JP2012149514A - Slope stabilization method - Google Patents

Slope stabilization method Download PDF

Info

Publication number
JP2012149514A
JP2012149514A JP2012110406A JP2012110406A JP2012149514A JP 2012149514 A JP2012149514 A JP 2012149514A JP 2012110406 A JP2012110406 A JP 2012110406A JP 2012110406 A JP2012110406 A JP 2012110406A JP 2012149514 A JP2012149514 A JP 2012149514A
Authority
JP
Japan
Prior art keywords
steel pipe
drilling
slope
grout material
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012110406A
Other languages
Japanese (ja)
Inventor
Naoto Watanabe
直人 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KFC Ltd
Original Assignee
KFC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KFC Ltd filed Critical KFC Ltd
Priority to JP2012110406A priority Critical patent/JP2012149514A/en
Publication of JP2012149514A publication Critical patent/JP2012149514A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slope stabilization method capable of effectively demonstrating pull-out resistance and deterrent force.SOLUTION: The slope stabilization method is for reinforcing a slope ground, a first drilling mechanism is set inside a steel pipe provided with a plurality of grout material discharge holes in a peripheral wall and also provided with a plurality of node projections, and the steel pipe is placed while drilling from a slope to a prescribed depth deeper than a slide surface. After placing is completed, a second drilling mechanism for performing drilling by an excavation diameter smaller than the steel pipe inner diameter is set inside the steel pipe, and drilling is performed further deeper than the distal end of the placed steel pipe by the second drilling mechanism. After the drilling is completed, a grout material is pressurized and injected into the drilled borehole, the grout material is injected in a jetting form from the grout material discharge holes in the steel pipe peripheral wall, a reinforcing bar is erected through the inside of the steel pipe inside the borehole to which the grout material has been injected, and a ground improvement body by the ground to which the grout material has been injected, the reinforcing bar and the steel pipe is formed.

Description

本発明は斜面安定化工法に関わり、特に、斜面地盤を補強する斜面安定化工法に関する。   The present invention relates to a slope stabilization method, and more particularly to a slope stabilization method for reinforcing a slope ground.

斜面安定工は、地すべりを抑止したり、切土・盛土法面を安定化する工法である。盛土法面とは図18に示すように元の斜面2に盛土したときの斜面1であり、切土法面とは元の斜面2を切土して新たに形成される斜面3である。この法面において、法面表層部の活動しようとする部分(滑ろうとする部分)を移動層、移動層以深を不動層あるいは支持層と定義する。すなわち、斜面は図19に示すように地盤の弱い移動層4と地盤が強固な不動層5とで構成され、移動層4は地震その他の要因で、点線で示す部分に沿って滑落あるいは崩落する可能性が高い。このため、上記の斜面安定工がなされる。斜面安定工には、(a)グラウンドアンカー工、(b)鉄筋(たとえばアンカーボルト)の挿入による補強土工が知られている。   The slope stabilization method is a method that suppresses landslides and stabilizes the cut and fill slopes. As shown in FIG. 18, the embankment slope is the slope 1 when embanked on the original slope 2, and the cut slope is the slope 3 newly formed by cutting the original slope 2. In this slope, the part of the slope surface layer where the surface layer is intended to be active (the part to be slid) is defined as a moving layer, and the part deeper than the moving layer is defined as a non-moving layer or a supporting layer. That is, as shown in FIG. 19, the slope is composed of a moving layer 4 having a weak ground and a non-moving layer 5 having a strong ground, and the moving layer 4 slides or collapses along a portion indicated by a dotted line due to an earthquake or other factors. Probability is high. For this reason, the slope stabilization work described above is performed. For slope stabilization work, (a) ground anchor work and (b) reinforced earth work by inserting reinforcing bars (for example, anchor bolts) are known.

グラウンドアンカー工におけるグラウンドアンカー6は図20に示すように3箇所の構造部分、すなわちアンカー頭部6aと、例えば長さ11mのアンカー自由長部6b、例えば長さ4mのアンカー定着長部6cに大別できる。アンカー頭部6aはアンカー力を法面表層部に伝達する部分であり、アンカー自由長部6bは移動層4を貫く部分でアンカー頭部にプレストレス与えるための伝達部分であり、アンカー定着長部6cは不動層5に構築されたアンカー力を発揮する部分である。グラウンドアンカー6は抑止機能として、定着長部6cにより不動層5から得たアンカー力を、自由長部6bを利用して法面表層に配置されたアンカー頭部6aに伝達し、該アンカー頭部6aを構成する受圧構造物(プレキャスト受圧板・法枠・擁壁等)7-1を介して法面表層部より移動層4にプレストレスを与え、滑り面(移動層・不動層の境界部分)の粘着力や摩擦力を増大させ強制的に移動層4を抑止するものである。なお、図において、7−2は崩落した後の現況の崩落面、7−3は施工後の斜面、7−4は法面表層の風化等による剥落防止を目的とした法枠またはロックネット等の固定を行う法面工であり、7−5は切土され、7−6は盛土される部分である。
かかるグラウンドアンカー工は、不動層5に定着部6cを設けるため、深度が深くなると他人の敷地下に侵入し、他の構造物の基礎に接触する可能性があって使えない場合があるという問題がある。
As shown in FIG. 20, the ground anchor 6 in the ground anchor construction has three structural parts, that is, an anchor head 6a and an anchor free length part 6b having a length of 11 m, for example, an anchor fixing length part 6c having a length of 4 m, for example. Can be separated. The anchor head portion 6a is a portion that transmits the anchor force to the slope surface layer portion, and the anchor free length portion 6b is a portion that passes through the moving layer 4 to prestress the anchor head portion, 6 c is a portion that exerts an anchoring force built on the immovable layer 5. As a deterrent function, the ground anchor 6 transmits the anchor force obtained from the immovable layer 5 by the fixing length 6c to the anchor head 6a arranged on the slope surface using the free length 6b. Prestress is applied to the moving layer 4 from the slope surface layer through the pressure receiving structure (precast pressure receiving plate, method frame, retaining wall, etc.) 7-1 constituting 6a, and the sliding surface (boundary part of the moving layer / non-moving layer) ) And the moving layer 4 is forcibly suppressed. In the figure, 7-2 is the collapsed surface of the current state after the collapse, 7-3 is the slope after construction, 7-4 is a frame or lock net for the purpose of preventing peeling due to weathering of the slope surface, etc. The slope is fixed, 7-5 is cut and 7-6 is filled.
Such a ground anchor is provided with a fixing portion 6c in the immovable layer 5, so that when the depth becomes deeper, it may enter the other person's premises and may come into contact with the foundation of another structure and may not be used. There is.

鉄筋挿入による補強土工は、図21に示すように地盤の不安定な部位に2〜5m程度の地山補強用鉄筋8を打設してこれを定着材で地山に全面(全長)定着し、地盤変形を抑止せんとするもので、構造、施工が簡単である。しかし、鉄筋挿入による補強土工では1本当たりの長さは短くなるが、全体累計長が長くなってしまい、不経済となる。即ち、鉄筋挿入工では削孔径、注入形態(多くは無圧注入)等の理由により周面摩擦力がとれない上に、鉄筋材は曲げ耐力が低いために曲げ方向の力を受けると相当程度変形し、このため、小ピッチで多数打設しなければならず、結果的に全体累計長がグランドアンカー工以上となってしまう。また、鉄筋挿入による補強土工は、現時点での性能・施工上の限界がD29異形棒鋼、L=7m程度であり、L=7mよりすべり面が深い位置にある場合や、求められる抑止力が高い場合には、地盤変形の抑止を効果的に行なうことができず、危険側に位置する工法となる。
図22はグラウンドアンカー工と鉄筋挿入工による所要数量の比較表であり、削孔径、長さ、ピッチ、段数、斜面幅10m当たりの本数、斜面幅10m当たりの総延長及び施工模式図の一例を示している。
Reinforcing earthwork by inserting reinforcing bars, as shown in Fig. 21, place 2 to 5m reinforcing bars 8 for ground reinforcement in an unstable part of the ground, and fix this to the whole ground (full length) with fixing material. It is intended to suppress ground deformation, and its structure and construction are simple. However, in the reinforced earth work by inserting reinforcing bars, the length per one is shortened, but the total cumulative length becomes long, which is uneconomical. In other words, in the rebar insertion work, peripheral frictional force cannot be taken for reasons such as drilling hole diameter, injection mode (mostly pressureless injection), etc. For this reason, a large number of small pitches must be placed, and as a result, the total accumulated length becomes equal to or greater than the ground anchor work. In addition, reinforced earthwork by inserting reinforcing bars has a limit of performance and construction at present of D29 deformed steel bar, L = 7m, and when the slip surface is deeper than L = 7m, and the required deterrence is high. In this case, the ground deformation cannot be effectively suppressed, and the construction method is located on the danger side.
Fig. 22 is a comparison table of required quantities for ground anchor work and rebar insertion work. Drilling hole diameter, length, pitch, number of steps, number of slopes per 10m of slope width, total extension per slope width of 10m and an example of construction schematic diagram Show.

地盤補強効果を向上し、かつグラウンドアンカー工や鉄筋挿入工の問題を解決するために、本出願人は、鋼管材周辺部に地盤改良体を形成して地盤を補強する斜面安定化工法を提案している(特許文献1)。この提案されている斜面安定化工法では、(1)周壁にグラウト材吐出孔を複数個有すると共に、複数の節突起を有する鋼管材の内部にビットを含む削孔機構を収容し、(2)該ビットを鋼管材先端から飛び出させて斜面地盤を削孔しながら鋼管材を押して打設し、(3)打設後、前記削孔機構を回収し、削孔機構回収後、鋼管材の内部にグラウト材を加圧注入して前記グラウト材吐出孔からグラウト材を噴出させて、鋼管材周辺部に地盤改良体を形成して地盤を補強する   In order to improve the ground reinforcement effect and solve the problems of ground anchor work and rebar insertion work, the applicant proposed a slope stabilization method to reinforce the ground by forming a ground improvement body around the steel pipe material. (Patent Document 1). In this proposed slope stabilization method, (1) a plurality of grout material discharge holes are provided in the peripheral wall, and a drilling mechanism including a bit is accommodated in a steel pipe material having a plurality of node projections, and (2) The bit is ejected from the tip of the steel pipe material, and the steel pipe material is pushed while being drilled while drilling the slope ground. (3) After the placement, the hole drilling mechanism is recovered, and after the hole drilling mechanism is recovered, The grouting material is pressurized and injected into the grouting material, and the grouting material is ejected from the grouting material discharge hole to form a ground improvement body around the steel pipe material to reinforce the ground.

図23は上記の提案されている斜面安定化施工方法の説明図であり、(1)まず、偏心拡径ビット(削孔ビット)2を利用した二重管乾式削孔方式により削孔しつつ、周壁にグラウト材吐出孔を複数個有する鋼管材1を地盤に直接打設する。(2)所定深さまで鋼管材1を打設すれば、削孔ビット2を縮径して該鋼管材1に収めた後、該削孔ビット2、インナーロッド3、ダウンザホールハンマー4などの削孔機構を引き抜き回収する。(3)ついで、注入用パッカー装置のシングルパッカー201を鋼管材1の先端近傍に配置し、グラウト注入管202よりグラウト材を加圧注入すれば、鋼管材1の先端および該鋼管材の周壁に形成したグラウト材吐出孔よりグラウト材を排出する。(4)以後、注入用パッカー装置を用いて段階加圧注入すれば、グラウト材吐出孔よりグラウト材が排出してグラウト柱体31が形成されてゆく。(5)そして、最後に注入用パッカー装置を口元に位置してグラウト材を鋼管材1内に注入すれば、グラウト材吐出孔1よりグラウト材が排出して鋼管材1周辺の全長に亘ってに均一なグラウト柱体(地盤改良体)31が完成する。すなわち、鋼管材1とグラウト柱体31が一体となった合成杭が完成する。
又、従来技術として図24(A)に示すようにケーシング管9bの中に二重管掘り削孔ロッドとして自穿孔ボルト9aを配置した削孔機を用い、該自穿孔ボルト9aで削孔しながらケーシング管9bを打設し、その後、図24(B)に示すように自穿孔ボルト9aの内孔9cより固化材9dを加圧注入して先端から吐出させながらケーシング管9bをある深さまで引き抜いて、小孔杭を形成する方法がある(特許文献2)。
FIG. 23 is an explanatory view of the proposed slope stabilization construction method described above. (1) First, while drilling by a double tube dry drilling method using an eccentric diameter expanding bit (drilling bit) 2 The steel pipe material 1 having a plurality of grout material discharge holes on the peripheral wall is directly placed on the ground. (2) If the steel pipe material 1 is driven to a predetermined depth, after the drill bit 2 is reduced in diameter and stored in the steel pipe material 1, the drill bit such as the drill bit 2, inner rod 3, down-the-hole hammer 4, etc. Pull out the mechanism and collect it. (3) Next, if the single packer 201 of the injection packer device is disposed in the vicinity of the tip of the steel pipe material 1 and the grout material is injected under pressure from the grout injection pipe 202, the steel pipe material 1 and the peripheral wall of the steel pipe material The grout material is discharged from the formed grout material discharge hole. (4) Thereafter, when stepped pressure injection is performed using an injection packer device, the grout material is discharged from the grout material discharge hole and the grout column 31 is formed. (5) Finally, if the pouring device is placed at the mouth and the grout material is injected into the steel pipe material 1, the grout material is discharged from the grout material discharge hole 1 and extends over the entire length around the steel pipe material 1. A uniform grout pillar (ground improvement body) 31 is completed. That is, a composite pile in which the steel pipe material 1 and the grout column 31 are integrated is completed.
As a conventional technique, as shown in FIG. 24 (A), a drilling machine in which a self-drilling bolt 9a is arranged as a double-pipe drilling rod in a casing pipe 9b is used to drill a hole with the self-drilling bolt 9a. As shown in FIG. 24 (B), the casing tube 9b is driven into the inner hole 9c of the self-drilling bolt 9a and then injected into the casing tube 9b to a certain depth while being discharged from the tip. There is a method of drawing out and forming a small hole pile (Patent Document 2).

特願2007−87883Japanese Patent Application No. 2007-87883 特許3927842号Patent 3927842

しかし、特許文献1の提案方法は、削孔機構を収容し得る程度の径の鋼管材1を、ダウンザホールハンマーなどを利用した二重管削孔方式により、十分深くまで長尺に削孔・打設し、鋼管全長にグラウト材による地盤改良体31を形成することを前提としているために、鉄筋挿入工に比して施工に時間を要し、経済性が悪いという課題があった。
又、特許文献2の従来技術では、削孔の回転・打撃に耐え得る自穿孔ボルト9aとケーシング管(外管)9bを必要とし、ビットは捨てビットとなるため、非常に高価なものとなる。また、外管はある程度まで引き抜くが、外管と地盤との縁は切れており、地盤に定着しているのは外管以深に位置する自穿孔ボルトのみという構造となり、十分な周面摩擦力をとれない課題があった。
以上より、本発明の目的は、グラウンドアンカーほど長尺施工を行わなくとも、また、維持管理に必要な緊張が不要で、しかも鉄筋の曲げ剛性を補って引き抜き抵抗と共に抑止力を有効に発現させることができる斜面安定化工法を提供することである。
本発明の別の目的は、十分大きな周面摩擦力をとれるようにして、より効果的な補強が可能で、結果的に施工総延長を短くすることができ、経済性が良い斜面安定化工法を提供することである。
本発明の別の目的は、ケーシング管を引き抜く際に補強材組付体がケーシング管と一緒に引き抜かれない(共上がりしない)ようにすることである。
However, in the proposed method of Patent Document 1, the steel pipe material 1 having a diameter that can accommodate the drilling mechanism is drilled and punched to a sufficiently long length by a double pipe drilling method using a down-the-hole hammer or the like. Since it is assumed that the ground improvement body 31 made of a grout material is formed over the entire length of the steel pipe, there is a problem that it takes time for construction as compared with the reinforcing bar insertion work and is not economical.
Further, in the prior art of Patent Document 2, a self-drilling bolt 9a and a casing tube (outer tube) 9b that can withstand rotation / blow of a drilling hole are required, and the bit becomes a discarded bit, which is very expensive. . The outer tube is pulled out to a certain extent, but the edge between the outer tube and the ground is cut, and only the self-drilling bolt located deeper than the outer tube is fixed to the ground, so that sufficient peripheral friction force There was a problem that could not be taken.
As described above, the object of the present invention is to provide a deterrence effectively together with the pull-out resistance by compensating for the bending rigidity of the reinforcing bar without requiring the tension required for maintenance and management, even if the construction is not as long as the ground anchor. It is to provide a slope stabilization method that can be used.
Another object of the present invention is to enable a more effective reinforcement by taking a sufficiently large peripheral frictional force, resulting in a shorter total construction length and a more economical slope stabilization method. Is to provide.
Another object of the present invention is to prevent the reinforcing member assembly from being pulled out together with the casing tube when the casing tube is pulled out.

本発明は斜面地盤を補強する斜面安定化工法であり、周壁にグラウト材吐出孔を複数個有すると共に複数の節突起を有する鋼管内に第1の削孔機構をセットして、斜面からすべり面以深の所定深度まで削孔しながら該鋼管を打設するステップ、打設完了後、前記鋼管内径より小さい掘削径で削孔する第2の削孔機構を鋼管内にセットするステップ、該第2の削孔機構により前記打設された鋼管先端以深を更に掘り下げて削孔するステップ、該削孔完了後、鋼管内を貫通して前記掘り下げられた削孔内に鉄筋を打設するステップ、前記鋼管内にグラウト材を加圧注入して該鋼管先端及び該鋼管周壁の前記グラウト材吐出孔からグラウト材を噴出させて、前記鉄筋および鋼管周辺部に地盤改良体を形成するステップを備えている。   The present invention is a slope stabilization method that reinforces the slope ground, the first drilling mechanism is set in a steel pipe having a plurality of grout material discharge holes on the peripheral wall and a plurality of node projections, and a slip surface from the slope. A step of driving the steel pipe while drilling to a predetermined depth below, a step of setting a second drilling mechanism for drilling with a drilling diameter smaller than the inner diameter of the steel pipe in the steel pipe after the completion of the driving, the second Further drilling a hole deeper than the drilled steel pipe tip by the drilling mechanism, and, after completion of the drilling, inserting a reinforcing bar into the drilled hole penetrating through the steel pipe, A step of pressurizing and injecting a grout material into the steel pipe, and ejecting the grout material from the grout material discharge hole of the steel pipe tip and the peripheral wall of the steel pipe, thereby forming a ground improvement body around the reinforcing bar and the steel pipe; .

本発明によれば、全体の施工総延長を短くしながら、効果的な補強を行うことができる。即ち、本発明によれば、不動層側の引き抜き抵抗として、異形棒鋼等による鉄筋を用いることが出来、鋼管部の大きな削孔径と相まって、大きな周面摩擦力をとることが可能となり、しかも、鉄筋の曲げ耐力の不足を鋼管によって補うことができる。
本発明によれば、従来の鉄筋挿入工では不可能であった大径の鉄筋を用いることができるため、施工1本当たり負担すべき抑止力を増大させることが出来、それに伴って打設本数を減らすことができる。
また、鋼管(及び鋼管接続用カップラー)は高価であり、しかも、これが長尺になると削孔・打設に時間がかかるが、本発明によれば、鋼管を短尺に抑えることが出来、施工時間の短縮・経済性向上を図ることが出来る。
又、本発明によれば、補強材組付体の先端にケーシング管と共に引き抜かれるのを防止する共上がり防止手段を設けたから、ケーシング管の引き抜き時、補強材組付体の共上がりを防止することができる。又、これにより、設計上の鉄筋長さ管理及び鋼管の設置位置管理をより正確かつ確実に施工に反映させることが可能となる。
According to the present invention, effective reinforcement can be performed while shortening the overall construction total length. That is, according to the present invention, a rebar made of deformed steel bar or the like can be used as the pulling resistance on the non-moving layer side, and it is possible to take a large peripheral frictional force in combination with a large hole diameter of the steel pipe part, Insufficient bending strength of reinforcing bars can be compensated by steel pipes.
According to the present invention, since it is possible to use a large-diameter rebar that was impossible with conventional rebar insertion work, it is possible to increase the deterrent force to be borne per construction, and accordingly the number of placements Can be reduced.
Moreover, steel pipes (and couplers for connecting steel pipes) are expensive, and if they are long, it takes time for drilling and placing, but according to the present invention, the steel pipe can be kept short and the construction time Can be shortened and the economy can be improved.
In addition, according to the present invention, since the joint rise prevention means for preventing the reinforcement member assembly from being pulled out together with the casing tube is provided, the reinforcement member assembly is prevented from being lifted up when the casing tube is pulled out. be able to. In addition, this makes it possible to reflect the design rebar length management and steel pipe installation position management more accurately and reliably in the construction.

本発明の斜面安定化工法の概略説明図である。It is a schematic explanatory drawing of the slope stabilization method of this invention. 第1実施例の斜面安定化方法により補強材組付体を斜面に施工した場合の施工状態説明図である。It is construction state explanatory drawing at the time of constructing a reinforcement assembly to a slope by the slope stabilization method of 1st Example. 第1実施例の鋼管説明図である。FIG. 2 is an explanatory diagram of a steel pipe of a first example. 補強材組付体の先端部分の構成図である。It is a block diagram of the front-end | tip part of a reinforcing material assembly. 第1実施例の施工方法説明図である。FIG. 3 is an explanatory diagram of a construction method of the first embodiment. 第1変形例の説明図である。It is explanatory drawing of a 1st modification. 第1変形例の防錆加工されたカップラーの説明図である。It is explanatory drawing of the coupler by which the antirust process of the 1st modification was carried out. 第1変形例のセンタライザーの説明図である。It is explanatory drawing of the center riser of a 1st modification. 第1変形例のナットの説明図である。It is explanatory drawing of the nut of a 1st modification. 第1変形例の防錆処理を施された支圧板の説明図である。It is explanatory drawing of the bearing plate to which the antirust process of the 1st modification was performed. 第2変形例の説明図である。It is explanatory drawing of a 2nd modification. 第2変形例の施工方法説明図である。It is construction method explanatory drawing of a 2nd modification. 第2実施例の斜面安定化方法により補強材組付体を斜面に施工した場合の施工状態説明図である。It is construction state explanatory drawing at the time of constructing a reinforcement assembly to a slope by the slope stabilization method of 2nd Example. 第2実施例の鋼管の説明図である。It is explanatory drawing of the steel pipe of 2nd Example. 第2実施例の施工方法説明図である。It is construction method explanatory drawing of 2nd Example. 第1変形例の説明図である。It is explanatory drawing of a 1st modification. 従来例と本発明方法の所要数量比較図表である。It is a required quantity comparison chart of a prior art example and this invention method. 切土・盛土法面説明図である。It is cutting and embankment slope explanatory drawing. 斜面地盤層説明図である。It is slope ground layer explanatory drawing. グラウンドアンカー工の説明図である。It is explanatory drawing of a ground anchor work. 鉄筋挿入による補強土工(鉄筋挿入工)の説明図である。It is explanatory drawing of the reinforcement earthwork (rebar insertion work) by reinforcement insertion. グラウンドアンカー工と鉄筋挿入による補強土工(鉄筋挿入工)所要数量の比較表である。It is a comparison table of required quantity of ground anchor work and reinforcement earthwork by inserting reinforcing bars (reinforcing bar insertion work). 提案されている斜面安定化施工方法の説明図である。It is explanatory drawing of the slope stabilization construction method proposed. 従来技術説明図である。It is a prior art explanatory drawing.

(A)概略
図1は本発明の斜面安定化工法の概略説明図であり、補強材組付体を斜面に施工した後の状態を示している。図において、11は移動層、12は不動層、13は滑り面(移動層・不動層の境界部分)、14は崩落した後の現況の崩落面、15は施工後の斜面、16は法面表層の風化等による剥落防止を目的とした法枠またはロックネット等の固定を行う法枠工、17は切土された部分、18は盛土された部分であり、20は補強材組付体である。
補強材組付体20は、複数の節突起を有する比較的短い長さL1(例えば4〜6m程度)の鋼管21と、鋼管先端から所定長だけ突出するように該鋼管内に配置した長さL2(例えば長さ7〜12m程度)の異形棒鋼、ねじふし鉄筋等の鉄筋22を有している。
施工法は、(1)二重管削孔方式(ケーシング削孔方式)で斜面からすべり面13より深く所定深度まで削孔を行なってケーシング管(図示せず)を打設し、(2)打設完了後に該ケーシング管より削孔機構を回収し、(3)しかる後、補強材組付体20をケーシング管内にセットし、(4) 補強材組付体20のセット完了後に鋼管内にグラウト材を加圧注入して鋼管21の先端から該グラウト材を噴出させ、かつ、ケーシング管を引き抜くことにより補強材組付体20の周囲に地盤改良体を形成する。
(B)第1実施例
図2は第1実施例の斜面安定化方法により補強材組付体を斜面に施工した場合の施工状態説明図であり、図1と同一部分には同一符号を付している。切土、盛土して形成した斜面19にはF200〜F500程度の法面工16が組み付けられている。この法面工16は、網目状の捨型枠、鉄筋を格子状に組んだ法枠を斜面19にセットし、しかる後、コンクリートを吹き付けることにより斜面19に固定される。法面工16の適所には補強材組付体20を施工するための施工部16aがVU管、ボイド管により位置決めされて形成されている。
補強材組付体20は、パイプ状の鋼管21と、鋼管先端から所定長だけ突出するように該鋼管内に配置した鉄筋22を有している。鋼管21の長さは比較的短くL1(例えば4〜6m程度)、図示例のものでは厚さは8.6mm、口径は114.3mmで、外周には円形の複数の節突起23が等間隔で形成されている。節突起23は図3の(A)、(B)に示すようにビード溶接加工により突起高さが2.5mm以上となるように形成されている。なお、図3の(A)は鋼管21の下半分断面拡大図、(B)は節突起部分の断面図である。
(A) Outline FIG. 1 is a schematic explanatory view of a slope stabilization method according to the present invention, and shows a state after a reinforcing material assembly is constructed on a slope. In the figure, 11 is the moving layer, 12 is the non-moving layer, 13 is the sliding surface (boundary part of the moving layer and the non-moving layer), 14 is the falling surface after the collapse, 15 is the slope after construction, and 16 is the slope A frame for fixing the frame or lock net for the purpose of preventing peeling due to weathering of the surface layer, 17 is a cut portion, 18 is a filled portion, 20 is a reinforcement assembly is there.
The reinforcing material assembly 20 is a steel pipe 21 having a relatively short length L1 (for example, about 4 to 6 m) having a plurality of node projections, and a length arranged in the steel pipe so as to protrude from the tip of the steel pipe by a predetermined length. It has a rebar 22 such as a deformed steel bar of L2 (for example, a length of about 7 to 12 m) and a threaded rebar.
The construction method is as follows: (1) Double pipe drilling method (casing drilling method), drilling from the slope to deeper than the sliding surface 13 to a predetermined depth, and placing a casing pipe (not shown), (2) After drilling is completed, the hole drilling mechanism is recovered from the casing pipe. (3) After that, the reinforcing material assembly 20 is set in the casing pipe. (4) After the setting of the reinforcing material assembly 20 is completed, the steel pipe is placed in the steel pipe. A ground improvement body is formed around the reinforcing member assembly 20 by injecting the grout material under pressure to eject the grout material from the tip of the steel tube 21 and pulling out the casing tube.
(B) 1st Example FIG. 2 is a construction state explanatory drawing at the time of constructing a reinforcing material assembly on a slope by the slope stabilization method of the first example, and the same part as FIG. is doing. A slope 19 of about F200 to F500 is assembled on the slope 19 formed by cutting and embankment. The slope work 16 is fixed to the slope 19 by setting a mesh-shaped scraping frame and a slope frame of reinforcing bars in a grid pattern on the slope 19 and then spraying concrete. A construction part 16a for constructing the reinforcing member assembly 20 is formed at an appropriate position of the slope 16 by being positioned by a VU pipe and a void pipe.
The reinforcing member assembly 20 has a pipe-shaped steel pipe 21 and a reinforcing bar 22 arranged in the steel pipe so as to protrude from the tip of the steel pipe by a predetermined length. The length of the steel pipe 21 is relatively short L1 (for example, about 4 to 6 m). In the illustrated example, the thickness is 8.6 mm, the diameter is 114.3 mm, and a plurality of circular node projections 23 are formed at equal intervals on the outer periphery. Has been. As shown in FIGS. 3A and 3B, the node protrusion 23 is formed by bead welding so that the protrusion height becomes 2.5 mm or more. 3A is an enlarged cross-sectional view of the lower half of the steel pipe 21, and FIG. 3B is a cross-sectional view of the node protrusion.

鉄筋22は、図示例のものでは直径29mm、長さL2(例えば長さ7〜12m程度)の異形棒鋼、ねじふし鉄筋等(ねじふし鉄筋とする)であり、鋼管21の両端から所定長だけ突出するように鋼管21に取り付けられている。図4は補強材組付体の先端部分の構成図であり、(A)は補強材組付体20の一部破断図、(B)は補強材組付体20の先端図である。4つの補助鉄筋24は鉄筋22を取り囲むように、90度間隔で鋼管21に溶接により取り付けられ、先端にコーン状の先端金具29が装着されている。鉄筋リング25は4つの補助鉄筋24を相互に連結して所定の位置関係を維持するように機能し、これら補助鉄筋24と鉄筋リング25間は溶接により結合されている。鉄筋22、補助鉄筋24、鉄筋リング25により先端鉄筋システムが形成されている。
口元側では補強材組付体20を打設後、支圧板26をねじふし鉄筋22に嵌め込むと共に、ナット27を支圧板26の上からねじふし鉄筋22の雄ねじ部に螺合して締め付けて該支圧板26を法枠工16に押し当てる。なお、点線で囲んだ部分28は後述する削孔機で開けた削孔である。
In the illustrated example, the reinforcing bar 22 is a deformed steel bar having a diameter of 29 mm and a length L2 (for example, about 7 to 12 m), a threaded reinforcing bar, and the like (referred to as a threaded reinforcing bar). It is attached to the steel pipe 21 so as to protrude. FIG. 4 is a configuration diagram of the distal end portion of the reinforcing member assembly, (A) is a partially cutaway view of the reinforcing member assembly 20, and (B) is a front view of the reinforcing member assembly 20. FIG. The four auxiliary reinforcing bars 24 are attached to the steel pipe 21 by welding at intervals of 90 degrees so as to surround the reinforcing bars 22, and a cone-shaped tip metal fitting 29 is attached to the tip. The reinforcing bar ring 25 functions to connect the four auxiliary reinforcing bars 24 to each other and maintain a predetermined positional relationship. The auxiliary reinforcing bar 24 and the reinforcing bar ring 25 are connected by welding. The reinforcing bar system is formed by the reinforcing bar 22, the auxiliary reinforcing bar 24, and the reinforcing bar ring 25.
After placing the reinforcing member assembly 20 on the mouth side, the bearing plate 26 is fitted into the threaded reinforcing bar 22, and the nut 27 is screwed onto the male threaded portion of the threaded reinforcing bar 22 from above the bearing plate 26 and tightened. The bearing plate 26 is pressed against the frame work 16. A portion 28 surrounded by a dotted line is a hole drilled by a hole drilling machine to be described later.

図5は第1実施例の施工方法説明図である。施工の概略は、すべり面13以深まで長さL1(4〜6m程度)の節突起付きの鋼管21を配置し、それより深い位置までは長さL2(7〜12m程度)の鉄筋22を配置し、グラウト材を鋼管21から噴出して地盤改良体を形成する。
すなわち、まず、削孔機(全油圧型ロータリーパーカッションドリル等)31を使用し、ケーシング管32(削孔中に崩れてこないようにビットと共に孔に進入させていく管)を用いて二重管削孔方式で鉄筋建て込み深度まで削孔する(図5(A)の(1))。すなわち、例えば打設鋼管外形φ114.3mmの場合、ケーシング削孔により径φ146mm程度の孔を掘削しながら同時にケーシング管32を打設する。
打設完了後にケーシング管32より削孔機構を回収し、代わりに複数の節突起を有する鋼管21と鋼管先端から所定長だけ突出するように該鋼管内に配置した鉄筋22からなる補強材組付体20をケーシング管内にセットする(図5(A)の(2))。
ついで、鋼管21内にグラウト材33を加圧注入して鋼管先端から該グラウト材を噴出させ、鋼管内と孔底へグラウト材33を注入し(ベースグラウチング)、同時にケーシング管32の引き上げを開始する(図5(B)の(3)参照)。
以後、グラウト材33を加圧注入しながらケーシング管32を引き抜くことにより鉄筋22及び鋼管21の周囲へグラウト材33を注入し(スキングラウチング)、補強材組付体20の周囲に地盤改良体を形成する(図5(B)の(4)参照)。
FIG. 5 is an explanatory diagram of the construction method of the first embodiment. As for the outline of the construction, a steel pipe 21 with a node projection of length L1 (about 4-6m) is arranged to a depth of 13 or more on the sliding surface, and a reinforcing bar 22 of length L2 (about 7-12m) is arranged to a deeper position. Then, the grout material is ejected from the steel pipe 21 to form a ground improvement body.
That is, first, using a drilling machine (all hydraulic rotary percussion drill, etc.) 31, a double pipe using a casing pipe 32 (pipe that enters the hole with the bit so that it does not collapse into the drilling hole). Drill to the depth where the rebar is built by drilling method ((1) in Fig. 5 (A)). That is, for example, when the outer diameter of the cast steel pipe is φ114.3 mm, the casing pipe 32 is driven simultaneously while excavating a hole having a diameter of about φ146 mm by the casing drilling hole.
After drilling is completed, the hole drilling mechanism is recovered from the casing tube 32, and instead, a reinforcing material assembly comprising a steel tube 21 having a plurality of node projections and a reinforcing bar 22 arranged in the steel tube so as to protrude from the tip of the steel tube by a predetermined length The body 20 is set in the casing tube ((2) in FIG. 5A).
Next, the grout material 33 is pressurized and injected into the steel pipe 21, the grout material is ejected from the tip of the steel pipe, the grout material 33 is injected into the steel pipe and the bottom of the hole (base grouting), and simultaneously the casing pipe 32 starts to be pulled up. (Refer to (3) in FIG. 5B).
Thereafter, the grout material 33 is pulled around the reinforcing bar 22 and the steel pipe 21 by pulling out the casing pipe 32 while injecting the grout material 33 under pressure (skunking), and the ground improvement body is placed around the reinforcing material assembly 20. (See (4) of FIG. 5B).

鋼管21の外周に形成した節突起23により地盤と補強材組付体20の荷重伝達性能が大幅に向上し、しかも、節突起23により、ケーシング管31の引き上げ時に補強材組付体20の共上がりを抑止することができる。又、鋼管を設計上の所定の深度に設置すると共に、この鋼管から突出した鉄筋長が所定の長さとなるよう、確実な施工を行なうことができる。
第1実施例によれば、全体の施工総延長を短くしながら、効果的な補強を行うことができる。即ち、第1実施例によれば、不動層側の引き抜き抵抗として、ねじふし鉄筋や異形棒鋼等による鉄筋を用いることが出来、鋼管部の大きな削孔径と相まって、大きな周面摩擦力をとることが可能となり、しかも、鉄筋の曲げ耐力の不足を鋼管によって補うことができる。
また、第1実施例によれば、従来の鉄筋挿入工では不可能であった大径の鉄筋を用いることができるため、施工1本当たり負担すべき抑止力を増大させることが出来、それに伴って打設本数を減らすことができる。更に、鋼管(及び鋼管接続用カップラー)は高価であり、しかも、これが長尺になると削孔・打設に時間がかかるが、本発明によれば、鋼管を短尺に抑えることが出来、施工時間の短縮・経済性向上を図ることが出来る。なお、カップラーは、1個だけ使えば鋼管長として12mまで施工可能であり、この工法で抑止可能な全てのすべりを抑止することができるので、カップラーは無しか、あるいは1個程度の使用が望ましい。
The node projections 23 formed on the outer periphery of the steel pipe 21 significantly improve the load transmission performance of the ground and the reinforcement assembly 20, and the joint projection 23 allows the reinforcement assembly 20 to be shared when the casing pipe 31 is pulled up. The rise can be suppressed. In addition, the steel pipe can be installed at a predetermined depth in the design, and reliable construction can be performed so that the length of the reinforcing bar protruding from the steel pipe becomes a predetermined length.
According to the first embodiment, effective reinforcement can be performed while shortening the total construction total length. That is, according to the first embodiment, as the pulling resistance on the non-moving layer side, a reinforcing bar made of threaded reinforcing bar or deformed steel bar can be used, and a large peripheral friction force is taken in combination with a large hole diameter of the steel pipe part. In addition, the steel pipe can compensate for the lack of bending strength of the reinforcing bars.
In addition, according to the first embodiment, since it is possible to use a large-diameter rebar that was impossible with the conventional rebar insertion work, it is possible to increase the deterrent force to be borne per construction, and accordingly The number of placements can be reduced. Furthermore, steel pipes (and couplers for connecting steel pipes) are expensive, and when they are long, it takes time for drilling and placing, but according to the present invention, the steel pipe can be kept short and the construction time is shortened. Can be shortened and the economy can be improved. In addition, if only one coupler is used, it is possible to construct a steel pipe length of up to 12 m, and it is possible to suppress all slips that can be suppressed by this construction method, so there is no coupler or it is desirable to use about one .

・第1変形例
図6は第1変形例の説明図であり、図2の第1実施例と同一部分には同一符号を付している。第1の異なる点は、短尺の錆処理を施された異形ねじふし棒鋼をカップラー41によりカップリングして長尺のねじふし鉄筋22を形成して鋼管21に取り付けている点である。第2の異なる点は、鋼管21とねじふし鉄筋22間が所定の配置状態となるよう、ねじふし鉄筋22にセンタライザー42を取り付けている点である。
図7(A),(B)は防錆加工されたカップラー41の下半分断面図及び側面図、図8(A),(B)はセンタライザー42の正面図及び側面図、図9(A),(B)はナット27の下半分断面図及び側面図である。図10(A),(B)は防錆処理を施された支圧板26の平面図及び断側面図である。
First Modified Example FIG. 6 is an explanatory diagram of the first modified example, and the same reference numerals are given to the same parts as those of the first example of FIG. A first different point is that a long-shaped threaded reinforcing bar 22 is formed by coupling a deformed threaded steel bar subjected to a short rust treatment by a coupler 41 and attached to the steel pipe 21. A second different point is that a center riser 42 is attached to the threaded reinforcing bar 22 so that the steel pipe 21 and the threaded reinforcing bar 22 are in a predetermined arrangement state.
7A and 7B are a cross-sectional view and a side view of the lower half of the coupler 41 that has been rust-proofed, FIGS. 8A and 8B are a front view and a side view of the center riser 42, and FIG. ), (B) are a sectional view and a side view of the lower half of the nut 27. FIGS. 10A and 10B are a plan view and a cutaway side view of the bearing plate 26 subjected to the rust prevention treatment.

・第2変形例
図11は第2変形例の説明図であり、補強材組付体の先端部のみ示しており、図4の第1実施例の先端部と同一部分には同一符号を付している。異なる点は先端鉄筋システムを構成する補助鉄筋24が先端へ行くほど撓って、鋼管21の外径より大きく開くようになっている点である。第1実施例の鋼管21は節突起23を有しているため、ケーシング管32の回収時(図5参照)の共上がりはある程度抑止されているが、第2変形例では、共上がりを確実に防止するために鋼管の先端部に、上記ケーシング管の引き抜き動作に伴って、補強材組付体20が一緒に引き抜かれるのを防止する共上がり防止手段を講じている。
第2変形例の先端鉄筋システムは、鋼管21の先端に溶接された4本の補助鉄筋24とこれら補助鉄筋を相互に連結して所定の位置関係を維持する鉄筋リング25を備え、補助鉄筋24は、放射方向外側に撓るように付勢されている。補助鉄筋24の先端には、コーン状の先端金具29が設けられており、この先端金具29は補助鉄筋24の外側への付勢と相まって、施工時におけるケーシング管32(図5参照)の引き抜き動作に伴って削孔壁に引っ掛かり、補強材組付体全体が浮き上がらないように機能する。また、補助鉄筋24と鉄筋リング25は、補強材組付体20を挿入したときにこれが孔底に沈み込まないようにする効果もある。
Second Modified Example FIG. 11 is an explanatory diagram of the second modified example, showing only the distal end portion of the reinforcing member assembly, and the same reference numerals are assigned to the same parts as the distal end portion of the first embodiment of FIG. is doing. A different point is that the auxiliary reinforcing bar 24 constituting the tip reinforcing bar system is bent toward the tip and opens larger than the outer diameter of the steel pipe 21. Since the steel pipe 21 of the first embodiment has the node protrusion 23, the rise of the casing pipe 32 during the recovery (see FIG. 5) is suppressed to some extent. In order to prevent this, a joint rise prevention means is provided at the tip of the steel pipe to prevent the reinforcing material assembly 20 from being pulled out together with the casing pipe being pulled out.
The tip rebar system of the second modified example includes four auxiliary reinforcing bars 24 welded to the tip of the steel pipe 21 and a reinforcing bar ring 25 that interconnects these auxiliary reinforcing bars and maintains a predetermined positional relationship. Is biased to bend radially outward. A cone-shaped tip metal fitting 29 is provided at the tip of the auxiliary reinforcing bar 24, and this tip fitting 29 is coupled with the urging of the auxiliary reinforcing bar 24 to the outside, and the casing tube 32 (see FIG. 5) is pulled out during construction. It functions so that the entire reinforcing material assembly is not lifted by being caught on the drilling wall as it moves. Further, the auxiliary reinforcing bar 24 and the reinforcing bar ring 25 have an effect of preventing the reinforcing member assembly 20 from sinking into the hole bottom when the reinforcing material assembly 20 is inserted.

図12は第2変形例の施工方法説明図であり、先端部のみ示している。
まず、削孔機(全油圧型ロータリーパーカッションドリル等)を使用し、ケーシング管32に収容した削孔機構により二重管削孔方式で鉄筋建て込み深度まで削孔すると共にケーシング管32 を打設する(図12(A))。削孔は、削孔ビット33をケーシング管32の先端から飛び出させ、削孔ロッド34を介して削孔ビットを回転して行う。
ケーシング管32の打設完了後に該ケーシング管32より削孔機構を回収し、複数の節突起を有する鋼管21と鋼管先端から所定長だけ突出するように該鋼管内に配置した鉄筋22からなる補強材組付体20をケーシング管内にセットする(図12(B))。この状態では、補助鉄筋24の外方への付勢力はケーシング管32により押さえ込まれている。
ついで、鋼管21内にグラウト材を加圧注入して鋼管先端から該グラウト材を噴出させ、鋼管内と孔底へグラウト材を注入し、同時にケーシング管32の引き上げを開始する。以後、グラウト材を加圧注入しながらケーシング管32を引き抜くことにより鉄筋22及び鋼管21の周囲へグラウト材を注入し、補強材組付体の周囲に地盤改良体を形成する。ケーシング管32 が引き抜かれてゆくと図12(C)に示すように、補助鉄筋24は外方への付勢力により鋼管21の外径より大きく広がる。この結果、ケーシング管32の引き抜き動作に伴って先端金具29が削孔壁に引っ掛かり、補強材組付体全体が浮き上がらないように機能する。すなわち、ケーシング管32の引き抜き動作に伴って、補強材組付体20が一緒に引き抜かれる共上がりが防止される。
FIG. 12 is an explanatory diagram of the construction method of the second modification, and shows only the tip portion.
First, using a drilling machine (all hydraulic rotary percussion drill, etc.), the drilling mechanism accommodated in the casing pipe 32 drills to the depth where the rebar is built and doubles the casing pipe 32 (FIG. 12A). Drilling is performed by causing the drill bit 33 to protrude from the tip of the casing tube 32 and rotating the drill bit via the drill rod 34.
Reinforcement consisting of a steel pipe 21 having a plurality of node projections and a reinforcing bar 22 arranged in the steel pipe so as to protrude from the tip of the steel pipe by a predetermined length after the drilling mechanism is recovered from the casing pipe 32 after the casing pipe 32 has been placed. The material assembly 20 is set in the casing pipe (FIG. 12B). In this state, the outward urging force of the auxiliary reinforcing bars 24 is pressed down by the casing tube 32.
Subsequently, the grout material is pressurized and injected into the steel pipe 21 to eject the grout material from the tip of the steel pipe, and the grout material is injected into the steel pipe and the bottom of the hole, and at the same time, the casing pipe 32 starts to be pulled up. Thereafter, the grout material is injected around the reinforcing bar 22 and the steel pipe 21 by pulling out the casing tube 32 while injecting the grout material under pressure, and a ground improvement body is formed around the reinforcement assembly. When the casing pipe 32 is pulled out, the auxiliary rebar 24 expands larger than the outer diameter of the steel pipe 21 due to the outward biasing force, as shown in FIG. As a result, as the casing tube 32 is pulled out, the tip fitting 29 is caught on the hole wall and functions so that the entire reinforcing material assembly does not float. That is, it is possible to prevent the joint assembly 20 from being pulled out together with the casing tube 32 being pulled out.

(C)第2実施例
図13は第2実施例の斜面安定化方法により補強材組付体を斜面に施工した場合の施工状態説明図であり、図2の第1実施例と同一部分には同一符号を付している。第2実施例は第1実施例より大きな抑止力が求められる場合に有効である。異なる点は、
(1)第1実施例の鋼管より大径のφ165.2mm以上、長さL1(=4〜12m程度)の鋼管21を用いる点、
(2)該鋼管21の外周には第1のピッチで円形の節突起23が形成されると共に、周壁に第2のピッチで逆止弁機構付きグラウト材吐出孔51が形成されている点、
(3)施工に際して、ダウンザホールハンマーを用いて鋼管21をケーシング管の代わりとして用いながら打設する形で掘削し、次に、打設された鋼管先端前方をその鋼管内径より小さい掘削径(φ140mm程度)で削孔して、半径29mm〜51mm、長さL2(=7〜12m)のねじふし鉄筋22を建て込みする点、
である。
図14(A)は鋼管21の下半分断面拡大図、(B)は逆止弁機構付きグラウト材吐出孔51の周辺における鋼管21の長手方向一部破断図である。節突起23は第1実施例と同様に図14(A)に示すようにビード溶接加工により突起高さが2.5mm以上となるように第1のピッチで形成され、また、逆止弁機構付きグラウト材吐出孔51は第2のピッチで図14(B)に示すように、バルブ加工により形成され、吐出孔51aと逆止弁51bで構成され、グラウトの加圧注入時に逆止弁51bが開いてグラウトが吐き出されるようになっている。
(C) 2nd Example FIG. 13: is a construction state explanatory drawing at the time of constructing a reinforcement assembly to a slope by the slope stabilization method of 2nd Example, and it is the same part as 1st Example of FIG. Are given the same reference numerals. The second embodiment is effective when a greater deterrent is required than the first embodiment. The difference is
(1) Use of a steel pipe 21 having a diameter of φ165.2 mm or more and a length L1 (= about 4 to 12 m) larger than that of the steel pipe of the first embodiment,
(2) On the outer periphery of the steel pipe 21, circular node protrusions 23 are formed at a first pitch, and a grout material discharge hole 51 with a check valve mechanism is formed at a second pitch on the peripheral wall;
(3) At the time of construction, drill with a down-the-hole hammer using the steel pipe 21 as a substitute for the casing pipe, and then drill the diameter in front of the cast steel pipe tip smaller than the inner diameter of the steel pipe (about φ140mm) ), And the point where the screw rebar 22 with a radius of 29mm to 51mm and a length of L2 (= 7 to 12m) is built.
It is.
14A is an enlarged view of the lower half section of the steel pipe 21, and FIG. 14B is a partially broken view in the longitudinal direction of the steel pipe 21 around the grout material discharge hole 51 with a check valve mechanism. As in the first embodiment, the node protrusions 23 are formed at the first pitch so that the protrusion height is 2.5 mm or more by bead welding as shown in FIG. 14 (A), and has a check valve mechanism. As shown in FIG. 14B, the grout material discharge hole 51 is formed by valve processing as shown in FIG. 14B, and is composed of a discharge hole 51a and a check valve 51b. When the grout is pressurized, the check valve 51b is It opens and the grout is spit out.

図15は第2実施例の施工方法説明図である。
ダウンザホールハンマー50用いた二重管乾式削孔方式により削孔しつつ鋼管21を地盤に直接打設する(図15(A)の(1))。ダウンザホールハンマーを用いた二重管乾式削孔方式では、中空の鋼管21の内部に削孔ビット56、インナーロッド52、ダウンザホールハンマー53等の削孔機構を収容し、該削孔ビットを鋼管材先端から飛び出させて打撃と回転作用により削孔を行う。
所定深さまで鋼管21を打設すれば、削孔ビット56、インナーロッド52、ダウンザホールハンマー53等の削孔機構を回収する。鋼管の打設完了後、鋼管21の内径より小さい掘削径で削孔するための先端にビットを備えた別の削孔機構61を鋼管内にセットし、該鋼管先端以深を更に掘り下げて削孔する(図15(A)の(2))。
そして、削孔完了後、削孔機構61を回収し、しかる後、鋼管21の先端より鉄筋部削孔へグラウト材33を注入して(図15(B)の(3))ベースグライチングとし、さらに、鋼管21内から鋼管周壁に設けたグラウト材吐出孔51を介してグラウト材を噴出させる形で(ジェットグラウト)注入してスキングラウチングとする(図15(B)の(4))。次に、先にグラウト材を注入した鉄筋部削孔へ鋼管21内を貫通して鉄筋22を建て込む。これにより、グラウト材が注入された地盤と鉄筋22および鋼管21による地盤改良体が形成される。なお、地盤条件として、すべり面以深は軟岩以上が想定されるので、すべり面以深の鋼管長は1〜3mでよい。
鋼管(及び鋼管接続用カップラー)は高価であり、しかも、これが長尺になると削孔・打設に時間がかかるが、第2実施例によれば、鋼管を短尺に抑えることが出来、施工時間の短縮・経済性向上を図ることが出来る。また、第2実施例によれば、従来の鉄筋挿入工では不可能であった大径の鉄筋を用いることができるため、施工1本当たり負担すべき抑止力を増大させることが出来、それに伴って打設本数を減らすことができる。
FIG. 15 is an explanatory diagram of the construction method of the second embodiment.
The steel pipe 21 is directly placed on the ground while drilling by the double pipe dry drilling method using the down-the-hole hammer 50 ((1) in FIG. 15A). In the double-pipe dry drilling method using a down-the-hole hammer, a drilling mechanism such as a drill bit 56, an inner rod 52, and a down-the-hole hammer 53 is accommodated inside the hollow steel pipe 21, and the drill bit is inserted into the tip of the steel pipe material. The hole is drilled by striking and rotating action.
When the steel pipe 21 is driven to a predetermined depth, the drilling mechanism such as the drill bit 56, the inner rod 52, and the down-the-hole hammer 53 is collected. After the completion of the steel pipe placement, another drilling mechanism 61 with a bit at the tip for drilling with a drilling diameter smaller than the inner diameter of the steel pipe 21 is set in the steel pipe, and further drilled deeper than the tip of the steel pipe. ((2) in FIG. 15A).
Then, after the drilling is completed, the drilling mechanism 61 is recovered, and then the grout material 33 is injected from the tip of the steel pipe 21 into the rebar drilling hole ((3) in FIG. 15B) for base grinding. Further, the grouting material is injected from the inside of the steel tube 21 through the grouting material discharge hole 51 provided in the peripheral wall of the steel tube (jet grouting) to form a sking routing ((4) in FIG. 15B). Next, the rebar 22 is built through the steel pipe 21 into the rebar hole in which the grout material has been previously injected. As a result, a ground improvement body is formed by the ground into which the grout material is injected, the reinforcing bars 22 and the steel pipe 21. In addition, as a ground condition, since the depth beyond a slip surface is assumed to be soft rock or more, the steel pipe length below the slip surface may be 1 to 3 m.
Steel pipes (and couplers for connecting steel pipes) are expensive, and if they are long, it takes time to drill and place, but according to the second embodiment, the steel pipe can be kept short and the construction time Can be shortened and the economy can be improved. Further, according to the second embodiment, since it is possible to use a large-diameter rebar that is impossible with the conventional rebar insertion work, it is possible to increase the deterrent force to be borne per construction, and accordingly The number of placements can be reduced.

・第1変形例
図16は第1変形例の説明図であり、図13の第2実施例と同一部分には同一符号を付している。第1の異なる点は、短尺の錆処理を施された異形ねじふし棒鋼をカップラー41によりカップリングして長尺のねじふし鉄筋22を形成して鋼管21に取り付けている点である。第2の異なる点は、鋼管21とねじふし鉄筋22間が所定の配置状態となるよう、センタライザー42をねじふし鉄筋22に取り付けている点である。
First Modified Example FIG. 16 is an explanatory diagram of the first modified example, and the same parts as those of the second example of FIG. 13 are denoted by the same reference numerals. A first different point is that a long-shaped threaded reinforcing bar 22 is formed by coupling a deformed threaded steel bar subjected to a short rust treatment by a coupler 41 and attached to the steel pipe 21. The second different point is that the center riser 42 is attached to the threaded reinforcing bar 22 so that the steel pipe 21 and the threaded reinforcing bar 22 are in a predetermined arrangement state.

(D)従来例との比較
図17は従来例と本発明方法の所要数量比較図表であり、削孔径、長さ、ピッチ、段数、斜面幅10m当たりの本数、斜面幅10m当たりの総延長及び施工模式図を示している。また、同一斜面に対して必要な補強として、(a)グラウンドアンカー工、(b)鉄筋挿入による補強土工、(c)本発明の工法を比較した。斜面安定化に際して、グラウンドアンカー工が最も経済的ではあるが、この工法では、グラウンドアンカーが隣接する他の敷地の地下に入り込むことになる。本発明の工法は、所要の長さで削孔・打設を容易に行なえ、しかも、鉄筋挿入工に比して打設本数、総延長を格段に短くしながら、確実な補強効果を得ることが可能となる。
本発明によれば、特許文献1の斜面安定化工法よりも経済的、且つ、内部に挿入している鉄筋分だけ、曲げ耐力も増強され、周面摩擦力もとれるため、より効果的な補強工法となる。
本発明によれば、鉄筋補強土をグレードアップでき、従来の鉄筋挿入工では不可能であった大径・長尺の鉄筋を利用することが出来るため、グラウンドアンカーの問題点を解消し、かつ、十分に該グラウンドアンカー工の代替として適用することができる。
本発明によれば、不動層側の引き抜き抵抗として、異形棒鋼等の鉄筋を用いることができ、同時に大きな周面摩擦力をとることも出来る。
節付き鋼管及びカップラーは高価であるが、本発明によれば、鋼管長を(すべり面が発生する深度+所定長)に抑えることができ、経済施工が可能である。
また、本発明によれば、設計手法として、引張り補強に関しては、公知の技術である鉄筋挿入工法における設計を適用することが出来、しかも、曲げ補強に関しては、頭部自由端の骨組み解析を行って変形量と鋼管応力度のチェックを実施することができる。つまり、斜面安定化に際して、必要とされる抑止力や地盤の硬軟に応じてすべり面下の長さも変化するが、本発明によれば、鋼管と鉄筋の径や長さを計算して容易に変化させることができるので、極めて経済的且つ効率的な施工が可能となる。
(D) Comparison with Conventional Example FIG. 17 is a chart showing the required quantity comparison between the conventional example and the method of the present invention. The drilling hole diameter, length, pitch, number of steps, number per 10 m slope width, total extension per 10 m slope width, and The construction schematic diagram is shown. In addition, as a necessary reinforcement for the same slope, (a) ground anchor work, (b) reinforced earth work by inserting reinforcing bars, and (c) the construction method of the present invention were compared. In order to stabilize slopes, ground anchors are the most economical, but with this method, ground anchors enter the basement of other adjacent sites. The construction method of the present invention can easily perform drilling and placing with a required length, and can obtain a reliable reinforcing effect while dramatically shortening the number of placements and the total length as compared with the reinforcing bar insertion work. Is possible.
According to the present invention, it is more economical than the slope stabilization method of Patent Document 1, and only the reinforcing bars inserted therein, the bending strength is enhanced, and the peripheral surface frictional force is obtained. It becomes.
According to the present invention, it is possible to upgrade the reinforcing steel reinforced soil, and since it is possible to use a large diameter and long reinforcing bar that was impossible with conventional reinforcing bar insertion work, the problem of the ground anchor is solved, and It can be applied sufficiently as an alternative to the ground anchor method.
According to the present invention, a reinforcing bar such as a deformed steel bar can be used as the pulling resistance on the stationary layer side, and at the same time, a large peripheral frictional force can be taken.
Although the steel pipe with a node and the coupler are expensive, according to the present invention, the length of the steel pipe can be suppressed to (depth at which the slip surface is generated + predetermined length), and economical construction is possible.
Further, according to the present invention, as a design method, the design in the rebar insertion method which is a well-known technique can be applied for the tension reinforcement, and the frame analysis of the head free end is performed for the bending reinforcement. It is possible to check the amount of deformation and the steel pipe stress. In other words, when the slope is stabilized, the length under the slip surface also changes depending on the required deterrence and the hardness of the ground, but according to the present invention, it is easy to calculate the diameter and length of the steel pipe and the reinforcing bar. Since it can be changed, extremely economical and efficient construction is possible.

13 滑り面(移動層・不動層の境界部分)
21 鋼管
33 グラウト材
22 鉄筋
50 ダウンザホールハンマー
52 インナーロッド
53 ダウンザホールハンマー
56 削孔ビット
61 削孔機構
13 Sliding surface (boundary part of moving layer / non-moving layer)
21 Steel pipe 33 Grout material 22 Reinforcing bar 50 Down the hole hammer 52 Inner rod 53 Down the hole hammer 56 Drilling bit 61 Drilling mechanism

Claims (1)

斜面地盤を補強する斜面安定化工法において、
周壁にグラウト材吐出孔を複数個有すると共に複数の節突起を有する鋼管内に第1の削孔機構をセットして、斜面からすべり面以深の所定深度まで削孔しながら該鋼管を打設し、
打設完了後、前記鋼管内径より小さい掘削径で削孔する第2の削孔機構を鋼管内にセットし、
該第2の削孔機構により前記打設された鋼管先端以深を更に掘り下げて削孔し、
該削孔完了後、前記掘り下げられた削孔内にグラウト材を加圧注入し、また、鋼管周壁の前記グラウト材吐出孔からグラウト材を噴出させる形で注入し、
該グラウト材が注入された削孔内に前記鋼管内を貫通して鉄筋を建て込み、
グラウト材が注入された地盤と前記鉄筋と前記鋼管とによる地盤改良体を形成する、
ことを特徴とする斜面安定化工法。
In slope stabilization method to reinforce slope ground,
A first drilling mechanism is set in a steel pipe having a plurality of grout material discharge holes on the peripheral wall and a plurality of node projections, and the steel pipe is driven while drilling from a slope to a predetermined depth deeper than the slip surface. ,
After the completion of driving, a second drilling mechanism for drilling with a drilling diameter smaller than the inner diameter of the steel pipe is set in the steel pipe,
Further drilling deeper than the tip of the placed steel pipe by the second drilling mechanism,
After completion of the drilling, the grouting material is injected under pressure into the drilled drilling hole, and the grouting material is injected from the grouting material discharge hole in the peripheral wall of the steel pipe.
Reinforcing the steel bar through the steel pipe in the hole into which the grout material was injected,
Forming a ground improvement body by the ground injected with the grout material, the reinforcing bar and the steel pipe;
Slope stabilization method characterized by that.
JP2012110406A 2012-05-14 2012-05-14 Slope stabilization method Pending JP2012149514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012110406A JP2012149514A (en) 2012-05-14 2012-05-14 Slope stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110406A JP2012149514A (en) 2012-05-14 2012-05-14 Slope stabilization method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008065061A Division JP2009221684A (en) 2008-03-14 2008-03-14 Slope stabilization method

Publications (1)

Publication Number Publication Date
JP2012149514A true JP2012149514A (en) 2012-08-09

Family

ID=46792000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110406A Pending JP2012149514A (en) 2012-05-14 2012-05-14 Slope stabilization method

Country Status (1)

Country Link
JP (1) JP2012149514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128921A (en) * 2016-01-20 2017-07-27 株式会社ケー・エフ・シー Slope stabilization structure
CN108222022A (en) * 2018-03-02 2018-06-29 大连理工大学 A kind of tubular type Soil-Nailing Wall Structure and its construction method
JP2018112032A (en) * 2017-01-13 2018-07-19 北海道ガソン株式会社 Construction method of double pipe type drilling rig and anchor gear
CN111851409A (en) * 2020-07-30 2020-10-30 四川港航建设工程有限公司 Dam slope surface repairing structure and construction method
CN116291197A (en) * 2023-05-10 2023-06-23 湖南百舸水利建设股份有限公司 Triangular crawler-type slope taper hole machine and drilling method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824017A (en) * 1981-08-03 1983-02-12 Raito Kogyo Kk Soil stabilization work
JP2002129556A (en) * 2000-10-26 2002-05-09 Okabe Co Ltd Method for installing slope stabilizing anchor, and the slope stabilizing anchor
JP2002275907A (en) * 2001-03-16 2002-09-25 Toyo Constr Co Ltd Stabilization construction method for slope
JP2007211412A (en) * 2006-02-07 2007-08-23 Honma Giken Kk Anchor construction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824017A (en) * 1981-08-03 1983-02-12 Raito Kogyo Kk Soil stabilization work
JP2002129556A (en) * 2000-10-26 2002-05-09 Okabe Co Ltd Method for installing slope stabilizing anchor, and the slope stabilizing anchor
JP2002275907A (en) * 2001-03-16 2002-09-25 Toyo Constr Co Ltd Stabilization construction method for slope
JP2007211412A (en) * 2006-02-07 2007-08-23 Honma Giken Kk Anchor construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128921A (en) * 2016-01-20 2017-07-27 株式会社ケー・エフ・シー Slope stabilization structure
JP2018112032A (en) * 2017-01-13 2018-07-19 北海道ガソン株式会社 Construction method of double pipe type drilling rig and anchor gear
CN108222022A (en) * 2018-03-02 2018-06-29 大连理工大学 A kind of tubular type Soil-Nailing Wall Structure and its construction method
CN111851409A (en) * 2020-07-30 2020-10-30 四川港航建设工程有限公司 Dam slope surface repairing structure and construction method
CN116291197A (en) * 2023-05-10 2023-06-23 湖南百舸水利建设股份有限公司 Triangular crawler-type slope taper hole machine and drilling method thereof
CN116291197B (en) * 2023-05-10 2023-08-11 湖南百舸水利建设股份有限公司 Triangular crawler-type slope taper hole machine and drilling method thereof

Similar Documents

Publication Publication Date Title
JP4010383B2 (en) Pile method
JP5199166B2 (en) Foundation pile structure by site construction and construction method of foundation pile
JP2009221684A (en) Slope stabilization method
JP4716134B2 (en) Slope stabilization method
JP5340067B2 (en) Embankment reinforcement structure
JP2012149514A (en) Slope stabilization method
KR101453997B1 (en) The Extending System for Piles with an Extended Head
JP6634219B2 (en) Ground anchor installation method
JP5677728B2 (en) Tunnel reinforcement method, tunnel reinforcement structure
JP3927842B2 (en) Construction method of double pipe digging small diameter pile
KR101674656B1 (en) CIP retaining wall with steel tube
JP2011179220A (en) Method of stabilizing slope and landslide control steel pipe pile
KR20100124028A (en) Construction method of lower end expanded type cast-in-place piles
JP4727718B2 (en) Retaining method for retaining wall
KR101005193B1 (en) Pile for cofferdam
KR20120102480A (en) Phc pile with improved end bearing capacity and piling method of phc pile using the same
JP2008248488A (en) Slope stabilizing method and slope construction equipment
JP2007332559A (en) Removal method for existing underground pile
KR101241382B1 (en) Micro pile capable of withdrawing upper cassing and method for constructing foundation using the same
JP3878104B2 (en) Construction method of double pipe digging rock bolt using drilling rod
JP4884276B2 (en) Rotating press pile construction method and slope construction equipment
KR102073630B1 (en) Sacrificial Steel Pipe Cutting Method Using Sacrificial Steel Pipe for Field Drilled Shaft and Construction Method for Stiffness Increase on the Pile
JP3134898U (en) Concrete pile
JP2007040028A (en) Reinforcing structure and reinforcing method for ground
JP2007107276A (en) Repair reinforcement method of existing quaywall and its repair reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903