JP2015203243A - Liquefaction countermeasure method of foundation by means of solidification using an injection method - Google Patents

Liquefaction countermeasure method of foundation by means of solidification using an injection method Download PDF

Info

Publication number
JP2015203243A
JP2015203243A JP2014083438A JP2014083438A JP2015203243A JP 2015203243 A JP2015203243 A JP 2015203243A JP 2014083438 A JP2014083438 A JP 2014083438A JP 2014083438 A JP2014083438 A JP 2014083438A JP 2015203243 A JP2015203243 A JP 2015203243A
Authority
JP
Japan
Prior art keywords
ground
injection
solidification
liquefaction countermeasure
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014083438A
Other languages
Japanese (ja)
Other versions
JP6546720B2 (en
Inventor
舘山 勝
Masaru Tateyama
勝 舘山
淳 井澤
Jun Izawa
淳 井澤
恭平 上田
Kyohei Ueda
恭平 上田
寅士良 藤原
Torashiro Fujiwara
寅士良 藤原
中村 宏
Hiroshi Nakamura
宏 中村
淳 川▲崎▼
Atsushi Kawasaki
淳 川▲崎▼
大西 高明
Takaaki Onishi
高明 大西
晃 林田
Akira Hayashida
晃 林田
修 入山
Osamu Iriyama
修 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Raito Kogyo Co Ltd
East Japan Railway Co
Original Assignee
Railway Technical Research Institute
Raito Kogyo Co Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Raito Kogyo Co Ltd, East Japan Railway Co filed Critical Railway Technical Research Institute
Priority to JP2014083438A priority Critical patent/JP6546720B2/en
Publication of JP2015203243A publication Critical patent/JP2015203243A/en
Application granted granted Critical
Publication of JP6546720B2 publication Critical patent/JP6546720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquefaction countermeasure method of foundation by means of solidification using an injection method capable of easily performing liquefaction countermeasure at a low cost while improving solidification of sand foundation.SOLUTION: The liquefaction countermeasure method solidifies the foundation by using an injection method. A filling pipe with the front end sealed is inserted into the foundation with a static manner or hitting manner. Subsequently, an injection material is dynamically injected with vibration amplitude larger limit infusion rate of the foundation to thereby positively generate cleavage veins in a sand foundation. Non-injected foundation between the cleavage veins is solidified by expanding the cleavage vein in orthogonal directions.

Description

本発明は、注入工法を用いた地盤の密実化による液状化対策工法に関するものである。特に、液状化が懸念される緩い砂質土地盤において、既設の盛土や、橋梁の基礎などに対して液状化対策する際に、薬液注入工法によって地盤を密実化させる、簡易で経済的な液状化対策工法に関するものである。   The present invention relates to a liquefaction countermeasure method by the solidification of the ground using an injection method. In particular, in the case of loose sandy ground where liquefaction is a concern, when taking measures against liquefaction on existing embankments or bridge foundations, a simple and economical way to solidify the ground using a chemical injection method. It relates to the liquefaction countermeasure method.

従来、以下のような工法が採用されている。   Conventionally, the following construction methods have been adopted.

(1) 薬液を脈状に注入する技術(動的注入工法)(下記特許文献1〜3、下記非特許文献1参照)
地盤に対して薬液注入を施す方法として動的に薬液を注入させる技術が提案されている。この方法は砂地盤に対しては品質が高い浸透注入を施すことを目的とし、粘性土地盤や岩盤地盤に対しては、水みちやクラックなどに対して脈状に注入を施すことを目的に行われるものである。
(1) Technology for injecting a chemical solution in a pulse shape (dynamic injection method) (see Patent Documents 1 to 3 and Non-Patent Document 1 below)
As a method of injecting a chemical solution to the ground, a technique for dynamically injecting a chemical solution has been proposed. The purpose of this method is to inject high quality osmotic injection into sand ground, and to inject into water veins and cracks in the form of veins for viscous or rocky ground. Is to be done.

(2) 薬液注入工法による液状化対策
これまでの薬液注入による液状化地盤対策工法としては、飽和地盤中に薬液を浸透注入させて水と置換し、液状化地盤を固化させる浸透固化工法が挙げられる。また、対象地盤を薬液やセメントと混合することで地盤の剛性・強度を高める深層混合処理工法や高圧噴射攪拌工法がある。しかしながら、これらの場合には液状化対象地盤を100%改良することにより対策しようとするものであるため、得られる対策効果は大きいが、その分、高コストとなる。
(2) Liquefaction countermeasures by chemical solution injection method The conventional liquefaction countermeasures method by injecting chemical solution includes infiltration solidification method in which chemical solution is infused into saturated ground to replace water and solidify the liquefied ground. It is done. In addition, there are a deep mixing method and a high-pressure jet agitation method that increase the rigidity and strength of the ground by mixing the target ground with chemicals and cement. However, in these cases, since countermeasures are to be taken by improving the liquefaction target ground by 100%, the countermeasure effect obtained is great, but the cost is correspondingly increased.

