JP5278856B2 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP5278856B2
JP5278856B2 JP2009113460A JP2009113460A JP5278856B2 JP 5278856 B2 JP5278856 B2 JP 5278856B2 JP 2009113460 A JP2009113460 A JP 2009113460A JP 2009113460 A JP2009113460 A JP 2009113460A JP 5278856 B2 JP5278856 B2 JP 5278856B2
Authority
JP
Japan
Prior art keywords
chemical
soil
injection
base
chemical liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009113460A
Other languages
Japanese (ja)
Other versions
JP2010261236A (en
Inventor
重治 有馬
泰徳 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEISEI TECHNO'S CO., LTD.
Original Assignee
HEISEI TECHNO'S CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEISEI TECHNO'S CO., LTD. filed Critical HEISEI TECHNO'S CO., LTD.
Priority to JP2009113460A priority Critical patent/JP5278856B2/en
Publication of JP2010261236A publication Critical patent/JP2010261236A/en
Application granted granted Critical
Publication of JP5278856B2 publication Critical patent/JP5278856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inject a chemical liquid independently in required points in a support foundation of an existing building, to enhance a local consolidation degree of a ground by forming a solidified structure in a required part of a soil under the support foundation of a structure, and to enhance a ground proof stress to stably support the structure reasonably. <P>SOLUTION: A chemical liquid injection rod 3 is inserted in a required position, in a lower foundation soil of a base 1 of the structure, an instantaneously solidified chemical liquid material is pumped in intermittently while applying a load due to the base 1 as a mount load by the chemical liquid injection rod 3, a homogeneous gel part of a solidified body 20a injected previously to be under solidification is brokenly cracked by the post-injected chemical liquid material, the chemical liquid material is infiltrated into a peripheral soil of the solidified body 20a, the breaking cracking and/or the infiltration are repeated further, the solidified structure 20 by the chemical liquid material and a soil particle is formed in a lower side of the base 1, a foundation soil is consolidated independently by the solidified structure 20, to enhance the ground proof stress. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、構造物の支持基盤下土壌に所要の配分で独立して薬液注入材を注入し、前記土壌の要所における圧密度を高め、支持基盤に対する地耐力を強化して地盤が安定できるようにする地盤改良工法に関するものである。   The present invention independently injects a chemical injection material into the soil under the support base of the structure in a required distribution, increases the pressure density at the important points of the soil, and strengthens the ground strength against the support base, thereby stabilizing the ground. This is related to the ground improvement method.

構造物を支持する基盤の土壌を強化する手段としては、土壌中に薬液を注入して圧密度を高め軟弱地盤を強化するほか、土壌の液状化による地盤の不等沈下などを予防するのに薬液注入工法が採用されている。この薬液注入工法は、公知の薬液材を公知構造の薬液注入ロッドでもって土壌中に圧入して注入薬液材と土壌中の砂粒との結合によって広い範囲で土壌の圧密度を高め、地盤を改良するものであり、このような薬液注入による地盤改良に関しては、たとえば特許文献1で知られている。   As a means to strengthen the foundation soil that supports the structure, in addition to injecting chemicals into the soil to increase the pressure density and strengthen the soft ground, to prevent uneven settlement of the ground due to soil liquefaction, etc. The chemical injection method is adopted. In this chemical injection method, a known chemical solution material is pressed into the soil with a chemical solution injection rod of a known structure, and the pressure density of the soil is increased in a wide range by combining the injected chemical solution material with the sand grains in the soil, and the ground is improved. For example, Patent Document 1 discloses a technique for improving the ground by such chemical injection.

また、不等沈下した地盤上で傾いた構造物を復元するのに薬液注入工法を応用した工法として、例えば特許文献2によって知られる工法(復元工法)がある。この復元工法では、構造物の基礎下部の土壌中に薬液注入ロッドを所要間隔で複数箇所に挿入配設し、その薬液注入ロッドによる薬液注入箇所で瞬結性の薬液材を注入する操作を、ある薬液注入箇所から次の薬液注入箇所へと所要のインターバルで順次切換えてこの注入操作を繰返し行い、各注入箇所において先に注入された薬液材のホモゲル部を割裂させ、さらに前記ホモゲル部の周辺の土壌中に薬液材を圧入させて拡大される固結構造体を形成することにより反力を増大させ、地耐力を高めて基盤上にある構造物を押し上げ、傾斜した構造物を正常に復元させるようにすることにある。また、前記要領で実施する薬液注入工法において、注入する薬液注入材に複数種のゲル化タイムの異なる薬液材を用い、前記要領で薬液注入箇所を巡るごとにこれらゲル化タイムの異なる薬液材を交互に切換えて注入操作を行う工法が、特許文献3によって知られている。   In addition, as a method of applying a chemical solution injection method to restore a structure inclined on unevenly subsidized ground, there is a method (restoration method) known from Patent Document 2, for example. In this restoration method, the chemical injection rod is inserted and arranged at multiple intervals in the soil below the foundation of the structure, and the operation of injecting the instantaneously setting chemical liquid material at the chemical injection site by the chemical injection rod, This injection operation is repeated by sequentially switching from one chemical injection site to the next chemical injection site at a required interval to split the homogel portion of the chemical solution previously injected at each injection location, and further around the homogel portion. The reaction force is increased by forming a solidified structure that is expanded by injecting chemicals into the soil of the soil, increasing the ground strength and pushing up the structure on the base, restoring the inclined structure to normal There is to let it be. Further, in the chemical solution injection method implemented in the above manner, a plurality of types of chemical solution materials having different gelation times are used for the chemical solution injection material to be injected. A method of performing an injection operation by switching alternately is known from Patent Document 3.

しかしながら、前記特許文献1によって知られる薬液注入工法では、構造物の建設前に施工する基礎地盤の改良工法であり、構造物の基礎となる土壌中に薬液材を分散浸透させて凝結させるものであるから、地質によるが土壌を圧密させて強化するには多量の薬液材を注入する必要がある。そして、この改良工法は、一般的に構造物の建築前に施工するものであり、建設後における建造物の支持地盤の強化安定手段としては作業の自在性が損なわれるという問題がある。したがって、十分な強化機能が発揮され難く、コストアップになって経済性が損なわれるなどの問題があった。   However, the chemical solution injection method known from Patent Document 1 is an improvement method of the foundation ground to be constructed before construction of the structure, in which the chemical solution material is dispersed and infiltrated into the soil that is the foundation of the structure. Therefore, depending on the geology, it is necessary to inject a large amount of chemicals to consolidate and strengthen the soil. And this improved construction method is generally constructed before the construction of the structure, and there is a problem that the workability is impaired as a means for reinforcing and stabilizing the support ground of the building after construction. Therefore, there is a problem that a sufficient strengthening function is difficult to be exhibited, the cost is increased, and economic efficiency is impaired.

また、前記特許文献2,3によって知られる構造物の復元工法における薬液の注入手段では、地盤上の構造物に対する持上げ力を確保することに注力されているので多点注入になり、建造物を基礎もろともに持上げる操作になるので、どうしても薬液材の注入量も多くなり、一般的な地盤の強化改良を行うのに不適切である場合が多いという問題がある。   In addition, in the chemical solution injection means in the structure restoration method known from Patent Documents 2 and 3, since the emphasis is on ensuring lifting force for the structure on the ground, it becomes multi-point injection, Since it is an operation to lift the foundation together, there is a problem that the injection amount of the chemical liquid material inevitably increases, and it is often unsuitable for performing general ground strengthening and improvement.

特許第3418069号公報Japanese Patent No. 3418069 特許第3126896号公報Japanese Patent No. 3126896 特許第3653305号公報Japanese Patent No. 36553305

本発明により解決しようとする問題点は、既設構造物の支持基礎に対して所要拠点に独立して薬液注入し、構造物の負荷を利用して支持基盤下の土壌中要所に順次前記負荷と平衡するように固結構造体を形成して地盤の局部的圧密度を高めることにより地耐力を向上させ、合理的に構造物を安定支持させ得る地盤改良工法を目的とすることにある。   The problem to be solved by the present invention is that the chemical solution is injected independently to the required base with respect to the support base of the existing structure, and the load is sequentially applied to the important points in the soil under the support base using the load of the structure. The purpose of the present invention is to improve the ground strength by forming a consolidated structure so as to be in equilibrium with the ground and increasing the local pressure density of the ground, so that the structure can be reasonably supported stably.

前記目的を達成するために、本発明の地盤改良工法は、
構造物の基盤下基礎土壌中に、所要位置にて薬液注入ロッドを挿入設置し、この薬液注入ロッドによって瞬結性薬液材を断続的に圧入操作して土壌中に固結体を造成し、先に注入されて固化されつつある固結体のホモゲル部を後続圧入される薬液材により割裂させ、前記固結体の周辺土壌中に薬液材を浸入させ割裂および/または浸透を繰返し、前記基盤下に薬液材と土粒とによる固結構造体を独立形成して、この固結構造体によって基礎土壌を圧密して地耐力を強化させる地盤改良工法において、
構造物の荷重作用中心から離れた位置に分担して前記薬液注入ロッド設置位置を複数箇所で設定し、注入時に前記荷重作用中心を通る対角線上の前記基盤の対角端部位置を支点として、薬液注入箇所に前記構造物の基盤による中心作用荷重より大きい載荷重が作用するようにしつつ注入操作を行うことを特徴とするものであります。
In order to achieve the above object, the ground improvement method of the present invention is:
During foundation under basic soil structure, the liquid injection rod inserted placed at the required position, construct a consolidated body liquid injector rod instantaneous formation of chemical materials by the intermittently press-fitted operation in the soil and evaporated to Wari裂by chemical material that is subsequent press-Homogeru portion of the consolidated body which is being solidified is injected earlier, is entering the chemical material around the soil of the consolidated body, Wari裂and / or infiltration Repeatedly, in the ground improvement method to form a consolidated structure by the chemical material and soil grains under the base independently, and to consolidate the foundation soil by this consolidated structure and strengthen the ground strength ,
The chemical solution injection rod installation position is set at a plurality of locations by sharing the position away from the load action center of the structure, with the diagonal end position of the base on the diagonal passing through the load action center at the time of injection as a fulcrum, It is characterized in that the injection operation is performed so that a loading load larger than the central acting load due to the base of the structure is applied to the chemical injection site .

前記発明における前記薬液注入ロッドの設置位置は、地盤における構造物の基盤形成投影面に対して、前記構造物による荷重作用中心を通る線上で載荷重が前記荷重作用中心位置より大きく付勢される方向に偏った位置で造成される前記固結構造体が相互に干渉しない間隔を置いて複数箇所に設け、薬液注入位置を変えて順次薬液材の注入が行えるようにするのがよい。したがって、構造物の基盤が「べた基礎」である場合、その基盤投影面積に応じて複数区分に配分し、その区分された区画ごとに配置して前記載荷重が薬液材注入部に作用するようにし、薬液注入ロッドに対して所要のインターバルで薬液材を供給して注入するのが好ましい。 The loading position of the chemical injection rod in the invention is urged to be larger than the load action center position on a line passing through the load action center of the structure with respect to the base formation projection surface of the structure on the ground. at a position biased in a direction, the solid fine granulated bodies are reclamation is provided at a plurality of locations at intervals that do not interfere with each other, it is preferable to allow the injection of sequential chemical materials by changing the liquid injection position. Therefore, when the base of the structure is a “solid base”, it is distributed to multiple sections according to the projected area of the base, and placed in each of the sections so that the load described above acts on the chemical material injection part. In addition, it is preferable to supply and inject the chemical liquid material to the chemical liquid injection rod at a required interval.

本発明の地盤改良工法によれば、構築された構造物の基盤に対応して前記構造物の負荷(載荷重)による偏荷重と平衡させつつ土壌中に瞬結性の薬液材を断続的に注入することにより、基盤下の所要位置で薬液材と土粒との結合による固結構造体を造成し、前記偏荷重に対応する支持力を得て、この操作を前記基盤に対応した複数箇所で順次行うことにより基礎地盤全体の平衡した土壌の圧密・強化を図り、構造物に対応した地耐力で安定した地盤を形成することができる。 According to the ground improvement method of the present invention, the instantaneously setting chemical solution material is intermittently applied to the soil while being balanced with the uneven load caused by the load (loading load) of the structure corresponding to the base of the constructed structure. By injecting, a solidified structure is formed by combining the chemical liquid material and soil particles at a required position under the base, and a supporting force corresponding to the uneven load is obtained, and this operation is performed at a plurality of locations corresponding to the base. By carrying out in order, consolidation and strengthening of the balanced soil of the entire foundation ground can be achieved, and a stable ground can be formed with a ground strength corresponding to the structure.

しかも、構造物の基盤に対応して基礎下土壌中の要所にのみ薬液注入して固結構造体を造成して地耐力を高める工法であるから、過度に薬液材を使用せず経済効果をも高めることができるのである。   In addition, it is a construction method that increases the earth strength by injecting chemicals only to the important points in the soil under the foundation corresponding to the base of the structure, thereby increasing the earth strength, so it does not use excessive chemicals and has an economic effect. Can also be improved.

図1は本発明による地盤改良工法の一実施形態を模式的に表わす図FIG. 1 schematically shows an embodiment of the ground improvement method according to the present invention. 図2は薬液注入操作時における一形態を一部を拡大して模式的に表わす図FIG. 2 is a diagram schematically showing an enlarged form of one form during a chemical solution injection operation. 図3は方形の構造物の基盤に対し複数区分して薬液材注入位置を設定する一実施形態を表わす平面図で、(a)は配分した注入区画を表わし、(b)〜(g)は各注入区分での態様を表わす図FIG. 3 is a plan view showing an embodiment in which a chemical liquid material injection position is set by dividing into a plurality of bases of a rectangular structure, (a) showing the distributed injection section, and (b) to (g). Diagram showing the mode of each injection section

次に、本発明の地盤改良工法の一実施形態について、図面を参照しつつ説明する。   Next, an embodiment of the ground improvement method according to the present invention will be described with reference to the drawings.

本発明の地盤改良工法は、基本的にすでに構築された構造物の基盤1の下側における地盤2(土壌)を強化するものであり、その基本的操作として地盤2に作用する構造物の荷重作用中心から離れた(偏心した)複数位置に薬液材注入位置を分担設定して注入時における載荷重を高めた状態で、一義的に瞬結性の薬液材の注入を行って土壌中に固結構造体を造成し、この操作を複数箇所で順次行って支持力を得ると同時に地盤の圧密度を高めることにある。   The ground improvement method of the present invention basically reinforces the ground 2 (soil) on the lower side of the base 1 of the already constructed structure, and the load of the structure acting on the ground 2 as its basic operation. In a state where the chemical material injection position is assigned to multiple positions away from the center of action (eccentric) and the loading load at the time of injection is increased, a quick-setting chemical liquid material is injected and fixed in the soil. A bonded structure is created, and this operation is sequentially performed at a plurality of locations to obtain a supporting force and at the same time increase the pressure density of the ground.

この実施形態では、図3(a)に例示するように、構造物の基盤1の投影面形状に対応した配分で複数に区分して分担区画を決め(この実施形態では6分割に区分している)、各区画の中央位置に薬液材注入位置を設定し、選択された順序で一区画ごとに薬液材を断続して注入操作を行い、以後この操作を順次他の区画に移動して施工するものである。図1に示されるのは、構造物の基盤下の所要箇所に薬液材を注入する実施形態を表わしている。   In this embodiment, as illustrated in FIG. 3 (a), the division section is determined by dividing into a plurality of distributions corresponding to the projection surface shape of the base 1 of the structure (in this embodiment, the division section is divided into six sections). Set the chemical material injection position at the center position of each section, perform the injection operation by intermittently injecting the chemical liquid material for each section in the selected order, and then move this operation to other sections in order. To do. FIG. 1 shows an embodiment in which a chemical liquid material is injected into a required location under the base of the structure.

この際、前記構造物の基盤1がいわゆる「べた基礎」の場合は、その平面形状等によるが前記図3(a)で示されるように方形であるとすれば、その四隅部と所要長辺における中間部の少なくとも1箇所に薬液材注入位置を設定する。もちろん、周辺で取り囲まれる内側にも必要に応じて薬液材注入位置が配置される。これら薬液材注入位置は、注入される薬液材によって造成される固結構造体20が独立して形成されるように配分することが好ましい。なお、前記内側の注入位置については、構造物の基盤1の投影面形状に応じて選択される。   At this time, if the base 1 of the structure is a so-called “solid foundation”, depending on its planar shape or the like, if it is square as shown in FIG. The chemical material injection position is set in at least one place in the middle part. Of course, a chemical liquid material injection position is also arranged on the inner side surrounded by the periphery as necessary. These chemical liquid material injection positions are preferably distributed so that the consolidated structure 20 formed by the injected chemical liquid material is independently formed. The inner injection position is selected according to the shape of the projection surface of the base 1 of the structure.

使用される薬液注入ロッド3としては、公知の二重管構造のロッドが使用される。そして、この各薬液注入ロッド3には薬液供給ユニット10の給液タンク11,12から高圧ポンプ13,13′によって開閉弁14,14′を介してA液とB液とが供給されるように供給管15,16(たとえばホース)が配管される。なお、前記高圧ポンプ13,13′から複数箇所に薬液注入ロッド3を設ける場合、その各薬液注入ロッド3への配管中には切換弁(図示省略)を設け、その切換弁・開閉弁を制御手段(図示せず)にて操作して自動的に薬液の供給を切換るようにすることができる。   As the chemical solution injection rod 3 to be used, a known double tube structure rod is used. The liquid injection rods 3 are supplied with the liquid A and the liquid B from the liquid supply tanks 11 and 12 of the chemical liquid supply unit 10 through the on-off valves 14 and 14 'by the high-pressure pumps 13 and 13'. Supply pipes 15 and 16 (for example, hoses) are piped. When the chemical injection rods 3 are provided at a plurality of locations from the high-pressure pumps 13 and 13 ', a switching valve (not shown) is provided in the piping to each chemical injection rod 3 to control the switching valve / open / close valve. The supply of the chemical solution can be automatically switched by operating by means (not shown).

一方、前記薬液注入ロッド3により注入する薬液材は、瞬結性の薬液材が使用され、たとえばA液としては硫酸(75%),珪酸ソーダ(5号)と水とが、ほぼ6:34:60の割合のものを200リットル、B液としてはカルシウムアルミノシリケートと消石灰とセメントと重炭酸ナトリウムおよび水とが、10:10:75:3:残量の割合のもの200リットルとし、そのA液とB液とが1:1の割合で混合注入されてゲル化タイム約1〜3secのグラウトが用いられる。なお、この薬剤の成分については、上記成分に特定されるものではなく、ゲル化タイムを変えるとともに結合強度を維持できるに適した成分のものを採用することができる。   On the other hand, the chemical liquid material to be injected by the chemical liquid injection rod 3 is a quick-setting chemical liquid material. For example, as the A liquid, sulfuric acid (75%), sodium silicate (No. 5) and water are approximately 6:34. : 200 liters at a ratio of 60, and B liquid is 200 liters of calcium aluminosilicate, slaked lime, cement, sodium bicarbonate and water at a ratio of 10: 10: 75: 3: remaining amount. A grout having a gelation time of about 1 to 3 sec is used by mixing and injecting the liquid and the liquid B at a ratio of 1: 1. In addition, about the component of this chemical | medical agent, the thing of the component suitable for maintaining the bond strength while changing gelation time is not employ | adopted as the said component.

このような薬液材は、薬液供給ユニット10のA液,B液各1台の高圧ポンプ13,13′によって高圧力で10〜20リットル/min程度の吐出量にて各薬液注入ロッド3に順次もしくは選択的に供給する。注入圧力については、土壌が砂質層の場合で比較的注入速度が速い状態では低圧力で注入することができる。また、粘土質の土壌では注入時の抵抗が高まるので注入圧力を高める必要がある。   Such a chemical liquid material is sequentially applied to each chemical liquid injection rod 3 at a discharge rate of about 10 to 20 liters / min at high pressure by the high pressure pumps 13 and 13 ′ of the liquid A and the liquid B of the chemical liquid supply unit 10. Or supply selectively. As for the injection pressure, when the soil is a sandy layer and the injection speed is relatively high, the injection can be performed at a low pressure. Moreover, since the resistance at the time of injection increases in clay soil, it is necessary to increase the injection pressure.

前記薬液材注入に際しては、所要の圧力で薬液注入を行うと、薬液注入ロッド3の吐出口3aでA液とB液とが混合されて土壌中に圧入される。注入混合された薬液材(A液とB液)は、薬液注入ロッド3の吐出口3aから噴出してゲル化タイムの範囲内で液状に保たれて自由に流動浸透し、土粒との結合で、まず初期段階での固結体20aが形成される。こうして形成される固結体20aの外周部では、先に注入されて土壌中で土砂(土粒)を巻き込んで凝結するが、その固結体20aが強度発現途中であるために容易に脈状割裂し、この割裂部分21から噴出する後続薬液材の一部が土壌中に浸透する。この浸透した薬液材は、当該部分で土粒と混合して凝固し、先に形成された固結体20aの周囲に新たな固結層20bが形成され、固結体20aが増大される(図2の拡大図示部参照)。薬液注入ロッド3からは、所要のインターバルで断続的に薬液材を注入するので、初期の固結体20a内部から周囲に拡張された固結層20b内に圧入され、さらに前述のように新たに形成される固結層の周辺を脈状割裂し、さらにまた周囲の土壌中に拡散される。   When the chemical solution is injected at the required pressure, the A solution and the B solution are mixed at the discharge port 3a of the chemical solution injection rod 3 and are injected into the soil. The injected and mixed chemical liquid materials (A liquid and B liquid) are ejected from the discharge port 3a of the chemical liquid injection rod 3 and kept in a liquid state within the range of the gelation time to freely flow and permeate and bond with the soil particles. First, the consolidated body 20a in the initial stage is formed. In the outer peripheral portion of the solidified body 20a formed in this way, it is injected first and entraps and accumulates earth and sand (soil grains) in the soil. However, since the solidified body 20a is in the process of developing strength, it is easily pulsated. A part of the subsequent chemical liquid material that splits and ejects from the split part 21 penetrates into the soil. The infiltrated chemical liquid material is mixed with the soil particles and solidified at the portion, and a new consolidated layer 20b is formed around the previously formed consolidated body 20a, and the consolidated body 20a is increased ( (See the enlarged illustration in FIG. 2). Since the chemical liquid material is intermittently injected from the chemical liquid injection rod 3 at a required interval, the chemical liquid injection rod 3 is press-fitted into the consolidated layer 20b expanded from the inside of the initial solidified body 20a to the surroundings, and further as described above. It cleaves around the formed consolidated layer and is also diffused into the surrounding soil.

こうして注入される薬液材注入位置では、まず、構造物の荷重作用中心位置Pから離れた分担区画の設定位置、例えば図3(b)に位置A(以下、「第1注入位置」という。)で示す箇所で、その構造物の基盤1を貫通して図1に例示するように薬液注入ロッド3を挿入し、基盤1の下側土壌中に向けて吐出口3aが開口するように設置される。この薬液注入ロッド3には前述の薬液材を供給して土壌中に圧入すると、その薬液注入ロッド3の吐出口3aを中心とした周囲に薬液材が分散浸入し、この薬液材と土粒との結合(凝結)により固結構造体20が造成される。この際、薬液材注入位置の所要範囲に載荷重が大きく作用するようにして、薬液材の注入が行われるようにする。すなわち、地盤2の上層を覆っている構造物の基盤1を載荷盤とみなし、その一端部Q(薬液材注入位置(第1注入位置 )と反対端)を支持点として前記荷重作用中心Pまでの距離Lと前記一端部Qから前記荷重作用中心Pを通る線上(対角線上)で薬液注入位置(第1注入位置 )までの距離L′の比(L:L′)で、分担する荷重を拡大して前記第1注入位置 の所要範囲に載荷重が大きく作用するようにする。この結果、造成される固結構造体20の周辺土壌に対する圧密度がより高められる。 In the chemical material injection position thus injected, first, the setting position of the division section away from the load action center position P of the structure, for example, the position A in FIG. 3B (hereinafter referred to as “first injection position”). The chemical solution injection rod 3 is inserted as shown in FIG. 1 through the base 1 of the structure, and the discharge port 3a is opened toward the lower soil of the base 1. The When the above-described chemical liquid material is supplied to the chemical liquid injection rod 3 and press-fitted into the soil, the chemical liquid material is dispersed and infiltrated around the discharge port 3 a of the chemical liquid injection rod 3. The consolidated structure 20 is formed by the bonding (condensation). At this time, the chemical liquid material is injected so that the applied load greatly acts on the required range of the chemical liquid material injection position. That is, the base 1 of the structure that covers the upper layer of the ground 2 is regarded as a loading board, and the load action center with one end Q (an end opposite to the chemical solution injection position (first injection position P 1 )) as a support point. A ratio (L: L ′) between the distance L to P and the distance L ′ from the one end Q to the chemical injection position (first injection position P 1 ) on a line (diagonal line) passing through the load acting center P, expanding the load sharing so that the mounting load is applied largely to the required range of the first injection position P 1. As a result, the pressure density with respect to the surrounding soil of the consolidated structure 20 to be created is further increased.

この注入操作を行う過程では、図3(b)で模式的に示されるように、基盤1下において前記薬液注入による固結構造体20の形成に伴いフリーの状態にある前記基盤1の支点Q(端部)側で負荷反力が生じ、その基盤1の端部Qに対応する部分の土壌が連動して圧密される。また、この圧密される部分と前記固結構造体20の造成部との間の基盤下部分では、載荷重が前記薬液注入位置(第1注入位置P)を中心とする放射状に中間部分へ次第に減少する態様で分布伝播して付勢される(この態様をハッチングの密度で表わしている)。なお、この薬液材の注入時には、基盤1のレベルを計測しつつ行われ、平衡状態を保ちながら実施される。 In the process of performing this injection operation, as schematically shown in FIG. 3B, the fulcrum Q of the base 1 in a free state with the formation of the solidified structure 20 by the chemical injection under the base 1. A load reaction force is generated on the (end) side, and a portion of soil corresponding to the end Q of the base 1 is consolidated and consolidated. In addition, in the lower part of the base between the part to be consolidated and the formation part of the consolidated structure 20, the load is radially directed to the intermediate part centering on the chemical solution injection position (first injection position P 1 ). It is distributed and energized in a gradually decreasing manner (this manner is represented by hatching density). In addition, at the time of injection | pouring of this chemical | medical solution material, it carries out, measuring the level of the base | substrate 1 and maintaining an equilibrium state.

前記割裂・浸透作用は、その挙動が施工される地盤の地質によって異なり、たとえば地盤が砂質層である場合、固結体20aのホモゲル部を割裂した薬液材は、割裂した固結体20aの周辺土壌中に浸透して砂粒を巻き込んで凝結し、その挙動が間歇的に繰返し行われることにより、前記固結体20aが拡大造成される。また、地盤の地質が粘土質層である場合は、薬液材の注入抵抗が高まるので、先に形成された固結体20aのホモゲル部を割裂して周辺の土壌中へ浸入しようとする薬液材が土壌に注入圧を付勢して均衡する状態まで押し広げ、固結体20aを拡大造成するとともに、周囲の土壌を圧縮し、結果的に土壌を圧密する。なお、地質によっては、前記薬液材の挙動について割裂および/または浸透が並行して繰り返され、固結体20aの拡大造成を行うことができる。 The splitting / penetration action varies depending on the geology of the ground where the work is performed. For example, when the ground is a sandy layer, the chemical liquid material that splits the homogel portion of the consolidated body 20a is the same as that of the split consolidated body 20a. penetrate into the surrounding soil condense involving the sand, by its behavior is intermittently repeated, the Katayuitai 20a is expanded reclamation. Moreover, when the ground geology is a clayey layer, since the injection resistance of the chemical liquid material is increased, the chemical liquid material is intended to split the homogel portion of the previously formed solidified body 20a and enter the surrounding soil. Energizes the injection pressure to the soil and pushes it to a balanced state, expanding and forming the consolidated body 20a, compressing the surrounding soil, and consolidating the soil as a result. Note that, depending on the geology, splitting and / or infiltration is repeated in parallel with respect to the behavior of the chemical liquid material, and the consolidated body 20a can be enlarged and formed.

このようにして一箇所での薬液注入操作が終了すれば、次に図3(c)で示されるように、前記第1注入位置Pとは平面対称位置の薬液注入位置(第2注入位置P)に薬液注入ロッド3を設置して前記要領で薬液材の注入を行う。この薬液材の注入によって、土壌には前述のように、基盤1の端部を支点Qとして薬液注入位置P 載荷重が作用し、当該位置に固結構造体20が造成されるとともに、周辺土壌の圧密が強固になされる。 In this way, the liquid injector operations in one place it is finished, then as shown in FIG. 3 (c), the liquid injection position (second injection position of the plane symmetrical positions from the first injection position P 1 The chemical solution injection rod 3 is installed at P 2 ), and the chemical solution material is injected as described above. By injection of the liquid medicine materials, as described above in the soil, the ends of the base 1 mounting load to liquid injection position P 2 acts as a fulcrum Q 2, together with solid fine Zotai 20 to the position is Construction , compaction of soil around is made strong.

その後においては、図3(d)で示されるように、前記第2注入位置Pと対角位置(第3注入位置P)に薬液注入ロッド3を設置して前記同様に薬液材を注入する。この状態での薬液注入操作では、先に造成された固結構造体20上に載荷盤となる基盤1の支点Q′が位置することになるので、その支点Q′が安定支持されて第3注入位置Pには前記要領で作用する載荷重が有効に機能し、薬液注入による固結構造体20の造成効果を高め得る。次に対称位置となる第4注入位置P(図3(e)参照。)にては、前記第3注入位置Pと同様にして薬液注入操作が行われ、固結構造体20の造成が行われる。 In the subsequent, as shown in FIG. 3 (d), the implanting the second injection position P 2 and the diagonal positions (third injection position P 3) by installing a liquid injection rod 3 in the same manner as described chemical material To do. In the chemical solution injection operation in this state, the fulcrum Q ′ of the base 1 serving as the loading board is positioned on the consolidated structure 20 previously formed. mounting load in the injection position P 3 acting the way functions effectively, can enhance the reclamation effect of solid fine Zotai 20 by the liquid injector. Next, at the fourth injection position P 4 (see FIG. 3 (e)), which is a symmetrical position, the chemical solution injection operation is performed in the same manner as the third injection position P 3, and the consolidated structure 20 is formed. Is done.

こうして基盤1の四方隅部の下側地盤に固結構造体20が造成された後には、図3(f),(g)で示されるように、前記第1注入位置Pと第3注入位置P、および第2注入位置Pと第4注入位置Pとの各中間位置(第5注入位置Pと第6注入位置P)とにおいて薬液注入操作を行う。この第5および第6注入位置P,Pでは、いずれも構造物の荷重作用中心位置Pと前記第5または第6注入位置P,Pを通る線上で基盤1の対向する側辺部を支点Q″として載荷重が作用することになる。この状態では、すでに第1注入位置Pから第4注入位置Pまでにおいて固結構造体20の造成が行われ、それぞれ固結構造体20の周辺部土壌が圧密強化されているから、各固結構造体20間に生じている前記強化部分より低圧密状態にある土壌に対して薬液注入操作が前述のように行われると、対応する土壌が平衡するまでの範囲で固結構造体20を造成し、周辺部土壌を圧密する。 Thus after the solid fine Zotai 20 below the ground of the square corners of the base 1 is reclamation is FIG. 3 (f), the as shown in (g), the first injection position P 1 and the third injection position P 3, and performs liquid injection operation in the second injection position P 2 and the intermediate position between the fourth injection position P 4 (and the fifth injection position P 5 sixth injection position P 6). In each of the fifth and sixth injection positions P 5 and P 6 , the opposite side of the base 1 on a line passing through the load acting center position P of the structure and the fifth or sixth injection positions P 5 and P 6. parts mounting load will act as a fulcrum Q "a. in this state, already Construction of solid fine Zotai 20 in the first injection position P 1 to the fourth injection position P 4 is performed, each solid fine granulation Since the surrounding soil of the body 20 is consolidated and strengthened, when the chemical injection operation is performed as described above on the soil that is in a lower pressure dense state than the strengthened portion generated between the consolidated structures 20, The consolidated structure 20 is created within a range until the corresponding soil is balanced, and the surrounding soil is consolidated.

こうして基盤1の下側土壌中に固結構造体20が造成されると、これらの固結構造体20により、周囲の土壌がその固結構造体20と一体結合され、あるいは土壌が周囲に押し退けられて周辺部での土壌が圧密され、併せて固結構造体20が支持構造体となり、両者の機能によって地盤の地耐力が増強されることになる。したがって、構造物の基盤1の大きさに対応する所要箇所に前記薬液材注入箇所を配分することにより、それぞれの薬液注入ロッド3での薬液材注入操作を望ましいインターバルをとって順次注入作業を実施すると、目的構造物の基礎地盤を強化安定させることができる。   When the consolidated structure 20 is formed in the lower soil of the base 1 in this way, the surrounding soil is united with the consolidated structure 20 by these consolidated structures 20, or the soil is pushed away to the surroundings. As a result, the soil in the peripheral portion is consolidated, and the consolidated structure 20 becomes a support structure, and the ground strength of the ground is enhanced by the functions of both. Therefore, by distributing the chemical liquid material injection locations to the required locations corresponding to the size of the base 1 of the structure, the chemical liquid material injection operation with the respective chemical liquid injection rods 3 is sequentially performed at desirable intervals. Then, the foundation ground of the target structure can be strengthened and stabilized.

なお、前記実施形態において、注入する薬液材として瞬結性薬液材を使用する場合について説明したが、瞬結性薬液材と緩結性薬液材とを現場の状況に応じて切換えて使用することも可能である。前記緩結性薬液材としては、たとえばA液としては珪酸ソーダ(5号)と水とを30:70の割合のものを200リットル、B液としてはカルシウムアルミノシリケートと消石灰とセメントと重炭酸ナトリウムと水とが10:10:75:3:残量の割合のものを200リットルとして、1:1の割合で混合注入されるゲル化タイムが30〜60secのグラウトが用いられる。もちろん、この薬液材の成分は、上記に限定されるものではなく、ゲル化タイムを変えるとともに結合強度を維持できるに適した成分のものを採用することができる。   In the above-described embodiment, the case of using a quick-setting chemical liquid material as the chemical liquid material to be injected has been described. However, the quick-setting chemical liquid material and the slow-setting chemical liquid material are used by switching according to the situation in the field. Is also possible. Examples of the slow-binding chemical liquid material include 200 liters of 30:70 ratio of sodium silicate (No. 5) and water as the A liquid, and calcium aluminosilicate, slaked lime, cement, and sodium bicarbonate as the B liquid. A grout having a gelation time of 30 to 60 sec, in which a mixture of 10: 10: 75: 3: the remaining amount is 200 liters and the mixture is injected at a ratio of 1: 1, is used. Of course, the component of the chemical liquid material is not limited to the above, and a component suitable for changing the gelation time and maintaining the bonding strength can be employed.

本発明の地盤改良工法は、構造物として一般の建物のほかに、造成地における盛土のL字型擁壁や造成用水路の基盤安定化あるいはボックスカルバートの安定化など土木工事における構造物の基盤を支持する地盤の安定手段として適用することができる。   The ground improvement method of the present invention is not limited to general buildings as structures, but also provides structural foundations for civil works such as embankment L-shaped retaining walls and foundations for construction waterways or box culverts. It can be applied as a stabilizing means for the supporting ground.

1 構造物の基盤
2 地盤
3 薬液注入ロッド
3a 吐出口
10 薬液供給ユニット
13,13′ 高圧ポンプ
20 固結構造体
20a 固結体
20b 固結層
21 割裂部分
P 構造物の荷重作用中心
〜P 薬液注入位置
1 structure of the substrate 2 Ground 3 liquid injector rod 3a discharge port 10 the chemical solution supply unit 13, 13 'high-pressure pump 20 solid fine Zotai 20a Katayuitai 20b Katayuiso 21 percent cleft partial load operating center P 1 ~ P-structure P 6 chemical injection position

Claims (3)

構造物の基盤下基礎土壌中に、所要位置にて薬液注入ロッドを挿入設置し、この薬液注入ロッドによって瞬結性薬液材を断続的に圧入操作して土壌中に固結体を造成し、先に注入されて固化されつつある固結体のホモゲル部を後続圧入される薬液材により割裂させ、前記固結体の周辺土壌中に薬液材を浸入させ割裂および/または浸透を繰返し、前記基盤下に薬液材と土粒とによる固結構造体を独立形成して、この固結構造体によって基礎土壌を圧密して地耐力を強化させる地盤改良工法において、
構造物の荷重作用中心から離れた位置に分担して前記薬液注入ロッド設置位置を複数箇所で設定し、注入時に前記荷重作用中心を通る対角線上の前記基盤の対角端部位置を支点として、薬液注入箇所に前記構造物の基盤による作用中心荷重より大きい載荷重が作用するようにしつつ注入操作を行うことを特徴とする地盤改良工法。
During foundation under basic soil structure, the liquid injection rod inserted placed at the required position, construct a consolidated body liquid injector rod instantaneous formation of chemical materials by the intermittently press-fitted operation in the soil and evaporated to Wari裂by chemical material that is subsequent press-Homogeru portion of the consolidated body which is being solidified is injected earlier, is entering the chemical material around the soil of the consolidated body, Wari裂and / or infiltration Repeatedly, in the ground improvement method to form a consolidated structure by the chemical material and soil grains under the base independently, and to consolidate the foundation soil by this consolidated structure and strengthen the ground strength ,
The chemical solution injection rod installation position is set at a plurality of locations by sharing the position away from the load action center of the structure, with the diagonal end position of the base on the diagonal passing through the load action center at the time of injection as a fulcrum, A ground improvement method characterized by performing an injection operation so that an applied load larger than an action center load by the base of the structure is applied to a chemical injection site .
前記薬液注入ロッドの設置位置は、地盤における構造物の基盤形成投影面に対して、前記構造物による荷重作用中心を通る線上で載荷重が前記荷重作用中心位置より大きく付勢される方向に偏った位置で造成される前記固結構造体が相互に干渉しない間隔を置いて複数箇所に設け、薬液注入位置を変えて順次薬液材の注入が行えるようにする請求項1に記載の地盤改良工法。 The installation position of the chemical solution injection rod is biased in a direction in which the loaded load is urged larger than the load action center position on a line passing through the load action center of the structure with respect to the base formation projection surface of the structure on the ground. in position, soil improvement according to claim 1, wherein the solid fine granulated bodies are reclamation is provided at a plurality of locations at intervals that do not interfere with each other, to allow injection of sequential chemical materials by changing the liquid injection position Construction method. 前記薬液注入ロッドの設置位置、構造物の基盤が「べた基礎」である場合、その基盤投影面積に応じて複数区分に配分し、その区分された区画ごとに配置して前記載荷重が薬液材注入部に作用するようにし、薬液注入ロッドに対して所要のインターバルで薬液材を供給して注入する請求項1または2に記載の地盤改良工法。 When the base of the structure is a “solid base”, the position of the chemical injection rod is allocated to a plurality of sections according to the projected area of the base, and is arranged for each of the divided sections. The ground improvement construction method according to claim 1 or 2, wherein the ground material improvement part is operated by supplying the chemical liquid material to the chemical liquid injection rod at a predetermined interval and injecting the chemical liquid material.
JP2009113460A 2009-05-08 2009-05-08 Ground improvement method Active JP5278856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113460A JP5278856B2 (en) 2009-05-08 2009-05-08 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113460A JP5278856B2 (en) 2009-05-08 2009-05-08 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2010261236A JP2010261236A (en) 2010-11-18
JP5278856B2 true JP5278856B2 (en) 2013-09-04

Family

ID=43359550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113460A Active JP5278856B2 (en) 2009-05-08 2009-05-08 Ground improvement method

Country Status (1)

Country Link
JP (1) JP5278856B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6342126B2 (en) * 2013-07-26 2018-06-13 日本基礎技術株式会社 Ground injection method
JP6493834B2 (en) * 2014-04-15 2019-04-03 公益財団法人鉄道総合技術研究所 Ground liquefaction countermeasure method
JP6411099B2 (en) * 2014-07-07 2018-10-24 日本基礎技術株式会社 Ground injection method
US10047534B2 (en) * 2016-05-31 2018-08-14 Upcon Corporation Method for modifying concrete slab on subsided ground

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653305B2 (en) * 1995-04-26 2005-05-25 平成テクノス株式会社 Restoration method for uneven settlement
JP3418069B2 (en) * 1996-03-01 2003-06-16 強化土エンジニヤリング株式会社 Injection method and injection equipment

Also Published As

Publication number Publication date
JP2010261236A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
CN105332719A (en) Cement-polyurethane composite grouting process capable of blocking water fast
JP2010059673A (en) Soil improving method and soil improving device
WO2019169956A1 (en) Structured cemented gravel pile and construction method therefor
JP5278856B2 (en) Ground improvement method
JP4689556B2 (en) Ground consolidation method using plastic gel injection material
CN105464668A (en) Technology for controlling floor heave of soft rock roadway
JP3126896B2 (en) Restoration method for uneven settlement structures
KR101055410B1 (en) Method constructing retaining wall for cutting part the ground
CN102839647B (en) Stirring pile-permeable concrete pile compound foundation and treatment method thereof
JP5168206B2 (en) Ground improvement method
CN110055959A (en) A kind of forming method of composite foundation pile and the grouting component of composite foundation pile
CN104005416A (en) Method for processing major-diameter hole pile collapsed holes under high and steep slope plain fill back-pressing condition
CN103205962A (en) Grouting lifting method of subsided terrace
JP3653305B2 (en) Restoration method for uneven settlement
JP5728429B2 (en) Building subsidence correction method
CN104478369A (en) Synchronous grouting method for rectangular shield construction and grouting slurries
CN107366302A (en) A kind of construction technology of reinforced concrete retaining wall
KR102146269B1 (en) Higher Homogeneous Middle Pressure Grouting Apparatus using Interference Effect, Higher Homogeneous Grouting Material for such Middle Pressure Grouting Apparatus, and Ground Grouting Method using the same
KR100475443B1 (en) Reinforcement method for construction of underground
CN204875831U (en) Top layer soil solidifies on spot and closes foundation structure that bears with pile cluster
JP2011208360A (en) Ground stabilizing method
Cheng et al. Jacking tilted building by automatic multiple grouting
KR20190054217A (en) the improved air hammer device with high pressure jet grouting and the construction method using the same
CN101666084B (en) Construction method for pressing in cement grout in filter drain way
RU2613700C1 (en) Grouting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5278856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250