JP5979635B2 - Underground cavity filling material and method for producing the filling material - Google Patents
Underground cavity filling material and method for producing the filling material Download PDFInfo
- Publication number
- JP5979635B2 JP5979635B2 JP2012153501A JP2012153501A JP5979635B2 JP 5979635 B2 JP5979635 B2 JP 5979635B2 JP 2012153501 A JP2012153501 A JP 2012153501A JP 2012153501 A JP2012153501 A JP 2012153501A JP 5979635 B2 JP5979635 B2 JP 5979635B2
- Authority
- JP
- Japan
- Prior art keywords
- bentonite
- filler
- sand
- water
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011049 filling Methods 0.000 title claims description 61
- 239000000463 material Substances 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000945 filler Substances 0.000 claims description 144
- 239000000440 bentonite Substances 0.000 claims description 119
- 229910000278 bentonite Inorganic materials 0.000 claims description 119
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 119
- 239000004576 sand Substances 0.000 claims description 86
- 238000002156 mixing Methods 0.000 claims description 84
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 67
- 238000003756 stirring Methods 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 23
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 21
- 238000000926 separation method Methods 0.000 claims description 12
- 235000012216 bentonite Nutrition 0.000 description 99
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 87
- 239000002245 particle Substances 0.000 description 37
- 238000005086 pumping Methods 0.000 description 32
- 238000001723 curing Methods 0.000 description 24
- 238000009826 distribution Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 15
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 238000007596 consolidation process Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 239000011440 grout Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000003908 quality control method Methods 0.000 description 10
- 238000010276 construction Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000013329 compounding Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002689 soil Substances 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 230000036962 time dependent Effects 0.000 description 4
- 239000004927 clay Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Description
本発明は、軟弱地盤上に設けられた建物等の構造物の基礎下側に生じた地下空洞部に充填する充填材に関する。 The present invention relates to a filling material for filling an underground cavity portion formed on the lower side of a foundation of a structure such as a building provided on soft ground.
臨海部の埋立地など、軟弱地盤上に建設された杭基礎を有する構造物の基礎スラブ底面下側では、時間の経過と共に地盤の圧密沈下現象などによって、基礎スラブと地盤との間に空洞部が生じることがある。このような状態が続くと、基礎スラブ等の安定性の低下、メンテナンス費用の増加が懸念される。 On the bottom side of the foundation slab bottom of structures with pile foundations built on soft ground, such as landfills in coastal areas, there is a cavity between the foundation slab and the ground due to the consolidation settlement phenomenon of the ground over time. May occur. If such a state continues, there is a concern that the stability of the foundation slab and the like will decrease and the maintenance cost will increase.
従来の地下空洞部対策としては、モルタルや流動化処理土(土砂を加水しセメントを加えて練り混ぜた材料)等の自硬性材料を空洞部へ流し込み、空洞部を充填する方法が一般的である。こうした充填材は、充填の後、徐々に硬化して地盤と同程度又はそれ以上の強度を発現させ、充填後は、地盤の一部として扱われるようになる。 As a conventional countermeasure against underground cavities, a method of filling the cavities by pouring a self-hardening material such as mortar or fluidized soil (a material obtained by adding clay and adding cement) into the cavities is common. is there. Such a filler is gradually cured after filling to develop a strength equivalent to or higher than that of the ground. After filling, the filler is handled as a part of the ground.
しかしながら、こうした対策を、圧密沈下が進行中の軟弱地盤に適用した場合、構造物の杭基礎において、充填したモルタルなどが杭頭部や基礎スラブ底面に付着した状態で硬化してこれらと一体化し、構造物の自重が増加することにより、基礎杭などの支持力が増えるなど安全性が低下する、という問題があった。 However, when these measures are applied to soft ground where consolidation settlement is in progress, the pile foundation of the structure is cured and integrated with the pile head and the bottom of the foundation slab in a state where they are attached. However, the increase in the weight of the structure has a problem in that the safety is lowered, such as an increase in bearing capacity of foundation piles.
また、圧密沈下が進行して再び構造物と地盤との間に空洞部が生じる際には、充填材が既に硬化していることで、充填材の地盤への追随性がなく、硬化した充填材と地盤との間にも別途空隙が生じる場合があり、さらに、こうした空隙を含め、新たな空洞部へ充填材のさらなる充填施工を行う際、既に硬化した充填材が作業の妨げになって適切な充填が行えず、空洞部による構造物の安定性低下を抑えられなくなるという問題があった。 In addition, when consolidation settlement progresses and a cavity is generated between the structure and the ground again, the filler has already hardened, so that the filler does not follow the ground, and the hardened filling. There may be additional gaps between the material and the ground. In addition, when the filler is further filled into new cavities including these gaps, the already hardened filler will interfere with the work. There was a problem that proper filling could not be performed, and it was impossible to suppress a decrease in the stability of the structure due to the cavity.
こうした従来の自硬性のある充填材を空洞部に充填する工法に代えて、硬化しない充填材を充填するようにして、圧密沈下が進行中の地盤に充填材が追随できるようにしたものが、特開2011−256574号公報に開示されている。 Instead of the conventional method of filling the cavity with such a self-hardening filler, filling with a non-hardening filler so that the filler can follow the ground where consolidation settlement is in progress, It is disclosed in Japanese Patent Application Laid-Open No. 2011-256574.
前記特許文献に示されるような充填材(流動化物)を空洞部へ充填する場合、空洞部に充填された後でも硬化しない性質を有することで、さらに地盤の圧密沈下が進行しても地盤に追随し、充填材部分とその下の地盤との間に空隙を生じさせないことが見込める。しかしながら、あらかじめ設定された時間が経過すると、塑性化剤の働きにより充填材の流動性が消失するため、当初計画通りに充填作業が進行しないまま時間が経過したような場合、未充填の充填材における流動性が失われることで、作業途中で空洞部への充填材の圧送ができなくなったり、空洞部全体に充填材を行渡らせられなくなるという課題を有していた。 When filling the cavity with a filler (fluidized material) as shown in the above-mentioned patent document, it has the property that it does not harden even after being filled in the cavity, so that even if the consolidation of the ground further advances, Following this, it is expected that no gap will be formed between the filler portion and the ground below it. However, when the preset time has elapsed, the fluidity of the filler disappears due to the action of the plasticizer, so if the time has passed without the filling operation proceeding as originally planned, the unfilled filler Due to the loss of fluidity in the case, there is a problem that the filler cannot be pumped into the cavity part during the work, or the filler cannot be distributed throughout the cavity part.
また、充填材としての流動化物は、砂と水の他に、流動化剤と塑性化剤を所定量含んでおり、こうした合成物質である流動化剤や塑性化剤の成分が地中に残留して、周囲環境に影響を与えるおそれがあるという課題を有していた。 The fluidized material as a filler contains a predetermined amount of a fluidizing agent and a plasticizing agent in addition to sand and water, and the components of the fluidizing agent and the plasticizing agent, which are these synthetic substances, remain in the ground. Thus, there is a problem that there is a risk of affecting the surrounding environment.
さらに、流動化物をなす砂と水の配合割合は、流動化物の流動性と強度とが共に実用性を有するものとなるためには、砂又は水が極端に多い場合を除くような所定の範囲に限定されるはずであるが、前記特許文献においては、流動化剤と塑性化剤の流動化物全体に対する配合割合が示されるのみで、主材料である砂と水の配合割合が、発明を実施できる程度には具体的に示されていない。 Furthermore, the mixing ratio of sand and water forming the fluidized product is a predetermined range excluding the case where sand or water is extremely large in order for both the fluidity and strength of the fluidized product to be practical. However, in the above-mentioned patent document, only the blending ratio of the fluidizing agent and the plasticizing agent to the whole fluidized product is shown, and the blending ratio of sand and water, which are the main materials, implements the invention. It is not specifically shown to the extent possible.
本発明は前記課題を解決するためになされたもので、ベントナイト、水、及び砂を適切な配合として、時間の経過と共に硬化することがなく、流動性、圧送性、及び、さらなる地盤沈下への追随性に優れるとともに、充填された地中で杭頭部等の横抵抗力材として機能させられる地下空洞部充填材、及び、この充填材の製造方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and is suitable for blending bentonite, water, and sand, so that it does not harden over time, and has fluidity, pumpability, and further subsidence. An object of the present invention is to provide an underground cavity filling material that is excellent in followability and that functions as a lateral resistance material such as a pile head in the filled ground, and a method for manufacturing the filling material.
