JP2002275907A - Stabilization construction method for slope - Google Patents

Stabilization construction method for slope

Info

Publication number
JP2002275907A
JP2002275907A JP2001076129A JP2001076129A JP2002275907A JP 2002275907 A JP2002275907 A JP 2002275907A JP 2001076129 A JP2001076129 A JP 2001076129A JP 2001076129 A JP2001076129 A JP 2001076129A JP 2002275907 A JP2002275907 A JP 2002275907A
Authority
JP
Japan
Prior art keywords
slope
micropile
pile
row
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001076129A
Other languages
Japanese (ja)
Other versions
JP3769637B2 (en
Inventor
Kenjiro Oka
憲二郎 岡
Takeo Miki
健男 三木
Nozomi Kotake
望 小竹
Kazuya Aida
和哉 合田
Tetsuo Matsuda
哲夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENTAN KENSETSU GIJUTSU CT
Toray Engineering Co Ltd
Advanced Construction Technology Center ACTEC
Original Assignee
SENTAN KENSETSU GIJUTSU CT
Toyo Construction Co Ltd
Advanced Construction Technology Center ACTEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENTAN KENSETSU GIJUTSU CT, Toyo Construction Co Ltd, Advanced Construction Technology Center ACTEC filed Critical SENTAN KENSETSU GIJUTSU CT
Priority to JP2001076129A priority Critical patent/JP3769637B2/en
Publication of JP2002275907A publication Critical patent/JP2002275907A/en
Application granted granted Critical
Publication of JP3769637B2 publication Critical patent/JP3769637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a stabilization construction method for a slope having a large profit on the sides of workability and profitability by improving the applicability of a micro pile construction method to the stabilization of the slope. SOLUTION: The first micro piles 12 are driven at each step 4 and 5 in a vertical pile shape with the object of the small steps 4 and 5 on its midway to a cut slope and slopes 6 and 7 in sections just above these small steps and the second micro piles 12 to each slope 6 and 7 in an inclined shaft shape respectively. The first micro piles 11 are driven in a row at regular pitches on each small step 4 and 5 and the second micro piles 12 in a row at regular pitches along each small step 4 and 5 respectively, and the pile head sections of the micro piles 11 and 12 are rigidly coupled mutually by footing beams 13 among each row and in each row and coupled piles are manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、斜面特に切土法面
を安定化するための安定化工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stabilization method for stabilizing a slope, particularly a cut slope.

【0002】[0002]

【従来の技術】斜面の安定化工法としては、地盤に削孔
した孔内に鉄筋を挿入すると共に、硬化材グラウトを注
入して鉄筋を地盤に定着させる鉄筋補強土工法、ケーシ
ングを用いて地盤に削孔した後、ケーシング内にアンカ
ーを挿入して、前記ケーシングを引抜き、しかる後に孔
内に硬化材グラウトを注入してアンカーを地盤に定着さ
せるグランドアンカー工法、鋼管を打設してこれを抑止
杭とする抑止杭工法等が従来より用いられている。
2. Description of the Related Art As a method of stabilizing a slope, a reinforcing bar is inserted into a hole drilled in the ground, a hardening material grout is injected, and the reinforcing bar is fixed to the ground. After drilling holes, insert an anchor into the casing, pull out the casing, and then inject a hardening material grout into the hole to fix the anchor to the ground, cast a steel pipe, ground anchor method Deterrent pile construction methods for deterrent piles have been conventionally used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記鉄
筋補強土工法によれば、小径(D20〜30程度)の鉄筋を
使用することに加え、削孔径、削孔長共にかなり小さく
(削孔径:40〜60mm程度、削孔長:5m程度)、グラ
ウト定着層の厚さもわずかとなり、引張り、曲げ、せん
断等に対する耐力はそれほど期待できず、小規模の斜面
安定化対策に限定されるという問題があった。また、上
記グランドアンカー工法によれば、アンカーに大きなプ
レストレスを付与するため、受圧盤として剛性の高い大
型の法枠や十字ブロックが必要となり、それらの打設に
多くの工数と時間とを要して施工が面倒になる、という
問題があった。また、このように打設されたアンカーは
引張りに対する耐力は十分となるものの、曲げおよびせ
ん断に対する耐力が小さく、地すべりに対する抑止効果
はあまり期待できない、という問題もあった。一方、上
記抑止杭工法によれば、大口径の鋼管の使用により地す
べりに対する抑止効果は十分となるものの、大口径の鋼
管使用による材料コストの負担が大きく、大型の施工機
械も必要になって、道路等の切土法面のような小規模乃
至中規模の斜面の安定化に適用するには経済性の面で問
題が多いところとなっていた。
However, according to the above-mentioned reinforcing bar reinforced earth method, in addition to using a reinforcing bar having a small diameter (approximately D20 to 30), both the drilling diameter and the drilling length are considerably small (drilling diameter: 40). 6060 mm, drilling length: about 5 m), the thickness of the grout fixing layer is also small, and the strength against pulling, bending, shearing, etc. cannot be expected so much, and it is limited to small-scale slope stabilization measures. Was. In addition, according to the above-mentioned ground anchor method, a large rigid frame or cross block is required as a pressure receiving plate to apply a large prestress to the anchor, and a large number of man-hours and time are required for placing them. And the construction becomes troublesome. Further, although the anchor thus cast has a sufficient strength against tension, it has a low strength against bending and shear, and there is also a problem that a deterrent effect against landslide cannot be expected. On the other hand, according to the above-mentioned deterrent pile method, although the deterrent effect against landslides is sufficient by using large-diameter steel pipes, the burden of material costs due to the use of large-diameter steel pipes is large, and large-scale construction machinery is also required. There have been many problems in terms of economic efficiency when applied to stabilization of small to medium scale slopes such as cut slopes such as roads.

【0004】ところで、直径が100〜300mmの鋼管を地盤
に削孔した孔内に挿入した後、該鋼管の周りの空隙に硬
化材グラウトを加圧注入して該鋼管を地盤に定着させる
マイクロパイル工法が従来より知られている。このマイ
クロパイル工法によれば、施工が簡単である上、強度の
大きい鋼管と厚肉のグラウト定着層とが一体となって大
きな支持力を発揮するので、これを斜面安定化工法に適
用すれば、上記した在来工法のもつ諸問題を解決できる
ものと期待される。しかしながら、このマイクロパイル
は、一般には引張り耐力に比べて曲げ耐力(水平方向支
持力)が不足し、これを単に斜面に打設したのでは、地
すべりに対する十分なる抑止効果が得られない虞があ
り、この不安を解消するには、斜面に対して小ピッチ
(1m程度)で多数のマイクロパイルを打設しなければ
ならず、上記したマイクロパイル工法が有するせっかく
の利点(経済性)が失われてしまうことになる。
A micropile for fixing a steel pipe to the ground by inserting a steel pipe having a diameter of 100 to 300 mm into a hole drilled in the ground and then injecting hardening material grout into a space around the steel pipe under pressure. A construction method is conventionally known. According to this micropile method, the construction is simple and the strong steel pipe and the thick grout fixing layer are integrated to exhibit a large supporting force, so if this is applied to the slope stabilization method, It is expected that the above-mentioned problems of the conventional method can be solved. However, this micropile generally has insufficient bending strength (horizontal supporting force) as compared with tensile strength, and if it is simply cast on a slope, it may not be possible to obtain a sufficient deterrent effect against landslides. In order to eliminate this anxiety, a large number of micropiles must be cast on the slope at a small pitch (about 1 m), and the precious advantage (economical efficiency) of the micropile method described above is lost. Will be.

【0005】本発明は、上記した技術的背景に鑑みてな
されたもので、その課題とするところは、斜面の安定化
に対するマイクロパイル工法の適用性を高め、もって施
工性、経済性の面で利するところの大きい斜面の安定化
工法を提供することにある。
The present invention has been made in view of the above technical background, and an object of the present invention is to improve the applicability of the micropile method for stabilizing slopes, thereby improving workability and economic efficiency. It is an object of the present invention to provide a method for stabilizing a large slope, which is advantageous.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、切土法面の途中の小段に対して鉛直杭状
にマイクロパイルを一列に打設すると共に、該小段の直
上部分の斜面に対して斜杭状にマイクロパイルを一列に
打設し、しかる後、前記各列間および各列内のマイクロ
パイルの杭頭部同士を基礎梁により剛結することを特徴
とする。このように行う斜面の安定化工法においては、
鉛直杭状のマイクロパイルと斜杭状のマイクロパイルと
が組杭となって、引張り、曲げ、せん断等に対して大き
な耐力を発揮し、地すべりに対する抑止効果も十分とな
る。また、斜面途中に二列をなすようにマイクロパイル
を打設するので、マイクロパイルの打設数も大幅に削減
することができ、しかも、切土法面の途中の小段を利用
して効率よくマイクロパイルを打設できる。この場合、
上記鉛直杭状のマイクロパイルと斜杭状のマイクロパイ
ルとを相互に千鳥状に配置することにより、各列のマイ
クロパイルの打設ピッチを大きく設定しても、実質的に
地すべりに対する抑止効果が減殺されることはなく、マ
イクロパイルの打設数をより削減することができるよう
になる。
In order to achieve the above object, the present invention is to provide a vertical pile of micro piles in a row on a middle step of a cut slope, and a part just above the small step. Micro piles are laid in a row in a slant pile shape with respect to the slope, and thereafter, the pile heads of the micro piles between each row and in each row are rigidly connected by a foundation beam. In the slope stabilization method performed in this way,
The vertical pile-shaped micropile and the inclined pile-shaped micropile form a group pile, exhibiting a large strength against tension, bending, shearing, etc., and a sufficient landslide suppression effect. Also, since the micro piles are cast in two rows in the middle of the slope, the number of micro piles can be significantly reduced, and the small steps in the cut slope can be used efficiently. Micro pile can be cast. in this case,
By arranging the vertical pile-shaped micropile and the inclined pile-shaped micropile mutually in a staggered manner, even if the pitch of the micropile in each row is set to be large, the effect of suppressing landslides is substantially reduced. It is not reduced, and the number of micro piles to be cast can be further reduced.

【0007】本発明は、マイクロパイルの打設に先行し
て、地盤中に高圧噴射攪拌工法により改良柱を造成し、
該改良柱内に前記マイクロパイルを打設するようにして
もよいものである。この場合は、大径の改良柱とマイク
ロパイルとが一体となって大きな支持力を発揮すること
に加え、改良柱が地盤の安定化に大きく寄与するので、
崩壊性土砂を含む地山を対象にしても十分に安定化でき
る。
According to the present invention, prior to placing a micropile, an improved pillar is formed in the ground by a high-pressure jet stirring method,
The micropile may be cast in the improved pillar. In this case, in addition to the large-diameter improvement column and the micropile integrally exhibiting a large supporting force, the improvement column greatly contributes to the stabilization of the ground,
It can be sufficiently stabilized even for soil containing collapsible soil.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基いて説明する。図1は、本発明の第1の実施の
形態により安定化された斜面の状態を示したものであ
る。本第1の実施の形態としての安定化工法は、道路
(計画道路)1を造成すべく既存の地山2を掘削して形
成された切土法面3を対象になされたもので、切土法面
3は、ここでは2つの小段4、5により分割された3つ
の斜面6、7、8とを含んでいる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a state of a slope stabilized according to the first embodiment of the present invention. The stabilization method according to the first embodiment is intended for a cut slope 3 formed by excavating an existing ground 2 to construct a road (planned road) 1. The earth slope 3 includes three slopes 6, 7, 8 divided by two small steps 4, 5 here.

【0009】本第1の実施の形態においては、上記2つ
の小段4、5とこれら小段の直上部分の斜面6、7とを
対象に、各小段4、5に対してこれとほぼ垂直方向をな
すように(鉛直杭状に)第1マイクロパイル11を、各
斜面6、7に対してこれとほぼ垂直方向をなすように
(斜杭状に)第2マイクロパイル12をそれぞれ打設し
ている。第1マイクロパイル11は各小段4、5上に所
定のピッチで一列に打設され、一方、第2マイクロパイ
ル12は各小段4、5に沿って所定のピッチで一列に打
設されている。また、第1、第2マイクロパイル11、
12は切土法面2の背後のすべり面A、Bよりも十分深
く打設されている。すなわち、鉛直杭状の第1マイクロ
パイル11と斜杭状の第2マイクロパイル12とは、切
土法面3の途中に二列をなすようにかつ背後のすべり面
A、Bに達するように打設されている。しかして、第
1、第2のマイクロパイル11、12は、各列間および
各列内でそれぞれの杭頭部同士が相互に基礎梁13によ
り剛結されている。この基礎梁13は、例えば鉄筋コン
クリートを現場打ちしてなるもので、この基礎梁13に
より第1、第2のマイクロパイル11、12は組杭とし
て構成されている。なお、上段の斜面6に対するすべり
面Cはかなり浅いので、ここでは、この斜面6に対し
て、複数の鉄筋14を打設する汎用の鉄筋補強土工法を
施工している。
In the first embodiment, with respect to the two small steps 4 and 5 and the slopes 6 and 7 immediately above these small steps, a direction substantially perpendicular to each of the small steps 4 and 5 is set. The first micropile 11 is formed (in a vertical pile shape), and the second micropile 12 is formed in a substantially vertical direction with respect to each of the slopes 6 and 7 (in a slanted pile shape). I have. The first micropile 11 is cast in a row at a predetermined pitch on each of the small steps 4 and 5, while the second micropile 12 is cast in a row at a predetermined pitch along each of the small steps 4 and 5. . Also, the first and second micro piles 11,
Numeral 12 is sufficiently deeper than the slip surfaces A and B behind the cut slope 2. That is, the vertical pile-shaped first micropile 11 and the inclined pile-shaped second micropile 12 are arranged in two rows in the middle of the cut slope 3 so as to reach the slip planes A and B behind. Has been cast. Thus, the pile heads of the first and second micropiles 11 and 12 are rigidly connected to each other by the foundation beams 13 between each row and within each row. The foundation beam 13 is, for example, cast in place from reinforced concrete. The first and second micro piles 11 and 12 are configured as a pile by the foundation beam 13. Here, since the slip surface C with respect to the upper slope 6 is considerably shallow, a general-purpose reinforcing-bar-reinforced earth method for driving a plurality of reinforcing bars 14 is applied to the slope 6 here.

【0010】道路1の切土法面3は、通常、計画道路1
に隣接する地山2を上部側から下部側へ段階的に掘削す
ることにより形成される。この場合、各段の境界は、図
1に示すように小段4、5を含む面上に設定されるのが
通例で、したがって、ここでは3つの領域I、II、IIIに
分けて地山2の掘削が行われることになる。
The cut slope 3 of the road 1 is usually
Is formed by stepwise excavating the ground 2 adjacent to the bottom from the upper side to the lower side. In this case, the boundary of each step is generally set on a plane including the small steps 4 and 5 as shown in FIG. 1. Therefore, here, the ground 2 is divided into three regions I, II and III. Will be excavated.

【0011】そこで、本実施の形態においては、上記し
た地山2の掘削に合せて段階的に施工を行うようにす
る。具体的には、先ず、地山2の上部側から上側の小段
4までの上段領域Iの掘削を終了した段階で、該小段4
を含む掘削底面上に施工機械を乗り入れ、小段4および
その直上部分の斜面6に対して上記したように鉛直杭状
の第1マイクロパイル11と斜杭状の第2マイクロパイ
ル12とを各一列となるように打設し、これらマイクロ
パイル11、12の杭頭部同士を基礎梁13により剛結
して組杭を完成させる。次に、上側の小段4から下側の
小段5までの中段領域IIの掘削を行い、再び掘削底面上
に施工機械を乗り入れて、該小段5およびその直上部分
の斜面7に対して上記したように鉛直杭状の第1マイク
ロパイル11と斜杭状の第2マイクロパイル12とを各
一列となるように打設し、これらマイクロパイル11、
12の杭頭部同士を基礎梁13により剛結して組杭を完
成させる。その後は、下側の小段5から計画道路1まで
の下段領域IIIの掘削を行い、これにて、組杭により補
強され、地すべりに対する抑止効果も十分な切土法面3
が完成する。
Therefore, in the present embodiment, the construction is performed stepwise in accordance with the excavation of the ground 2 described above. Specifically, first, when excavation of the upper region I from the upper side of the ground 2 to the upper small step 4 is completed, the small step 4
The construction machine is loaded on the excavation bottom including the vertical pile 4 and the vertical micro pile 11 and the inclined micro pile 12 are arranged in a row on the small step 4 and the slope 6 immediately above the small step 4. The pile heads of the micropiles 11 and 12 are rigidly connected to each other by the foundation beam 13 to complete the assembled pile. Next, excavation of the middle region II from the upper small step 4 to the lower small step 5 is carried out, the construction machine is again put on the excavated bottom surface, and the small step 5 and the slope 7 immediately above the small step 5 are described above. A vertical pile-shaped first micropile 11 and a slanted pile-shaped second micropile 12 are placed in a row, and the micropile 11,
Twelve pile heads are rigidly connected to each other by the foundation beam 13 to complete the assembled pile. After that, excavation of the lower section III from the lower step 5 to the planned road 1 is performed, and the cut slope 3 is reinforced by the piles and has sufficient deterrent effect against landslide.
Is completed.

【0012】ここで、鉛直杭状の第1マイクロパイル1
1と斜杭状の第2マイクロパイル12とは、図2に示す
ように、相互に千鳥状に配置するのが望ましい。この場
合、第1マイクロパイル11の打設ピッチP1と第2マ
イクロパイル12の打設ピッチP2は、一例として1〜
2m程度、第1マイクロパイル11の列と第2マイクロ
パイル12の列との間隔Sは、一例として0.5〜1m
程度に設定する。マイクロパイルを抑止杭として用いる
場合は、通常その打設ピッチを1m程度とする必要があ
るが、このように千鳥状に配置した場合は、前記したよ
うに各列のマイクロパイル11、12を大きく(1〜2
m)設定しても十分なる抑止効果を発揮し、その分、マ
イクロパイル11、12の打設数をより削減することが
できる。
Here, the first micropile 1 having a vertical pile shape is used.
As shown in FIG. 2, it is desirable that the 1 and the slant pile-shaped second micropile 12 are arranged in a zigzag manner. In this case, the pitch P1 of the first micropile 11 and the pitch P2 of the second micropile 12 are, for example, 1 to 1.
The distance S between the row of the first micropile 11 and the row of the second micropile 12 is about 2 m, for example, 0.5 to 1 m.
Set to about. When a micropile is used as a deterrent pile, it is usually necessary to set the pitch at about 1 m. However, when the piles are arranged in a staggered manner as described above, the micropiles 11 and 12 in each row are increased as described above. (1-2
m) Even if it is set, a sufficient deterrent effect can be exerted, and the number of micropiles 11 and 12 to be cast can be further reduced.

【0013】また、上記マイクロパイル11、12を打
設するための施工手順を具体的に説明すると、先ず、図
3(A)および図4に示すように、管壁に複数の逆止
弁20を有する鋼管21を用意し、この鋼管21内に、
偏心拡径ビット22とダウンザホールハンマー23とを
連設してなる削孔ツール24を先端に有する削孔ロッド
25を挿入する。そして、これら鋼管21と削孔ロッド
25とを、図示を略す施工機械(削孔機械)に一体的に
支持させ、鋼管21をケーシングとして用いて削孔ロッ
ド25を回転させながら、前記斜面6、7(または小段
4、5)に対してほぼ垂直となるよう削孔を行い、鋼管
(ケーシング)21を地盤に貫入させる。ダウンザホー
ルハンマー23は空気圧によりハンマー部を作動させて
偏心拡径ビット22に衝撃荷重を加える機能を有するも
ので、このダウンザホールハンマー23と偏心拡径ビッ
ト22との併用により地盤には、鋼管21よりも大径の
孔26が高能率に削孔されるようになる。この時、削孔
により生じた掘削ずりは、偏心拡径ビット22に貫設さ
れた流通孔(図示略)からケーシング21と削孔ロッド
25との間の環状通路27を経て外部へ排出される。な
お、鋼管21としては、一例として外径200〜300mm程度
のものが用いられる。上記削孔は、鋼管21を継足しな
がら予定深度まで行い、削孔終了後、上記削孔ロッド2
5を削孔ツール24と一緒に鋼管21から引抜き、鋼管
21のみを孔26内に残す。
The construction procedure for placing the micropiles 11, 12 will be specifically described. First, as shown in FIGS. 3A and 4, a plurality of check valves 20 are provided on the pipe wall. A steel pipe 21 having the following formula is prepared.
A drilling rod 25 having a drilling tool 24 at the tip thereof, in which an eccentric enlarged bit 22 and a down-the-hole hammer 23 are connected, is inserted. Then, the steel pipe 21 and the drilling rod 25 are integrally supported by a construction machine (a drilling machine) (not shown), and while the drilling rod 25 is rotated using the steel pipe 21 as a casing, the slope 6, The steel pipe (casing) 21 is penetrated into the ground by making a hole so as to be substantially perpendicular to 7 (or the small steps 4 and 5). The down-the-hole hammer 23 has a function of applying an impact load to the eccentric enlarged bit 22 by activating the hammer portion by air pressure. By using the down-the-hole hammer 23 and the eccentric enlarged bit 22 together, the ground is smaller than the steel pipe 21. The large-diameter hole 26 is efficiently drilled. At this time, the excavated shear generated by the drilling is discharged to the outside through a flow hole (not shown) penetrating the eccentric enlarged bit 22 through an annular passage 27 between the casing 21 and the drilling rod 25. . The steel pipe 21 has an outer diameter of about 200 to 300 mm as an example. The drilling is performed to a predetermined depth while adding the steel pipe 21, and after the drilling is completed, the drilling rod 2 is formed.
5 is pulled out of the steel pipe 21 together with the drilling tool 24, leaving only the steel pipe 21 in the hole 26.

【0014】次に、図3(B)および図4に示すよう
に、前記鋼管21内に注入機30を挿入する。この注入
機30は、シングルパッカーと呼称されるもので、空気
圧により膨出する1つの膨出体31と吐出ノズル32と
を備えており、膨出体31には地上の圧縮空気源から延
ばしたエアホース33が、吐出ノズル32には地上のグ
ラウト供給源から延ばしたグラウト管34がそれぞれ接
続されている。上記注入機30は、最初、鋼管21の最
深位置まで挿入し、その位置でエアホース33を通じて
膨出体31に圧縮空気を送ってこれを膨出させ、鋼管2
1に対してその位置を固定する。続いて、グラウト管3
4を通じて吐出ノズル32にグラウトセメントミルク、
セメントモルタル等の硬化材グラウトを圧送する。する
と、この硬化材グラウトは、吐出ノズル32から吐出し
て鋼管21の先端開口から前方の地盤内に加圧注入さ
れ、その一部は鋼管21の先端部の外側にも回り、さら
に鋼管21内の、膨出体31より前方域にフィルアップ
する。そして、鋼管21内へのフィルアップにより内圧
が高まると、逆止弁20が開いて硬化材グラウトが鋼管
21の周辺へ放射状に噴出し、鋼管21の周りの地盤内
に加圧注入される。吐出ノズル32からの硬化材グラウ
トの吐出圧力は、一例として、1〜2MPa(10〜20kgf/c
m2)程度とかなりの高圧に設定されており、これによ
り、硬化材グラウトは地盤中に浸透し、特に、地盤が玉
石混じり礫や崖錘性堆積層あるいは崩壊し易い岩盤など
からなっている場合は、これらの中に十分に浸透する。
Next, as shown in FIGS. 3B and 4, an injector 30 is inserted into the steel pipe 21. The injector 30 is called a single packer, and includes one swelling body 31 swelling by air pressure and a discharge nozzle 32. The swelling body 31 extends from a compressed air source on the ground. An air hose 33 is connected to the discharge nozzle 32 and a grout pipe 34 extending from a grout supply source on the ground. The injecting machine 30 first inserts the steel pipe 21 to the deepest position, and sends compressed air to the swelling body 31 through the air hose 33 at that position to swell the steel.
Fix its position with respect to 1. Then grout tube 3
4, grout cement milk to the discharge nozzle 32,
A grout of hardening material such as cement mortar is pumped. Then, the hardened material grout is discharged from the discharge nozzle 32 and injected under pressure from the front end opening of the steel pipe 21 into the ground in front, and a part of the grout also goes outside the front end of the steel pipe 21, Of the swollen body 31 in the front area. Then, when the internal pressure increases due to the fill-up into the steel pipe 21, the check valve 20 is opened and the hardening material grout is radiated radially around the steel pipe 21, and is injected under pressure into the ground around the steel pipe 21. The discharge pressure of the hardening material grout from the discharge nozzle 32 is, for example, 1 to 2 MPa (10 to 20 kgf / c
m 2 ) is set to a considerably high pressure, so that the hardening material grout penetrates into the ground, and especially the ground is made up of cobble-mixed gravel, talus sedimentary layers, or easily collapsed rock If it penetrates well into these.