図10は従来の格子状地盤改良の一例を示す模式図である。   FIG. 10 is a schematic diagram showing an example of a conventional grid-like ground improvement.

この図において、101は非液状化層、102は液状化層、103は杭であり、格子状地盤改良を行った例もある。   In this figure, 101 is a non-liquefied layer, 102 is a liquefied layer, 103 is a pile, and there is also an example in which a grid-like ground improvement is performed.

上記した工法では、格子状に地盤改良し、コストを低減することができるが、施工機械が大きく、既設構造物を対象とした狭隘箇所での施工が困難である。   In the above construction method, the ground can be improved in a lattice shape and the cost can be reduced. However, the construction machine is large, and it is difficult to perform construction in a narrow area targeting an existing structure.

次に、液状化地盤中に裂け目を形成しながら薬液を割裂注入することにより、地盤内に注入固化物を形成する液状化対策工法の特許(特許2)もある。この特許は、理想的には液状化が懸念される砂地盤に対して浸透注入を行いたいのだが、実際は地盤の不均一性や細粒分の混入などによって、割裂注入となってしまうことが多いので、割裂状の注入固化物を多数形成させ、その拘束によって地盤の剛性を増加させ、液状化抵抗を増大させる効果を狙ったものである。したがって、所定の液状化対策効果を得るためには、注入量は比較的大きくなり、その分、高コストとなる。また、地震による地盤の変形を受けて、割裂状の注入固化体が損傷した場合には、地盤剛性の向上効果は低下する。   Next, there is also a patent for a liquefaction countermeasure method (Patent 2) that forms an injection solidified product in the ground by splitting and injecting a chemical solution while forming a tear in the liquefied ground. This patent ideally wants to infiltrate sand ground where liquefaction is a concern, but in reality, it may cause split injection due to ground inhomogeneity or inclusion of fine particles. Since there are many, it aims at the effect of forming many split-like injection | pouring solidified substances, increasing the rigidity of a ground by the restraint, and increasing liquefaction resistance. Therefore, in order to obtain a predetermined liquefaction countermeasure effect, the injection amount becomes relatively large, and the cost is correspondingly increased. Further, when the split solidified solidified body is damaged due to the deformation of the ground due to the earthquake, the effect of improving the ground rigidity is lowered.

(3) 密実化による液状化対策
一方、地盤の密実化による既存の液状化対策工法としては、静的又は動的砂締固め杭工法(SCP工法:サンドコンパクションパイル工法)や圧入式締固め工法(CPG工法:コンパクショングラウチング工法)、振動を与えて地盤を締固めるロッドコンパクション工法や重錘落下締固め工法が挙げられるが、これらはいずれも大型機械が必要となり、狭隘箇所での施工に向かない。また、所定の液状化対策効果を得るためには高コストになるなどの問題がある。また、施工中の騒音や振動、地盤変位も大きいため、鉄道など変位制限が厳しい箇所での施工に不適である。
(3) Measures against liquefaction due to solidification On the other hand, existing liquefaction countermeasures due to solidification of the ground include static or dynamic sand compaction pile method (SCP method: sand compaction pile method) and press-fit type tightening method. The compaction method (CPG method: compaction grouting method), the rod compaction method that applies vibration and compacts the ground, and the weight drop compaction method are all mentioned. Not suitable. In addition, there are problems such as high costs in order to obtain a predetermined liquefaction countermeasure effect. In addition, noise, vibration, and ground displacement during construction are large, making it unsuitable for construction in places where displacement restrictions are severe, such as railways.

特許第3731189号公報Japanese Patent No. 3731189 特許第3709505号公報Japanese Patent No. 3709505 特許第3757400号公報Japanese Patent No. 3757400

動的注入工法、動的注入工法協会編、パンフレットDynamic injection method, edited by Dynamic Injection Method Association, pamphlet

このように、
(1) これまでに液状化対策工法として適用されてきた地盤改良工法は、液状化対象地盤を100%改良することを基本とするため、高コストである。
in this way,
(1) The ground improvement method that has been applied as a liquefaction countermeasure method so far is based on improving the liquefaction target ground by 100% and is therefore expensive.

(2) 割裂状に注入固化物を配置する方法も提案されているが、注入固化物だけによって地盤の剛性を高めるためには、それでも高改良率となる。このため、抜本的な低コスト化を実現できない。  (2) A method of arranging the injected solidified material in a split shape has also been proposed, but in order to increase the rigidity of the ground only by the injected solidified material, the improvement rate is still high. For this reason, drastic cost reduction cannot be realized.

(3) 従来の密実化による液状化対策工法は、いずれも大型機械を必要とし、施工中の騒音や振動、変形も大きく、鉄道のような変位制限が厳しく箇所、都市部のような騒音振動の制限箇所、施工スペースが狭隘な箇所での施工は困難である。  (3) The conventional liquefaction countermeasure methods by solidification all require large machines, large noise, vibration and deformation during construction, severe displacement restrictions such as railways, noise in urban areas, etc. Construction in places where vibration is restricted and construction space is narrow is difficult.

本発明は、上記状況に鑑みて、砂地盤の密実化を図り、簡易で経済的な液状化対策を可能とする、注入工法を用いた地盤の密実化による液状化対策工法を提供することを目的とする。   In view of the above situation, the present invention provides a liquefaction countermeasure method by solidification of the ground using an injection method, which makes it possible to solidify the sand ground and enable a simple and economical liquefaction countermeasure. For the purpose.

本発明は、上記目的を達成するために、
〔1〕注入工法を用いた地盤の密実化による液状化対策工法において、注入管の先端を閉塞した状態で、静的もしくは打撃貫入して注入管を立て込み、次に、地盤の限界注入速度より大きな振幅で動的に注入することにより、砂地盤においても積極的に割裂脈を発生させ、割裂脈を直行方向に押し広げ、割裂脈と割裂脈の間に挟まれた未注入地盤の密実化を図ることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the liquefaction countermeasure method by the solidification of the ground using the injection method, with the injection tube closed, the injection tube is set up by static or impact penetration, and then the limit injection of the ground By dynamically injecting with an amplitude larger than the velocity, the split ground is actively generated even in the sand ground, and the split vein is pushed in the orthogonal direction, and the uninjected ground sandwiched between the split vein and the split vein It is characterized by achieving solidification.

〔2〕上記〔1〕記載の注入工法を用いた地盤の密実化による液状化対策工法において、前記注入工法では、注入管を存置させ、この注入管を幹として割裂脈同士の連結性を高めることを特徴とする。   [2] In the liquefaction countermeasure method by the solidification of the ground using the injection method described in [1] above, in the injection method, the injection tube is allowed to remain, and the connectivity between the splitting veins is established using the injection tube as a trunk. It is characterized by increasing.

〔3〕上記〔1〕記載の注入工法を用いた地盤の密実化による液状化対策工法において、前記注入管を引き抜く際にモルタル等で置き換えることを特徴とする。   [3] In the liquefaction countermeasure method by the solidification of the ground using the injection method described in [1] above, when the injection tube is pulled out, it is replaced with mortar or the like.

〔4〕上記〔3〕記載の注入工法を用いた地盤の密実化による液状化対策工法において、前記注入管を引き抜き、モルタルで置き換えた後に、モルタル中に鉄筋などの補強体を存置することを特徴とする。   [4] In the liquefaction countermeasure method by the solidification of the ground using the injection method described in [3] above, after the injection tube is pulled out and replaced with mortar, a reinforcing body such as a reinforcing bar is placed in the mortar. It is characterized by.

〔5〕上記〔1〕記載の注入工法を用いた地盤の密実化による液状化対策工法において、地盤改良杭を用いることを特徴とする。   [5] A ground improvement pile is used in the liquefaction countermeasure method by the solidification of the ground using the injection method described in [1] above.

本発明によれば、次のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

(1) 本発明の注入工法は注入率が5〜10%程度であるため、通常の浸透注入工法の注入率(20〜50%程度)による液状化対策に比べて経済的であり、施工スピードも高い。また、施工機械が小さいため狭隘箇所での施工性にも優れている。    (1) Since the injection method of the present invention has an injection rate of about 5 to 10%, it is more economical than the liquefaction countermeasure by the injection rate (about 20 to 50%) of the normal osmotic injection method, and the construction speed Is also expensive. Moreover, since the construction machine is small, it is excellent in workability in a narrow space.

(2) 基本的には地盤の密実化による液状化対策であるが、地盤に注入することによって、未注入地盤と比べて相対的に透水性の低下が見込めるため、地震時において過剰間隙水圧の上昇も抑制でき、この効果も地盤の液状化の程度を低減することに寄与する。    (2) Basically, it is a countermeasure against liquefaction due to the solidification of the ground, but when injected into the ground, it can be expected that the water permeability will be relatively lower than that of the unfilled ground. The rise of the soil can also be suppressed, and this effect also contributes to reducing the degree of ground liquefaction.

(3) また、地震中のせん断変形で破壊しない程度の幹(注入管の存置、モルタルと鉄筋、地盤改良杭等)を造ることにより、せん断変形の抑制効果も期待できる。    (3) In addition, the effect of suppressing shear deformation can be expected by constructing a trunk that does not break due to shear deformation during an earthquake (such as the existence of injection pipes, mortar and reinforcing bars, ground improvement piles, etc.).

