JP3731189B2 - Chemical injection method - Google Patents

Chemical injection method Download PDF

Info

Publication number
JP3731189B2
JP3731189B2 JP26251195A JP26251195A JP3731189B2 JP 3731189 B2 JP3731189 B2 JP 3731189B2 JP 26251195 A JP26251195 A JP 26251195A JP 26251195 A JP26251195 A JP 26251195A JP 3731189 B2 JP3731189 B2 JP 3731189B2
Authority
JP
Japan
Prior art keywords
injection
case
pressure
chemical solution
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26251195A
Other languages
Japanese (ja)
Other versions
JPH0978564A (en
Inventor
勝広 駒延
保彦 大河内
修 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Onoda Chemico Co Ltd
Tokyu Construction Co Ltd
Original Assignee
Railway Technical Research Institute
Onoda Chemico Co Ltd
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Onoda Chemico Co Ltd, Tokyu Construction Co Ltd filed Critical Railway Technical Research Institute
Priority to JP26251195A priority Critical patent/JP3731189B2/en
Publication of JPH0978564A publication Critical patent/JPH0978564A/en
Application granted granted Critical
Publication of JP3731189B2 publication Critical patent/JP3731189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【0001】
【発明の属する分野】
本発明は止水工、地盤補強工、アンカー工等に適用できる薬液注入工法に関し、より詳細には注入圧力又は注入速度を増減変化させて地中に薬液を動的に注入する薬液注入工法に関する。
【0002】
【従来の技術】
薬液注入工法としては、例えば、ストレーナ注入管の周面に形成された多数の注入孔を通じて放射状に硬化性の薬液を注入するストレーナ注入工法や、ボリーング孔内に逆流防止機能を具備する外管を内挿すると共に、ダブルパッカを具備する内管を外管に内挿し、ダブルパッカで隔絶した外管の限定空間域を通じて外管に形成した任意の吐出孔から薬液を吐出するソレタンシュ薬液注入工法が知られている。
注入形態としては注入位置を中心に全方向に浸透させる「浸透注入」と、注入位置から放射状に浸透する「割裂注入」に大別できる。「割裂注入」は目的とする改良範囲以外の部分に薬液が注入される可能性があるため、「浸透注入」が理想とされている。
また「浸透注入」における薬液の注入条件については、「割裂注入」に比べて低圧で緩やかな速度で静的に注入を行っている。
しかしながら、「浸透注入」にあっては浸透に時間がかかるだけでなく、浸透範囲が狭い範囲に限定される。これは薬液の粘性が高いほど顕著である。
これらを解消策として注入圧や注入速度を高めることが考えられるが、割裂が生じやすく注入圧を高めることに限界がある。
また低圧で浸透注入を行っても、粘性土等の地盤にあっては地中で割裂を起こす可能性のあることがいくつかの検証により知られている。
特に、地上から地中の浸透状況を確認できないだけに浸透性に対して常に不安が残る。
【0003】
本発明は以上の点に鑑みて成されたもので、地盤を割裂させることなく、短時間で広範囲に亘り浸透注入を行える、薬液注入工法を提供することにある。
さらに本発明は部分的に割裂を生じても割裂の発達を抑制して目的とする範囲に薬液を浸透できる、薬液注入工法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、薬液注入手段を対象地盤に設置し、薬液注入手段により対象地盤中に注入する薬液注入工法において、薬液の注入圧力を経時的かつ段階的に増減させ、前記増減の繰り返しの度に注入圧力の最大値を増加させて注入することを特徴とする、薬液注入工法である。
【0005】
【発明の実施の形態1】
以下図面を参照しながら本発明の実施の形態について説明する。
【0006】
<イ>注入原理
発明者は地中の浸透性能を改善するため種々の試行を繰り返し行った結果、薬液の注入速度又は注入圧力を動的に制御することで、割裂を起こさずに効率良く注入できることが判明した。
すなわち図1に示す本発明の概念図を基に説明すると、注入管1が地中に貫挿され、地上側には薬液の注入速度又は注入圧力を動的に制御して供給する注入手段が配置されている。
本例では注入手段が駆動源2で稼働するポンプ3で構成し、ポンプ3の回転数を変化させることで、ポンプ3に接続するタンク4内の薬液5の注入速度を任意に制御できるようになっている。
またタンク4に図示しない圧力制御手段を接続し、タンク4の内圧を制御可能に構成すれば、注入管1の先端から周囲に吐出される薬液5の注入圧力を動的に制御することができる。この場合ポンプ3は不要となる。
本発明における注入手段は、注入目的や用途に応じた公知の薬液注入装置を含み、これらの各種注入手段の駆動源の回転数や圧送圧力を動的に制御できる構造であれば良い。
尚、図1では発明の理解を助けるためにタンク4をひとつしか図示していないが、実際は薬液5を構成する材料数に応じて複数存在する。
【0007】
図2は薬液の注入圧力(又は注入速度)を動的に制御する制御波形例を示す。
図2の(A)は注入圧力を連続的に増減変化させる場合を示し、図2の(B)は鋸刃状に設定した範囲内で注入圧力の増減を繰り返す場合を示し、図2の(C)はパルス状に漸増する場合を示す。
これらの制御波形は例示であり、これらの波形に限定されるものではない。
注入速度又は注入圧力のいずれを制御する場合も、制御波形のピッチ、振幅、周期等は、薬液の性状や対象地盤を考慮して適宜選択する性質のものである。
【0008】
尚、従来技術において薬液の注入時に圧力変動が起こり得るが、これは注入速度を一定に保つことにより結果として生じる現象である。
したがって、従来の圧力変動現象と本発明はその本質を異にする。
【0009】
<ロ>割裂が発生しない理由
以上のように本発明は動的に注入を制御することで、割裂を起こさずに浸透注入が可能である。
一般に地盤の割裂は地盤の剪断強度を越えた外力が作用したときに起こるとされ、また地盤の剪断強度は速度依存性のあることが知られている。
本発明は、荷重(外力)の変化速度が速いと地盤の剪断強度が向上するという地盤の材料特性に着目して成されたもので、液圧の圧力を速く変化させることで地盤に割裂が生じないほどの剪断強度を発揮させることで、高圧注入によっても割裂を生じにくくするものである。
さらに本発明は、部分的に小規模の割裂が発生しても薬液の注入圧力が降下するように制御されることと、薬液がコーキング材的機能を果たすため、圧力が再び上昇しても当該割裂に注入圧力が集中することを回避できる。
このように仮に小規模な割裂が生じても、この割裂を発達させる可能性は極めて低く、したがって、目的とする範囲に薬液を浸透させることができる。
【0010】
【実施例1】
本発明の浸透性を証明するため以下のような試験を行った。
<イ>試験方法
硅砂6号(Gs =2.65、D50 =0.32、Uc =1.62)を用い、水中落下法で相対密度が40%となる模型地盤を製作した。
薬液は水ガラス系溶液型薬液を用いた。薬液(ゲルタイム30秒)の配合を表1に示す。
【0011】
【表1】

Figure 0003731189
【0012】
動的注入は注入速度を最大速度毎分 5.0リットル、最小速度を毎分 1.0リットルとし、その間をある周期で繰り返すように行った。平均注入速度は毎分 3.0リットルである。
注入速度の周期は15秒と30秒の2種類とした。
比較のために静的注入も行った。
以上の試験ケースをまとめるとつぎのようになる。
[ケース1]
注入方法:静的注入
注入速度:1.0リットル/毎分
[ケース2]
注入方法:静的注入
注入速度:3.0リットル/毎分
[ケース3]
注入方法:静的注入
注入速度:5.0リットル/毎分
[ケース4]
注入方法:動的注入
注入速度:最小速度1.0リットル/毎分
最大速度5.0リットル/毎分
周 期:30秒
[ケース5]
注入方法:動的注入
注入速度:最小速度1.0リットル/毎分
最大速度5.0リットル/毎分
周 期:15秒
【0013】
<ロ>試験結果
図3に各ケース1〜3における注入速度の経時変化を示し、図4に注入圧力の経時変化を示す。
従来の静的注入であるケース1〜3についてみると、ケース1,2は注入圧力が急激に上昇する挙動はみられなかった。ケース3では注入開始後約40秒で注入圧力が上昇する挙動がみられた。ケース3の注入後の固結体を目視した結果、注入孔の周りに若干のホモゲルがみられた。
これに対して、本発明に係るケース4,5をみると、各周期で注入圧力の最大値が注入開始から100秒までは300kPa 程度で、各周期での注入力の最大値が徐々に増加している。
また各周期での注入圧力の最小値はケース5で30kPa とケース1と同程度であるのに対し、ケース4では100kPa 程度までしか下がっていない。
【0014】
また図4に各ケース1〜5の仕事(各時間での注入圧力と注入速度の積の累計)と時間の関係を示す。
静的注入であるケース1〜3では注入速度が速くなるにつれて仕事が大きくなることが理解できる。
また動的注入である周期15秒(ケース5)の方は周期30秒(ケース4)と比べて仕事が小さく、ケース3と同程度の仕事であることがわかる。
したがって、周期を15秒より短くすれば、動的注入の有効性が向上するものと推測される。
【0015】
また図6に各ケース1〜5における注入効率(単位時間当たりの注入量)と仕事の関係を示す。
静的注入であるケース1〜3は注入速度が速くなるにしたがって注入効率が高くなっている。
これに対して、動的注入であるケース4,5では、周期30秒(ケース4)のほうが周期15秒(ケース5)より注入効率がよいことがわかる。
またケース4,5の注入効率は共に、注入速度が毎分3.0リットルで注入した場合と同程度であった。
したがって、注入周期を15秒より短くすれば、動的注入がより有効であることが判明した。
【0016】
【実施例2】
つぎに条件を代えて前記実施例1と同様の試験を行った。
本例の場合の試験ケースは以下の通りである。
また各ケースにおける経時的な注入圧力の変化は図7に示す通りである。
[ケース6]
注入方法:静的注入
注入速度:2.0リットル/毎分
[ケース7]
注入方法:静的注入
注入速度:6.0リットル/毎分
[ケース8]
注入方法:静的注入
注入速度:8.0リットル/毎分
[ケース9]
注入方法:動的注入
注入速度:最小速度2.0リットル/毎分
最大速度6.0リットル/毎分
周 期:7秒
[ケース10]
注入方法:動的注入
注入速度:最小速度4.0リットル/毎分
最大速度8.0リットル/毎分
周 期:7秒
【0017】
<イ>固結体の断面形状
図8に各ケース6〜10の固結体の横断面を示す。
従来の静的注入であるケース6〜8についてみると以下の通りであった。
[ケース6]
低圧注入であるため、浸透範囲がケースのなかで最も小さかく、また注入中心からの距離にばらつきがみられた。
[ケース7]
ケース6〜8のなかで最も浸透範囲が大きいものの、固結体の中心が注入中心からずれていた。
[ケース8]
注入開始後の圧力が急激に上昇するためか、注入管の周りにホモゲルがみられた。
これに対して、動的注入であるケース9,10についてみると、両ケース9,10共注入管からの距離にばらつきが少なく、特にケース10が最も浸透範囲が広かった。
【0018】
<ロ>固結体の体積
図9に上記した各ケース6〜10における固結体の体積を示す。
静的注入であるケース6〜8にあっては、注入圧力が高いほど固結体の体積が小さくなるが、動的注入であるケース9〜10にあっては共に、動的低圧注入のケース6とほぼ同程度の体積を確保できた。
このことから、動的注入は従来の低圧注入と同程度の浸透性能を得られることが立証された。
【0019】
<ハ>圧縮強度
図10に従来の静的注入のケース6〜8と動的注入のケース10の場合における一軸圧縮強度について試験を行ったときの試験結果を示す。
同図によれば、静的注入の場合は、ケース8のように限界注入圧力を越えると圧縮強度が低下することが確認された。
また動的注入のケース10にあっては同圧で静的に注入するケース7と比べて格段に圧縮強度が向上することが立証された。
【0020】
【発明の効果】
本発明は以上説明したように注入圧力又は注入速度を動的に制御することで次効果を得ることができる。
<イ> 割裂を起こさずに高圧注入が可能となるため、従来の静的注入と比べて薬液の浸透範囲が広がり、注入ピッチや注入本数の低減が図れる。
<ロ> 注入圧力を高くしても割裂を起こし難いので、注入時間を大幅に短縮できる。
<ハ> 注入圧力又は注入速度の急激な変化の繰り返しにより、仮に割裂が生じても割裂の発達を抑制でき、目的とする範囲に薬液を効率良く浸透させることできる。
<ニ> 薬液の特性や対象地盤に応じた動的制御を行うことで、セメント系の粘性の高い薬液でも広範囲に亘る浸透注入が可能である。
<ホ> 動的に制御して構築した固結体の強度が従来に比べて向上する。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る注入原理を示す概念図
【図2】 注入圧力又は注入速度を動的に制御するための波形モデル図
【図3】 実施例1における各ケースにおける注入速度の経時変化を示す図
【図4】 注入圧力の経時変化を示す図
【図5】 仕事と時間の関係を示す説明図
【図6】 注入効率と仕事の関係を示す説明図
【図7】 実施例2における各ケースの経時的な注入圧力の変化
【図8】 静的注入と動的注入の各ケースにおける固結体の断面図
【図9】 静的注入と動的注入の各ケースにおける固結体の体積結果を示す図
【図10】 静的注入と動的注入の各ケースにおける固結体の一軸圧縮強度を示す図[0001]
[Field of the Invention]
The present invention relates to a chemical solution injection method that can be applied to waterstops, ground reinforcement, anchor works, etc., and more particularly to a chemical solution injection method that dynamically injects a chemical solution into the ground by changing the injection pressure or injection rate. .
[0002]
[Prior art]
Examples of the chemical solution injection method include a strainer injection method in which a curable chemical solution is injected radially through a large number of injection holes formed on the peripheral surface of the strainer injection tube, and an outer tube having a backflow prevention function in the boring hole. Soletans chemical injection method that inserts an inner tube with a double packer into an outer tube and discharges a chemical solution from an arbitrary discharge hole formed in the outer tube through a limited space area of the outer tube separated by the double packer is known ing.
The injection mode can be broadly divided into “penetration injection” that penetrates in all directions around the injection position and “split injection” that penetrates radially from the injection position. Since “split injection” may cause a chemical solution to be injected into a portion other than the target improved range, “osmotic injection” is ideal.
As for the injection conditions of the chemical solution in “osmotic injection”, the injection is statically performed at a lower pressure and at a slower rate than in “split injection”.
However, in “osmotic injection”, not only does it take time to penetrate, but the penetration range is limited to a narrow range. This is more remarkable as the viscosity of the chemical is higher.
Although it is conceivable to increase the injection pressure and the injection speed as a solution to these problems, there is a limit to increasing the injection pressure because splitting easily occurs.
In addition, it is known by some verifications that even if osmotic injection is performed at a low pressure, there is a possibility of splitting in the ground in the ground such as cohesive soil.
In particular, there is always anxiety about permeability because it cannot be confirmed from the ground.
[0003]
This invention is made in view of the above point, and is providing the chemical | medical solution injection | pouring method which can perform osmotic injection over a wide range in a short time, without splitting the ground.
It is another object of the present invention to provide a chemical solution injection method capable of suppressing the development of splitting and allowing a chemical solution to penetrate into a target range even when partial splitting occurs.
[0004]
[Means for Solving the Problems]
The present invention provides a chemical solution injection method in which a chemical solution injection means is installed on the target ground and injected into the target ground by the chemical solution injection means, and the injection pressure of the chemical solution is increased and decreased over time, step by step. This is a chemical solution injection method characterized by increasing the maximum value of the injection pressure.
[0005]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings.
[0006]
<A> Injection principle As a result of repeated trials by the inventor to improve the penetration performance in the ground, the injection rate or injection pressure of the chemical solution is dynamically controlled to efficiently inject without causing splitting. It turns out that you can.
That is, based on the conceptual diagram of the present invention shown in FIG. 1, the injection pipe 1 is inserted into the ground, and the injection means for supplying the chemical solution at a dynamically controlled injection speed or injection pressure is provided on the ground side. Has been placed.
In this example, the injection means is composed of a pump 3 operated by a drive source 2, and the injection speed of the chemical solution 5 in the tank 4 connected to the pump 3 can be arbitrarily controlled by changing the rotation speed of the pump 3. It has become.
If the pressure control means (not shown) is connected to the tank 4 so that the internal pressure of the tank 4 can be controlled, the injection pressure of the chemical solution 5 discharged from the tip of the injection tube 1 to the surroundings can be dynamically controlled. . In this case, the pump 3 is unnecessary.
The injection means in the present invention may include a known chemical solution injection apparatus corresponding to the purpose and application of injection, and may have any structure that can dynamically control the rotational speed and pumping pressure of the drive source of these various injection means.
Although only one tank 4 is shown in FIG. 1 to help understanding the invention, there are actually a plurality of tanks according to the number of materials constituting the chemical solution 5.
[0007]
FIG. 2 shows an example of a control waveform for dynamically controlling the injection pressure (or injection speed) of the chemical solution.
2A shows a case where the injection pressure is continuously increased or decreased, and FIG. 2B shows a case where the increase or decrease of the injection pressure is repeated within a sawtooth-shaped range. C) shows a case where the pulse is gradually increased.
These control waveforms are examples, and are not limited to these waveforms.
When controlling either the injection speed or the injection pressure, the pitch, amplitude, period, etc. of the control waveform are appropriately selected in consideration of the properties of the chemical solution and the target ground.
[0008]
In the prior art, pressure fluctuations may occur during the injection of a chemical solution, but this is a phenomenon that occurs as a result of keeping the injection rate constant.
Therefore, the conventional pressure fluctuation phenomenon and the present invention are different in essence.
[0009]
<B> Reason why splitting does not occur As described above, the present invention can control the injection dynamically, so that osmotic injection is possible without causing splitting.
In general, the splitting of the ground is considered to occur when an external force exceeding the shear strength of the ground is applied, and the shear strength of the ground is known to be speed dependent.
The present invention is made by paying attention to the material properties of the ground that the ground shear strength improves when the load (external force) change speed is fast. By changing the hydraulic pressure quickly, the ground is split. By exhibiting a shear strength that does not occur, splitting is less likely to occur even by high-pressure injection.
Furthermore, the present invention is controlled so that the injection pressure of the chemical solution drops even if a small-scale split occurs partially, and the chemical solution performs the function of a caulking material. It is possible to avoid the injection pressure from concentrating on the split.
Thus, even if a small-scale split occurs, the possibility of developing this split is very low, and therefore, the chemical solution can penetrate into the target range.
[0010]
[Example 1]
In order to prove the permeability of the present invention, the following tests were conducted.
<A> Test method A model ground with a relative density of 40% was manufactured by the underwater dropping method using cinnabar No. 6 (Gs = 2.65, D50 = 0.32, Uc = 1.62).
As the chemical solution, a water glass solution type chemical solution was used. Table 1 shows the composition of the chemical solution (gel time 30 seconds).
[0011]
[Table 1]
Figure 0003731189
[0012]
The dynamic injection was performed so that the injection rate was 5.0 liters per minute and the minimum rate was 1.0 liters per minute, and the interval was repeated at a certain cycle. The average injection rate is 3.0 liters per minute.
There were two types of injection rate cycles of 15 seconds and 30 seconds.
Static injection was also performed for comparison.
The above test cases are summarized as follows.
[Case 1]
Injection method: Static injection Injection speed: 1.0 liter / min [Case 2]
Injection method: Static injection Injection speed: 3.0 liters / minute [Case 3]
Injection method: Static injection Injection speed: 5.0 liters / minute [Case 4]
Injection method: dynamic injection injection speed: minimum speed 1.0 liter / min maximum speed 5.0 liter / min per period: 30 seconds [Case 5]
Injection method: Dynamic injection Injection speed: Minimum speed 1.0 liter / min Maximum speed 5.0 liter / min Period: 15 seconds
<B> Test Results FIG. 3 shows the change over time in the injection rate in each case 1 to 3, and FIG. 4 shows the change over time in the injection pressure.
In Cases 1 to 3 which are conventional static injections, Cases 1 and 2 did not show a behavior in which the injection pressure suddenly increased. In Case 3, a behavior was observed in which the injection pressure increased about 40 seconds after the start of injection. As a result of visual observation of the solidified body after the injection of Case 3, some homogel was seen around the injection hole.
On the other hand, in the cases 4 and 5 according to the present invention, the maximum value of the injection pressure in each cycle is about 300 kPa from the start of injection to 100 seconds, and the maximum value of injection input in each cycle gradually increases. is doing.
In addition, the minimum value of the injection pressure in each cycle is 30 kPa in case 5 and about the same as that in case 1, whereas in case 4 it is only reduced to about 100 kPa.
[0014]
FIG. 4 shows the relationship between the work (accumulation of the product of the injection pressure and the injection speed at each time) of each case 1 to 5 and time.
In cases 1 to 3 which are static injections, it can be understood that work increases as the injection rate increases.
Further, it can be seen that the work of the period 15 seconds (Case 5), which is dynamic injection, is smaller than that of the period 30 seconds (Case 4).
Therefore, it is estimated that if the period is shorter than 15 seconds, the effectiveness of dynamic injection is improved.
[0015]
FIG. 6 shows the relationship between the injection efficiency (injection amount per unit time) and work in each case 1-5.
In cases 1 to 3, which are static injections, the injection efficiency increases as the injection speed increases.
On the other hand, in cases 4 and 5 which are dynamic injections, it can be seen that the injection efficiency is better in the period 30 seconds (case 4) than in the period 15 seconds (case 5).
In addition, the injection efficiency of cases 4 and 5 was almost the same as the case where the injection rate was 3.0 liters per minute.
Therefore, it has been found that dynamic injection is more effective if the injection period is shorter than 15 seconds.
[0016]
[Example 2]
Next, the same test as in Example 1 was performed under the different conditions.
The test cases in this example are as follows.
Further, the change of the injection pressure with time in each case is as shown in FIG.
[Case 6]
Injection method: Static injection Injection speed: 2.0 liters / minute [Case 7]
Injection method: Static injection Injection speed: 6.0 liters / minute [Case 8]
Injection method: Static injection Injection speed: 8.0 liters / minute [Case 9]
Injection method: Dynamic injection Injection speed: Minimum speed 2.0 liters / minute Maximum speed 6.0 liters / minute per minute Period: 7 seconds [Case 10]
Injection method: Dynamic injection Injection speed: Minimum speed 4.0 liters / minute Maximum speed 8.0 liters / minute frequency Period: 7 seconds
<A> Cross-sectional shape of consolidated body FIG. 8 shows a cross-section of the consolidated body of each case 6-10.
The cases 6 to 8 which are conventional static injections were as follows.
[Case 6]
Due to the low pressure injection, the penetration range was the smallest of the cases, and the distance from the injection center varied.
[Case 7]
Although the penetration range was the largest among cases 6 to 8, the center of the consolidated body was shifted from the injection center.
[Case 8]
A homogel was seen around the injection tube because the pressure after the start of injection increased rapidly.
On the other hand, in the cases 9 and 10 which are dynamic injections, the distances from both the case 9 and 10 co-injection pipes were less varied, and in particular, the case 10 had the widest penetration range.
[0018]
<B> Volume of consolidated body FIG. 9 shows the volume of the consolidated body in each of the cases 6 to 10 described above.
In cases 6 to 8 which are static injections, the volume of the solidified body decreases as the injection pressure increases. However, in cases 9 to 10 which are dynamic injections, both are cases of dynamic low pressure injection. A volume approximately the same as 6 was secured.
From this, it was proved that the dynamic injection can obtain the same penetration performance as the conventional low pressure injection.
[0019]
<C> Compressive strength FIG. 10 shows the test results when the tests were conducted for the uniaxial compressive strength in the case of the conventional static injection cases 6 to 8 and the dynamic injection case 10.
According to the figure, in the case of static injection, it was confirmed that the compressive strength decreases when the limit injection pressure is exceeded as in case 8.
In addition, it was proved that the compressive strength is significantly improved in the case 10 of the dynamic injection as compared with the case 7 in which the injection is statically performed at the same pressure.
[0020]
【The invention's effect】
As described above, the present invention can obtain the following effects by dynamically controlling the injection pressure or the injection speed.
<A> Since high-pressure injection is possible without causing splitting, the infiltration range of the chemical solution is widened compared to conventional static injection, and the injection pitch and the number of injections can be reduced.
<B> Since it is difficult to cause splitting even if the injection pressure is increased, the injection time can be greatly shortened.
<C> By repeating the rapid change of the injection pressure or the injection speed, the development of splitting can be suppressed even if splitting occurs, and the drug solution can be efficiently infiltrated into the target range.
<D> By performing dynamic control in accordance with the characteristics of the chemical solution and the target ground, it is possible to infiltrate a wide range of chemical solutions with high cement viscosity.
<E> The strength of the consolidated body constructed by dynamically controlling is improved as compared with the conventional structure.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an injection principle according to Embodiment 1 of the present invention. FIG. 2 is a waveform model diagram for dynamically controlling injection pressure or injection speed. FIG. 4 is a diagram showing a change over time in injection speed. FIG. 4 is a diagram showing a change over time in injection pressure. FIG. 5 is an explanatory diagram showing a relationship between work and time. ] Change of injection pressure with time in each case in Example 2 [FIG. 8] Cross-sectional view of a solidified body in each case of static injection and dynamic injection [FIG. 9] Each case of static injection and dynamic injection FIG. 10 is a diagram showing the uniaxial compressive strength of the consolidated body in each case of static injection and dynamic injection.

Claims (1)

薬液注入手段を対象地盤に設置し、
薬液注入手段により対象地盤中に注入する薬液注入工法において、
薬液の注入圧力を経時的かつ段階的に増減させ、前記増減の繰り返しの度に注入圧力の最大値を増加させて注入することを特徴とする、薬液注入工法。
Install the chemical injection means on the target ground,
In the chemical injection method to inject into the target ground by the chemical injection means,
A method for injecting a chemical solution, wherein the injection pressure of the chemical solution is increased and decreased over time and in steps, and the maximum value of the injection pressure is increased each time the increase and decrease are repeated.
JP26251195A 1995-09-14 1995-09-14 Chemical injection method Expired - Lifetime JP3731189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26251195A JP3731189B2 (en) 1995-09-14 1995-09-14 Chemical injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26251195A JP3731189B2 (en) 1995-09-14 1995-09-14 Chemical injection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005200903A Division JP3757400B2 (en) 2005-07-08 2005-07-08 Chemical injection method

Publications (2)

Publication Number Publication Date
JPH0978564A JPH0978564A (en) 1997-03-25
JP3731189B2 true JP3731189B2 (en) 2006-01-05

Family

ID=17376821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26251195A Expired - Lifetime JP3731189B2 (en) 1995-09-14 1995-09-14 Chemical injection method

Country Status (1)

Country Link
JP (1) JP3731189B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014829A (en) * 2015-07-03 2017-01-19 小野田ケミコ株式会社 Chemical solution injecting method
JP2017014689A (en) * 2015-06-26 2017-01-19 公益財団法人鉄道総合技術研究所 Chemical solution injection construction method
JP2017020224A (en) * 2015-07-09 2017-01-26 東急建設株式会社 Chemical feeding method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089430B2 (en) * 2007-02-23 2012-12-05 清水建設株式会社 Grouting method in sandy ground
JP6312365B2 (en) * 2013-03-22 2018-04-18 デンカ株式会社 Ground injection method
JP6546720B2 (en) * 2014-04-15 2019-07-17 公益財団法人鉄道総合技術研究所 Liquefaction countermeasure method by ground consolidation using injection method
JP6493834B2 (en) * 2014-04-15 2019-04-03 公益財団法人鉄道総合技術研究所 Ground liquefaction countermeasure method
JP6556485B2 (en) * 2015-04-22 2019-08-07 日本基礎技術株式会社 Ground injection method
JP7085265B2 (en) * 2018-09-06 2022-06-16 ケミカルグラウト株式会社 Ground improvement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014689A (en) * 2015-06-26 2017-01-19 公益財団法人鉄道総合技術研究所 Chemical solution injection construction method
JP2017014829A (en) * 2015-07-03 2017-01-19 小野田ケミコ株式会社 Chemical solution injecting method
JP2017020224A (en) * 2015-07-09 2017-01-26 東急建設株式会社 Chemical feeding method

Also Published As

Publication number Publication date
JPH0978564A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
JP3731189B2 (en) Chemical injection method
JP3757400B2 (en) Chemical injection method
JP2008274553A (en) Slope stabilizing method
JP4904132B2 (en) Ground strengthening method for soft ground
JP2019070318A (en) Liquefaction countermeasure method for ground
JP2008057113A (en) Rotary press-in pile and its construction method
JP6747869B2 (en) Ground injection method
JP2007247389A (en) Grout injection method and its apparatus
JP6601739B2 (en) Ultrasonic vibration combined chemical injection device and its construction method
JP7315911B1 (en) ground improvement method
JP6556485B2 (en) Ground injection method
JP5089430B2 (en) Grouting method in sandy ground
JP3750066B1 (en) Ground improvement method
JP2007170136A (en) Ground improvement method
JP3102786B2 (en) Chemical solution injection method and injection device used for this method
JP3957407B2 (en) Chemical injection method and ground structure
JPH07317052A (en) Method of dynamic injection construction for foundation improvement
JP3731870B2 (en) Flow material injection method and apparatus
CN209703497U (en) High-pressure jet grouting enlarged footing anchor cable
JP2002054132A (en) Soil improving method and soil improving apparatus
CN108554958A (en) A kind of elongated oilhole high-efficiency washing method using high hydroscopic resin swelling effect
CN212358308U (en) Practical pile end grouting device
JPH08144265A (en) Soil improvement method
JPH03287910A (en) Directional jet injection method
JP2879386B2 (en) Ground improvement or reinforcement method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term