JPH0978564A - Chemical injecting method - Google Patents

Chemical injecting method

Info

Publication number
JPH0978564A
JPH0978564A JP26251195A JP26251195A JPH0978564A JP H0978564 A JPH0978564 A JP H0978564A JP 26251195 A JP26251195 A JP 26251195A JP 26251195 A JP26251195 A JP 26251195A JP H0978564 A JPH0978564 A JP H0978564A
Authority
JP
Japan
Prior art keywords
injection
chemical
pressure
ground
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26251195A
Other languages
Japanese (ja)
Other versions
JP3731189B2 (en
Inventor
Katsuhiro Komanobe
勝広 駒延
Yasuhiko Okochi
保彦 大河内
Osamu Endo
修 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP26251195A priority Critical patent/JP3731189B2/en
Publication of JPH0978564A publication Critical patent/JPH0978564A/en
Application granted granted Critical
Publication of JP3731189B2 publication Critical patent/JP3731189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To infiltrate and inject a chemical over a wide range in a short time without cleaving the ground by installing a chemical injecting means on the object ground, and injecting the chemical into the object ground while dynamically controlling the injecting pressure of the chemical. SOLUTION: A injection pipe 1 is inserted into the ground, and a tank 4 is installed on the ground. A pressure control means is connected to the tank 4 so that the internal pressure of the tank 4 can be controlled. The injection pressure of the chemical 5 discharged to the surrounding from the tip of the injection pipe 1 is dynamically controlled. When the liquid pressure is quickly changed, the shearing strength generating no cleavage in the ground can be exerted, and cleavages are rarely generated by high-speed injection. The infiltration range of the chemical is widened, and the injection time can be sharply shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は止水工、地盤補強工、ア
ンカー工等に適用できる薬液注入工法に関し、より詳細
には注入圧力又は注入速度を増減変化させて地中に薬液
を動的に注入する薬液注入工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical injection method applicable to water stop works, ground reinforcement works, anchor works, etc. More specifically, the injection pressure or the injection speed is increased / decreased to dynamically move the chemical liquid into the ground. The present invention relates to a method for injecting a chemical liquid.

【0002】[0002]

【従来の技術】薬液注入工法としては、例えば、ストレ
ーナ注入管の周面に形成された多数の注入孔を通じて放
射状に硬化性の薬液を注入するストレーナ注入工法や、
ボリーング孔内に逆流防止機能を具備する外管を内挿す
ると共に、ダブルパッカを具備する内管を外管に内挿
し、ダブルパッカで隔絶した外管の限定空間域を通じて
外管に形成した任意の吐出孔から薬液を吐出するソレタ
ンシュ薬液注入工法が知られている。注入形態としては
注入位置を中心に全方向に浸透させる「浸透注入」と、
注入位置から放射状に浸透する「割裂注入」に大別でき
る。「割裂注入」は目的とする改良範囲以外の部分に薬
液が注入される可能性があるため、「浸透注入」が理想
とされている。また「浸透注入」における薬液の注入条
件については、「割裂注入」に比べて低圧で緩やかな速
度で静的に注入を行っている。しかしながら、「浸透注
入」にあっては浸透に時間がかかるだけでなく、浸透範
囲が狭い範囲に限定される。これは薬液の粘性が高いほ
ど顕著である。これらを解消策として注入圧や注入速度
を高めることが考えられるが、割裂が生じやすく注入圧
を高めることに限界がある。また低圧で浸透注入を行っ
ても、粘性土等の地盤にあっては地中で割裂を起こす可
能性のあることがいくつかの検証により知られている。
特に、地上から地中の浸透状況を確認できないだけに浸
透性に対して常に不安が残る。
2. Description of the Related Art As a chemical solution injection method, for example, a strainer injection method of injecting a curable chemical solution radially through a large number of injection holes formed in the peripheral surface of a strainer injection pipe,
An outer tube with a backflow prevention function is inserted in the boring hole, an inner tube with a double packer is inserted in the outer tube, and an arbitrary discharge is formed on the outer tube through a limited space area of the outer tube separated by the double packer. A soretanche liquid medicine injection method for discharging a liquid medicine from a hole is known. As the injection form, "penetration injection" that penetrates in all directions around the injection position,
It can be roughly divided into “split injection”, which penetrates radially from the injection position. "Cleavage injection" is ideally "penetration injection" because the chemical solution may be injected into a portion other than the intended improvement range. Regarding the injection conditions of the chemical liquid in the “penetration injection”, static injection is performed at a lower pressure and at a slower speed than in the “split injection”. However, in the “penetration injection”, not only the penetration takes time but also the penetration range is limited to a narrow range. This is more remarkable as the viscosity of the drug solution is higher. Although it is conceivable to increase the injection pressure or the injection speed as a solution to these problems, there is a limit to increase the injection pressure because cracking easily occurs. It is known by some verifications that even if infiltration injection is performed at a low pressure, there is a possibility of cracking in the ground in the ground such as cohesive soil.
In particular, there is always concern about the permeability because it is not possible to confirm the penetration status from the ground to the ground.

【0003】本発明は以上の点に鑑みて成されたもの
で、地盤を割裂させることなく、短時間で広範囲に亘り
浸透注入を行える、薬液注入工法を提供することにあ
る。さらに本発明は部分的に割裂を生じても割裂の発達
を抑制して目的とする範囲に薬液を浸透できる、薬液注
入工法を提供することにある。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a chemical injection method capable of performing permeation injection in a wide range in a short time without splitting the ground. Another object of the present invention is to provide a chemical solution injecting method capable of suppressing the development of the splitting and penetrating the chemical solution into a target range even if partial cleavage occurs.

【0004】[0004]

【課題を解決するための手段】本発明は、薬液注入手段
を対象地盤に設置し、薬液注入手段により対象地盤中に
薬液を注入する薬液注入工法において、薬液の注入圧力
を動的に制御しながら注入することを特徴とする、薬液
注入工法である。さらに本発明は薬液注入手段を対象地
盤に設置し、薬液注入手段により対象地盤中に薬液を注
入する薬液注入工法において、薬液の注入速度を動的に
制御しながら注入することを特徴とする、薬液注入工法
である。さらに本発明は薬液の注入圧力又は注入速度を
経時的に増減を繰り返すことを特徴とする、薬液注入工
法である。さらに本発明は、薬液の注入圧力又は注入速
度を経時的に漸増させることを特徴とする、薬液注入工
法である。
According to the present invention, a chemical solution injection method is provided in which a chemical solution injection means is installed in a target ground and a chemical solution is injected into the target ground by the chemical solution injection means by dynamically controlling the injection pressure of the chemical solution. It is a chemical solution injection method characterized by injecting while. Further, the present invention is to install the chemical solution injecting means in the target ground, in the chemical solution injecting method of injecting the chemical solution into the target ground by the chemical solution injecting means, injecting while dynamically controlling the injection speed of the chemical solution, It is a chemical injection method. Furthermore, the present invention is a chemical solution injection method characterized in that the injection pressure or the injection rate of the chemical solution is repeatedly increased and decreased over time. Furthermore, the present invention is a chemical solution injection method characterized in that the injection pressure or the injection rate of the chemical solution is gradually increased with time.

【0005】[0005]

【発明の実施の形態1】以下図面を参照しながら本発明
の実施の形態について説明する。
Embodiment 1 of the present invention will be described below with reference to the drawings.

【0006】<イ>注入原理 発明者は地中の浸透性能を改善するため種々の試行を繰
り返し行った結果、薬液の注入速度又は注入圧力を動的
に制御することで、割裂を起こさずに効率良く注入でき
ることが判明した。すなわち図1に示す本発明の概念図
を基に説明すると、注入管1が地中に貫挿され、地上側
には薬液の注入速度又は注入圧力を動的に制御して供給
する注入手段が配置されている。本例では注入手段が駆
動源2で稼働するポンプ3で構成し、ポンプ3の回転数
を変化させることで、ポンプ3に接続するタンク4内の
薬液5の注入速度を任意に制御できるようになってい
る。またタンク4に図示しない圧力制御手段を接続し、
タンク4の内圧を制御可能に構成すれば、注入管1の先
端から周囲に吐出される薬液5の注入圧力を動的に制御
することができる。この場合ポンプ3は不要となる。本
発明における注入手段は、注入目的や用途に応じた公知
の薬液注入装置を含み、これらの各種注入手段の駆動源
の回転数や圧送圧力を動的に制御できる構造であれば良
い。尚、図1では発明の理解を助けるためにタンク4を
ひとつしか図示していないが、実際は薬液5を構成する
材料数に応じて複数存在する。
<a> Principle of injection As a result of repeatedly performing various trials in order to improve the permeation performance in the ground, the inventor dynamically controls the injection speed or the injection pressure of the chemical liquid to prevent cracking. It turned out that injection can be performed efficiently. That is, to explain based on the conceptual diagram of the present invention shown in FIG. 1, the injection pipe 1 is inserted into the ground, and on the ground side there is an injection means for dynamically controlling and supplying the injection speed or injection pressure of the chemical solution. It is arranged. In this example, the injecting means is composed of the pump 3 which is operated by the drive source 2, and the rotation speed of the pump 3 is changed so that the injecting speed of the chemical solution 5 in the tank 4 connected to the pump 3 can be arbitrarily controlled. Has become. In addition, a pressure control means (not shown) is connected to the tank 4,
If the internal pressure of the tank 4 is controllable, the injection pressure of the chemical solution 5 discharged from the tip of the injection pipe 1 to the surroundings can be dynamically controlled. In this case, the pump 3 becomes unnecessary. The injection means in the present invention may include a known chemical liquid injection device according to the injection purpose and application, and may have a structure capable of dynamically controlling the rotational speed and the pressure feeding pressure of the drive source of these various injection means. Although only one tank 4 is shown in FIG. 1 in order to facilitate understanding of the invention, a plurality of tanks 4 actually exist depending on the number of materials constituting the chemical solution 5.

【0007】図2は薬液の注入圧力(又は注入速度)を
動的に制御する制御波形例を示す。図2の(A)は注入
圧力を連続的に増減変化させる場合を示し、図2の
(B)は鋸刃状に設定した範囲内で注入圧力の増減を繰
り返す場合を示し、図2の(C)はパルス状に漸増する
場合を示す。これらの制御波形は例示であり、これらの
波形に限定されるものではない。注入速度又は注入圧力
のいずれを制御する場合も、制御波形のピッチ、振幅、
周期等は、薬液の性状や対象地盤を考慮して適宜選択す
る性質のものである。
FIG. 2 shows an example of a control waveform for dynamically controlling the injection pressure (or injection speed) of the chemical liquid. 2A shows a case where the injection pressure is continuously increased and decreased, and FIG. 2B shows a case where the injection pressure is repeatedly increased and decreased within a range set in a sawtooth shape. C) shows a case where the pulse is gradually increased. These control waveforms are examples, and the present invention is not limited to these waveforms. When controlling either the injection rate or the injection pressure, the pitch, amplitude, and
The cycle or the like has a property of being appropriately selected in consideration of the properties of the liquid medicine and the target ground.

【0008】尚、従来技術において薬液の注入時に圧力
変動が起こり得るが、これは注入速度を一定に保つこと
により結果として生じる現象である。したがって、従来
の圧力変動現象と本発明はその本質を異にする。
In the prior art, pressure fluctuation can occur during the injection of the chemical solution, which is a phenomenon that results when the injection speed is kept constant. Therefore, the essence of the conventional pressure fluctuation phenomenon is different from that of the present invention.

【0009】<ロ>割裂が発生しない理由 以上のように本発明は動的に注入を制御することで、割
裂を起こさずに浸透注入が可能である。一般に地盤の割
裂は地盤の剪断強度を越えた外力が作用したときに起こ
るとされ、また地盤の剪断強度は速度依存性のあること
が知られている。本発明は、荷重(外力)の変化速度が
速いと地盤の剪断強度が向上するという地盤の材料特性
に着目して成されたもので、液圧の圧力を速く変化させ
ることで地盤に割裂が生じないほどの剪断強度を発揮さ
せることで、高圧注入によっても割裂を生じにくくする
ものである。さらに本発明は、部分的に小規模の割裂が
発生しても薬液の注入圧力が降下するように制御される
ことと、薬液がコーキング材的機能を果たすため、圧力
が再び上昇しても当該割裂に注入圧力が集中することを
回避できる。このように仮に小規模な割裂が生じても、
この割裂を発達させる可能性は極めて低く、したがっ
て、目的とする範囲に薬液を浸透させることができる。
<B> Reason why splitting does not occur As described above, according to the present invention, penetration injection can be performed without causing splitting by dynamically controlling injection. It is generally said that the ground splitting occurs when an external force exceeds the shear strength of the ground, and the shear strength of the ground is known to have velocity dependence. The present invention was made by paying attention to the material properties of the ground that the shear strength of the ground is improved when the rate of change of load (external force) is fast, and cracking of the ground is caused by changing the hydraulic pressure quickly. By exhibiting shear strength that does not occur, splitting is less likely to occur even by high-pressure injection. Furthermore, the present invention is so controlled that the injection pressure of the chemical liquid drops even if a small-scale splitting occurs partially, and because the chemical liquid functions as a caulking material, even if the pressure rises again, It is possible to avoid the injection pressure from concentrating on the split. Even if a small split occurs like this,
The possibility of developing this cleavage is extremely low, and therefore, the medicinal solution can be penetrated into the intended range.

【0010】[0010]

【実施例1】本発明の浸透性を証明するため以下のよう
な試験を行った。 <イ>試験方法 硅砂6号(Gs =2.65、D50 =0.32、Uc =1.62)を用
い、水中落下法で相対密度が40%となる模型地盤を製
作した。薬液は水ガラス系溶液型薬液を用いた。薬液
(ゲルタイム30秒)の配合を表1に示す。
Example 1 The following test was conducted to prove the permeability of the present invention. <A> Test method Using Silas No. 6 (Gs = 2.65, D50 = 0.32, Uc = 1.62), a model ground having a relative density of 40% was manufactured by the underwater drop method. A water glass solution type chemical was used as the chemical. Table 1 shows the formulation of the drug solution (gel time 30 seconds).

【0011】[0011]

【表1】 [Table 1]

【0012】動的注入は注入速度を最大速度毎分 5.0リ
ットル、最小速度を毎分 1.0リットルとし、その間をあ
る周期で繰り返すように行った。平均注入速度は毎分
3.0リットルである。注入速度の周期は15秒と30秒
の2種類とした。比較のために静的注入も行った。以上
の試験ケースをまとめるとつぎのようになる。
The dynamic injection was carried out by setting the maximum injection rate to 5.0 liters per minute and the minimum injection rate to 1.0 liters per minute, and repeating the interval in a certain cycle. Average infusion rate is every minute
It is 3.0 liters. There were two types of injection rate cycles, 15 seconds and 30 seconds. Static injection was also performed for comparison. The above test cases are summarized as follows.

【0013】<ロ>試験結果 図3に各ケース1〜3における注入速度の経時変化を示
し、図4に注入圧力の経時変化を示す。従来の静的注入
であるケース1〜3についてみると、ケース1,2は注
入圧力が急激に上昇する挙動はみられなかった。ケース
3では注入開始後約40秒で注入圧力が上昇する挙動が
みられた。ケース3の注入後の固結体を目視した結果、
注入孔の周りに若干のホモゲルがみられた。これに対し
て、本発明に係るケース4,5をみると、各周期で注入
圧力の最大値が注入開始から100秒までは300kPa
程度で、各周期での注入力の最大値が徐々に増加してい
る。また各周期での注入圧力の最小値はケース5で30
kPa とケース1と同程度であるのに対し、ケース4では
100kPa 程度までしか下がっていない。
<B> Test Results FIG. 3 shows changes with time in the injection rate in each of the cases 1 to 3, and FIG. 4 shows changes with time in the injection pressure. Regarding Cases 1 to 3 which are conventional static injections, in Cases 1 and 2, the behavior that the injection pressure rapidly rises was not observed. In Case 3, the injection pressure increased about 40 seconds after the start of injection. As a result of visually inspecting the solidified body after the injection of Case 3,
Some homogel was found around the injection hole. On the other hand, looking at Cases 4 and 5 according to the present invention, the maximum value of the injection pressure in each cycle was 300 kPa from the start of injection to 100 seconds.
The maximum value of the injection force in each cycle gradually increases with the degree. The minimum value of the injection pressure in each cycle is 30 in Case 5.
While kPa is about the same as in case 1, in case 4 it is only about 100 kPa.

【0014】また図4に各ケース1〜5の仕事(各時間
での注入圧力と注入速度の積の累計)と時間の関係を示
す。静的注入であるケース1〜3では注入速度が速くな
るにつれて仕事が大きくなることが理解できる。また動
的注入である周期15秒(ケース5)の方は周期30秒
(ケース4)と比べて仕事が小さく、ケース3と同程度
の仕事であることがわかる。したがって、周期を15秒
より短くすれば、動的注入の有効性が向上するものと推
測される。
FIG. 4 shows the relationship between the work (cumulative product of the injection pressure and the injection speed at each time) and time in each of the cases 1 to 5. It can be seen that in Cases 1 to 3 which are static injection, the work increases as the injection speed increases. Further, it can be seen that the period of 15 seconds (Case 5), which is the dynamic injection, is smaller than that of the period of 30 seconds (Case 4), and is about the same as the case 3. Therefore, it is presumed that the effectiveness of the dynamic injection is improved if the cycle is shorter than 15 seconds.

【0015】また図6に各ケース1〜5における注入効
率(単位時間当たりの注入量)と仕事の関係を示す。静
的注入であるケース1〜3は注入速度が速くなるにした
がって注入効率が高くなっている。これに対して、動的
注入であるケース4,5では、周期30秒(ケース4)
のほうが周期15秒(ケース5)より注入効率がよいこ
とがわかる。またケース4,5の注入効率は共に、注入
速度が毎分3.0リットルで注入した場合と同程度であ
った。したがって、注入周期を15秒より短くすれば、
動的注入がより有効であることが判明した。
FIG. 6 shows the relationship between the injection efficiency (injection amount per unit time) and work in each of Cases 1-5. In Cases 1 to 3, which are static injections, the injection efficiency increases as the injection speed increases. On the other hand, in cases 4 and 5 of dynamic injection, the period is 30 seconds (case 4).
It can be seen that the injection efficiency is better in the case of the cycle of 15 seconds (case 5). In addition, the injection efficiencies of Cases 4 and 5 were about the same as those when the injection rate was 3.0 liters per minute. Therefore, if the injection period is shorter than 15 seconds,
Dynamic injection has been found to be more effective.

【0016】[0016]

【実施例2】つぎに条件を代えて前記実施例1と同様の
試験を行った。本例の場合の試験ケースは以下の通りで
ある。また各ケースにおける経時的な注入圧力の変化は
図7に示す通りである。
Example 2 Next, the same test as in Example 1 was conducted under different conditions. The test case for this example is as follows. The change in injection pressure with time in each case is as shown in FIG.

【0017】<イ>固結体の断面形状 図8に各ケース6〜10の固結体の横断面を示す。従来
の静的注入であるケース6〜8についてみると以下の通
りであった。 [ケース6]低圧注入であるため、浸透範囲がケースの
なかで最も小さかく、また注入中心からの距離にばらつ
きがみられた。 [ケース7]ケース6〜8のなかで最も浸透範囲が大き
いものの、固結体の中心が注入中心からずれていた。 [ケース8]注入開始後の圧力が急激に上昇するため
か、注入管の周りにホモゲルがみられた。これに対し
て、動的注入であるケース9,10についてみると、両
ケース9,10共注入管からの距離にばらつきが少な
く、特にケース10が最も浸透範囲が広かった。
<A> Cross-sectional shape of the solidified body FIG. 8 shows a cross-section of the solidified body of each of the cases 6 to 10. Cases 6 to 8 which are conventional static injections were as follows. [Case 6] Since the injection was performed at a low pressure, the permeation range was the smallest in the case, and the distance from the injection center varied. [Case 7] Although the penetration range was the largest among Cases 6 to 8, the center of the solidified body was displaced from the injection center. [Case 8] A homogel was found around the injection tube, probably because the pressure after the injection was started was rapidly increased. On the other hand, as for the cases 9 and 10 which are dynamic injection, both the cases 9 and 10 had little variation in the distance from the injection tube, and the case 10 had the widest permeation range.

【0018】<ロ>固結体の体積 図9に上記した各ケース6〜10における固結体の体積
を示す。静的注入であるケース6〜8にあっては、注入
圧力が高いほど固結体の体積が小さくなるが、動的注入
であるケース9〜10にあっては共に、動的低圧注入の
ケース6とほぼ同程度の体積を確保できた。このことか
ら、動的注入は従来の低圧注入と同程度の浸透性能を得
られることが立証された。
<B> Volume of Solids FIG. 9 shows the volume of solids in each of the cases 6 to 10 described above. In cases 6 to 8 that are static injection, the volume of the solidified body becomes smaller as the injection pressure is higher, but in cases 9 to 10 that are dynamic injection, the case of dynamic low pressure injection is used. The volume was almost the same as that of No. 6. From this, it was proved that the dynamic injection can obtain the same permeation performance as the conventional low pressure injection.

【0019】<ハ>圧縮強度 図10に従来の静的注入のケース6〜8と動的注入のケ
ース10の場合における一軸圧縮強度について試験を行
ったときの試験結果を示す。同図によれば、静的注入の
場合は、ケース8のように限界注入圧力を越えると圧縮
強度が低下することが確認された。また動的注入のケー
ス10にあっては同圧で静的に注入するケース7と比べ
て格段に圧縮強度が向上することが立証された。
<C> Compressive Strength FIG. 10 shows the test results when the uniaxial compressive strength was tested in the conventional static injection cases 6 to 8 and dynamic injection case 10. According to the figure, in the case of static injection, it was confirmed that the compressive strength decreases when the limit injection pressure is exceeded as in case 8. Further, it has been proved that the case 10 of dynamic injection has a markedly improved compressive strength as compared with the case 7 of static injection at the same pressure.

【0020】[0020]

【発明の効果】本発明は以上説明したように注入圧力又
は注入速度を動的に制御することで次効果を得ることが
できる。 <イ> 割裂を起こさずに高圧注入が可能となるため、
従来の静的注入と比べて薬液の浸透範囲が広がり、注入
ピッチや注入本数の低減が図れる。 <ロ> 注入圧力を高くしても割裂を起こし難いので、
注入時間を大幅に短縮できる。 <ハ> 注入圧力又は注入速度の急激な変化の繰り返し
により、仮に割裂が生じても割裂の発達を抑制でき、目
的とする範囲に薬液を効率良く浸透させることできる。 <ニ> 薬液の特性や対象地盤に応じた動的制御を行う
ことで、セメント系の粘性の高い薬液でも広範囲に亘る
浸透注入が可能である。 <ホ> 動的に制御して構築した固結体の強度が従来に
比べて向上する。
As described above, the present invention can obtain the following effects by dynamically controlling the injection pressure or the injection rate. <B> Since high-pressure injection is possible without cracking,
Compared with conventional static injection, the permeation range of the drug solution is expanded, and the injection pitch and the number of injections can be reduced. <B> Since splitting does not easily occur even if the injection pressure is increased,
The injection time can be greatly reduced. <C> Repeated rapid changes in the injection pressure or the injection rate can suppress the development of the split even if the split occurs, and the chemical solution can efficiently permeate into the target range. <D> By performing dynamic control according to the characteristics of the chemical liquid and the target ground, it is possible to perform permeation injection over a wide range even with a cement-based highly viscous chemical liquid. <E> The strength of the solid body dynamically controlled and constructed is improved as compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1に係る注入原理を示す
概念図
FIG. 1 is a conceptual diagram showing an injection principle according to a first embodiment of the present invention.

【図2】 注入圧力又は注入速度を動的に制御するため
の波形モデル図
FIG. 2 is a waveform model diagram for dynamically controlling the injection pressure or the injection rate.

【図3】 実施例1における各ケースにおける注入速度
の経時変化を示す図
FIG. 3 is a diagram showing changes over time in the injection rate in each case in Example 1.

【図4】 注入圧力の経時変化を示す図FIG. 4 is a diagram showing changes in injection pressure with time.

【図5】 仕事と時間の関係を示す説明図FIG. 5 is an explanatory diagram showing the relationship between work and time.

【図6】 注入効率と仕事の関係を示す説明図FIG. 6 is an explanatory diagram showing the relationship between injection efficiency and work.

【図7】 実施例2における各ケースの経時的な注入圧
力の変化
FIG. 7 shows changes in injection pressure with time in each case in Example 2.

【図8】 静的注入と動的注入の各ケースにおける固結
体の断面図
FIG. 8 is a sectional view of a solid body in each case of static injection and dynamic injection.

【図9】 静的注入と動的注入の各ケースにおける固結
体の体積結果を示す図
FIG. 9 is a diagram showing a volume result of a solid in each case of static injection and dynamic injection.

【図10】 静的注入と動的注入の各ケースにおける固
結体の一軸圧縮強度を示す図
FIG. 10 is a diagram showing uniaxial compressive strength of a solid body in each case of static injection and dynamic injection.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 薬液注入手段を対象地盤に設置し、薬
液注入手段により対象地盤中に薬液を注入する薬液注入
工法において、 薬液の注入圧力を動的に制御しながら注入することを特
徴とする、 薬液注入工法。
1. A chemical solution injection method in which a chemical solution injection unit is installed on a target ground and a chemical solution is injected into the target ground by the chemical solution injection unit, wherein injection is performed while dynamically controlling the injection pressure of the chemical solution. , Chemical injection method.
【請求項2】 薬液注入手段を対象地盤に設置し、薬
液注入手段により対象地盤中に薬液を注入する薬液注入
工法において、 薬液の注入速度を動的に制御しながら注入することを特
徴とする、 薬液注入工法。
2. A chemical injection method in which the chemical injection means is installed on the target ground and the chemical is injected into the target ground by the chemical injection means, injecting while dynamically controlling the injection speed of the chemical. , Chemical injection method.
【請求項3】 請求項1項又は2項において、薬液の
注入圧力又は注入速度を経時的に増減を繰り返すことを
特徴とする、薬液注入工法。
3. The chemical liquid injection method according to claim 1, wherein the chemical liquid injection pressure or injection speed is repeatedly increased and decreased over time.
【請求項4】 請求項1〜3のいずれかにおいて、薬
液の注入圧力又は注入速度を経時的に漸増させることを
特徴とする、薬液注入工法。
4. The chemical liquid injection method according to claim 1, wherein the chemical liquid injection pressure or injection speed is gradually increased with time.
JP26251195A 1995-09-14 1995-09-14 Chemical injection method Expired - Lifetime JP3731189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26251195A JP3731189B2 (en) 1995-09-14 1995-09-14 Chemical injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26251195A JP3731189B2 (en) 1995-09-14 1995-09-14 Chemical injection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005200903A Division JP3757400B2 (en) 2005-07-08 2005-07-08 Chemical injection method

Publications (2)

Publication Number Publication Date
JPH0978564A true JPH0978564A (en) 1997-03-25
JP3731189B2 JP3731189B2 (en) 2006-01-05

Family

ID=17376821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26251195A Expired - Lifetime JP3731189B2 (en) 1995-09-14 1995-09-14 Chemical injection method

Country Status (1)

Country Link
JP (1) JP3731189B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231907A (en) * 2007-02-23 2008-10-02 Shimizu Corp Grout injection construction method in sandy ground
JP2014185428A (en) * 2013-03-22 2014-10-02 Denki Kagaku Kogyo Kk Grouting method
JP2015203243A (en) * 2014-04-15 2015-11-16 公益財団法人鉄道総合技術研究所 Liquefaction countermeasure method of foundation by means of solidification using an injection method
JP2015212513A (en) * 2014-04-15 2015-11-26 公益財団法人鉄道総合技術研究所 Liquefaction countermeasure method for ground
JP2016204963A (en) * 2015-04-22 2016-12-08 日本基礎技術株式会社 Ground injection method
JP2017014829A (en) * 2015-07-03 2017-01-19 小野田ケミコ株式会社 Chemical solution injecting method
JP2017020224A (en) * 2015-07-09 2017-01-26 東急建設株式会社 Chemical feeding method
JP2020041268A (en) * 2018-09-06 2020-03-19 ケミカルグラウト株式会社 Ground improvement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405288B2 (en) * 2015-06-26 2018-10-17 公益財団法人鉄道総合技術研究所 Chemical injection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231907A (en) * 2007-02-23 2008-10-02 Shimizu Corp Grout injection construction method in sandy ground
JP2014185428A (en) * 2013-03-22 2014-10-02 Denki Kagaku Kogyo Kk Grouting method
JP2015203243A (en) * 2014-04-15 2015-11-16 公益財団法人鉄道総合技術研究所 Liquefaction countermeasure method of foundation by means of solidification using an injection method
JP2015212513A (en) * 2014-04-15 2015-11-26 公益財団法人鉄道総合技術研究所 Liquefaction countermeasure method for ground
JP2016204963A (en) * 2015-04-22 2016-12-08 日本基礎技術株式会社 Ground injection method
JP2017014829A (en) * 2015-07-03 2017-01-19 小野田ケミコ株式会社 Chemical solution injecting method
JP2017020224A (en) * 2015-07-09 2017-01-26 東急建設株式会社 Chemical feeding method
JP2020041268A (en) * 2018-09-06 2020-03-19 ケミカルグラウト株式会社 Ground improvement method

Also Published As

Publication number Publication date
JP3731189B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP2768104B2 (en) Mechanical shield excavation method using foaming agent
JPH0978564A (en) Chemical injecting method
JP4716134B2 (en) Slope stabilization method
JP2009280966A (en) Steel pipe pile and construction method therefor
JP3757400B2 (en) Chemical injection method
CN107620580A (en) A kind of long horizontal well continuous tubing drill plug of shale gas meets card releasing method
JP4034814B2 (en) Grout injection method and apparatus
JP6747869B2 (en) Ground injection method
JP5089430B2 (en) Grouting method in sandy ground
JP3957407B2 (en) Chemical injection method and ground structure
JP2018048460A (en) Device and method for chemical injection using ultrasonic vibration in combination
JP5990443B2 (en) Ground improvement material injection method
CN115012395B (en) Tubular pile assembly
JP5858574B2 (en) Method for forming ground reinforcement structure
JP3125244B2 (en) Ground improvement method
JPH07252824A (en) Control method for finished pile diameter in forming consolidated pile by jet construction method
CN212358308U (en) Practical pile end grouting device
JP2881331B2 (en) Directional injection injection method
JP2003027456A (en) Method and device for injecting fluid material
JP4625573B2 (en) Ground improvement method
JP2523247B2 (en) Bar reinforcement for ground reinforcement and ground reinforcement method
JP3812059B2 (en) Ground improvement method
JP2001182059A (en) Discharge soil reducing construction method of composite steel pipe pile
JP2879386B2 (en) Ground improvement or reinforcement method
JP2007217997A (en) Fluid pressure variation supplying apparatus and grout dynamic injection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term