本発明の実施例による注入管立て込みによる密実化の模式図である。It is a schematic diagram of the realization by injection pipe standing by the Example of this invention. 本発明の実施例による割裂脈の押し広げによる密実化の効果を示す模式図である。It is a schematic diagram which shows the effect of solidification by the expansion of the split vein by the Example of this invention. 改良脈のみと存置した注入管と割裂脈との連結によるせん断変形の抑制効果を示す模式図である。It is a schematic diagram which shows the suppression effect of the shear deformation by the connection of the injection pipe and the split vein which existed only with the improved vein. モルタル等による注入管の代替案を示す模式図である。It is a schematic diagram which shows the alternative of the injection tube by mortar etc. 本発明の実施例を示す脈状改良体(3回目)を示す図面代用写真である。It is a drawing substitute photograph which shows the pulse improvement body (3rd time) which shows the Example of this invention. 脈状改良体施工前後のミニラム試験結果を示す図である。It is a figure which shows the miniram test result before and behind construction of a vein improvement body. 確認実験模型の図である。It is a figure of a confirmation experiment model. 実験結果を示す図である。It is a figure which shows an experimental result. 本発明の実施例を示す脈状地盤改良工法の適用模式図である。It is an application schematic diagram of the vein ground improvement method which shows the Example of this invention. 機械式攪拌混合工法などによって格子状に地盤改良し、コストを低減する方法(TOFT工法)の模式図である。It is a schematic diagram of a method (TOFT method) for improving the ground in a lattice shape by a mechanical stirring and mixing method or the like and reducing the cost.

注入工法を用いた地盤の密実化による液状化対策工法は、注入管の先端を閉塞した状態で、静的もしくは打撃貫入して注入管を立て込み、次に、地盤の限界注入速度より大きな振幅で動的に注入することにより、砂地盤においても積極的に割裂脈を発生させ、割裂脈を直行方向に押し広げ、割裂脈と割裂脈の間に挟まれた未注入地盤の密実化を図る。   The liquefaction countermeasure method by the solidification of the ground using the injection method is a method in which the injection tube is set up by static or impact penetration with the tip of the injection tube blocked, and then larger than the limit injection rate of the ground. By dynamically injecting with amplitude, split fissures are actively generated even in sand ground, and the split fissures are spread in the perpendicular direction, and the solidity of the uninjected ground sandwiched between the split fissures and split fissures Plan.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施例による注入管立て込みによる密実化の模式図である。   FIG. 1 is a schematic diagram of realization by setting up an injection pipe according to an embodiment of the present invention.

この図において、1は注入管、2はその注入管1の回りの密度の増加を示しており、注入管1は立て込みにより密実化される。また、その際に、通常の小型ボーリングマシーンによる削孔でもよいが、例えば注入管の先端を閉塞した状態で、静的もしくは打撃貫入すると、注入管の貫入時に地盤の密実化が図れる。更に、その際、地盤の限界注入速度より大きな振幅で動的に注入することにより、砂地盤においても積極的に割裂脈を発生させ、割裂脈を直行方向に押し広げ、割裂脈と割裂脈の間に挟まれた未注入地盤の密実化を図ることができる。   In this figure, 1 indicates an injection tube, 2 indicates an increase in density around the injection tube 1, and the injection tube 1 is made dense by standing. At that time, a hole drilling by a normal small boring machine may be used. However, for example, if the injection tube is statically or hammered while the tip of the injection tube is closed, the ground can be solidified when the injection tube penetrates. Furthermore, at that time, by dynamically injecting with an amplitude larger than the limit injection speed of the ground, the split vein is actively generated even in the sand ground, and the split vein is pushed in the orthogonal direction, and the split vein and split vein are The solidity of the uninjected ground sandwiched between them can be achieved.

図2は本発明の実施例による割裂脈の押し広げによる密実化の効果を示す模式図である。   FIG. 2 is a schematic diagram showing the effect of realization by the spreading of the split vein according to the embodiment of the present invention.

この図において、11は注入管、12は改良脈(割裂脈)、13は改良脈12の押し広げによる密実部を示している。すなわち、地盤の限界注入速度より大きな振幅で動的に注入する。ここで、従来の動的注入工法(上記特許文献1〜3)は、より高品質に砂地盤に浸透注入を行うことを目的としていたが、本発明の工法では砂地盤においても積極的に割裂脈を発生させ、割裂脈が直行方向に押し広がろうとすることにより効率的に地盤の密実化を図る。地盤を低注入量で効率的に密実化させることを目的とした注入方法や注入剤、ゲルタイムなどの設定を行うことにより、割裂脈と割裂脈の間に挟まれた未注入地盤の密実化を図ることができる。室内実験や土層実験によると、注入率2.5%〜5%で所定の密実化が得られるが、実際の地盤では多少のロスも見込む必要があるものの、それでも5〜10%程度の注入率で、地盤の相対密度Drの10%以上の向上効果が期待でき、これによって地盤の液状化抵抗力が高まる。   In this figure, 11 indicates an injection tube, 12 indicates an improved pulse (split pulse), and 13 indicates a solid part due to expansion of the improved pulse 12. That is, the injection is dynamically performed with an amplitude larger than the limit injection speed of the ground. Here, the conventional dynamic injection method (the above Patent Documents 1 to 3) was intended to infiltrate the sand ground with higher quality, but the method of the present invention also actively splits the sand ground. The ground is generated efficiently by generating the veins and trying to spread the split veins in the orthogonal direction. By setting the injection method, injection agent, gel time, etc. for the purpose of efficiently solidifying the ground with a low injection volume, the solidity of the uninjected ground sandwiched between the split veins and the split veins Can be achieved. According to laboratory experiments and soil layer experiments, the specified solidification can be obtained at an injection rate of 2.5% to 5%, but it is still necessary to expect some loss in the actual ground, but still about 5-10% With the injection rate, an improvement effect of 10% or more of the relative density Dr of the ground can be expected, thereby increasing the liquefaction resistance of the ground.

図3は改良脈のみと存置した注入管と割裂脈との連結によるせん断変形の抑制効果を示す模式図、図4はモルタル等による注入管の代替案を示す模式図である。   FIG. 3 is a schematic diagram showing the effect of suppressing shear deformation by the connection between an injection tube having only an improved vein and a split vein, and FIG. 4 is a schematic diagram showing an alternative to the injection tube by mortar or the like.

割裂脈は、実際には地震中の地盤のせん断変形を抑制する効果も期待できるが、地震中に地盤がせん断変形する際に、割裂脈が折れて不連続となることが懸念されるため、せん断変形の抑制効果は小さいと思われる。そこで、本発明の注入工法では、図3(a)に示すように、一般的には注入管は割裂脈21から引き抜かれるが、本発明では注入管を存置することも可とする。これによって、図3(b)に示すように、注入管を幹として割裂脈同士の連結性が高まるため、地盤のせん断変形の抑制効果や、既設構造物(盛土や基礎)の支持力向上効果も期待できる。   The splitting vein can actually be expected to suppress the shear deformation of the ground during the earthquake, but when the ground undergoes shear deformation during the earthquake, there is a concern that the splitting vein breaks and becomes discontinuous, It seems that the effect of suppressing shear deformation is small. Therefore, in the injection method of the present invention, as shown in FIG. 3A, generally, the injection tube is pulled out from the splitting vein 21, but in the present invention, it is also possible to leave the injection tube. As a result, as shown in FIG. 3 (b), the connectivity between the split veins is enhanced with the injection tube as a trunk, so that the effect of suppressing shear deformation of the ground and the effect of improving the bearing capacity of existing structures (banking and foundation) are improved. Can also be expected.

もしくは注入管の存置に変えて、図4に示すように、割裂脈31と密実部32を形成した注入管33を引き抜く際にモルタル34等で置き換え、鉄筋35などを存置しても同様の効果が得られる。ここで鉄筋35は、モルタル34の引張りや曲げによる破壊を阻止するために設置するものである。また、注入とは別工程で、十分な強度を有する噴射攪拌工法や機械式攪拌工法などで杭状に地盤改良(改良率5〜10%程度)しても同様の効果が得られる。   Alternatively, in place of the infusion tube, as shown in FIG. 4, when the infusion tube 33 in which the split vein 31 and the solid portion 32 are formed is pulled out, it is replaced with a mortar 34 or the like, and the rebar 35 or the like is also present. An effect is obtained. Here, the reinforcing bar 35 is installed in order to prevent the mortar 34 from being broken by pulling or bending. In addition, the same effect can be obtained even if the ground is improved into a pile shape (an improvement rate of about 5 to 10%) by a jet stirring method or a mechanical stirring method having sufficient strength in a separate process from the injection.

このように、本発明の注入工法を用いた地盤の密実化による液状化対策工法において、注入工法で、注入管を存置させることにより、この注入管を幹として割裂脈同士の連結性を高めることができる。   In this way, in the liquefaction countermeasure method by the solidification of the ground using the injection method of the present invention, by connecting the injection tube in the injection method, the connectivity between the split veins is improved with the injection tube as a trunk. be able to.

また、注入管を引き抜く際にモルタル等で置き換えるようにしてもよい。さらに、注入管を引き抜き、鉄筋などの補強体を存置するようにしてもよい。更には、地盤改良杭を用いるようにしてもよい。   Further, when the injection tube is pulled out, it may be replaced with mortar or the like. Further, the injection tube may be pulled out and a reinforcing body such as a reinforcing bar may be placed. Furthermore, a ground improvement pile may be used.

図5は本発明の実施例を示す脈状改良体(3回目)を示す図面代用写真である。図6は脈状改良体施工前後のミニラム試験結果を示す図である。   FIG. 5 is a drawing-substituting photograph showing a vein-like improvement body (third time) showing an example of the present invention. FIG. 6 is a diagram showing the miniram test results before and after the execution of the vein improvement body.

縦5.0mm×横4.0m×深さ4.0mの土槽を用いて脈状薬液注入を実施し、出来形の評価およびミニラムサウンディングによる地盤改良効果の評価を行った。   A pulsed chemical solution was injected using a soil tank of 5.0 mm in length, 4.0 m in width, and 4.0 m in depth, and the shape improvement and the ground improvement effect by mini-ram sounding were evaluated.

図5に示すように、動的注入によって脈状改良が可能であることが確認できている。また、図6に示すように、注入前後でN値の増加が確認できている。   As shown in FIG. 5, it has been confirmed that the pulse shape can be improved by dynamic injection. Moreover, as shown in FIG. 6, the increase of N value has been confirmed before and after injection | pouring.

鉄道総研所有の中型振動台実験装置を用いて、脈状地盤改良工法による液状化対策の効果確認を実施した(図7および図8)。図7は確認実験模型の図であり、図7(a)は未改良地盤の図、図7(b)は改良地盤(改良率2.5%)の図である。   The effect of liquefaction countermeasures by the vein-shaped ground improvement method was confirmed using the medium-sized shaking table test equipment owned by Railway Research Institute (Figs. 7 and 8). FIG. 7 is a diagram of a confirmed experimental model, FIG. 7A is a diagram of an unimproved ground, and FIG. 7B is a diagram of an improved ground (an improvement rate of 2.5%).

図7において、41は砕石層(フィルター砂層)、42は水圧計(100kPa)、43は水圧計(50kPa)、44は加速度計、45は注入口、46はシール、47は脈状改良体である。   In FIG. 7, 41 is a crushed stone layer (filter sand layer), 42 is a water pressure meter (100 kPa), 43 is a water pressure meter (50 kPa), 44 is an accelerometer, 45 is an inlet, 46 is a seal, 47 is a vein-like improvement body. is there.

図8は実験結果を示す図であり、図8(a)は入力加速度(gal)に対する経過時間(秒)、図8(b)は沈下量(mm)に対する経過時間(秒)、図8(c)は過剰間隙水圧(kPa)に対する経過時間(秒)である。   8A and 8B are diagrams showing experimental results. FIG. 8A shows the elapsed time (seconds) with respect to the input acceleration (gal), FIG. 8B shows the elapsed time (seconds) with respect to the sinking amount (mm), and FIG. c) is the elapsed time (seconds) relative to the excess pore water pressure (kPa).

このように構成することにより、目標改良率10%で相対密度が12%増加し、その結果、液状化抵抗が高まり、振動後の地盤変位が1割以下まで低減された。   With this configuration, the relative density increased by 12% at a target improvement rate of 10%. As a result, the liquefaction resistance increased, and the ground displacement after vibration was reduced to 10% or less.

図9は本発明の実施例を示す脈状地盤改良工法の適用模式図である。   FIG. 9 is a schematic view of application of the vein-like ground improvement method showing an embodiment of the present invention.

この図において、51は液状化層、52は改良された脈状地盤(脈状改良体)、53は盛土、54は盛土53上に構築された鉄道の軌道、55は自動車の道路、56は住居(建物)、57はすべり面、58は幹によるすべり抵抗力である。   In this figure, 51 is a liquefied layer, 52 is an improved vein ground (a vein improvement body), 53 is embankment, 54 is a railroad track constructed on the embankment 53, 55 is an automobile road, 56 is A residence (building), 57 is a slip surface, and 58 is a slip resistance by a trunk.

このように、液状化層51を改良された脈状地盤(脈状改良体)52で低コストで広範囲に改良することができる。   Thus, the liquefied layer 51 can be improved over a wide range at a low cost by the improved vein ground (vein improvement body) 52.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の注入工法を用いた地盤の密実化による液状化対策工法は、砂地盤の密実化を図り、簡易で経済的な液状化対策を可能とする、注入工法を用いた地盤の密実化による液状化対策工法として利用可能である。   The liquefaction countermeasure method by the solidification of the ground using the injection method of the present invention is intended to solidify the sand ground and enable a simple and economical liquefaction countermeasure. It can be used as a liquefaction countermeasure method by actualization.

1,11,33 注入管
2 注入管回りの密度の増加
12,21,31 改良脈(割裂脈)
13,32 密実部
34 モルタル
35 鉄筋
41 砕石層
42 水圧計(100kPa)
43 水圧計(50kPa)
44 加速度計
45 注入口
46 シール
47 脈状改良体
51 液状化層
52 改良された脈状地盤(脈状改良体)
53 盛土
54 盛土上に構築された鉄道の軌道
55 自動車の道路
56 住居(建物)
57 すべり面
58 幹によるすべり抵抗力
1,11,33 Injection tube 2 Increase in density around the injection tube 12,21,31 Improved pulse (split pulse)
13, 32 Dense part 34 Mortar 35 Reinforcement 41 Crushed stone layer 42 Water pressure gauge (100 kPa)
43 Water pressure gauge (50kPa)
44 Accelerometer 45 Inlet 46 Seal 47 Vein improvement 51 Liquefaction layer 52 Improved vein ground (vein improvement)
53 Embankment 54 Railroad track built on embankment 55 Car road 56 Dwelling (building)
57 Sliding surface 58 Slip resistance by stem

Claims (5)

(a)注入管の先端を閉塞した状態で、静的もしくは打撃貫入して注入管を立て込み、
(b)次に、地盤の限界注入速度より大きな振幅で動的に注入することにより、砂地盤においても積極的に割裂脈を発生させ、割裂脈を直行方向に押し広げ、割裂脈と割裂脈の間に挟まれた未注入地盤の密実化を図ることを特徴とする注入工法を用いた地盤の密実化による液状化対策工法。
(A) In a state where the tip of the injection tube is closed, the injection tube is stowed by static or impact penetration,
(B) Next, by dynamically injecting with an amplitude larger than the limit injection speed of the ground, a split vein is actively generated even in the sand ground, and the split vein is expanded in the orthogonal direction. A liquefaction countermeasure method by solidification of the ground using an injection method characterized by solidification of the uninjected ground sandwiched between the two.
請求項1記載の注入工法を用いた地盤の密実化による液状化対策工法において、注入工法では、前記注入管を存置させ、該注入管を幹として割裂脈同士の連結性を高めることを特徴とする注入工法を用いた地盤の密実化による液状化対策工法。   In the liquefaction countermeasure method by the solidification of the ground using the injection method according to claim 1, in the injection method, the injection tube is allowed to remain, and the connectivity between the split veins is enhanced with the injection tube as a trunk. The liquefaction countermeasure method by the solidification of the ground using the injection method. 請求項1記載の注入工法を用いた地盤の密実化による液状化対策工法において、前記注入管を引き抜く際にモルタル等で置き換えることを特徴とする注入工法を用いた地盤の密実化による液状化対策工法。   In the liquefaction countermeasure method by the solidification of the ground using the pouring method according to claim 1, the liquid by the solidification of the ground using the pouring method, wherein the mortar is replaced when the pouring pipe is pulled out. Chemical countermeasure construction method. 請求項3記載の注入工法を用いた地盤の密実化による液状化対策工法において、注入管を引き抜き、モルタルで置き換えた後に、モルタル中に鉄筋などの補強体を存置することを特徴とする注入工法を用いた地盤の密実化による液状化対策工法。   In the liquefaction countermeasure construction method by the solidification of the ground using the injection construction method according to claim 3, after the injection pipe is pulled out and replaced with mortar, a reinforcing body such as a reinforcing bar is placed in the mortar. The liquefaction countermeasure method by the solidification of the ground using the method. 請求項1記載の注入工法を用いた地盤の密実化による液状化対策工法において、地盤改良杭を用いることを特徴とする注入工法を用いた地盤の密実化による液状化対策工法。   The liquefaction countermeasure construction method by the solidification of the ground using the injection construction method characterized by using a ground improvement pile in the liquefaction countermeasure construction method by the solidification of the ground using the injection construction method according to claim 1.
JP2014083438A 2014-04-15 2014-04-15 Liquefaction countermeasure method by ground consolidation using injection method Active JP6546720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014083438A JP6546720B2 (en) 2014-04-15 2014-04-15 Liquefaction countermeasure method by ground consolidation using injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014083438A JP6546720B2 (en) 2014-04-15 2014-04-15 Liquefaction countermeasure method by ground consolidation using injection method

Publications (2)

Publication Number Publication Date
JP2015203243A true JP2015203243A (en) 2015-11-16
JP6546720B2 JP6546720B2 (en) 2019-07-17

Family

ID=54596867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083438A Active JP6546720B2 (en) 2014-04-15 2014-04-15 Liquefaction countermeasure method by ground consolidation using injection method

Country Status (1)

Country Link
JP (1) JP6546720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107169637A (en) * 2017-04-26 2017-09-15 中国电建集团西北勘测设计研究院有限公司 A kind of power station layer of sand soil property liquefaction evaluation method
CN109235414A (en) * 2018-11-15 2019-01-18 福建工程学院 A method of sand foundation is reinforced using scrap iron

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255925A (en) * 1990-06-01 1993-10-05 Shohei Senda Improving or reinforcing method for ground
JPH0978564A (en) * 1995-09-14 1997-03-25 Tokyu Constr Co Ltd Chemical injecting method
JPH09132910A (en) * 1995-11-08 1997-05-20 Chichibu Onoda Cement Corp Liquefaction preventive construction method of ground
JPH09137443A (en) * 1995-11-14 1997-05-27 Yuichiro Takahashi Instantaneous consolidation work by injection into ground
JP2000064266A (en) * 1998-08-21 2000-02-29 Tokyu Constr Co Ltd Chemical liquid injecting construction method and ground structural body
US20010041100A1 (en) * 1998-07-23 2001-11-15 Mccabe Howard Wendell Three component chemical grout injector
JP2006506564A (en) * 2002-11-13 2006-02-23 ウーヴェーヴェー−ライセンシング・オサケユキテュア How to reduce the possibility of liquefaction of the basic soil
JP2007177536A (en) * 2005-12-28 2007-07-12 Taiheiyo Material Kk Chemical feed pipe, injection device, and injection method
JP2007291835A (en) * 2006-03-31 2007-11-08 Raito Kogyo Co Ltd Packer device and chemical solution injecting method using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255925A (en) * 1990-06-01 1993-10-05 Shohei Senda Improving or reinforcing method for ground
JPH0978564A (en) * 1995-09-14 1997-03-25 Tokyu Constr Co Ltd Chemical injecting method
JPH09132910A (en) * 1995-11-08 1997-05-20 Chichibu Onoda Cement Corp Liquefaction preventive construction method of ground
JPH09137443A (en) * 1995-11-14 1997-05-27 Yuichiro Takahashi Instantaneous consolidation work by injection into ground
US20010041100A1 (en) * 1998-07-23 2001-11-15 Mccabe Howard Wendell Three component chemical grout injector
JP2000064266A (en) * 1998-08-21 2000-02-29 Tokyu Constr Co Ltd Chemical liquid injecting construction method and ground structural body
JP2006506564A (en) * 2002-11-13 2006-02-23 ウーヴェーヴェー−ライセンシング・オサケユキテュア How to reduce the possibility of liquefaction of the basic soil
JP2007177536A (en) * 2005-12-28 2007-07-12 Taiheiyo Material Kk Chemical feed pipe, injection device, and injection method
JP2007291835A (en) * 2006-03-31 2007-11-08 Raito Kogyo Co Ltd Packer device and chemical solution injecting method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107169637A (en) * 2017-04-26 2017-09-15 中国电建集团西北勘测设计研究院有限公司 A kind of power station layer of sand soil property liquefaction evaluation method
CN109235414A (en) * 2018-11-15 2019-01-18 福建工程学院 A method of sand foundation is reinforced using scrap iron

Also Published As

Publication number Publication date
JP6546720B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
CN105970911B (en) A kind of processing method of big thickness collapsible loess
CN109162722B (en) It is applicable in the advanced compacting grouting and reinforcing method in loose weak stratum of shallow-depth-excavation tunnel
AU2014282262B2 (en) Steel-pipe pile and steel-pipe pile construction method
JP6663053B2 (en) Ground liquefaction countermeasures
JP2015031119A (en) Ground reinforcement structure
JP6413469B2 (en) Pile foundation and pile foundation construction method
JP2019015100A (en) Removing method of earth retaining wall
JP2015203243A (en) Liquefaction countermeasure method of foundation by means of solidification using an injection method
JP2006274646A (en) Ground injection method
JP3714395B2 (en) Reinforcement method for the ground below existing structures
KR100781492B1 (en) Structure of retaining wall, and construction methods for the same
JP2007510080A (en) A method to increase the strength of the ground, especially to suppress and support the excavation surface
KR20140062914A (en) Construction method for extending bulb of the ground anchor by post grouting and bulb extending apparatus being used for the same
KR101913478B1 (en) Plain Concrete Compaction Apparatus for Method of Ground Hardening Using Vibration Compaction and Concrete Column and Method Thereof
JPH07317052A (en) Method of dynamic injection construction for foundation improvement
CN205024694U (en) Superplasticity concrete drilling bored concrete pile dado
JP5407642B2 (en) Composite dike and its construction method
JP5039321B2 (en) Desaturated composite method
JP5300163B1 (en) Steel pile rooting method
JP6368158B2 (en) Seismic reinforcement structure for earth structure, retaining structure, and construction method of improved body
JP5283287B2 (en) Ground improvement method and ground improvement structure
JP3709505B2 (en) Ground liquefaction prevention method
JPH07300851A (en) Countermeasure of liquefaction of buried pipe in the ground
JP4787111B2 (en) How to prevent sucking out backfill soil
JP5971107B2 (en) Water-casting wall construction method using the cast-in steel material for water-stop wall construction and the cast-in steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6546720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250