本発明に係る地下空洞部充填材は、ベントナイトと水とを所定の配合比で混合して得られたベントナイト泥水を、所定配合比で砂と混合し攪拌して、少なくとも管で圧送可能な流動性を付与された混合材であり、前記ベントナイト泥水と砂との配合比が、前記混合材の状態でのブリージング率が3%未満となる材料分離抵抗性を有する割合とされるものである。 The underground cavity filling material according to the present invention is a flow that can be pumped at least through a pipe by mixing and stirring bentonite mud obtained by mixing bentonite and water at a predetermined mixing ratio with sand at a predetermined mixing ratio. The blending ratio of the bentonite mud and sand is such that the material separation resistance is such that the breathing rate in the state of the blend is less than 3%.
このように本発明によれば、ベントナイトと水と砂を適切な配合比で混合して充填材を形成して、砂間に粘性を有するベントナイト泥水が適度に介在して砂を分散状態とし、流動性を得ると共に材料分離を生じにくい充填材とすることにより、圧送性に優れ、空洞部への注入充填作業が行いやすいことに加え、硬化しない充填材とすることができ、充填後、構造物に付着することはなく、構造物の自重増加を招かず安全性を確保できる一方で、充填された地中で杭頭部に対し横抵抗力を与えられ、適切に構造物の基礎を安定化できる。また、ベントナイトは自然由来の鉱物であるため、使用によって周囲環境に悪影響を与えず、且つその性状を半永久的に維持でき、安全に地盤の安定化が図れる。さらに、流動性を維持できる充填材はさらなる地盤沈下の進行に確実に追随でき、沈下で新たに空洞部が生じた場合も、充填材の再充填に際して既設の充填材が障害になることはなく、充填が容易である。 Thus, according to the present invention, bentonite, water and sand are mixed at an appropriate blending ratio to form a filler, and the sand is dispersed with moderately interposed bentonite mud between the sands, By using a filler that provides fluidity and hardly causes material separation, in addition to excellent pumpability and easy filling and filling work into the cavity, it can be a non-curing filler. It does not adhere to the structure and does not increase the weight of the structure, ensuring safety, while being given lateral resistance against the pile head in the filled ground, it stabilizes the structure's foundation appropriately. Can be Since bentonite is a naturally derived mineral, it does not adversely affect the surrounding environment by use, and its properties can be maintained semipermanently, and the ground can be stabilized stably. In addition, fillers that can maintain fluidity can reliably follow the progress of further land subsidence, and existing fillers will not be an obstacle to refilling fillers even if a new cavity is created during subsidence. Easy to fill.
また、本発明に係る充填材製造方法は、ベントナイトと水とを所定の配合比で混合し、さらに攪拌して得たベントナイト泥水を所定時間養生し、養生後のベントナイト泥水に砂を所定配合比で混合し、さらに攪拌して、少なくとも管で圧送可能な流動性を有し、且つブリージング率が3%未満となる材料分離抵抗性を有する充填材を得るものである。 Moreover, the filler manufacturing method according to the present invention comprises mixing bentonite and water at a predetermined mixing ratio, curing the bentonite mud obtained by stirring for a predetermined time, and adding sand to the bentonite mud after curing at a predetermined mixing ratio. Are mixed and further stirred to obtain a filler having at least fluidity that can be pumped by a tube and material separation resistance with a breathing rate of less than 3%.
このように本発明によれば、ベントナイトと水を混合し攪拌してベントナイト泥水を作り、ベントナイト泥水を所定時間養生した後、砂を所定配合比で混合し攪拌して充填材を製造することにより、混合や攪拌、養生以外の特別な製造工程を必要とせず、地下空洞部への充填を実施する作業現場で適切な充填材を効率よく得ることができると共に、適切な時間の養生を経たベントナイト泥水ではベントナイトが十分に膨潤状態となって、ベントナイト泥水としての粘性を最大限に発揮させて、砂との混合で流動性に優れた充填材を得ることができ、管での圧送及び地下空洞部への注入、充填をスムーズに行え、配管を通じた複数の注入経路への圧送、注入にも適切に対応できる。 Thus, according to the present invention, by mixing and stirring bentonite and water to make bentonite mud water, curing the bentonite mud water for a predetermined time, then mixing and stirring sand at a predetermined blending ratio to produce a filler Bentonite that does not require special manufacturing processes other than mixing, stirring, and curing, and can efficiently obtain an appropriate filler at the work site where the underground cavity is filled, and has undergone curing for an appropriate period of time. In the muddy water, the bentonite is sufficiently swollen to maximize the viscosity of the bentonite muddy water and to obtain a filler with excellent fluidity when mixed with sand. It is possible to smoothly inject and fill the part, and can appropriately cope with pumping and injection to multiple injection paths through piping.
(本発明の第1の実施形態)
以下、本発明の第1の実施形態を前記図1ないし図8に基づいて説明する。
前記各図において本実施形態に係る地下空洞部充填材1は、ベントナイトと水を混合した泥水に、さらに砂を混合したものである。この充填材1は、硬化せずに流動性を維持し、且つ材料分離を起さず圧送可能であり、構造物30の基礎下側に生じた地下空洞部50の充填に適したものである。
(First embodiment of the present invention)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
In each of the drawings, the underground
軟弱地盤上に構築される構造物30は、その多くが、地盤40上に基礎スラブ31と構造物本体32を構築し、これらを地盤中に打設された多数の杭33により支持する仕組みである。臨海部などの軟弱地盤地帯において、構造物30は支持杭により沈下しないが、圧密沈下の進行により地盤40が下がることで、図1に示すように、構造物30下部と地盤40との間に水平に浅く広がった空洞部50が生じる。この空洞部50は、地震時の揺れ等により加わる横方向の力に対する抵抗力が低下するなど、杭基礎の耐力低下を招く他、周囲地盤の傾斜や陥没をもたらす危険性もあることから、これを防止するため、空洞部50を充填材1で充填するものである。
Many of the
ここで、砂と水のみを混合した充填材では、圧送時に分離する可能性が高くなる。また、ベントナイトと水のみを混合した充填材では、圧送可能な流動性を持たせようとすると、地盤としての強度が得られない。ベントナイトと水を混合したベントナイト泥水に砂を混合することではじめて、施工性を高める優れた流動性を確保しつつ、地盤としての強度も得られる充填材となる。 Here, in the filler which mixed only sand and water, possibility that it will isolate | separate at the time of pumping will become high. Moreover, in the filler which mixed only bentonite and water, if it is going to give the fluidity | liquidity which can be pumped, the intensity | strength as a ground will not be obtained. Only when sand is mixed with bentonite mud mixed with bentonite and water, it becomes a filler that can secure the strength as the ground while ensuring excellent fluidity to improve workability.
本発明者らは、従前から軟弱地盤上の構造物における基礎下側の空洞部を、ベントナイト泥水に砂を加えて製造した充填材で充填する工事を試験的に実施して、このような充填材が、圧送性、充填性が高いといった、空洞部への充填材としての必要機能を有することを知見していた。しかしながら、作業現場毎に充填材の品質にばらつきがあったことから、充填材製造に関わる各種条件について、各種材料試験等を実施するなどして詳細に調べた結果、砂の配合量が少ないと材料分離しやすく、多いと粘性が高く圧送が困難となることがわかるなど、このような充填材は配合や作製方法によって特性が大きく変化し、圧送性、流動性、充填性の点から充填材として適した配合はごく限られた条件であることを発見した。 The inventors of the present invention have been experimentally conducting a construction for filling the cavity below the foundation in the structure on the soft ground with a filler produced by adding sand to bentonite mud water. It has been found that the material has the necessary functions as a filler for the cavity, such as high pumpability and high fillability. However, since the quality of the filler varied from work site to site, the results of detailed investigations such as conducting various material tests on various conditions related to filler production showed that the amount of sand was small. It is easy to separate materials, and it is clear that if it is too much, the viscosity will be high and it will be difficult to pump. Such fillers will change greatly depending on the formulation and production method. As a result, it was found that the composition suitable for the above is limited.
より詳細に説明すると、本発明者らは、適切な充填材を得るための調査研究において、埋戻しや充填用の未硬化コンクリートやモルタルの性能評価に用いられるシリンダーフロー値(以下、「フロー値」と呼称する。)及びブリージング率、また、空洞部内での充填性を評価するための流動勾配の各値を、本充填材でも評価指標として同様の手順で求めるようにすれば、充填材の特性を的確に評価できるとの知見を得た。 More specifically, the present inventors have investigated the cylinder flow value used for performance evaluation of uncured concrete and mortar for backfilling and filling (hereinafter referred to as “flow value”). ) And the breathing rate, and each value of the flow gradient for evaluating the filling property in the cavity is obtained by the same procedure as an evaluation index in this filler, The knowledge that the characteristic can be evaluated accurately was obtained.
本実施形態のようなベントナイトと水を混合した泥水にさらに砂を混合した充填材においては、ポンプ圧送時に材料分離が発生することを避けなければならない。こうした材料分離抵抗性を、ブリージング率により評価することとする。このブリージング率は、小さいほど材料分離抵抗性が良いことを示すものであり、地下空間(空洞部)への充填の場合、一般に3%未満が好ましい。 In a filler in which sand is further mixed with muddy water in which bentonite and water are mixed as in the present embodiment, it is necessary to avoid material separation during pumping. Such material separation resistance is evaluated by the breathing rate. The smaller the breathing rate, the better the material separation resistance. In the case of filling the underground space (cavity), generally less than 3% is preferable.
また、充填材の流動性を評価する指標となるフロー値は、大きいほど流動性が良いことを示しており、地下空間(空洞部)への充填の場合、一般に200mm以上が好ましい。充填材のフロー値が200mm未満であると、圧送管において充填材の流動性が低下しポンプ圧送が円滑に行われず、圧送中に圧送管内の圧力が上昇するおそれがある。これに対し、フロー値が200mm以上であると、流動性が確保され、構造物周辺部から長い管路を経て空洞部に充填する場合でも、ポンプ圧送が良好に行われる。 Moreover, the larger the flow value that is an index for evaluating the fluidity of the filler, the better the fluidity, and in the case of filling the underground space (cavity), generally 200 mm or more is preferable. If the flow value of the filler is less than 200 mm, the fluidity of the filler in the pressure feed pipe is reduced, pump pumping is not performed smoothly, and the pressure in the pressure feed pipe may increase during pressure feeding. On the other hand, when the flow value is 200 mm or more, the fluidity is ensured, and even when the cavity portion is filled from the peripheral portion of the structure through the long pipeline, the pumping is performed well.
さらに、充填材の充填性を評価する指標となる流動勾配は、小さいほど充填性が良いことを示しており、地下空間(空洞部)への充填の場合、一般に2%以下が好ましい。流動勾配が極端に大きくなると、空洞部内を充填材が流れきれずに、空隙を密実に充填できないおそれがある。これに対し、流動勾配が2%以下であると、充填性が向上し、空洞部の充填が良好に行われる。 Furthermore, the smaller the flow gradient that is an index for evaluating the filling property of the filler, the better the filling property, and in the case of filling the underground space (cavity), 2% or less is generally preferable. When the flow gradient becomes extremely large, there is a possibility that the filler cannot flow in the cavity and the gap cannot be filled densely. On the other hand, when the flow gradient is 2% or less, the filling property is improved, and the cavity is satisfactorily filled.
以上のように、材料分離抵抗性の評価指標としてのブリージング率を3%未満とし、流動性の評価指標としてのフロー値を200mm以上とし、充填性の評価指標としての流動勾配を2%以下とするように、充填材を製造することで、適度の粘性を確保でき、充填材としての剛性も有する、地下空洞部用充填材とすることができる。よって、これらブリージング率3%未満、フロー値200mm以上、流動勾配2%以下の各値を品質管理の基準値として、充填材の品質を管理するようにする。 As described above, the breathing rate as an evaluation index of material separation resistance is less than 3%, the flow value as an evaluation index of fluidity is 200 mm or more, and the flow gradient as an evaluation index of fillability is 2% or less. As described above, by manufacturing the filler, it is possible to obtain a filler for an underground cavity, which can secure an appropriate viscosity and has rigidity as a filler. Therefore, the quality of the filler is managed by using the values of the breathing rate of less than 3%, the flow value of 200 mm or more, and the flow gradient of 2% or less as quality control reference values.
そして、本実施形態に係る充填材1において、フロー値、ブリージング率及び流動勾配についての前記基準値の条件を満たす配合(重量比)は、ベントナイト(B):水(W)の比が1:6〜8の範囲であり、さらに(B):(W)=1:6〜7のとき、砂(S)20(ベントナイトを1とした場合の値。以降同様)の配合とするのが好ましく、また、(B):(W)=1:7〜8のとき、砂(S)20〜30の範囲となる配合とするのが好ましい点を見出した。
And in the
ただし、充填材の材料の一つであるベントナイトは、自然由来の鉱物であることから、仮に同じ採取地の同銘柄の製品を使用したとしても、採取時期等により水を吸収する能力(膨潤力)が異なり、それに伴い、充填材における流動性(フロー値)にばらつきが生じることとなる。 However, because bentonite, one of the filler materials, is a naturally derived mineral, even if the same brand product from the same collection site is used, the ability to absorb water (swelling power) ) Are different, and accordingly, the fluidity (flow value) of the filler varies.
また、砂も、各購入単位ごとの砂の入手時期によって、粒度分布に大きな違いが出る材料であり、砂の粒径が細か過ぎると、流動性(フロー値)の悪い充填材が製造されることがわかっている。 Sand is also a material with a large difference in particle size distribution depending on the time of acquisition of sand for each purchased unit. If the particle size of the sand is too fine, a filler with poor fluidity (flow value) is produced. I know that.
ベントナイトや砂には上記のような特性が見られることから、ベントナイトについては、水の添加量調整による配合修正、砂については、粗めの砂(珪砂など)を混合する粒度分布の調整により、安定した充填材を製造するようにしている。 Since bentonite and sand have the above characteristics, for bentonite, blending correction by adjusting the amount of water added, for sand, by adjusting the particle size distribution to mix coarse sand (silica sand, etc.), A stable filler is manufactured.
ベントナイトの配合修正は、具体的に、まず、標準的な配合(B):(W)=1:7のベントナイト泥水を適量作成し、そのフロー値が360mm±20mmの範囲にあるか否かの確認を行う。この範囲内であれば、適切な粒度分布の砂を適量混合した後の充填材においても、フロー値を200mm以上確保できることを確認している。 Specifically, the modification of the bentonite composition is made by first preparing an appropriate amount of bentonite mud with standard composition (B) :( W) = 1: 7 and checking whether the flow value is in the range of 360 mm ± 20 mm. Confirm. Within this range, it has been confirmed that a flow value of 200 mm or more can be secured even in a filler after mixing a suitable amount of sand having an appropriate particle size distribution.
一方、配合(B):(W)=1:7のベントナイト泥水のフロー値が、360mm±20mmの範囲外であれば、別途配合(B):(W)=1:6及び1:8のベントナイト泥水を適量作成し、それらのフロー値も測定し、得られたフロー値と配合との関係性から、適切なフロー値が得られる調整目標としての水の配合比率を求め、この配合比率に対応するベントナイト泥水を製造するようにする。 On the other hand, if the flow value of the bentonite mud with the blend (B) :( W) = 1: 7 is outside the range of 360 mm ± 20 mm, the blend (B) :( W) = 1: 6 and 1: 8 Create an appropriate amount of bentonite mud, measure the flow value, and determine the water mixing ratio as an adjustment target to obtain an appropriate flow value from the relationship between the obtained flow value and the mixing ratio. The corresponding bentonite mud is produced.
また、砂の粒度調整は、具体的には、まず、使用する購入砂又は現地発生土について、あらかじめ粒度試験を行い、粒度分布の確認を行う。粒径0.3mmの通過質量百分率が40%以下、というのが好適な粒度分布の目安である。粒度分布がこの目安の範囲から外れる場合は、粗めの砂(珪砂など)を混合し、粒度試験で得られる粒度分布が上記の目安の範囲を満たすようにする。 Specifically, the particle size adjustment of the sand is carried out by first conducting a particle size test on the purchased sand or the locally generated soil to be used and confirming the particle size distribution. A suitable particle size distribution standard is that the passing mass percentage with a particle size of 0.3 mm is 40% or less. If the particle size distribution deviates from this guideline range, coarse sand (such as silica sand) is mixed so that the particle size distribution obtained in the particle size test satisfies the above guideline range.