【0015】このようにして、鋼管21の前方領域およ
び周辺領域には、土砂を含む厚肉のグラウト層35が形
成され、このグラウト層35は、注入機30を、逆止弁
20の配列ピッチに相当するピッチで引上げながら、前
記硬化材グラウトの吐出を繰返すことで、図4に示す
ように次第に上方へ拡大する。そして、このグラウト層
35が前記小段4、5または斜面6、7の近傍まで拡大
したら、注入機30からの硬化材グラウトの吐出を停止
し、これと同時に膨出体31に接続するエアホース33
を大気側に切換えて、膨出体31を縮径させ、鋼管21
から注入機30を引抜く。上記グラウト層35は、所定
時間経過することで硬化して、図4に示すように定着
層36に変質し、鋼管21と定着層36とが一体となっ
たマイクロパイル11、12(図1)が打設される。な
お、上記注入機30としては、上記したシングルパッカ
ーに代えて、一対の膨出体を備えたダブルパッカーを用
いてもよいことはもちろんである。ただし、この場合
は、鋼管21の内部が空洞となるので、鋼管21内に鉄
筋、H形鋼、小口径鋼管等の補強用心材を装入するのが
望ましい。
In this manner, a thick grout layer 35 containing earth and sand is formed in the front region and the peripheral region of the steel pipe 21, and the grout layer 35 is used to connect the injector 30 to the arrangement pitch of the check valves 20. By repeatedly discharging the hardening material grout while pulling up at a pitch corresponding to the above, the material gradually expands upward as shown in FIG. When the grout layer 35 expands to the vicinity of the small steps 4 and 5 or the slopes 6 and 7, the discharge of the hardening material grout from the injector 30 is stopped, and at the same time, the air hose 33 connected to the swelling body 31.
Is switched to the atmosphere side to reduce the diameter of the swollen body 31,
From the injection machine 30. The grout layer 35 is hardened after a predetermined time elapses, is transformed into a fixing layer 36 as shown in FIG. 4, and the micropiles 11, 12 in which the steel pipe 21 and the fixing layer 36 are integrated (FIG. 1). Is installed. It should be noted that a double packer having a pair of swelling bodies may be used as the injecting machine 30 instead of the single packer described above. However, in this case, since the inside of the steel pipe 21 becomes hollow, it is desirable to insert a reinforcing core material such as a reinforcing steel bar, an H-section steel, a small-diameter steel pipe or the like into the steel pipe 21.

【0016】図5は、本発明の第2の実施の形態として
の斜面の補強工法を示したものである。本第2の実施の
形態の特徴とするところは、上記第1、第2のマイクロ
パイル11、12の打設に先行して、前記小段4、5ま
たは斜面6、7下の地盤中に高圧噴射攪拌工法により改
良柱40を造成し、この改良柱40内に各マイクロパイ
ル11、12を打設する点にある。
FIG. 5 shows a slope reinforcing method according to a second embodiment of the present invention. The feature of the second embodiment is that, prior to the first and second micropiles 11 and 12, the high pressure is applied to the ground under the small steps 4 and 5 or the slopes 6 and 7. The point is that an improved column 40 is formed by the injection stirring method, and the micropiles 11 and 12 are cast into the improved column 40.

【0017】高圧噴射攪拌工法により改良柱40を造成
するには、予め前記図4および図3に示したように、
鋼管(ここでは逆止弁20付きでなくてもよい)21お
よび削孔ロッド25を用いて削孔を行った後、この削孔
により形成された孔26内に、図5に示すように、先
端に噴射ノズル41を有する注入ロッド(単管または二
重管)42を挿入する。そして、この注入ロッド42を
回転および下降させ、その先端の噴射ノズル41が所定
深さに達したら、注入ロッド42内に超高圧(30〜40M
Pa 程度)の水を供給し(圧縮空気を併用する場合もあ
る)、その噴射ノズル41から水平方向へ超高圧水を噴
射させる。この超高圧水の噴射により地盤が広範囲に切
削攪拌(プレカッティング)され、地盤内には大径の切
削攪拌層43が形成され、この切削攪拌層43は、注入
ロッド42の回転および下降に応じて下方へ拡大する。
なお、この時発生する余剰スライムは注入ロッド42の
周りの空隙を通して地上へ排出される。
In order to form the improved pillar 40 by the high-pressure jet stirring method, as shown in FIGS.
After drilling by using a steel pipe (here, it is not necessary to have the check valve 20) 21 and a drilling rod 25, as shown in FIG. 5, in a hole 26 formed by the drilling, An injection rod (single pipe or double pipe) 42 having an injection nozzle 41 at the tip is inserted. Then, the injection rod 42 is rotated and lowered, and when the injection nozzle 41 at the tip thereof reaches a predetermined depth, an ultra-high pressure (30 to 40 M
(Approximately Pa) of water (compressed air may be used in some cases), and ultra high-pressure water is jetted from the jet nozzle 41 in the horizontal direction. The ground is cut and agitated (pre-cutting) over a wide area by the jet of the ultra-high pressure water, and a large-diameter cutting and stirring layer 43 is formed in the ground. The cutting and stirring layer 43 responds to the rotation and lowering of the injection rod 42. To expand downwards.
The surplus slime generated at this time is discharged to the ground through a space around the injection rod 42.

【0018】そして、マイクロパイル11、12の打設
深度よりもわずか深い位置までのプレカッティングを終
えたら、前記超高圧水をグラウト(セメントミルク:水
セメント比W/C =60〜70程度)に切替え、噴射ノズル4
1から超高圧(40MPa 程度)のグラウトを水平方向へ
噴射させながら(圧縮空気を併用する場合もある)、図
5に示すように注入ロッド42を回転および上昇させ
る。このグラウトの高圧噴射により、前記切削攪拌層4
3内の土砂はグラウトと攪拌混合されてグラウト混合層
44に変質し、このグラウト混合層44は注入ロッド4
2の回転および上昇に応じて上方へ拡大する。この時、
余剰スライムは地上へ誘導排出されるが、この段階では
水の噴射が停止されているので、その誘導排出の程度は
わずかであり、グラウトの無駄な消費が抑えられる。こ
のようにしてグラウト混合層44の形成が計画改良域の
上限に達したら、注入ロッド42に対するグラウトの供
給を停止し、注入ロッド42を地盤から引抜き、そのま
ま養生させる。この養生によりグラウト混合層44が硬
化し、地盤内には、図5に示すように前記した大径の
改良柱40が造成される。
After the pre-cutting to a position slightly deeper than the setting depth of the micropiles 11, 12, the ultrahigh-pressure water is grouted (cement milk: water / cement ratio W / C = about 60 to 70). Switching, injection nozzle 4
While injecting grout of 1 to ultra high pressure (about 40 MPa) in the horizontal direction (in some cases, compressed air is also used), the injection rod 42 is rotated and raised as shown in FIG. By the high pressure injection of the grout, the cutting stirring layer 4
The earth and sand in 3 is stirred and mixed with the grout to change into a grout mixed layer 44, and this grout mixed layer 44 is
2 expands upwards according to the rotation and ascent. At this time,
Excess slime is guided and discharged to the ground. At this stage, since the injection of water is stopped, the degree of the guided discharge is small, and wasteful consumption of grout is suppressed. When the formation of the grout mixed layer 44 reaches the upper limit of the planned improvement area in this way, the supply of grout to the injection rod 42 is stopped, and the injection rod 42 is pulled out from the ground and cured as it is. By this curing, the grout mixed layer 44 is hardened, and the large-diameter improved pillar 40 described above is formed in the ground as shown in FIG.

【0019】次に、図5に示すように、上記のように
造成された改良柱40に、例えばアースオーガー45を
用いて前記縦穴46を掘削する。この縦穴46の掘削
は、改良柱40の底面近傍まで行い、掘削終了後、アー
スオーガー45を改良柱40から引抜く。その後、図5
に示すように、この縦穴46内に、上記した逆止弁2
0を備えた鋼管21を挿入し、さらにこの鋼管21内に
前記注入機30を挿入して、前記図4および図3に示
したように逆止弁20を通して鋼管21の周りに硬化材
グラウトを加圧注入し、これにより鋼管21と定着層3
6とが一体となったマイクロパイル11、12が打設さ
れる。なお、上記鋼管21としては、図5に示したよ
うに軸方向に多数の節47を有する節付き鋼管を用いる
ようにしてもよく、これによりマイクロパイル11、1
2の支持力はより一層向上する。
Next, as shown in FIG. 5, the vertical hole 46 is excavated in the improved pillar 40 formed as described above, for example, using an earth auger 45. The excavation of the vertical hole 46 is performed to the vicinity of the bottom surface of the improved column 40, and after the excavation is completed, the earth auger 45 is pulled out from the improved column 40. Then, FIG.
As shown in FIG.
0, and further, the injector 30 is inserted into the steel pipe 21, and the hardened material grout is passed around the steel pipe 21 through the check valve 20 as shown in FIG. 4 and FIG. The steel pipe 21 and the fixing layer 3 are injected under pressure.
Micro piles 11 and 12 in which 6 are integrated are cast. As the steel pipe 21, as shown in FIG. 5, a knotted steel pipe having a large number of nodes 47 in the axial direction may be used.
2, the supporting force is further improved.

【0020】[0020]

【発明の効果】以上、説明したように、本発明に係る斜
面安定化工法によれば、鉛直杭状のマイクロパイルと斜
杭状のマイクロパイルとの杭頭部同士を剛結して組杭と
するので、引張り、曲げ、せん断等に対して大きな耐力
を発揮し、地すべりに対する抑止効果も十分となって、
斜面の安定化に対するマイクロパイル工法の適用性が著
しく向上するようになる。また、斜面途中に二列をなす
ようにマイクロパイルを打設するので、マイクロパイル
の打設数も最小限に抑えることができ、しかも切土法面
の途中の小段を利用して効率よくマイクロパイルを打設
できるので、マイクロパイル工法のもつ施工性、経済性
の良さを十分に活かすことができ、総じて本発明の利用
価値は大なるものがある。
As described above, according to the slope stabilization method according to the present invention, the pile heads of the vertical pile-shaped micropile and the inclined pile-shaped micropile are rigidly connected to each other. As a result, it exerts great strength against tension, bending, shearing, etc., and the deterrent effect against landslide is also sufficient,
The applicability of the micropile method to the stabilization of the slope is significantly improved. In addition, since the micro piles are cast in two rows in the middle of the slope, the number of micro piles can be minimized, and the micro piles can be efficiently used by using the small steps in the middle of the cut slope. Since the pile can be cast, the good workability and economic efficiency of the micropile method can be fully utilized, and the utility value of the present invention is generally large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態により安定化された
斜面の状態を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a state of a slope stabilized according to a first embodiment of the present invention.

【図2】第1の実施の形態におけるマイクロパイル打設
の打設状態を模式的に示す平面図である。
FIG. 2 is a plan view schematically showing a driving state of the micropile driving in the first embodiment.

【図3】マイクロパイル打設における削孔工程とグラウ
ト注入工程とを示す断面図である。
FIG. 3 is a cross-sectional view showing a drilling step and a grout injection step in micropile driving.

【図4】第1の実施の形態におけるマイクロパイル打設
工程を順を追って示す断面図である。
FIG. 4 is a sectional view sequentially showing a micropile placing step in the first embodiment.

【図5】本発明の第2の実施の形態における改良柱造成
工程とマイクロパイル打設工程とを順を追って示す断面
図である。
FIG. 5 is a sectional view sequentially showing an improved column forming step and a micropile placing step in the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 道路 2 地山 3 切土法面 4、5 小段 6、7、8 斜面 11 第1マイクロパイル(鉛直杭状のマイクロパイ
ル) 12 第2マイクロパイル(斜杭状のマイクロパイル) 13 基礎梁 43 改良柱
DESCRIPTION OF SYMBOLS 1 Road 2 Ground 3 Cut slope 4, 5 Small step 6, 7, 8 Slope 11 1st micropile (vertical pile-shaped micropile) 12 2nd micropile (sloped pile-shaped micropile) 13 Foundation beam 43 Improved pillar

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) E02D 7/00 E02D 7/00 A Z 7/24 7/24 (72)発明者 三木 健男 大阪府大阪市中央区高麗橋4丁目1番1号 東洋建設株式会社内 (72)発明者 小竹 望 大阪府大阪市中央区高麗橋4丁目1番1号 東洋建設株式会社内 (72)発明者 合田 和哉 大阪府大阪市中央区高麗橋4丁目1番1号 東洋建設株式会社内 (72)発明者 松田 哲夫 東京都文京区大塚2丁目15番6号 財団法 人先端建設技術センター内 Fターム(参考) 2D041 AA02 AA03 BA20 DA12 DA13 DB02 EB09 EC02 FA03 FA05 FA15 2D044 DB11 EA01 2D050 AA06 CA02 CB03 CB16 CB42──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) E02D 7/00 E02D 7/00 AZ 7/24 7/24 (72) Inventor Takeo Miki Osaka-shi, Osaka 4-1-1 Koraibashi, Chuo-ku, Toyo Construction Co., Ltd. (72) Inventor Nozomi 4-1-1 Koraibashi, Chuo-ku, Osaka, Osaka Toyo Construction Co., Ltd. (72) Inventor Kazuya Goda Osaka, Osaka 4-1-1, Komyo-bashi, Chuo-ku Toyo Construction Co., Ltd. (72) Tetsuo Matsuda 2-15-6 Otsuka, Bunkyo-ku, Tokyo F-term in the Foundation Advanced Construction Technology Center 2D041 AA02 AA03 BA20 DA12 DA13 DB02 EB09 EC02 FA03 FA05 FA15 2D044 DB11 EA01 2D050 AA06 CA02 CB03 CB16 CB42

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 切土法面の途中の小段に対して鉛直杭状
にマイクロパイルを一列に打設すると共に、該小段の直
上部分の斜面に対して斜杭状にマイクロパイルを一列に
打設し、しかる後、前記各列間および各列内のマイクロ
パイルの杭頭部同士を基礎梁により剛結することを特徴
とする斜面の安定化工法。
1. A micropile is laid in a row in the form of a vertical pile on a small step in the middle of a cut slope, and a micropile is laid in a row on a slope immediately above the small step in a slanted pile. A stabilizing method for slopes, wherein the pile heads of the micropiles are rigidly connected to each other between the rows and in the rows by foundation beams.
【請求項2】 鉛直杭状のマイクロパイルと斜杭状のマ
イクロパイルとを相互に千鳥状に配置することを特徴と
する請求項1に記載の斜面の安定化工法。
2. The slope stabilizing method according to claim 1, wherein the vertical pile-shaped micropile and the inclined pile-shaped micropile are arranged in a zigzag manner.
【請求項3】 マイクロパイルの打設に先行して、地盤
中に高圧噴射攪拌工法により改良柱を造成し、該改良柱
内に前記マイクロパイルを打設することを特徴とする請
求項1または2に記載の斜面の安定化工法。
3. The method according to claim 1, wherein prior to placing the micropile, an improved pillar is formed in the ground by a high-pressure jet stirring method, and the micropile is placed in the improved pillar. 2. The method for stabilizing a slope according to 2.
JP2001076129A 2001-03-16 2001-03-16 Slope stabilization method Expired - Fee Related JP3769637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076129A JP3769637B2 (en) 2001-03-16 2001-03-16 Slope stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076129A JP3769637B2 (en) 2001-03-16 2001-03-16 Slope stabilization method

Publications (2)

Publication Number Publication Date
JP2002275907A true JP2002275907A (en) 2002-09-25
JP3769637B2 JP3769637B2 (en) 2006-04-26

Family

ID=18933112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076129A Expired - Fee Related JP3769637B2 (en) 2001-03-16 2001-03-16 Slope stabilization method

Country Status (1)

Country Link
JP (1) JP3769637B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325644A (en) * 2004-05-17 2005-11-24 Chuden Gijutsu Consultant Kk Slope landslide preventing method
JP2008248488A (en) * 2007-03-29 2008-10-16 Kfc Ltd Slope stabilizing method and slope construction equipment
JP2008274553A (en) * 2007-04-25 2008-11-13 Toyo Constr Co Ltd Slope stabilizing method
JP2011026861A (en) * 2009-07-27 2011-02-10 Kfc Ltd Banking reinforcing structure and banking reinforcing method
JP2011179220A (en) * 2010-03-01 2011-09-15 West Nippon Expressway Co Ltd Method of stabilizing slope and landslide control steel pipe pile
JP2012149514A (en) * 2012-05-14 2012-08-09 Kfc Ltd Slope stabilization method
JP2014227729A (en) * 2013-05-23 2014-12-08 東日本旅客鉄道株式会社 Banking reinforcement structure and banking reinforcement method
JP2015055083A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for oblique angle bridge abutment by earth pressure reduction
JP2015055082A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for bridge abutment by earth pressure reduction
JP2016003433A (en) * 2014-06-13 2016-01-12 東日本旅客鉄道株式会社 Construction method for aseismic reinforcement structure of earth structure, earth retaining structure and improvement body
CN106088118A (en) * 2016-08-19 2016-11-09 河海大学 The method for designing of compound soil-baffling structure
JP2017128921A (en) * 2016-01-20 2017-07-27 株式会社ケー・エフ・シー Slope stabilization structure
CN107217678A (en) * 2017-08-02 2017-09-29 中国地质环境监测院 A kind of landslide induced micro combination pile group arch ring reinforcement means
CN107227742A (en) * 2017-08-02 2017-10-03 中国地质环境监测院 A kind of megalith mixture landslide micro combination pile group rib body Retaining Wall Reinforcement method
JP2018021353A (en) * 2016-08-03 2018-02-08 東日本旅客鉄道株式会社 Structure and method for preventing sliding failure of earth structure
CN109083157A (en) * 2018-09-28 2018-12-25 浙江工业大学 A kind of slip-crack surface bracing means and its construction method
CN112681045A (en) * 2020-12-22 2021-04-20 湖北省路桥集团有限公司 Ramp way back-pressure embankment deformation control structure and construction method
CN113981996A (en) * 2021-11-03 2022-01-28 中国十七冶集团有限公司 Construction method of combined type slide-resistant pile structure
CN114086576A (en) * 2021-12-02 2022-02-25 深圳市岩土综合勘察设计有限公司 Steel pipe micro pile and construction method for reinforcing filled slope by using micro pile
CN114351746A (en) * 2021-11-25 2022-04-15 中国葛洲坝集团路桥工程有限公司 Pile foundation platform for river-approaching steep-dip bank slope in mountainous area and construction method
JP2022067519A (en) * 2020-10-20 2022-05-06 東興ジオテック株式会社 Small step construction method in sloped land
CN115198793A (en) * 2022-07-08 2022-10-18 中铁二院工程集团有限责任公司 Side slope open cut tunnel supporting structure and construction method thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325644A (en) * 2004-05-17 2005-11-24 Chuden Gijutsu Consultant Kk Slope landslide preventing method
JP2008248488A (en) * 2007-03-29 2008-10-16 Kfc Ltd Slope stabilizing method and slope construction equipment
JP2008274553A (en) * 2007-04-25 2008-11-13 Toyo Constr Co Ltd Slope stabilizing method
JP4716134B2 (en) * 2007-04-25 2011-07-06 東洋建設株式会社 Slope stabilization method
JP2011026861A (en) * 2009-07-27 2011-02-10 Kfc Ltd Banking reinforcing structure and banking reinforcing method
JP2011179220A (en) * 2010-03-01 2011-09-15 West Nippon Expressway Co Ltd Method of stabilizing slope and landslide control steel pipe pile
JP2012149514A (en) * 2012-05-14 2012-08-09 Kfc Ltd Slope stabilization method
JP2014227729A (en) * 2013-05-23 2014-12-08 東日本旅客鉄道株式会社 Banking reinforcement structure and banking reinforcement method
JP2015055083A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for oblique angle bridge abutment by earth pressure reduction
JP2015055082A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for bridge abutment by earth pressure reduction
JP2016003433A (en) * 2014-06-13 2016-01-12 東日本旅客鉄道株式会社 Construction method for aseismic reinforcement structure of earth structure, earth retaining structure and improvement body
JP2017128921A (en) * 2016-01-20 2017-07-27 株式会社ケー・エフ・シー Slope stabilization structure
JP2018021353A (en) * 2016-08-03 2018-02-08 東日本旅客鉄道株式会社 Structure and method for preventing sliding failure of earth structure
CN106088118A (en) * 2016-08-19 2016-11-09 河海大学 The method for designing of compound soil-baffling structure
CN107227742A (en) * 2017-08-02 2017-10-03 中国地质环境监测院 A kind of megalith mixture landslide micro combination pile group rib body Retaining Wall Reinforcement method
CN107217678A (en) * 2017-08-02 2017-09-29 中国地质环境监测院 A kind of landslide induced micro combination pile group arch ring reinforcement means
CN109083157A (en) * 2018-09-28 2018-12-25 浙江工业大学 A kind of slip-crack surface bracing means and its construction method
JP2022067519A (en) * 2020-10-20 2022-05-06 東興ジオテック株式会社 Small step construction method in sloped land
JP7303169B2 (en) 2020-10-20 2023-07-04 東興ジオテック株式会社 Bench construction method on slope
CN112681045A (en) * 2020-12-22 2021-04-20 湖北省路桥集团有限公司 Ramp way back-pressure embankment deformation control structure and construction method
CN112681045B (en) * 2020-12-22 2022-06-07 湖北省路桥集团有限公司 Ramp way back-pressure embankment deformation control structure and construction method
CN113981996A (en) * 2021-11-03 2022-01-28 中国十七冶集团有限公司 Construction method of combined type slide-resistant pile structure
CN114351746A (en) * 2021-11-25 2022-04-15 中国葛洲坝集团路桥工程有限公司 Pile foundation platform for river-approaching steep-dip bank slope in mountainous area and construction method
CN114351746B (en) * 2021-11-25 2024-04-19 中国葛洲坝集团路桥工程有限公司 Mountain area river-following steep bank slope pile foundation platform and construction method
CN114086576B (en) * 2021-12-02 2023-01-17 深圳市岩土综合勘察设计有限公司 Steel pipe miniature pile and construction method for reinforcing filled slope by using miniature pile
CN114086576A (en) * 2021-12-02 2022-02-25 深圳市岩土综合勘察设计有限公司 Steel pipe micro pile and construction method for reinforcing filled slope by using micro pile
CN115198793A (en) * 2022-07-08 2022-10-18 中铁二院工程集团有限责任公司 Side slope open cut tunnel supporting structure and construction method thereof
CN115198793B (en) * 2022-07-08 2023-07-04 中铁二院工程集团有限责任公司 Slope open cut tunnel supporting structure and construction method thereof

Also Published As

Publication number Publication date
JP3769637B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP3769637B2 (en) Slope stabilization method
KR100866162B1 (en) Chair-type self-supported earth retaining wall constructing method
JP5582497B2 (en) Slope stabilization method and landslide steel pipe restraint pile
KR102195504B1 (en) Construction method for Eearth self-retaining wall using reinforcing member and CIP construction method
KR100762991B1 (en) Precast piling method injected with high-strength mortar
JP4520913B2 (en) Ground improvement method and existing structure foundation reinforcement method
KR102195510B1 (en) Construction method for earth self-retaining wall using reinforcing member and PHC pile
JP3448629B2 (en) Seismic retrofitting method for existing structure foundation
JP4811176B2 (en) Construction method of ready-made piles
CN110896644B (en) Grouting consolidation method for full-casing drilling guide precast pile
JP4269301B2 (en) Cross-section expansion method for existing tunnels
JP2003147782A (en) Foundation structure for constructing new building on existing basement and its construction method
JP2001064958A (en) Foundation constructing method
KR102287362B1 (en) Reinforcement method fot tip of PHC pile using loe fluidity mortar
KR101416865B1 (en) Construction method of screw file
JP2001081770A (en) Pile foundation work
JPH09317373A (en) Method of shaft construction
WO2013115677A2 (en) Screw injection pile and method for producing same
KR102595512B1 (en) Ground reinforcement apparatus using flexible reinforcing material and method constructing the smae
JPH07197469A (en) Structure of earth retaining wall and earth retaining method
KR102184081B1 (en) Construction method for perforating goround bore using inverse casing
RU2260093C2 (en) Method for bored injection pile erection
JP2002097639A (en) Pile burying method and jig
KR102194394B1 (en) Construction method for earth self-retaining wall using reinforcing member and SCW construction method
KR102194388B1 (en) Construction method for earth self-retaining wall using reinforcing member and Soil retaining plate construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051107

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060118

R150 Certificate of patent or registration of utility model

Ref document number: 3769637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees