JP4716134B2 - Slope stabilization method - Google Patents

Slope stabilization method Download PDF

Info

Publication number
JP4716134B2
JP4716134B2 JP2007115719A JP2007115719A JP4716134B2 JP 4716134 B2 JP4716134 B2 JP 4716134B2 JP 2007115719 A JP2007115719 A JP 2007115719A JP 2007115719 A JP2007115719 A JP 2007115719A JP 4716134 B2 JP4716134 B2 JP 4716134B2
Authority
JP
Japan
Prior art keywords
steel pipe
check valve
slope
perforated
grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007115719A
Other languages
Japanese (ja)
Other versions
JP2008274553A (en
Inventor
憲二郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Construction Co Ltd filed Critical Toyo Construction Co Ltd
Priority to JP2007115719A priority Critical patent/JP4716134B2/en
Publication of JP2008274553A publication Critical patent/JP2008274553A/en
Application granted granted Critical
Publication of JP4716134B2 publication Critical patent/JP4716134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

本発明は、盛土斜面、切り土斜面等の斜面を安定化するための安定化工法に関する。   The present invention relates to a stabilization method for stabilizing slopes such as embankment slopes and cut slopes.

斜面の安定化工法としては、地盤に削孔した孔内に鉄筋を挿入すると共に、硬化材グラウトを注入して鉄筋を地盤に定着させる鉄筋補強土工法、ケーシングを用いて地盤に削孔した後、ケーシング内にアンカーを挿入して、前記ケーシングを引抜き、しかる後に孔内に硬化材グラウトを注入してアンカーを地盤に定着させるグランドアンカー工法が従来より知られている。   The slope stabilization method includes inserting a reinforcing bar into the hole drilled in the ground, and injecting hardened material grout to fix the reinforcing bar to the ground, and drilling in the ground using a casing Conventionally, there has been known a ground anchor method in which an anchor is inserted into a casing, the casing is pulled out, and then a hardening material grout is injected into a hole to fix the anchor to the ground.

しかしながら、上記鉄筋補強土工法によれば、小径(20〜30mm程度)の鉄筋を使用することに加え、削孔径、削孔長共にかなり小さく(削孔径:40〜60mm程度、削孔長:5m程度)、グラウト定着層の厚さもわずかとなり、引張り、曲げ、せん断等に対する耐力はそれほど期待できず、小規模の斜面安定化対策に限定されるという問題があった。また、上記グランドアンカー工法によれば、引張りに対する耐力は十分となるものの、曲げおよびせん断に対する耐力は期待できず、その上、アンカーに大きなプレストレスを付与するため、支圧板として剛性の高い大型の法枠や十字ブロックが必要となり、それらの打設に多くの工数と時間とを要して施工が面倒になるという問題があった。   However, according to the above reinforcing bar reinforced earth method, in addition to using a small diameter (about 20 to 30 mm) reinforcing bar, both the drilling diameter and the drilling length are considerably small (drilling diameter: about 40 to 60 mm, drilling length: 5 m). Degree), the thickness of the grout fixing layer is also small, and the resistance to tension, bending, shearing, etc. cannot be expected so much, and there is a problem that it is limited to a small-scale slope stabilization measure. In addition, according to the above ground anchor method, the tensile strength is sufficient, but the resistance to bending and shear cannot be expected, and in addition, a large prestress is imparted to the anchor, so that the bearing plate has high rigidity and large size. Legal frames and cross blocks are required, and it takes a lot of man-hours and time to place them.

そこで最近、上記鉄筋補強土工法やグランドアンカー工法に代わる斜面安定化工法の開発が推し進められている。例えば、特許文献1には、100〜300mmの小口径の逆止弁付き鋼管を地中に貫入した後、該鋼管の内部から前記逆止弁を開いて該鋼管の周りの地中に硬化材グラウトを加圧注入して、該鋼管を定着させる工法が開示されている。また、特許文献2には、先端部に回転具(螺旋状回転翼)を設けると共に、安定処理材(硬化材グラウト)の噴射口を設けた補強材(鋼管)を、前記噴射口から安定処理材を噴射させながら地盤中に回転圧入し、補強材の周囲に柱状の安定処理層(定着層)を形成してアンカーとする工法が開示されている。これら工法によれば、鋼管が周囲の定着層と一体となって引張り、曲げ、せん断等に対する大きな耐力を発揮するので、斜面の安定化に大きく寄与するものとなる。   Therefore, development of a slope stabilization method that replaces the above-mentioned reinforcing steel reinforcement method and ground anchor method has been promoted recently. For example, in Patent Document 1, after a steel pipe with a check valve having a small diameter of 100 to 300 mm is inserted into the ground, the check valve is opened from the inside of the steel pipe, and a hardening material is formed in the ground around the steel pipe. A method of fixing the steel pipe by pressurizing grout is disclosed. Further, in Patent Document 2, a rotating member (spiral rotating blade) is provided at the tip, and a reinforcing material (steel pipe) provided with an injection port for a stable treatment material (hardening material grout) is stabilized from the injection port. A construction method is disclosed in which an anchor is formed by rotating and pressing into the ground while jetting a material to form a columnar stabilization treatment layer (fixing layer) around the reinforcing material. According to these construction methods, the steel pipe is integrated with the surrounding fixing layer and exerts a great resistance to pulling, bending, shearing, etc., and thus greatly contributes to the stabilization of the slope.

ところで、斜面の崩壊は、浸透水や湧水等の地下水によって地中の移動層(主働領域)がゆるむことにより起こることが多く、特に盛土斜面でその傾向が顕著なる。そして、この地下水に起因する斜面崩落に関しては、上記した新たな工法によっても十分な対策とならず、このため、地下水の多い斜面特に盛土斜面の補強に際しては、別途、水抜き工を施工する必要があり、その分、施工期間の延長並びに施工コストの上昇が避けられないようになる。   By the way, the slope collapse often occurs when the underground moving layer (main active area) is loosened by groundwater such as seepage water or spring water, and the tendency is particularly prominent on the embankment slope. In addition, the slope collapse caused by this groundwater is not a sufficient measure even by the above-mentioned new construction method. Therefore, it is necessary to construct a drainage work separately when reinforcing slopes with a lot of groundwater, especially embankment slopes. As a result, extension of the construction period and increase in construction cost are unavoidable.

なお、例えば、特許文献3には、地中にオーガ先端から固結材を吐出させながら掘進して補強柱体を構築し、この補強柱体内に先端に集水孔を有する中空芯材を挿入して、その先端部を地中に突出させ、芯材を通じて排水する斜面補強工法が記載されている。しかし、この工法によれば、中空芯材の周囲に不透過の補強柱体が配置されるため、補強柱体の先端側からだけの水抜きとなり、上記地下水に起因する斜面の崩落対策としては不十分である。   For example, in Patent Document 3, a reinforcing column body is constructed by digging while discharging the consolidated material from the tip of the auger into the ground, and a hollow core material having a water collecting hole at the tip is inserted into the reinforcing column body. And the slope reinforcement construction method which makes the front-end | tip part protrude in the ground, and drains through a core material is described. However, according to this construction method, since the impervious reinforcing pillars are arranged around the hollow core material, water is drained only from the front end side of the reinforcing pillars, and as a countermeasure against the collapse of the slope caused by the groundwater, It is insufficient.

特開2002−275907号公報JP 2002-275907 A 特開2004−162417号公報JP 2004-162417 A 特開平7−189264号公報JP-A-7-189264

本発明は、上記した技術的背景に鑑みてなされたもので、その課題とするところは、引張り、曲げ、せん断等に対する耐力確保が十分であることはもちろん、地下水に起因する斜面の崩落対策としても十分な斜面の安定化工法を提供することにある。   The present invention has been made in view of the above-described technical background, and the problem is that it is sufficient to secure the yield strength against tension, bending, shearing, etc., and as a countermeasure against slope collapse caused by groundwater. Is to provide a sufficient slope stabilization method.

上記課題を解決するため、本発明は、少なくとも先端部及び後端部に螺旋状回転翼を設けた小口径の逆止弁付き鋼管とドレーン管として機能する小口径の孔明き鋼管とを用意し、前記逆止弁付き鋼管に前記孔明き鋼管を継ぎ足しながら両鋼管を地中に回転圧入して、該逆止弁付き鋼管を地中内の不動層に貫入させると共に、該孔明き鋼管を前記不動層の上部の移動層に位置させ、しかる後、前記逆止弁付き鋼管の内部から前記逆止弁を開いて該鋼管の周りの地中に硬化材グラウトを加圧注入し、前記逆止弁付き鋼管の後端部に設けた螺旋状回転翼を、硬化材グラウトの移動層側への流動を抑える遮蔽板として用い、前記逆止弁付き鋼管を前記不動層に定着させることを特徴とする。 In order to solve the above-mentioned problems, the present invention provides a steel pipe with a small diameter check valve provided with a spiral rotor blade at least at the tip and rear ends, and a small diameter perforated steel pipe that functions as a drain pipe The steel pipe with check valve is inserted into the ground layer while the steel pipe with check valve is inserted into the underground immovable layer by rotating and press-fitting both steel pipes into the ground while adding the holed steel pipe to the steel pipe with check valve. It is located in the moving layer above the immovable layer, and then the check valve is opened from the inside of the steel pipe with the check valve to inject the hardened material grout into the ground around the steel pipe, and the reverse A spiral rotor blade provided at the rear end of a steel pipe with a check valve is used as a shielding plate for suppressing the flow of the hardened material grout to the moving layer side, and the steel pipe with a check valve is fixed to the non- moving layer. And

このように行う斜面の安定化工法においては、逆止弁付き鋼管を不動層まで貫入し、その周りに硬化材グラウトを加圧注入して該鋼管を不動層に定着させるので、引張り、曲げ、せん断等に対して大きな耐力を発揮する。また、地下水の影響でゆるみが生じ易い移動層にはドレーン機能を有する孔明き鋼管を位置させるので、地下水が該孔明き鋼管を通じて外部へ排水され、地下水の影響で移動層がゆるむこともなくなる。
しかも、上記逆止弁付き鋼管の後端部または孔明き鋼管の先端部に螺旋状回転翼を設け、該回転翼を、硬化材グラウトの移動層側への流動を抑える遮蔽板として用いることで、硬化材グラウトが孔明き鋼管の周りに浸入するのが抑えられるので、孔明き鋼管のドレーン機能が損なわれることはなくなる。
In the slope stabilization method performed in this way, the steel pipe with a check valve penetrates to the fixed layer, and the steel pipe is fixed to the fixed layer by injecting the hardened material grout around it. Demonstrates great strength against shear. In addition, since a perforated steel pipe having a drain function is positioned in the moving layer where loosening is likely to occur due to the groundwater, groundwater is drained to the outside through the perforated steel pipe, and the moving layer is not loosened due to the influence of groundwater.
Moreover, by providing a spiral rotary blade at the rear end of the steel pipe with check valve or at the front end of the perforated steel pipe, the rotary blade is used as a shielding plate for suppressing the flow of the hardened material grout to the moving layer side. Since the hardened material grout is prevented from entering around the perforated steel pipe, the drain function of the perforated steel pipe is not impaired.

本発明において、前記逆止弁付き鋼管の後端部の螺旋状回転翼に代えて、前記孔明き鋼管の先端部、または、前記逆止弁付き鋼管と前記穴明き鋼管とを連結するカップリングに、螺旋状回転翼を設けることとしてもよい。この場合にも、該回転翼を、硬化材グラウトの移動層側への流動を抑える遮蔽板として用いることで、硬化材グラウトが孔明き鋼管の周りに浸入するのが抑えられるので、孔明き鋼管のドレーン機能が損なわれることはなくなる。In this invention, it replaces with the spiral rotary blade of the rear-end part of the steel pipe with a non-return valve, or the front-end | tip part of the said perforated steel pipe, or the cup which connects the said steel pipe with a non-return valve and the said perforated steel pipe It is good also as providing a spiral rotary blade in a ring. Also in this case, since the rotating blade is used as a shielding plate for suppressing the flow of the hardened material grout to the moving layer side, the hardened material grout can be prevented from entering around the perforated steel pipe. The drain function is not impaired.

本発明において、上記逆止弁付き鋼管および孔明き鋼管としては、100mm以下の小口径のものを用いるのが望ましい。これは、盛土斜面は、一般的に狭隘な環境に存在することが多く、小型の施工機械による施工を可能にするためである。ただし、口径があまり小さいと、曲げ耐力、せん断耐力が不足するので、小さくても70mmとするのが望ましい。   In the present invention, it is desirable to use a steel pipe with a check valve and a perforated steel pipe having a small diameter of 100 mm or less. This is because the embankment slope is generally present in a narrow environment and enables construction by a small construction machine. However, if the diameter is too small, bending strength and shear strength are insufficient, so it is desirable that the diameter be 70 mm at the smallest.

本発明はまた、孔明き鋼管の後端部に螺旋状回転翼を設け、該回転翼を、斜面の表面を押える支圧板として用いるようにしてもよい。この場合は、別途支圧板を設ける工程が不要になるので、施工コストが低減する。   In the present invention, a spiral rotary blade may be provided at the rear end portion of the perforated steel pipe, and the rotary blade may be used as a bearing plate for pressing the surface of the slope. In this case, a process of providing a separate bearing plate becomes unnecessary, so that the construction cost is reduced.

本発明に係る斜面の安定化工法によれば、引張り、曲げ、せん断等に対する耐力確保が十分であることはもちろん、地下水に起因する斜面の崩落対策としても十分となり、地下水の多い斜面特に盛土斜面の補強に向けて極めて有用となる。   According to the slope stabilization method according to the present invention, it is not only sufficient to ensure the proof strength against tension, bending, shearing, etc., but also as a countermeasure against slope collapse due to groundwater, especially slopes with a lot of groundwater, especially embankment slopes. It will be extremely useful for reinforcement of steel.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本発明に係る安定化工法を実施した後の斜面の状態を示したものである。本実施の形態は、盛土斜面1を対象になされたもので、同図には、盛土斜面1の法面2から地中に打設された複数の抑止杭10が示されている。盛土斜面1は、その法面2の背後にすべり面Aを有し、該すべり面Aよりも深い側が不動層(定着領域)B、該すべり面Aよりも法面2側が移動層(主働領域)Cとなっている。各抑止杭10は、水平軸Lに対して所定の角度θ(θ=0〜30度)だけ傾斜する状態で、前記すべり面Aより十分深く打設されている。   FIG. 1 shows the state of the slope after the stabilization method according to the present invention is implemented. The present embodiment is intended for the embankment slope 1, and shows a plurality of deterring piles 10 placed in the ground from the slope 2 of the embankment slope 1. The embankment slope 1 has a slip surface A behind the slope surface 2, a side deeper than the slip surface A is a non-moving layer (fixing region) B, and a side of the slope surface 2 from the slip surface A is a moving layer (main working). Region) C. Each deterrent pile 10 is placed sufficiently deeper than the sliding surface A in a state inclined by a predetermined angle θ (θ = 0 to 30 degrees) with respect to the horizontal axis L.

図2および図3にも示すように、各抑止杭10は、管壁に円周方向および軸方向に等配して多数の逆止弁11を設けた逆止弁付き鋼管12と同じく管壁に円周方向および軸方向に等配して多数の開口13を設けた孔明き鋼管14とをカップリング15を介して連結した中空杭体16と、この中空杭体16を構成する逆止弁付き鋼管12の周りに形成されたグラウト定着層17とからなっている。中空杭体16は、逆止弁付き鋼管12と孔明き鋼管14との境界部分(カップリング15)がほぼすべり面A上に位置するように地中に打設され、これによって逆止弁付き鋼管12はその全体が前記浮動層B内に配置され、かつ孔明き鋼管14はその全体が移動層C内に配置されている。本実施形態において、逆止弁付き鋼管12並びに孔明き鋼管14としては、口径が70〜100mmの小口径鋼管が用いられている。また、逆弁付き鋼管12としては、その軸方向に多数の節18を有する節付き鋼管が用いられている。   As shown also in FIG. 2 and FIG. 3, each deterrent pile 10 has the same wall as the steel pipe 12 with a check valve in which a large number of check valves 11 are provided on the pipe wall in the circumferential direction and the axial direction. A hollow pile body 16 in which a perforated steel pipe 14 having a large number of openings 13 provided in the circumferential direction and in the axial direction is connected via a coupling 15, and a check valve constituting the hollow pile body 16 It consists of a grout fixing layer 17 formed around the steel pipe 12. The hollow pile body 16 is driven into the ground so that the boundary portion (coupling 15) between the steel pipe 12 with check valve and the perforated steel pipe 14 is located almost on the slip surface A, and thereby has a check valve. The entire steel pipe 12 is disposed in the floating layer B, and the entire perforated steel pipe 14 is disposed in the moving layer C. In this embodiment, as the steel pipe 12 with a check valve and the perforated steel pipe 14, a small diameter steel pipe having a diameter of 70 to 100 mm is used. Moreover, as the steel pipe 12 with a reverse valve, the steel pipe with a node which has many nodes 18 in the axial direction is used.

ここで、孔明き鋼管14の開口13は、細長い矩形の孔となっている。この開口13は、一例として、幅1〜3mm程度、長さ14mm程度の大きさとなっており、これにより開口13から鋼管14内への土砂の浸入は阻止されるが、水の浸入は許容されるようになっている。すなわち、孔明き鋼管14はドレーン管として機能するようになっている。   Here, the opening 13 of the perforated steel pipe 14 is an elongated rectangular hole. As an example, the opening 13 has a width of about 1 to 3 mm and a length of about 14 mm. This prevents entry of earth and sand from the opening 13 into the steel pipe 14, but allows water to enter. It has become so. That is, the perforated steel pipe 14 functions as a drain pipe.

本実施形態において、上記逆止弁付き鋼管12には、その先端部と後端部との二箇所に螺旋状回転翼19A、19Bが設けられ、一方、孔明き鋼管14には、その後端部に同様の螺旋状回転翼19Cが設けられている。各回転翼19A〜Cは、鋼管12、14の外径に比して十分大きな直径(一例として、鋼管径の1.5〜3.0倍)となるようにその大きさが設定されている。また、各回転翼19A〜Cは、各鋼管12、14の時計方向への回転に応じて地中に食込むようにその螺旋向きが設定されている。   In the present embodiment, the steel pipe 12 with a check valve is provided with spiral rotor blades 19A and 19B at two positions, that is, the front end and the rear end, while the perforated steel pipe 14 has a rear end. A similar spiral rotor blade 19C is provided. Each of the rotor blades 19A to 19C is set to have a size that is sufficiently larger than the outer diameter of the steel pipes 12 and 14 (as an example, 1.5 to 3.0 times the steel pipe diameter). . Moreover, the spiral direction of each rotary blade 19A-C is set so that it may bite into the ground according to the clockwise rotation of each steel pipe 12,14.

本安定化工法の実施に際しては、盛土斜面1の周辺の段部3に図示を略す施工機械を乗入れ、先ず、逆止弁付き鋼管12を先頭に、これを盛土斜面1の法面2から地中に回転圧入し、逆止弁付き鋼管12が適当深度貫入したところで、カップリング15を介して孔明き鋼管14を継足し、その回転圧入を続ける。このとき、逆止弁付き鋼管12の先端部に設けた螺旋状回転翼19Aの食込みにより各鋼管12、14(中空杭体16)の回転圧入が進行するので、土砂の排出はなく、したがって、排土処理は不要になる。また、各鋼管12、14は小口径鋼管(口径70〜100mm)となっているので、施工機械は小型のもので足り、したがって、施工機械を乗入れる段部3は幅の狭い小段でもよく、狭隘な環境でも無理なく施工を行うことができる。   In carrying out this stabilization method, a construction machine (not shown) is placed in the stepped portion 3 around the embankment slope 1. First, the steel pipe 12 with a check valve is placed at the head, and this is moved from the slope 2 of the embankment slope 1 to the ground. When the steel pipe 12 with a check valve has penetrated to an appropriate depth, the perforated steel pipe 14 is added via the coupling 15 and the rotary press-fitting is continued. At this time, since the rotary press-fitting of the steel pipes 12 and 14 (hollow pile body 16) proceeds by the biting of the spiral rotary blade 19A provided at the tip of the steel pipe 12 with a check valve, there is no discharge of earth and sand. The soil removal process is unnecessary. Moreover, since each steel pipe 12 and 14 is a small-diameter steel pipe (caliber 70 to 100 mm), it is sufficient to use a small construction machine. Therefore, the step portion 3 on which the construction machine is placed may be a narrow step. Construction can be performed without difficulty even in a narrow environment.

そして、先頭の逆止弁付き鋼管12のほぼ全長が盛土斜面1の不動層B内に貫入したら、中空杭体16の回転圧入を停止し、図4に示すように逆止弁付き鋼管12の内部に注入機20を挿入する。この注入機20は、シングルパッカーと呼称されるもので、空気圧により膨出する1つの膨出体21と吐出ノズル22とを備えており、膨出体21には地上の圧縮空気源から延ばしたエアホース23が、吐出ノズル22には地上のグラウト供給源から延ばしたグラウト管24がそれぞれ接続されている。   And if almost the full length of the steel pipe 12 with a check valve of the head penetrates into the immovable layer B of the embankment slope 1, the rotary press-fitting of the hollow pile body 16 is stopped, and the steel pipe 12 with a check valve as shown in FIG. The injector 20 is inserted inside. The injector 20 is called a single packer, and includes a bulging body 21 bulging by air pressure and a discharge nozzle 22, and the bulging body 21 extends from a compressed air source on the ground. The air hose 23 and the grout pipe 24 extended from the ground grout supply source are connected to the discharge nozzle 22, respectively.

上記注入機20は、最初、逆弁付き鋼管12の先端部付近まで挿入し、その位置でエアホース23を通じて膨出体21に圧縮空気を送ってこれを膨出させ、逆止弁付き鋼管12に対してその位置を固定する。続いて、グラウト管24を通じて吐出ノズル22にグラウトセメントミルク、セメントモルタル等の硬化材グラウトを圧送する。すると、この硬化材グラウトは、吐出ノズル22から吐出して鋼管12の先端部に充填され、その圧力で、充填域に対応する逆止弁11が開いて硬化材グラウトが逆止弁付き鋼管12の周辺へ放射状に噴出し、鋼管12の周りの地中に加圧注入される。   The injector 20 is first inserted to the vicinity of the tip of the steel pipe 12 with a check valve, and at that position, compressed air is sent to the bulging body 21 through the air hose 23 to bulge it, and the steel pipe 12 with a check valve is bulged. The position is fixed. Subsequently, a grout cement grout such as grout cement milk or cement mortar is pumped to the discharge nozzle 22 through the grout tube 24. Then, the hardened material grout is discharged from the discharge nozzle 22 and filled in the tip of the steel pipe 12, and by the pressure, the check valve 11 corresponding to the filling area is opened and the hardened material grout is turned into the steel pipe 12 with the check valve. Are radially ejected around the periphery of the steel pipe 12 and injected under pressure into the ground around the steel pipe 12.

このようにして、逆止弁付き鋼管12の周りには、周辺土砂と硬化材グラウトとが混合した前記グラウト定着層17が形成され、このグラウト定着層17は、注入機20を、逆止弁11の配列ピッチに相当するピッチで引上げながら、前記硬化材グラウトの吐出を繰返すことで次第に上方へ拡大する。このとき、逆止弁付き鋼管12の後端部には螺旋状回転翼19Bが存在するので、該回転翼19Bによって移動層C側、すなわち孔明き鋼管14の周りへの硬化材グラウトの浸入が抑えられ、この結果、孔明き鋼管14の開口13が硬化材グラウトによって閉塞されることはなくなる。したがって、該回転翼19Bは、硬化材グラウトの移動層C側への流動を抑える遮蔽板として機能している。   In this way, the grout fixing layer 17 in which the surrounding earth and sand and the hardened material grout are mixed is formed around the steel pipe 12 with the check valve. The grout fixing layer 17 connects the injector 20 to the check valve. While being pulled up at a pitch corresponding to an arrangement pitch of 11, the discharge of the curing material grout is repeated to gradually expand upward. At this time, since the spiral rotor blade 19B exists at the rear end portion of the steel pipe 12 with the check valve, the rotor blade 19B allows the hardened material grout to enter the moving layer C side, that is, around the perforated steel pipe 14. As a result, the opening 13 of the perforated steel pipe 14 is not blocked by the hardened material grout. Therefore, the rotor blade 19B functions as a shielding plate that suppresses the flow of the hardened material grout to the moving layer C side.

上記した硬化材グラウトの加圧注入は、逆止弁付き鋼管12のほぼ全長わたって実施し、これにより逆止弁付き鋼管12のほぼ全長がグラウト定着層17を介して盛土斜面1の不動層Bに強固に定着され、中空杭体16とグラウト定着層17とが一体となった抑止杭10の打設が終了する。このように打設された抑止杭10は、先頭側の逆止弁付き鋼管12がグラウト定着層17を介して盛土斜面1の不動層(定着領域)Bに定着されかつ大径の螺旋状回転翼19Aによって抜け方向に拘束されているので、引張り、曲げ、せん断等に対して大きな耐力を発揮するものとなる。本実施形態においては特に、逆止弁付き鋼管12として外周面に節18を有する節付き鋼管を用いているので、該鋼管12の引抜抵抗が増大し、抑止杭10の支持力はより一層増大する。   The above-described pressure injection of the hardened material grout is carried out over almost the entire length of the steel pipe 12 with a check valve, so that the almost entire length of the steel pipe 12 with the check valve is passed through the grout fixing layer 17 to the fixed layer of the embankment slope 1. The placement of the restraining pile 10 which is firmly fixed to B and in which the hollow pile body 16 and the grout fixing layer 17 are integrated is finished. In the restraining pile 10 thus placed, the steel pipe 12 with a check valve on the leading side is fixed to the immovable layer (fixing region) B of the embankment slope 1 via the grout fixing layer 17 and has a large-diameter spiral rotation. Since it is constrained in the removal direction by the blades 19A, it exerts a large proof strength against tension, bending, shearing and the like. Especially in this embodiment, since the steel pipe 12 with a node which has the node 18 in the outer peripheral surface is used as the steel pipe 12 with a check valve, the drawing resistance of the steel pipe 12 is increased, and the supporting force of the restraining pile 10 is further increased. To do.

一方、盛土斜面1の移動層(主働領域)Cには、ドレーン管として機能する孔明き鋼管14が埋設されているので、浸透水や湧水等の地下水は開口13から鋼管14内に流入し、該鋼管14内を通して外部へ排出される。したがって、地下水によって移動層Cがゆるむことはなくなり、盛土斜面1の崩落が未然に防止される。本実施形態においては特に、中空杭体16を水平軸Lに対してわずかの傾斜角度(0〜30度)で傾斜させているので、孔明き鋼管14を通じて円滑に排水が進み、移動層Cのゆるみはより一層抑制される。   On the other hand, since a perforated steel pipe 14 that functions as a drain pipe is embedded in the moving layer (main active area) C of the embankment slope 1, groundwater such as seepage water and spring water flows into the steel pipe 14 from the opening 13. Then, it is discharged outside through the steel pipe 14. Therefore, the moving layer C is not loosened by the groundwater, and the collapse of the embankment slope 1 is prevented in advance. Especially in this embodiment, since the hollow pile body 16 is inclined at a slight inclination angle (0 to 30 degrees) with respect to the horizontal axis L, drainage proceeds smoothly through the perforated steel pipe 14, and the moving bed C Looseness is further suppressed.

ここで、孔明き鋼管14は、その後端部に設けた螺旋状回転翼19Cが土中にわずか埋込まれるようにその長さが設定されており、これにより該回転翼19Cは、盛土斜面1の法面2を押える支圧板として機能し、この結果、移動層Cからの土砂の抜け出しが防止され、盛土斜面1はより一層安定する。換言すれば、別途支圧板を設ける工程が不要になり、その分、施工コストが低減する。   Here, the length of the perforated steel pipe 14 is set so that the spiral rotary blade 19C provided at the rear end portion thereof is slightly buried in the soil. As a result, the earth and sand are prevented from slipping out from the moving layer C, and the embankment slope 1 is further stabilized. In other words, a process of providing a separate bearing plate becomes unnecessary, and the construction cost is reduced accordingly.

なお、上記孔明き鋼管14の開口13は、土砂の流入を防ぐフィルタを付設した構造としてもよく、この場合は、開口13の大きさ、形状は任意である。また、この孔明き鋼管14は、鋼管と同等の強度を有する他のドレーン管に代えることができる。   In addition, the opening 13 of the perforated steel pipe 14 may have a structure provided with a filter for preventing inflow of earth and sand. In this case, the size and shape of the opening 13 are arbitrary. The perforated steel pipe 14 can be replaced with another drain pipe having the same strength as the steel pipe.

また、上記実施形態においては、逆止弁付き鋼管12に対し、その先端部と後端部とに螺旋状回転翼19A、19Bを設けたが、後端側の螺旋状回転翼19Bは、逆止弁付き鋼管12に代え、孔明き鋼管14の先端部またはカップリング15に設けるようにしてもよいものである。   Moreover, in the said embodiment, although the spiral rotary blades 19A and 19B were provided in the front-end | tip part and the rear-end part with respect to the steel pipe 12 with a non-return valve, the spiral rotary blade 19B of the rear end side is reverse. It may replace with the steel pipe 12 with a stop valve, and may be made to provide in the front-end | tip part of the perforated steel pipe 14, or the coupling 15. FIG.

さらに、上記実施形態においては、硬化材グラウトを加圧注入する注入機20として、1つの膨出体21を備えたシングルパッカーを用いたが、該注入機20としては、2つの膨出体を備えた、いわゆるダブルパッカー形式のものを用いてもよいものである。この場合は、2つの膨出体の間の空域が圧力室となり、この圧力室を経て硬化材グラウトが逆止弁11から噴出されることになる。   Furthermore, in the said embodiment, although the single packer provided with one bulging body 21 was used as the injection machine 20 which inject | pours pressure injection of hardening material grout, as this injection machine 20, two bulging bodies are used. A so-called double packer type may be used. In this case, the air space between the two bulging bodies becomes a pressure chamber, and the hardened material grout is ejected from the check valve 11 through this pressure chamber.

本発明の一つの実施形態である安定化工法を実施した後の斜面の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state of the slope after implementing the stabilization construction method which is one embodiment of this invention. 本安定化工法で打設された抑止杭の打設状態を示す断面図である。It is sectional drawing which shows the driving | running state of the suppression pile driven by this stabilization construction method. 本安定化工法で打設される抑止杭を構成する逆止弁付き鋼管と孔明き鋼管の構造を示す側面図である。It is a side view which shows the structure of the steel pipe with a non-return valve and the perforated steel pipe which comprise the deterrent pile put up by this stabilization construction method. 逆止弁付き鋼管から注入機を用いて硬化材グラウトを加圧注入する実施状況を示す断面図である。It is sectional drawing which shows the implementation condition which pressurizes and injects hardening material grout from a steel pipe with a check valve using an injection machine.

符号の説明Explanation of symbols

1 盛土斜面
2 法面
10 抑止杭
11 逆止弁
12 逆止弁付き鋼管
13 開口
14 孔明き鋼管
16 中空杭体
17 グラウト定着層
19A〜C 螺旋状回転翼
DESCRIPTION OF SYMBOLS 1 Embankment slope 2 Slope 10 Suppression pile 11 Check valve 12 Steel pipe with check valve 13 Opening 14 Perforated steel pipe 16 Hollow pile body 17 Grout fixation layer 19A-C Spiral rotary blade

Claims (4)

少なくとも先端部及び後端部に螺旋状回転翼を設けた小口径の逆止弁付き鋼管とドレーン管として機能する小口径の孔明き鋼管とを用意し、前記逆止弁付き鋼管に前記孔明き鋼管を継ぎ足しながら両鋼管を地中に回転圧入して、該逆止弁付き鋼管を地中内の不動層に貫入させると共に、該孔明き鋼管を前記不動層の上部の移動層に位置させ、しかる後、前記逆止弁付き鋼管の内部から前記逆止弁を開いて該鋼管の周りの地中に硬化材グラウトを加圧注入し、前記逆止弁付き鋼管の後端部に設けた螺旋状回転翼を、硬化材グラウトの移動層側への流動を抑える遮蔽板として用い、前記逆止弁付き鋼管を前記不動層に定着させることを特徴とする斜面の安定化工法。 Prepare a steel pipe with a small diameter check valve having spiral rotor blades at least at the front end and the rear end, and a small diameter perforated steel pipe that functions as a drain pipe. Both steel pipes are rotationally press-fitted into the ground while adding steel pipes so that the steel pipe with check valve penetrates into the fixed layer in the ground, and the perforated steel pipe is positioned in the moving layer above the fixed layer. Then, the check valve is opened from the inside of the steel pipe with the check valve, and the hardened material grout is pressurized and injected into the ground around the steel pipe, and provided at the rear end of the steel pipe with the check valve. A slope stabilization method characterized in that a spiral rotating blade is used as a shielding plate that suppresses the flow of hardened material grout to the moving layer side, and the steel pipe with a check valve is fixed to the non- moving layer . 前記逆止弁付き鋼管の後端部の螺旋状回転翼に代えて、前記孔明き鋼管の先端部、または、前記逆止弁付き鋼管と前記穴明き鋼管とを連結するカップリングに、螺旋状回転翼を設けることを特徴とする請求項1記載の斜面の安定化工法。Instead of the spiral rotor blade at the rear end of the steel pipe with check valve, a spiral is connected to the tip of the perforated steel pipe, or to the coupling connecting the steel pipe with check valve and the perforated steel pipe. The slope stabilization method according to claim 1, further comprising: a cylindrical rotor blade. 逆止弁付き鋼管および孔明き鋼管の口径が、70〜100mmであることを特徴とする請求項1または2に記載の斜面の安定化工法。 The diameter stabilization method of the steel pipe with a check valve and the perforated steel pipe is 70-100 mm, The stabilization method of the slope of Claim 1 or 2 characterized by the above-mentioned. 孔明き鋼管の後端部に螺旋状回転翼を設け、該回転翼を、斜面の表面を押える支圧板として用いることを特徴とする請求項1乃至3の何れか1項に記載の斜面の安定化工法。   4. The slope stability according to claim 1, wherein a spiral rotor blade is provided at a rear end portion of the perforated steel pipe, and the rotor blade is used as a pressure bearing plate for pressing the surface of the slope. Chemical method.
JP2007115719A 2007-04-25 2007-04-25 Slope stabilization method Active JP4716134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007115719A JP4716134B2 (en) 2007-04-25 2007-04-25 Slope stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115719A JP4716134B2 (en) 2007-04-25 2007-04-25 Slope stabilization method

Publications (2)

Publication Number Publication Date
JP2008274553A JP2008274553A (en) 2008-11-13
JP4716134B2 true JP4716134B2 (en) 2011-07-06

Family

ID=40052844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115719A Active JP4716134B2 (en) 2007-04-25 2007-04-25 Slope stabilization method

Country Status (1)

Country Link
JP (1) JP4716134B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172983A (en) * 2019-06-17 2019-08-27 中交第三公路工程局有限公司 The device and its construction method for draining and reinforcing for existing expressway slope

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998023B2 (en) * 2012-07-06 2016-09-28 新日鉄住金エンジニアリング株式会社 Landslide prevention pile and installation method of landslide prevention pile
JP6073175B2 (en) * 2013-04-15 2017-02-01 新日鉄住金エンジニアリング株式会社 How to install drain pipe
JP6279945B2 (en) * 2014-03-20 2018-02-14 公益財団法人鉄道総合技術研究所 Soil surface anti-slip method for earth structure
JP6284796B2 (en) * 2014-03-20 2018-02-28 公益財団法人鉄道総合技術研究所 Slope stabilization method for soil and earthquake resistance
JP6314048B2 (en) * 2014-07-23 2018-04-18 新日鉄住金エンジニアリング株式会社 Drainage pipe
JP7075270B2 (en) * 2017-08-31 2022-05-25 日特建設株式会社 Reinforcement method
CN107761498A (en) * 2017-11-13 2018-03-06 固远晨通科技发展有限公司 A kind of cast-in-place light concrete structure and its construction method based on spiral steel pile
JP7168328B2 (en) * 2018-02-02 2022-11-09 日鉄建材株式会社 Slope reinforcement work and construction method of slope reinforcement work
JP6675427B2 (en) * 2018-02-23 2020-04-01 東急建設株式会社 Home door basic structure, construction method and screwing jig
CN108203213B (en) * 2018-03-15 2024-01-12 美丽国土(北京)生态环境工程技术研究院有限公司 Sewage self-circulation stabilizing pond system
CN111810234B (en) * 2020-07-20 2021-06-29 中铁二院工程集团有限责任公司 Tunnel water seepage and harmful gas discharge structure and semi-closed ice filling drilling construction method
CN111794238B (en) * 2020-07-20 2021-05-04 中铁二院工程集团有限责任公司 Grouting structure for filling soluble crystals and construction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152459A (en) * 1999-11-25 2001-06-05 Ohbayashi Corp Slope stabilizing construction method
JP2002275907A (en) * 2001-03-16 2002-09-25 Toyo Constr Co Ltd Stabilization construction method for slope
JP2006161450A (en) * 2004-12-08 2006-06-22 Toyo Constr Co Ltd Pile foundation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040427A (en) * 1983-08-15 1985-03-02 Kazuo Hasegawa Earth-and-lock anchor with strainer
JPH06102891B2 (en) * 1991-11-28 1994-12-14 有限会社エーエスケー Civil engineering anchor method and anchor
JP2599685B2 (en) * 1993-10-08 1997-04-09 株式会社大阪防水建設社 Installation method of drainage pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152459A (en) * 1999-11-25 2001-06-05 Ohbayashi Corp Slope stabilizing construction method
JP2002275907A (en) * 2001-03-16 2002-09-25 Toyo Constr Co Ltd Stabilization construction method for slope
JP2006161450A (en) * 2004-12-08 2006-06-22 Toyo Constr Co Ltd Pile foundation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172983A (en) * 2019-06-17 2019-08-27 中交第三公路工程局有限公司 The device and its construction method for draining and reinforcing for existing expressway slope

Also Published As

Publication number Publication date
JP2008274553A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4716134B2 (en) Slope stabilization method
JP5990214B2 (en) Reinforcement method of hole wall in construction method of cast-in-place concrete pile.
JP5791886B2 (en) Pile construction method in contaminated soil
KR20090013368A (en) Ground enhansing apparatus with anchor rod and method thereof
JP2002275907A (en) Stabilization construction method for slope
JP2011179220A (en) Method of stabilizing slope and landslide control steel pipe pile
JP2009221684A (en) Slope stabilization method
JP2019019633A (en) Construction method of continuous underground wall and steel pipe pile
JP6901928B2 (en) Pile construction method
JP4727718B2 (en) Retaining method for retaining wall
KR20170067531A (en) Apparatus to upgrade friction capacity of imbeded hollow type pile and construction method using thereby
JP4811176B2 (en) Construction method of ready-made piles
JP5546000B2 (en) Ground excavation method
KR102464394B1 (en) Driving rod for forming reinforced part of piles
AU2015349623A1 (en) Construction screw pile
JP5075090B2 (en) Cast-in-place pile construction method and cast-in-place pile
JP6860401B2 (en) Slope stabilization method
JP5545999B2 (en) Ground excavation method
JP5852776B2 (en) Ground excavation method and excavator
KR20190143205A (en) Construction method of composite pile with extensioned tip
JP4341029B2 (en) Pile foundation method
JP2008255695A (en) Method of constructing steel pipe pile
JP2005127095A (en) Open ended steel pipe pile for rotatingly jacking and rotatingly jacking method for open ended steel pipe pile
JP5973931B2 (en) Construction method of high bearing capacity pile
JP4884276B2 (en) Rotating press pile construction method and slope construction equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4716134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250