実際の充填材の製造工程としては、まずベントナイトと水を混合・攪拌してベントナイト泥水を製造し、所定時間(例えば、2時間以上)養生する。さらに、得られた泥水に砂を添加して攪拌すると、所定の流動性を有する充填材を得ることができる。製造された充填材は、プラントなどの製造箇所から、構造物周囲などの実際に充填作業を行う箇所までのポンプ圧送が可能である。 As an actual manufacturing process of the filler, bentonite and water are first mixed and stirred to produce bentonite mud and cured for a predetermined time (for example, 2 hours or more). Furthermore, when sand is added to the obtained muddy water and stirred, a filler having a predetermined fluidity can be obtained. The produced filler can be pumped from a production location such as a plant to a location where the actual filling operation is performed such as around the structure.
この充填材は、ベントナイト、すなわち一種の粘土と、水及び砂との混合材料であるため、圧密圧力や軸圧縮力の小さい条件下では粘土の性質を示し、圧密圧力や軸圧縮力が大きくなるにつれ砂質土的な性質へ移行する特性を有する。ベントナイトは、水に接触することで、「膨潤し粘性を持つ」特徴を有しており、そのベントナイト泥水に適度に砂を混ぜることで、流動性を持った充填材の製造が見込める。 Since this filler is bentonite, that is, a mixed material of a kind of clay, water and sand, it exhibits the properties of clay under conditions of low compaction pressure and axial compression force, and the consolidation pressure and axial compression force increase. It has the characteristic of shifting to sandy soil properties. Bentonite has the characteristic of “swelling and having viscosity” when it comes into contact with water. By mixing sand with the bentonite mud appropriately, it is possible to produce a filler with fluidity.
また、ベントナイトは、材料自体が固化せず、自然由来の鉱物であり環境や人体にも無害であり、耐久性に優れる(数十万年の間、性能を維持する)特徴を有するため、充填材として最適な材料と言える。 In addition, bentonite is a naturally occurring mineral that does not solidify itself, is harmless to the environment and the human body, has excellent durability (maintains performance for hundreds of thousands of years), and is filled. It can be said that it is the most suitable material.
こうした充填材1の空洞部50への充填作業は、図2に示すように、構造物30の基礎スラブ31周辺に複数の注入孔41を設け、注入孔41に建て込んだ注入パイプ20を通じて行う。構造物30の基礎スラブ31下部に生じる空洞部50は、基礎スラブ31の規模により様々と考えられることから、空洞部50内を緻密に充填するためには、構造物30の基礎スラブ31周辺の複数箇所から注入することが好ましい。
As shown in FIG. 2, the filling operation of the
なお、前記複数箇所の注入孔41は、孔から充填材がリークすることに基づいて、充填材1が空洞部50内を緻密に充填したことを確認するリーク確認孔として活用することもできる。
The plurality of injection holes 41 can also be used as leak confirmation holes for confirming that the
次に、前記構成に基づく地下空洞部充填材の空洞部への充填に係る事前作業工程と実際の充填作業工程について説明する。前提として、構造物30が複数の杭33からなる杭基礎に支持される状態で構築された軟弱地盤において、圧密沈下の進行により地盤40が下がり、構造物30下部と地盤40との間に、充填対象となる空洞部50が生じているものとする。
Next, the preliminary work process and the actual filling work process related to filling the hollow part of the underground cavity filling material based on the above configuration will be described. As a premise, in the soft ground constructed in a state where the
はじめに、充填材1の空洞部50への充填に先立つ、事前作業工程について説明する。まず、空洞部充填の施工現場に応じて材料(ベントナイト、砂、水)、及び、圧送用ポンプ、グラウトミキサー、ベルトコンベア、砂計量器、水中ポンプ、発電機、砂ホッパー、水槽、水計量器、養生用タンク、注入パイプ、バックホウ等を準備し、空洞部充填箇所周辺にプラントを設置する。
First, a prior work process prior to filling the
この後、充填材を製造する前の配合確認試験を行う。まず、ベントナイトと水を所定の割合で配合し、ハンドミキサー等で所定時間(例えば、30分〜40分間)攪拌し、ベントナイト泥水を作製し、攪拌直後のフロー値を確認する。その際のフロー値が360mm±20mmの範囲以内であれば、そのベントナイト泥水を静置し、所定時間(例えば、1時間〜2時間)養生する。 Thereafter, a blending confirmation test is performed before the filler is manufactured. First, bentonite and water are blended at a predetermined ratio and stirred with a hand mixer or the like for a predetermined time (for example, 30 to 40 minutes) to prepare bentonite mud water, and the flow value immediately after stirring is confirmed. If the flow value at that time is within the range of 360 mm ± 20 mm, the bentonite mud is left still and cured for a predetermined time (for example, 1 to 2 hours).
一方、作製した攪拌直後のベントナイト泥水フロー値が360mm±20mmの範囲以外の場合は、ベントナイトに配合する水の量を調整し、前記範囲以内に入るように、ベントナイト泥水の配合を修正する。 On the other hand, when the bentonite mud flow value immediately after stirring is outside the range of 360 mm ± 20 mm, the amount of water blended in bentonite is adjusted, and the blending of bentonite mud is corrected so as to fall within the above range.
ベントナイトや砂の材料条件等によって必要となる、このベントナイト泥水の配合修正方法としては、通常の配合比1:7のベントナイト泥水のフロー値が340〜380mmの範囲以外となる場合、まず、配合比1:6と1:8の場合の各フロー値を確認し、縦軸をフロー値、横軸を配合比としてグラフにプロットし、ベントナイト泥水の配合毎のフロー値近似直線を求める。この近似直線とフロー値360mmを示す線との交点における配合比の値(例えば、1:7.9)を、配合修正値として採用する(図8参照)。こうして、フロー値の条件を満足させるためのものとして当初想定した配合比1:7に代えて、配合修正後は、例えば配合比1:7.9となるように、ベントナイトに対する水の量を調整することとなる。 As a method for correcting the bentonite mud mixture, which is required depending on the material conditions of bentonite and sand, etc., when the flow value of bentonite mud with a normal compounding ratio of 1: 7 is outside the range of 340 to 380 mm, first, the compounding ratio Each flow value in the case of 1: 6 and 1: 8 is confirmed, and the vertical axis represents the flow value and the horizontal axis represents the blending ratio, and is plotted on a graph to obtain an approximate flow value straight line for each bentonite mud blend. A blending ratio value (for example, 1: 7.9) at the intersection of this approximate straight line and a line indicating a flow value of 360 mm is adopted as a blending correction value (see FIG. 8). Thus, the amount of water relative to bentonite is adjusted so that, for example, the blending ratio is 1: 7.9 after the blending correction, instead of the blending ratio 1: 7 initially assumed to satisfy the flow value condition. Will be.
この他、砂として準備した購入土又は現地発生土の粒度試験(JIS A 1204)、土粒子密度試験(JIS A 1202)により、砂の粒度分布を事前に把握しておく。粒度分布としては、粒径0.3mmの通過質量百分率が40%以下となる砂が好ましく、仮に粒度分布がこの範囲から外れる場合は、粗めの砂を混合し、粒度分布が範囲内となるように調整するのが望ましい。 In addition, the particle size distribution of the sand prepared as sand or locally generated soil (JIS A 1204) and the soil particle density test (JIS A 1202) should be grasped in advance. As the particle size distribution, sand having a particle size of 0.3 mm and a passing mass percentage of 40% or less is preferable. If the particle size distribution is out of this range, coarse sand is mixed and the particle size distribution is within the range. It is desirable to adjust as follows.
そして、所定時間養生した後のベントナイト泥水に、好ましい粒度分布の砂を所定の配合、例えば、ベントナイト1に対し20となる配合比で混合し、ハンドミキサー等で所定時間(例えば、10分間)攪拌し、充填材を作製する。この充填材のフロー値を計測し、フロー値が200mm以上であれば、配合決定となり、事前作業が完了となる。ここでフロー値が200mm未満となる場合、ベントナイト泥水に混合する砂を見直し、充填材の作製をやり直す。すなわち、砂に粗めの砂を追加する粒度調整を行った上で、ベントナイト泥水と混合して新たに充填材を作製する。
Then, sand having a preferable particle size distribution is mixed with bentonite mud after curing for a predetermined time in a predetermined composition, for example, a mixing ratio of 20 with respect to
続いて、充填材1を空洞部50に実際に充填する作業工程について説明する。まず、ベントナイトと水を先の決定した配合に基づいて混合し、グラウトミキサーで所定時間(例えば、30分〜40分間)攪拌し、ベントナイト泥水を製造する。
得られたベントナイト泥水を静置し、養生タンク等に移した後、所定時間(例えば、1時間〜2時間)養生する。
Next, an operation process for actually filling the
The obtained bentonite mud is left still and transferred to a curing tank or the like, followed by curing for a predetermined time (for example, 1 to 2 hours).
そして、養生したベントナイト泥水を別のグラウトミキサーに移し、砂を決定した配合に基づいて混合し、グラウトミキサーで所定時間(例えば、10分間)攪拌し、充填材を製造する。
この充填材の品質確認試験として、フロー値が200mm以上であることを確認する。
Then, the cured bentonite mud is transferred to another grout mixer, and the sand is mixed based on the determined formulation, and stirred for a predetermined time (for example, 10 minutes) with the grout mixer to produce a filler.
As a quality confirmation test of this filler, it is confirmed that the flow value is 200 mm or more.
一方、充填箇所では、図2に示すように、構造物30における基礎スラブ31の縁周辺に複数の注入孔41を設け、注入孔41に比較的小径(例えば、直径50mm以下)の注入パイプ20を建て込む。その際の建て込み間隔は4m程度が好ましい。
On the other hand, as shown in FIG. 2, a plurality of injection holes 41 are provided around the edge of the
続いて、製造された充填材1を、圧送用ポンプにより配管を通して圧送する。その際、ポンプ圧力が1.0Mpaの場合は、作業現場における圧送距離が100m以下であることが好ましい。
Subsequently, the manufactured
そして、圧送用ポンプで圧送した充填材1を注入パイプ20を通じて地下空洞部50に注入し、複数の注入孔41のいずれかから充填材のリークを確認したら、空洞部内が充填材1で緻密に充填されたと見なせることにより、充填作業完了となる。
Then, when the
この充填状態では、空洞部50に充填された充填材1が、硬化せず流動性を維持しつつも、低い圧密・圧縮性により充填材として十分な剛性を有して、基礎杭頭部に横方向の抵抗力を与えられると共に、周囲地盤の陥没等を生じさせず、構造物付近における作業者や通行者の安全を確保できる。
In this filled state, the
このように、本実施形態に係る地下空洞部充填材においては、軟弱地盤に設けた構造物30の基礎スラブ31下側に生じた地下空洞部50に、適切な材料及び配合・養生の条件を設定して製造した充填材1を充填することで、充填材1は空洞部50で硬化しないものの、十分に圧密・圧縮性が低く、杭33に対する横方向の抵抗力を確保でき、杭基礎の耐力低下を抑えられる。
Thus, in the underground cavity filling material according to the present embodiment, appropriate materials and conditions for blending and curing are provided for the
さらに、この充填材は、時間が経過しても硬化せず流動性に優れており、施工後再び圧密沈下等で空洞部が生じても、充填材が地盤40の沈下に追随して動くこととなり、充填材と下側の地盤との間に空隙が生じない。また、新たに生じた空洞部に対しても、硬化しない充填済充填材が施工の妨げとならず、充填材の再充填施工が容易に行える。
Furthermore, this filler does not harden over time and is excellent in fluidity. Even if a hollow portion is generated due to consolidation settlement after construction, the filler follows the settlement of the
(本発明の第2の実施形態)
前記第1の実施形態に係る地下空洞部充填材においては、品質管理の基準値としてのフロー値を200mm以上とし、これを満たすように充填材の品質を管理して、適切な流動性を有する構成としているが、この他、第2の実施形態として、事前に地盤の圧密沈下が高い確率で予想される軟弱地盤上に構築される構造物において、あらかじめ沈下による空洞部発生への対策の用意として、図9に示すように、構造物30の基礎スラブ31に、この基礎スラブ31と地盤40との間に生じた空洞部50に充填材を流し込むための孔や管を、基礎強度に悪影響を与えない程度に当初から設けておき、圧密沈下で空洞部が生じた際に、基礎スラブ下の空洞部各所に対し、直上のスラブ側から充填材を投入できる場合には、充填材を、管を通じた圧送が可能な範囲で、フロー値が200mm未満となる配合、すなわち、基礎スラブ31の横のみから充填材を注入して空洞部中央まで充填材を十分に到達させる場合に必要な流動性より、低い流動性となる配合、例えば、ベントナイト(B):水(W):砂(S)の配合比が1:6:20となる配合、で製造する構成とすることもでき、投入条件によって許容範囲が変化する充填材の流動性に対応させて、施工現場での配合調整の自由度を高められる。
(Second embodiment of the present invention)
In the underground hollow portion filler according to the first embodiment, the flow value as a reference value for quality control is set to 200 mm or more, and the quality of the filler is managed so as to satisfy the flow value, thereby having appropriate fluidity. In addition to this, as a second embodiment, in a structure constructed on soft ground where the consolidation settlement of the ground is predicted in advance with a high probability, preparation for measures against the occurrence of a cavity due to settlement is prepared in advance. As shown in FIG. 9, holes and pipes for pouring the filler into the
本発明の充填材や、その材料となるベントナイト泥水を、配合その他の条件を変えて製造し、適切な流動性その他の必要な性状を発揮するか、確認試験を行い評価した。
実際の施工では、材料や適用条件の違いにより充填材の品質や施工結果のばらつきが予想されるため、あらかじめ品質管理の基準値を定めて、それに合わせて充填材を製造するようにして、充填材として安定した性能を発揮できるようにする。
The filler of the present invention and bentonite mud as the material were produced by changing the blending and other conditions, and whether or not appropriate fluidity and other necessary properties were exhibited was evaluated by a confirmation test.
In actual construction, the quality of the filler and the result of construction are expected to vary due to differences in materials and application conditions. Therefore, the quality control standard value is set in advance, and the filler is manufactured according to the standard value. Enables stable performance as a material.
品質管理の基準値としては、埋戻しや充填用のコンクリートやモルタルの未硬化状態における評価に用いられるフロー値、ブリージング率、及び流動勾配の各値を、本充填材についても評価指標として適用し、地下空間(空洞部)への充填の場合に一般的に好ましい値とされる、ブリージング率3%未満、フロー値200mm以上、流動勾配2%以下の各条件を採用する。 As the standard values for quality control, the flow value, breathing rate, and flow gradient value used for the evaluation of uncured concrete and mortar for backfilling and filling are also applied to this filler as evaluation indices. Each condition of a breathing rate of less than 3%, a flow value of 200 mm or more, and a flow gradient of 2% or less, which is generally preferred in the case of filling underground spaces (cavities), is adopted.
(ベントナイト泥水養生時間の影響、及び、配合による圧送性と流動勾配変化についての評価)
ベントナイト泥水養生時間と、製造された充填材のフロー値及び流動勾配との関係を調べ、設定した品質管理基準値(フロー値:200mm以上、ブリージング率:3%未満、流動勾配:2%以下)を満足する最適な養生時間についての評価を行う。
(Effects of bentonite mud curing time and evaluation of pumpability and flow gradient change by blending)
The relationship between the bentonite mud water curing time and the flow value and flow gradient of the manufactured filler was investigated, and the set quality control standard values (flow value: 200 mm or more, breathing rate: less than 3%, flow gradient: 2% or less) The optimal curing time that satisfies the above is evaluated.
ベントナイト(B):水(W):砂(S)の配合比が、それぞれ1:7:20、1:7:30、1:6:20である三つの配合例について、ベントナイト泥水の養生時間をそれぞれ30、60、120分として得られた各充填材のフロー値とブリージング率を求めた。
また、製造した充填材を大型土槽に圧送打設し、流動勾配測定を行う一方、圧送の際の管内圧力測定を行った。
Curing time of bentonite mud water for three blending examples in which the blending ratio of bentonite (B): water (W): sand (S) is 1: 7: 20, 1: 7: 30, 1: 6: 20, respectively. The flow value and breathing rate of each filler obtained at 30, 60, and 120 minutes were determined.
In addition, the produced filler was pumped into a large earth basin to measure the flow gradient, and the pressure in the pipe at the time of pumping was measured.
ベントナイトは、クニゲルV1(クニミネ工業株式会社製)を用いた。また、水は水道水を水温約20℃に調整して用いている。一方、砂は、粒度分布を調整したものを用いた。砂の粒径加積曲線のグラフを図10に示す。なお、使用した砂の土粒子密度は、2.649(g/cm3)であった。 As the bentonite, Kunigel V1 (manufactured by Kunimine Kogyo Co., Ltd.) was used. Moreover, tap water is adjusted to a water temperature of about 20 ° C. and used. On the other hand, sand whose grain size distribution was adjusted was used. A graph of the particle size accumulation curve of sand is shown in FIG. In addition, the soil particle density of the used sand was 2.649 (g / cm 3 ).
試験の手順は、以下の通りである。
1.グラウトミキサーに計量した水とベントナイトとを投入し、1時間攪拌する
2.攪拌後、グラウトミキサーからベントナイト泥水を排出し、養生温度を20℃として、所定時間養生する。
3.所定時間養生後、計量したベントナイト泥水と砂とをグラウトミキサーに投入し、10分間攪拌する。
4.攪拌後、グラウトミキサから充填材を排出し、モーノポンプに移した後、約1.0m3/hで圧送ホース(長さ40m)を用いて圧送し、大型土槽に打設する。
The test procedure is as follows.
1. 1. Add water and bentonite to a grout mixer and stir for 1 hour. After stirring, the bentonite mud is discharged from the grout mixer and cured at a curing temperature of 20 ° C. for a predetermined time.
3. After curing for a predetermined time, the measured bentonite mud and sand are put into a grout mixer and stirred for 10 minutes.
4). After stirring, the filler is discharged from the grout mixer, transferred to a mono pump, and then pumped at about 1.0 m 3 / h using a pumping hose (length 40 m) and placed in a large earth tub.
充填材の土槽への圧送打設の際における管内圧力測定は、圧送ホースの0、5、10、20m各地点で管内圧力を測定した。
流動勾配測定に用いた大型土槽は、大きさが0.3m×0.4m×5.0mの流動勾配測定用のものである。圧送ホースの吐出端を土槽の一端部に配置して充填材を投入し打設する。流動勾配測定では、打設開始から24時間後まで、投入位置である土槽端部から0m、2.5m、5.0mの各地点で、打設した充填材の高さを測定した。ただし、圧送ホースから土槽内への充填剤投入は打設開始から30分後に終了している。
ベントナイト、水、及び砂の配合とベントナイト泥水の養生時間を変えて製造した各充填材について、測定したフロー値とブリージング率を表1に示す。
In-pipe pressure measurement at the time of pumping the filler into the earth tub was measured at each point of the pressure hose at 0, 5, 10, and 20 m.
The large earth basin used for the flow gradient measurement is for measuring a flow gradient having a size of 0.3 m × 0.4 m × 5.0 m. The discharge end of the pressure hose is placed at one end of the earth tub, and a filler is introduced and placed. In the flow gradient measurement, the height of the filled filler was measured at each point of 0 m, 2.5 m, and 5.0 m from the end of the earth tub, which is the loading position, from 24 hours after the start of casting. However, the filling of the filler from the pumping hose into the earth tub is finished 30 minutes after the start of placing.
Table 1 shows the measured flow value and breathing rate for each filler produced by changing the blending time of bentonite, water and sand and the curing time of bentonite mud.
ブリージング率はいずれの配合例の場合も、ブリージング試験においてブリージングで遊離した水(ブリージング水)が計量限界以下、すなわちブリージング率として計測不可であり、ブリージングはほとんど生じていないことがわかった。これにより、通常の圧送、充填では材料分離は生じないと考えられる。 In any of the blending examples, it was found that the water liberated by breathing (breathing water) in the breathing test was below the measurement limit, that is, the breathing rate was not measurable, and almost no breathing occurred. Thus, it is considered that no material separation occurs in normal pumping and filling.
また、フロー値は、配合比1:7:20の各例と、配合比1:7:30の各例では、いずれも200mm以上を満足しているが、配合比1:6:20の各例では200mm未満となった。 In addition, in each example of the blending ratio 1: 7: 20 and each example of the blending ratio 1: 7: 30, the flow value satisfies 200 mm or more, but each of the blending ratio 1: 6: 20 In the example, it was less than 200 mm.
一方、打設の際の管内圧力測定で得られた、圧送距離と管内圧力との関係を図11のグラフに示す。ただし、各配合例における養生時間による差は小さいため、代表値として養生時間2時間の場合の値のみ示す。 On the other hand, the graph of FIG. 11 shows the relationship between the pumping distance and the pipe pressure obtained by measuring the pipe pressure at the time of placing. However, since the difference by the curing time in each combination example is small, only the value in the case of the curing time of 2 hours is shown as a representative value.
図11に示すように、吐出位置での圧力を0MPaとすると、管内圧力はほぼ直線的に分布している。フロー値の大きい配合例ほど管内圧力が小さくなっていることがわかる。なお、充填材圧送時における管内圧力の経時変化は確認されなかった。 As shown in FIG. 11, when the pressure at the discharge position is 0 MPa, the pressure in the pipe is distributed almost linearly. It can be seen that the greater the flow value, the smaller the pipe pressure. In addition, the time-dependent change of the pressure in a pipe | tube at the time of filler pumping was not confirmed.
さらに、上記の各結果から圧力勾配(元圧力/圧送距離)を求め、これを用いて、圧送圧力3.5MPa程度のグラウトポンプを使用した場合の圧送限界(最大圧送圧力/圧力勾配、ただし、内径38mmの圧送管で1.0m3/hにて算定)を推定した。各配合例ごとの圧送限界の値を表2に示す。ただし、この圧送限界の表に示した値は、直線圧送を仮定し、最大圧送圧力(ポンプ能力)の80%で算定したものである。 Further, a pressure gradient (original pressure / pumping distance) is obtained from each of the above results, and using this, a pumping limit (maximum pumping pressure / pressure gradient when using a grout pump with a pumping pressure of about 3.5 MPa, however, (Calculated at 1.0 m 3 / h with a 38 mm inner diameter pumping tube). Table 2 shows the value of the pumping limit for each blending example. However, the values shown in the table of the pumping limit are calculated based on 80% of the maximum pumping pressure (pump capacity) assuming linear pumping.
これら充填材の圧送試験結果より、圧送圧力3.5MPa程度のグラウトポンプを使用した場合の圧送限界距離は、いずれの配合の場合も400m程度であり、十分な被圧送能力を有している。 From the pumping test results of these fillers, the pumping limit distance when a grout pump with a pumping pressure of about 3.5 MPa is used is about 400 m in any combination, and the pumping capacity is sufficient.
この他、流動勾配測定で得られた、各配合例における土槽各点での充填材高さの経時変化を図12、図13、図14に示す。打設後は、充填材の移動はほとんど確認されなかったため、充填剤投入終了(30分後)以降の結果の図示を省略している。
この充填材高さの各結果から求めた流動勾配の値を、表3に示す。
In addition, FIG. 12, FIG. 13 and FIG. 14 show changes with time in the height of the filler at each point of the earthen tub in each blending example obtained by the flow gradient measurement. After the placement, since the movement of the filler was hardly confirmed, the illustration of the results after the end of filling the filler (after 30 minutes) is omitted.
Table 3 shows the value of the flow gradient obtained from each result of the filler height.
表3から、配合比1:7:20の例では養生時間1時間以上の場合で、流動勾配2%以下となり、品質管理基準を満たすことがわかる。また、配合比1:7:30の例では養生時間2時間以上で、流動勾配2%以下となり、品質管理基準を満たすことがわかる。 From Table 3, it can be seen that in the case of the blending ratio 1: 7: 20, the curing time is 1 hour or more, the flow gradient is 2% or less, and the quality control standard is satisfied. Moreover, in the example of the mixture ratio 1: 7: 30, it can be seen that the curing time is 2 hours or more and the flow gradient is 2% or less, which satisfies the quality control standard.
以上から、ベントナイト泥水の養生時間を、配合比1:7:20を採用する場合には1時間以上、配合比1:7:30を採用する場合には2時間以上と、適切に設定すれば、流動勾配をはじめとする品質管理基準を満たし、構造物の基礎周辺のみから地下空洞部へ充填材を注入して空洞部中央まで充填材を到達させる場合に必要な性能を確保した充填材を得られることが明らかである。そして、上記二つの配合は、砂の配合割合の差異に基づき、流動性と強度に違いがあることから、より高い流動性が必要な場合には配合比1:7:20の充填材を採用し、より高い地盤反力係数が必要な場合には配合比1:7:30の充填材を採用するなど、配合を使い分けるのが望ましいといえる。 From the above, if the curing time of bentonite mud is appropriately set to 1 hour or more when the mixing ratio 1: 7: 20 is adopted, and 2 hours or more when the mixing ratio 1: 7: 30 is adopted. A filler that satisfies the quality control standards such as the flow gradient and ensures the performance required when the filler is injected only from the periphery of the base of the structure into the underground cavity to reach the center of the cavity. It is clear that it is obtained. And since the above two blends are different in fluidity and strength based on the difference in the blending ratio of sand, a filler with a blending ratio of 1: 7: 20 is adopted when higher fluidity is required. However, when a higher ground reaction force coefficient is required, it can be said that it is desirable to use different blends, such as using a filler with a blend ratio of 1: 7: 30.
また、配合比1:6:20の充填材の場合、管での圧送は問題ないものの、フロー値や流動勾配が品質管理基準を満足しない点を考慮すると、フロー値200mm以上を要求するような充填対象箇所への充填、例えば、充填材を構造物の基礎周縁部から注入して地下空洞部各部へ到達させるような場合や、狭隘箇所への充填には不向きであるといえる。 In addition, in the case of a filler with a blending ratio of 1: 6: 20, there is no problem in pumping with a pipe, but considering that the flow value and flow gradient do not satisfy the quality control standard, a flow value of 200 mm or more is required. It can be said that it is unsuitable for filling a place to be filled, for example, in a case where a filler is injected from the basic peripheral edge of the structure and reaches each part of the underground cavity, or in a narrow place.
(ベントナイト泥水攪拌時間の影響についての評価)
ベントナイト泥水の攪拌時間とフロー値との関係を調べて、問題のない最短の攪拌時間を求める。
ベントナイトと水の配合比1:7、1:6の二つの配合例について、攪拌時間を3、5、10、20、30、40、50、60分として得られた各ベントナイト泥水に対し、養生後フロー試験を行い、フロー値を求めた。合わせて攪拌後の泥水の目視観察を行った。なお、ベントナイト泥水の養生時間は2時間とした。
(Evaluation of the effect of stirring time of bentonite mud)
The relationship between the agitation time of bentonite mud and the flow value is investigated, and the shortest agitation time with no problem is obtained.
Curing for each bentonite mud obtained with mixing time of 3, 5, 10, 20, 30, 40, 50, 60 minutes for two blending ratios of bentonite and water of 1: 7, 1: 6 A post flow test was performed to determine the flow value. In addition, visual observation of the muddy water after stirring was performed. The bentonite mud water was cured for 2 hours.
上記二つの配合例での、ベントナイト泥水の各攪拌時間とフロー値との関係を図15に示す。また、目視による各攪拌時間ごとの泥水中におけるベントナイト塊の有無を、表4に示す。 FIG. 15 shows the relationship between each stirring time of bentonite mud and the flow value in the above two blending examples. Table 4 shows the presence or absence of bentonite lumps in the muddy water for each stirring time visually.
試験の結果、配合比1:7の例では攪拌時間10分以上、配合比1:6の例では攪拌時間30分以上で、それぞれフロー値が一定となった。一方、目視観察では、配合比1:7の例では攪拌時間20分未満、配合比1:6の例では攪拌時間30分未満で、それぞれ未攪拌のベントナイト塊が視認されたが、配合比1:7の例では攪拌時間30分以上、配合比1:6の例では攪拌時間40分以上で、未攪拌のベントナイト塊が無くなり均質な試料となっていることが確認されたことから、各例で十分に攪拌が進んでそれ以上の攪拌を要しない状態に至ったと見なせる。 As a result of the test, the flow values became constant when the mixing ratio was 1: 7 in the example of the mixing ratio 1: 7, and in the example of the mixing ratio 1: 6, the stirring time was 30 minutes or more. On the other hand, by visual observation, an unstirred bentonite lump was visually recognized in the example of the mixing ratio 1: 7 with a stirring time of less than 20 minutes and in the example of the mixing ratio 1: 6 with a stirring time of less than 30 minutes. : In the case of 7, the stirring time was 30 minutes or more, and in the case of the blending ratio 1: 6, the stirring time was 40 minutes or more. Thus, it can be considered that the stirring is sufficiently advanced and no further stirring is required.
以上から、フロー値が一定値を示すようになり、測定上はそれ以上攪拌しても性状が変化しないと見なせる状態となっても、未攪拌のベントナイトが残る状態で次工程に進むことは、品質保証上好ましくないことから、実際の充填施工時には泥水の攪拌時間を40分以上とするのが望ましいといえる。 From the above, the flow value shows a constant value, and even if it is considered that the property does not change even if stirring further on the measurement, it proceeds to the next step with unstirred bentonite remaining, Since it is not preferable in terms of quality assurance, it can be said that it is desirable to set the stirring time of muddy water to 40 minutes or more during actual filling construction.
(ベントナイトの品質のばらつきとベントナイト泥水のフロー値との関係についての評価)
ベントナイトの品質のばらつきが、ベントナイト泥水に及す影響を調べた。具体的には、同銘柄のベントナイト(クニゲルV1(クニミネ工業株式会社製))ながら、入手時期が異なることで品質成績表に示された性状に差異のある三つのベントナイトについて、水との配合比を変えてベントナイト泥水を作り、フロー試験を行って流動性を検証した。各ベントナイトごとの、ベントナイトに対する水の割合とフロー値との関係を図16に示す。また、各ベントナイトの品質成績表を表5に示す。ただし、各ベントナイトについてフロー試験を行った配合比は一部異なっている。
(Evaluation of the relationship between bentonite quality variation and bentonite mud flow value)
The effect of bentonite quality variation on bentonite mud was investigated. Specifically, the same brand of bentonite (Kunigel V1 (Kunimine Kogyo Co., Ltd.)), but the three bentonites with different properties shown in the quality results table due to different times of acquisition, are mixed with water. The bentonite mud was made by changing the flow rate and the fluidity was verified by performing a flow test. FIG. 16 shows the relationship between the ratio of water to bentonite and the flow value for each bentonite. In addition, Table 5 shows the quality result table of each bentonite. However, the blending ratios obtained by performing the flow test for each bentonite are partially different.
フロー試験の結果、いずれのベントナイトの場合においても、水の配合割合とフロー値との関係をほぼ直線近似できることがわかった。これにより、事前にベントナイト泥水の複数の配合割合におけるフロー値を調べて、直線的な関係(関数)を求めることで、いずれのベントナイトにおいても、最終的に製造される充填材に求める性状に基づく、調整目標となるベントナイト泥水のフロー値に対応した水の適切な配合割合を見出せることがわかる。 As a result of the flow test, it was found that the relationship between the mixing ratio of water and the flow value can be approximately linearly approximated in any bentonite. Thereby, the flow values at a plurality of blending ratios of bentonite mud are examined in advance, and the linear relationship (function) is obtained, so that in any bentonite, based on the properties required for the finally produced filler. It can be seen that an appropriate blending ratio of water corresponding to the flow value of bentonite mud as the adjustment target can be found.
(砂の粒度分布と充填材のフロー値との関係についての評価)
性状の異なる砂を用いて、ベントナイトと水、砂の配合比が1:7:30になるようにそれぞれ充填材を製造し、そのフロー値を求めた。
(Evaluation of the relationship between particle size distribution of sand and flow value of filler)
Using sand having different properties, fillers were produced such that the blending ratio of bentonite, water, and sand was 1: 7: 30, and the flow value was determined.
砂としては、粒度分布の異なる三種類の砂、すなわち、第1の砂と、この第1の砂に粗粒質(珪砂)を加えて粒度を調整した第2の砂、及び、この第2の砂にさらに粗粒質(珪砂)を加えて粒度を調整した第3の砂を用いた。各砂の粒径加積曲線を図17に示す。
三種類の砂を用いて、配合比1:7:30として製造した各充填材について測定したフロー値を表6に示す。
As the sand, three types of sand having different particle size distributions, that is, the first sand, the second sand obtained by adding coarse particles (silica sand) to the first sand and adjusting the particle size, and the second sand The 3rd sand which added coarse-grained substance (silica sand) to this sand, and adjusted the particle size was used. The particle size accumulation curve of each sand is shown in FIG.
Table 6 shows the flow values measured for each filler manufactured using the three types of sand at a blending ratio of 1: 7: 30.
表6より、粒径の低い成分の割合が最も大きい第1の砂を用いた場合のフロー値(90mm)、及び、粒径の低い成分の割合を増やした第2の砂を用いた場合のフロー値(165mm)は、いずれも品質管理基準の200mmを下回っている。これに対し、第2の砂に対しさらに粒度を調整して粒径の小さい成分の割合を減らした第3の砂を用いた場合では、高いフロー値(215mm)が得られている From Table 6, the flow value (90 mm) when using the first sand with the largest proportion of components having a small particle size, and the second sand with an increased proportion of components having a small particle size are used. The flow values (165 mm) are both below the quality control standard of 200 mm. On the other hand, in the case of using the third sand in which the particle size is further adjusted with respect to the second sand to reduce the proportion of components having a small particle size, a high flow value (215 mm) is obtained.
以上から、砂における粒径の小さい成分の割合が大きいと充填材の流動性に劣るが、砂の粒度調整を行って粒度分布を変えることで、充填材の流動性を高めることができ、砂の粒度調整が、充填材の流動性を高めるのに有効であることがわかる。 From the above, when the proportion of the small particle size component in the sand is large, the fluidity of the filler is inferior, but by changing the particle size distribution by adjusting the particle size of the sand, the fluidity of the filler can be increased. It can be seen that the particle size adjustment is effective in increasing the fluidity of the filler.
1 充填材
20 注入パイプ
30 構造物
31 基礎スラブ
32 構造物本体
33 杭
40 地盤
41 注入孔
50 空洞部
DESCRIPTION OF
Claims (3)
前記ベントナイト泥水は、ベントナイトと水との所定の配合比による混合物であり、
前記ベントナイト泥水と砂との配合比が、前記混合材の状態でのブリージング率が3%未満となる材料分離抵抗性を有する割合とされ、
前記ベントナイト泥水におけるベントナイト及び水が、配合重量比でベントナイト1に対して水7ないし8となる割合とされ、
前記砂が、ベントナイトに対する重量比をベントナイト1に対し20又は30とされることを
特徴とする地下空洞部充填材。 It is a mixed material with a predetermined mixing ratio of bentonite mud water and sand, which has fluidity that can be pumped at least by a pipe ,
The bentonite mud is a mixture of bentonite and water with a predetermined mixing ratio,
The blending ratio of the bentonite mud and sand is a ratio having a material separation resistance such that the breathing rate in the state of the mixed material is less than 3% ,
Bentonite and water in the bentonite mud are in a ratio of water 7 to 8 with respect to bentonite 1 in a blended weight ratio,
A filler for an underground cavity , wherein the sand has a weight ratio with respect to bentonite of 20 or 30 with respect to bentonite 1 .
前記ベントナイト泥水は、ベントナイトと水との所定の配合比による混合物であり、
前記ベントナイト泥水と砂との配合比が、前記混合材の状態でのブリージング率が3%未満となる材料分離抵抗性を有する割合とされ、
前記ベントナイト泥水におけるベントナイト及び水が、配合重量比でベントナイト1に対して水6ないし7となる割合とされ、
前記砂が、ベントナイトに対する重量比をベントナイト1に対し20とされることを
特徴とする地下空洞部充填材。 It is a mixed material with a predetermined mixing ratio of bentonite mud water and sand, which has fluidity that can be pumped at least by a pipe,
The bentonite mud is a mixture of bentonite and water with a predetermined mixing ratio,
The blending ratio of the bentonite mud and sand is a ratio having a material separation resistance such that the breathing rate in the state of the mixed material is less than 3%,
Bentonite and water in the bentonite mud are in a ratio of water 6 to 7 with respect to bentonite 1 in a blended weight ratio,
A filler for underground cavities , wherein the sand has a weight ratio to bentonite of 20 with respect to bentonite 1 .
養生後のベントナイト泥水に砂を所定配合比で混合し、さらに攪拌して、少なくとも管で圧送可能な流動性を有し、且つブリージング率が3%未満となる材料分離抵抗性を有する充填材を得ることをA filler having a material separation resistance in which sand is mixed with bentonite mud after curing at a predetermined mixing ratio, further stirred, and has fluidity that can be pumped at least by a pipe and a breathing rate of less than 3%. To get
特徴とする充填材製造方法。A filling material manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012153501A JP5979635B2 (en) | 2012-07-09 | 2012-07-09 | Underground cavity filling material and method for producing the filling material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012153501A JP5979635B2 (en) | 2012-07-09 | 2012-07-09 | Underground cavity filling material and method for producing the filling material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014015756A JP2014015756A (en) | 2014-01-30 |
JP5979635B2 true JP5979635B2 (en) | 2016-08-24 |
Family
ID=50110682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012153501A Active JP5979635B2 (en) | 2012-07-09 | 2012-07-09 | Underground cavity filling material and method for producing the filling material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5979635B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6188081B2 (en) * | 2014-03-25 | 2017-08-30 | 株式会社不動テトラ | Fluidized sand and ground improvement method using it |
CN107905219A (en) * | 2017-11-20 | 2018-04-13 | 江门市政企业集团有限公司 | The construction method of ultra-deep hand excavation stake holes under a kind of complex geological condition |
JP7377232B2 (en) * | 2021-02-05 | 2023-11-09 | 株式会社不動テトラ | Method for producing filling material for ground preparation |
JP7349462B2 (en) * | 2021-02-05 | 2023-09-22 | 株式会社不動テトラ | Filling material for ground preparation |
JP7368405B2 (en) * | 2021-02-05 | 2023-10-24 | 株式会社不動テトラ | Filling material for ground preparation |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58195633A (en) * | 1982-05-12 | 1983-11-14 | Nippon Kokan Kk <Nkk> | Grouting material to be used as filler for void under foundation |
JP2728846B2 (en) * | 1993-06-29 | 1998-03-18 | 悟郎 久野 | Fluidization method |
JP3605618B2 (en) * | 1995-04-26 | 2004-12-22 | 独立行政法人土木研究所 | Filling method for underground cavities |
JP5780714B2 (en) * | 2010-06-08 | 2015-09-16 | 株式会社不動テトラ | Filling the underground cavity |
JP5478386B2 (en) * | 2010-07-02 | 2014-04-23 | 株式会社不動テトラ | Improving method for ground with underground cavity |
-
2012
- 2012-07-09 JP JP2012153501A patent/JP5979635B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014015756A (en) | 2014-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5979635B2 (en) | Underground cavity filling material and method for producing the filling material | |
JP2007009194A (en) | Plastic gel grout and method of ground reinforcement and method and device for management of introducing pressure into ground | |
JP4689556B2 (en) | Ground consolidation method using plastic gel injection material | |
CN112359848A (en) | Construction method for backfilling fertilizer groove by using solidified soil | |
CN105113496A (en) | Construction method for soil-cement mixing piles | |
JP5478386B2 (en) | Improving method for ground with underground cavity | |
JP5999718B2 (en) | Underground impermeable wall construction material | |
JP4628378B2 (en) | Ground strengthening method | |
KR101746654B1 (en) | Method for constructing pile for reinforce of mine hole | |
JP5780714B2 (en) | Filling the underground cavity | |
JP2006282893A (en) | Grouting material, foundation strengthening method, grouting control method and grouting control apparatus | |
JP2009180078A (en) | Ground reinforcing method and press fitting management method | |
JP6207149B2 (en) | Underground continuous water barrier method | |
JP6493834B2 (en) | Ground liquefaction countermeasure method | |
KR101066587B1 (en) | Construction method of inner filling structure using liquid ultrahigh viscosity and flowable grout material | |
JP2008223475A (en) | Grouting method | |
JP6733892B1 (en) | Proportional pouring grout monitor and proportional pouring method for hardened grout using the same | |
JP4689555B2 (en) | Ground strengthening method | |
KR101235797B1 (en) | Light weight fill materials with fluidity and resistance to segregation | |
JP2007040096A (en) | Ground reinforcing method, managing method of pressure injection into ground, and managing device used for pressure injection | |
JP4976073B2 (en) | Repair method for underground filler and earth structure | |
JP6831211B2 (en) | Strength control method of backfill material and backfill method of ground | |
JP6106836B1 (en) | Aging method for existing spray mortar slopes | |
JP5052010B2 (en) | Hollow filler | |
JPH0452327A (en) | Stabilized soil and construction method using this soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160719 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5979635 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |