割裂脈を発生させ、該割裂脈を直行方向に押し広げ、該割裂脈と該割裂脈の間に挟まれた未注入地盤の密実化を図ることを特徴とする注入工法を用いた地盤の密実化による液状化対策工法。 (A) With the end of the injection pipe closed, insert the injection pipe up by static or impact penetration.
(B) Next, by actively injecting the chemical solution so that the injection rate fluctuates with an amplitude at which the maximum value is larger than the limit injection rate of the ground, the veins are actively split even in the sand ground. Raises, the split裂脈flaring in orthogonal direction, said split裂脈and the split of unimplanted ground sandwiched between裂脈the ground the grouting method used, characterized in that to achieve tight Mika dense Mika Liquefaction measures construction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014083438A JP6546720B2 (en) | 2014-04-15 | 2014-04-15 | Liquefaction countermeasure method by ground consolidation using injection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014083438A JP6546720B2 (en) | 2014-04-15 | 2014-04-15 | Liquefaction countermeasure method by ground consolidation using injection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015203243A JP2015203243A (en) | 2015-11-16 |
JP6546720B2 true JP6546720B2 (en) | 2019-07-17 |
Family
ID=54596867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014083438A Active JP6546720B2 (en) | 2014-04-15 | 2014-04-15 | Liquefaction countermeasure method by ground consolidation using injection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6546720B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107169637A (en) * | 2017-04-26 | 2017-09-15 | 中国电建集团西北勘测设计研究院有限公司 | A kind of power station layer of sand soil property liquefaction evaluation method |
CN109235414A (en) * | 2018-11-15 | 2019-01-18 | 福建工程学院 | A method of sand foundation is reinforced using scrap iron |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07111052B2 (en) * | 1990-06-01 | 1995-11-29 | 昌平 千田 | Ground improvement or strengthening method |
JP3731189B2 (en) * | 1995-09-14 | 2006-01-05 | 東急建設株式会社 | Chemical injection method |
JP3709505B2 (en) * | 1995-11-08 | 2005-10-26 | 太平洋セメント株式会社 | Ground liquefaction prevention method |
JPH09137443A (en) * | 1995-11-14 | 1997-05-27 | Yuichiro Takahashi | Instantaneous consolidation work by injection into ground |
US6257803B1 (en) * | 1998-07-23 | 2001-07-10 | Mccabe Howard Wendell | Three component chemical grout injector |
JP3957407B2 (en) * | 1998-08-21 | 2007-08-15 | 東急建設株式会社 | Chemical injection method and ground structure |
WO2004044335A1 (en) * | 2002-11-13 | 2004-05-27 | Uww-Licensing Oy | Method for reducing the liquefaction potential of foundation soils |
JP4844919B2 (en) * | 2005-12-28 | 2011-12-28 | 太平洋マテリアル株式会社 | Drug supply tube, injection device, and injection method |
JP4993582B2 (en) * | 2006-03-31 | 2012-08-08 | ライト工業株式会社 | Packer device and chemical injection method using the same |
-
2014
- 2014-04-15 JP JP2014083438A patent/JP6546720B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015203243A (en) | 2015-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105970911B (en) | A kind of processing method of big thickness collapsible loess | |
JP6663053B2 (en) | Ground liquefaction countermeasures | |
JP2015031119A (en) | Ground reinforcement structure | |
JP6546720B2 (en) | Liquefaction countermeasure method by ground consolidation using injection method | |
JP6413469B2 (en) | Pile foundation and pile foundation construction method | |
JP2019015100A (en) | Removing method of earth retaining wall | |
Shen et al. | Improvement efficacy of RJP method in Shanghai soft deposit | |
CN203905032U (en) | Large pond cutting protection structure | |
JP2004169381A (en) | Method for repairing existing railway track | |
JP2011157804A (en) | Sand ground improvement method and apparatus used for the same | |
KR101913478B1 (en) | Plain Concrete Compaction Apparatus for Method of Ground Hardening Using Vibration Compaction and Concrete Column and Method Thereof | |
JPH07317052A (en) | Method of dynamic injection construction for foundation improvement | |
JP2002047638A (en) | Ground improvement construction method combined with blasting construction method | |
JP5300163B1 (en) | Steel pile rooting method | |
RU2305153C2 (en) | Method and device for loose foundation base consolidation by directed horizontal pattern hydraulic fracturing | |
JP3709505B2 (en) | Ground liquefaction prevention method | |
JPH07300851A (en) | Countermeasure of liquefaction of buried pipe in the ground | |
JP5283287B2 (en) | Ground improvement method and ground improvement structure | |
KR101179867B1 (en) | bedrock excavation buckets and underground curtain wall construction method using the same | |
JP6876526B2 (en) | Specification setting method for sandy ground compaction method | |
JP4927113B2 (en) | Ground stabilization method | |
JP4958588B2 (en) | How to use mud | |
JP4787111B2 (en) | How to prevent sucking out backfill soil | |
JP2021067115A (en) | Ground improvement method and ground improvement structure | |
JP6045054B2 (en) | Osmosis solidification processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181023 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20181212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190624 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6546720 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |