JP4689555B2 - Ground strengthening method - Google Patents

Ground strengthening method Download PDF

Info

Publication number
JP4689555B2
JP4689555B2 JP2006221158A JP2006221158A JP4689555B2 JP 4689555 B2 JP4689555 B2 JP 4689555B2 JP 2006221158 A JP2006221158 A JP 2006221158A JP 2006221158 A JP2006221158 A JP 2006221158A JP 4689555 B2 JP4689555 B2 JP 4689555B2
Authority
JP
Japan
Prior art keywords
injection
ground
plastic
gel
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006221158A
Other languages
Japanese (ja)
Other versions
JP2007077794A (en
Inventor
俊介 島田
美紀 大場
Original Assignee
強化土エンジニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 強化土エンジニヤリング株式会社 filed Critical 強化土エンジニヤリング株式会社
Priority to JP2006221158A priority Critical patent/JP4689555B2/en
Publication of JP2007077794A publication Critical patent/JP2007077794A/en
Application granted granted Critical
Publication of JP4689555B2 publication Critical patent/JP4689555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、スラグを主成分として、セメントやフライアッシュ、石灰、又は石膏の群から選択される一種からなる粉状硬化発現材を有効成分とする可塑状ゲル注入材を地盤中に圧入して時間の経過と共に、或は加圧脱水により可塑状ゲルからなる塊状体を地盤中に形成しながら土粒子を周辺に押しやり、地盤中に可塑状ゲル注入材そのものの塊状体を形成し、地盤強化を図る可塑状ゲル注入材、地盤強化方法、地盤圧入管理方法並びに地盤圧入管理装置に関わる。 The present invention is a method in which a plastic gel injection material containing a slag as a main component and containing as an active ingredient a powdery hardening material consisting of one kind selected from the group of cement, fly ash, lime, or gypsum is pressed into the ground. With the passage of time, or by pressing and dehydrating, the soil particles are pushed to the periphery while forming a lump of plastic gel in the ground, and a lump of plastic gel injection material itself is formed in the ground. The present invention relates to a plastic gel injection material to be strengthened, a ground strengthening method, a ground press-fitting management method, and a ground press-fitting management device.

さらに、発明は、スラグに硬化発現材を加えた自硬化性粉状体からなる可塑状ゲルを軟弱地盤に静的に圧入して地盤中に注入材そのものによる塊状体を形成させながら、周辺土砂を圧縮して密度の増大を図る地盤強化方法である。 Furthermore, the present invention is to form a bulk body by injection material itself plasticity gel consisting of self-curing powder body plus productive material slag statically pressed into the soft ground in the ground, It is a ground strengthening method that increases the density by compressing the surrounding earth and sand.

地盤中に固結材を静的に圧入して土砂を周辺に押しやって密度を増大して地盤を強化する方法として従来、非流動性の低スランプ或は殆んどスランプゼロの注入材(モルタル)を地盤中に圧入することにより、地盤中に固結体を造成し、地盤を圧密強化する工法が知られている。(特許文献1:特開平6−108449号公報参照)   Conventionally, a non-flowable low slump or almost slump-free injection material (mortar) has been used as a method of strengthening the ground by increasing the density by statically injecting the caking material into the ground and pushing the earth and sand around it. ) Is press-fitted into the ground to form a consolidated body in the ground, and a method of consolidation strengthening the ground is known. (Patent Document 1: Japanese Patent Laid-Open No. 6-108449)

しかし、上述公知の工法のうち前者は大きな装置を必要とし、液状化防止工等が行われる建築物の建て込んだ施工条件や建造物直下の基礎の補強は不可能であった。   However, the former of the above-mentioned known construction methods requires a large device, and it was impossible to reinforce the construction conditions in which the liquefaction prevention work or the like was built or the foundation directly under the building.

また、流動可能なセメントを主成分とするモルタルと水ガラスやアルミニウム塩等の可塑材をポンプでそれぞれ移送して注入口付近で合流混合してスランプが5cm以下の低流動性の可塑状グラウトを形成して注入する空洞充填工法もあるが、これを軟弱地盤中で加圧注入すると地盤中で脱水によって急速に流動性を失い、拡大する塊状ゲルを形成する事は難しく注入不能になるか地盤中の範囲外に割裂注入して脈状に逸脱してしまい地盤改良は困難である。   In addition, mortar mainly composed of flowable cement and plastic material such as water glass and aluminum salt are respectively transferred by a pump and mixed and mixed near the injection port to form a low flow plastic grout having a slump of 5 cm or less. There is also a cavity filling method that forms and injects, but if it is injected under pressure in soft ground, it will lose fluidity rapidly due to dehydration in the ground, and it will be difficult to form a massive gel that expands, or it will be impossible to inject It is difficult to improve the ground because it splits out of the middle range and deviates like a pulse.

本出願人は可塑性グラウトを地盤に圧入して塊状ゲルを拡大して形成するために可塑性グラウトの流動性の研究開発を進めた結果、スラグを主成分とするゲルが地盤中で拡大するための明確な条件を見出した。   As a result of promoting the research and development of the fluidity of plastic grout in order to expand the bulk gel by press-fitting the plastic grout into the ground, the present applicant has developed a slag-based gel to expand in the ground. A clear condition was found.

本発明者等は注入工法という簡便な手法を用い、スラグとその硬化発現材を有効成分とする可塑状ゲル注入材の配合後、経時的に変動する流動特性を応用して、上記目的を達する事が出来るかの研究を行い、ある条件下で、拡大する塊状固結体を形成出来る事を確認し、本発明を完成した。   The present inventors achieve the above object by applying a flow characteristic that varies with time after blending a plastic gel injection material containing slag and its cured material as an active ingredient, using a simple method called an injection method. The present inventors completed the present invention by confirming that an expanding massive solid body can be formed under certain conditions.

地盤に懸濁型グラウトや瞬結グラウトを注入した場合、地盤を割裂して脈状に注入されるため所定領域に塊状硬化物を形成する事は困難である。本発明者はその問題を地盤中にスラグに硬化発現材を加え或は更に保水材を加えて形成される可塑状ゲル注入材を圧入して地盤中で可塑状ゲルの塊状体を形成する事によって解決せんとしたものであって、注入工程中には流動性がありながら地盤中において脱水を伴って形成された可塑状ゲルの塊状体を拡大させて周辺地盤の密度増加をはかる事を可能にしたものである。本工程はこれらの可塑状ゲル注入材を近年のレベルアップした注入手法と注入管理システムで制御することによって、地盤中に割裂を生じさせる事なく注入孔の単位受け持ち体積に所定量の塊状ゲルの硬化体を形成せしめる手法を見出し、軟弱地盤の密度増加を図る事に成功したものである。   When suspension grout or instantaneous grouting is injected into the ground, it is difficult to form a hardened lump in a predetermined region because the ground is split and injected into a vein shape. The inventor of the present invention forms a lump of a plastic gel in the ground by press-fitting a plastic gel injection material formed by adding a curing agent to the slag in the ground or further adding a water retaining material. It is possible to increase the density of the surrounding ground by expanding the mass of plastic gel formed with dehydration in the ground while it has fluidity during the injection process. It is a thing. In this process, these plastic gel injection materials are controlled by the injection method and injection management system that have been upgraded in recent years, so that a predetermined amount of massive gel can be placed in the unit volume of the injection hole without causing splitting in the ground. They found a method to form a hardened body and succeeded in increasing the density of soft ground.

従来、セメントを主材とするモルタル注入液はスラリー状で流動性を有し、水和反応により固化に到るものであった。このような流動性モルタルは地盤中に注入した場合、地盤を割裂して注入され逸脱しやすく又大きなブリージングを生じ、地盤中に材料分離して沈殿して脈状に固化する。   Conventionally, a mortar injection solution containing cement as a main material has a slurry-like fluidity and solidifies by a hydration reaction. When such a fluid mortar is injected into the ground, it is injected by splitting the ground and easily deviates, and large breathing occurs. The material separates and settles in the ground and solidifies in a pulse shape.

一方、ブリージングを小さくするためにはセメントの含有量を大きくすればよいが、このようにするとセメントの硬化発現が早くなり広範囲を充填する事が出来なくなるか、地盤を割裂して逸脱するという問題がある。又セメントを主材とする流動性モルタルにアルミニウムや水ガラス等を可塑材として用いる方法が提案されたが、このような可塑状グラウトは空洞填充には適しているが、これを地盤に圧入した場合粘性が大きく地盤中で急速に硬化して注入不能になるか或は割裂して逸脱しやすい。   On the other hand, in order to reduce the breathing, it is sufficient to increase the cement content. However, if this is done, the hardening of the cement will be accelerated and it will not be possible to fill a wide area, or the ground will split and escape. There is. A method of using aluminum or water glass as a plastic material for fluid mortar mainly composed of cement has been proposed, but such plastic grout is suitable for filling the cavity, but this was pressed into the ground. In this case, the viscosity is so high that it hardens rapidly in the ground and cannot be injected, or splits easily.

又セメント系懸濁液と可塑材を別々にポンプで送り、注入管の手前で合流して形成されたスランプが5未満3cm程度の可塑性グラウトを、地盤中に圧入して周辺の土粒子を圧縮する地盤強化方法も提案されている。   Also, cement suspension and plastic material are pumped separately, and a slump formed by joining before the injection pipe is pressed into a ground with a plastic grout of less than 5 cm, compressing the surrounding soil particles. A ground strengthening method has also been proposed.

しかしスランプが5cm未満とは、シリンダーによるフローでほぼ8cmであり、グラウトを構成する材料によって多少異なるが、テーブルフローでおおよそ10cm程度となり、この場合ゲル化物は落下による振動を加えても殆ど動かない状態であり、このような低スランプの可塑性グラウトを地盤中に注入すると地盤中で水分と紛体が分離し脱水によってさらに流動性を失い急速に硬化してしまい、可塑性保持時間を得られない。この結果、注入圧が上って注入不能になるか脈状に地盤を割裂して不特定の方向に逸出してしまい地盤強化効果が得られない。   However, if the slump is less than 5 cm, it is about 8 cm in the flow by the cylinder, and it is somewhat different depending on the material constituting the grout, but it is about 10 cm in the table flow. In this case, the gelled product hardly moves even when vibration due to dropping is applied. When such a low slump plastic grout is poured into the ground, moisture and powder are separated in the ground, and the fluidity is further lost due to dehydration, resulting in rapid hardening and the plastic holding time cannot be obtained. As a result, the injection pressure increases and the injection becomes impossible or the ground is split like a vein and escapes in an unspecified direction, so that the ground reinforcement effect cannot be obtained.

そこで本発明者は種々の研究を重ねた結果、可塑状グラウトは経時的のみならず脱水によってその流動性が変化していく事に着目し、地盤中に圧入される前迄は、流動性がありながら地盤中に圧入されてから経時的に或は加圧脱水によって流動性を失って可塑状ゲルを形成し、それが塊状体となりながらも長い流動保持時間を保ちながら土粒子を周辺に押しやり、地盤中に大きな塊状体を形成し、地盤強化を図る事を可能にする地盤強化方法を実現したものである。   Therefore, as a result of various studies, the present inventor noticed that the fluidity of plastic grout changes not only with time but also with dehydration. Even after being pressed into the ground, it loses its fluidity over time or by pressure dehydration to form a plastic gel, which pushes the soil particles to the periphery while maintaining a long flow holding time while it becomes a lump. This is a ground strengthening method that makes it possible to form a large lump in the ground and to strengthen the ground.

特開平6−108449号公報JP-A-6-108449 特開2002−294686号公報JP 2002-294686A

上述した目的のためには、地盤強化用地盤注入材並びに地盤強化方法は数十mもの長いホース中の送液流動性が必要な一方、地盤中に圧入されたら土粒子間浸透せず、かつ、地盤中においても流動性を保ちながら所定の改良受け持ち範囲以外に割裂により逸脱する事なく所定の位置に塊状体を形成し、かつ、出来るだけ大きな注入液自体による塊状体に成長せしめ、しかも固化に到る迄の間に周辺の土粒子を押しやってその分周辺の土砂の密度を高くするという相反する特徴を同時に満たす事が要求される。   For the above-mentioned purpose, the ground injecting material for ground reinforcement and the ground strengthening method require liquid flowability in a hose as long as several tens of meters. On the other hand, when pressed into the ground, it does not penetrate between soil particles, and Even in the ground, while maintaining fluidity, a lump is formed at a predetermined position without deviating due to splitting outside the specified improved coverage, and it grows into a lump as large as possible by the injection solution itself, and solidifies. It is required to simultaneously satisfy the conflicting characteristics of pushing the surrounding soil particles and increasing the density of the surrounding soil by that amount.

そこで、本発明は産業副生品であるスラグを有効成分としこれを所定の流動特性が得られるように配合し、又これに少量のセメントや石灰、石膏、フライアッシュ等と水を所定比率で配合し、或は保水性をよくし或は流動性をよくすることにより脱水を低減して地盤中において固化する迄に塊状体を拡大するためにベントナイト、粘土、シルト、高分子剤、吸水性センイ、ホワイトカーボン等を配合し、或はさらにゲル化促進剤、ゲル化遅延剤、増粘剤、解膠剤、気泡剤を加え、所定の条件下で地盤中に圧入し、地盤中に塊状体或は可塑状ゲルによる塊状固結体を造成することを可能にする流動特性、固結特性を明らかにして、地盤強化を図ることに成功したもので、上述の公知技術に存する問題を解決した地盤注入材および地盤強化方法、並びにその注入管理方法を提供することにある。勿論、この地盤注入材は圧入工法のみならず一般の裏込め注入、護岸の吸出し防止注入、など空隙充填に使用したりする事も出来る。   Therefore, the present invention uses slag, which is an industrial by-product, as an active ingredient, and is blended so that a predetermined flow characteristic can be obtained, and a small amount of cement, lime, gypsum, fly ash, and the like and water at a predetermined ratio. Addition of bentonite, clay, silt, polymer agent, water absorption to reduce the dehydration by mixing, improving water retention or improving fluidity and expanding the mass before solidifying in the ground Adds Senyi, white carbon, etc., or adds gelation accelerator, gelation retarder, thickener, peptizer, foaming agent and press fits into the ground under the specified conditions. We have succeeded in strengthening the ground by clarifying the fluidity and consolidation characteristics that make it possible to build a mass or solidified body with a plastic gel, and solve the above-mentioned problems in the known technology Ground injection material and ground strengthening method, And to provide a infusion management method each time. Of course, this ground injecting material can be used not only for the press-fitting method but also for filling the gap such as general backfilling injection, anti-sucking injection for revetment.

本発明は、地盤強化のためには単なる可塑状ゲルの空隙充填と異なって、以下の要件を満たす施工上の手法が課題となることに着目し、これらの課題を注入材料と注入方法やその管理方法を開発する事により解決したものである。
1)注入材が土粒子間浸透する事なく、又注入範囲外へ逸脱する事なく、所定の受け持ち領域内に塊状に形成され、かつ塊状体が塊状を保ったまま拡大する注入材の条件。
2)側方向に拡大して周辺土砂を圧縮する手法。
3)土の密度が可塑状ゲルそのもので圧入されるには高く、しかし地盤のためには低すぎるような地盤条件で注入という簡便な手法で改良する手法。
4)垂直方向への固結体の移向を極力抑える手法。
5)地表面に近い領域での地上への逸脱や地盤隆起を極力抑え、確実な強度増加が得られる手法。
6)注入工法の施工法を生かし、かつ長距離の送液性が可能な手法。
7)上記を可能にする注入管理システムの開発。
The present invention pays attention to the fact that the construction technique that satisfies the following requirements is different from the mere filling of the plastic gel gap for ground strengthening, and these problems are considered as the injection material, the injection method, and its It has been solved by developing a management method.
1) Conditions for an injection material that is formed in a lump shape in a predetermined receiving area and that the lump body expands while maintaining a lump shape without the injection material penetrating between soil particles and without departing from the injection range.
2) A method of compressing the surrounding earth and sand by expanding in the lateral direction.
3) A method of improving the soil density by a simple method of pouring under ground conditions that are high enough to be press-fit with the plastic gel itself but too low for the ground.
4) A technique for minimizing the transfer of the consolidated body in the vertical direction.
5) A technique that can reliably increase the strength by minimizing ground departure and ground uplift in areas close to the ground surface.
6) A technique that makes use of the construction method of the injection method and enables long-distance liquid delivery.
7) Development of an injection management system that enables the above.

本発明者は、注入液が地盤に注入される迄の流動性と地盤中における流動性の保持と土粒子間浸透や割裂注入する事なく塊状固結体の形成と大径への成長という相反する問題を解決するために、スラグとその硬化剤および水の混合物が地盤中における脱水という工程で流動性が低減して、地盤中で塊状体を形成する事に着目した。そして地盤中における注入液の以上の流動特性を示す指標として(1)流動性を示すフローとスランプ値、(2)可塑状ゲルによるゲル化時間と、(3)可塑状保持時間、(4)非可塑状になる固化時間に着目した。   The inventor found that the fluidity until the injection solution was injected into the ground, the fluidity in the ground, the formation of a massive solid body and the growth to a large diameter without infiltration or split injection between soil particles. In order to solve this problem, attention was paid to the fact that a mixture of slag, its hardener and water is reduced in fluidity in the process of dehydration in the ground, and forms a lump in the ground. And as an index showing the above flow characteristics of the injected liquid in the ground, (1) flow and slump value showing fluidity, (2) gelation time by plastic gel, (3) plastic retention time, (4) We focused on the solidification time to become non-plastic.

このうちゲル化時間とは配合後テーブルフローが20cmになる時間とし、可塑状保持時間とはゲル化後外力を加えても流動しなくなる時間即ち貫入抵抗値が0.01MN/m2を超えた時点迄の時間としてそれを硬化時間とした。 Of these, the gelation time is the time when the table flow is 20 cm after blending, and the plasticity retention time is the time when the gel does not flow even when external force is applied after gelation, that is, the penetration resistance value exceeds 0.01 MN / m 2 . It was set as the time until the time point.

そしてこれらが地盤中における圧入脱水という現象による水粉体比の変化によって大きな影響をうける事に着目した。又更に硬化発現材の量が少なければ強度が低いため、土中で流動性を保ちながら割裂注入される事なく塊状に大きく拡大して注入材自体による塊状固結体が形成されることを見出した。この場合、硬化物の強度が比較的低いため施工後地盤中にセメント固結体のような高強度の杭を形成する事がないため地震による振動にも応力集中による破壊を生じにくく、周辺地盤と一体化を保つことが出来ることに着目した。   We paid attention to the fact that these are greatly influenced by the change of water powder ratio due to the phenomenon of press-fitting dehydration in the ground. Furthermore, since the strength is low if the amount of the hardening developing material is small, it is found that a massive solid body is formed by the injection material itself by expanding greatly into a lump shape without being split injected while maintaining fluidity in the soil. It was. In this case, since the strength of the cured product is relatively low, high-strength piles such as cement consolidated bodies are not formed in the ground after construction. We focused on being able to keep it integrated.

本発明者は、上記課題を解決するために種々の研究を行った結果、以下のことが判った。   As a result of various studies to solve the above problems, the present inventor has found the following.

1)シリカ系粉状体であるスラグは、セメントや石灰等のCa組成物の少量と反応して、初期の段階で表面にCaを吸着して電気的化学的反応を起こしバインダーとなって擬似的な流動性の低下を生じ、更に脱水をともなってして水粉体比が小さくなると可塑状ゲルを形成し、更に非可塑状ゲル化物を経て固化する。このような現象は、地盤中で脱水によって加速し形成された塊状体が周辺地盤より強度が高ければ充分本発明効果を得る。又、硬化発現材を加えなくてもその流動特性をフロー或はスランプで特定し、或は水粉体比で水分量を特定する事により地盤中で土粒子間に浸透したり或は脈状に拡散する事なく、地盤中に塊状体を形成し圧入をつづける事により塊状体が拡大する。そしてその地盤中における脱水した塊状体が周辺の圧縮された地盤と同じ強度或はそれよりも大きな強度を保っている限りは地盤強化の役を果たす事を本発明は見出した。 1) Slag, which is a silica-based powder, reacts with a small amount of Ca composition such as cement and lime, and adsorbs Ca to the surface at an early stage to cause an electrochemical reaction to become a binder. When the water powder ratio decreases with further dehydration and further dehydration occurs, a plastic gel is formed and further solidified via a non-plastic gel. Such a phenomenon can achieve the effect of the present invention as long as the lump formed by dehydration in the ground is stronger than the surrounding ground. Even without adding a hardened material, its flow characteristics are specified by flow or slump, or water content is specified by the water-powder ratio, so that it can penetrate between soil particles in the ground, or it can be pulsated. Without diffusing, the lumps are enlarged by forming lumps in the ground and continuing the press-fitting. The present invention has found that as long as the dehydrated mass in the ground maintains the same strength as the surrounding compressed ground or higher strength, it serves to strengthen the ground.

2)テーブルフロー、スランプ、シリンダーによるフローはスラグに硬化発現材を加えた注入液の流動性を示し、テーブルフローが15cm〜28cmの範囲でスランプは10cm〜28cmの範囲、シリンダーによるフローが約10〜26cmの範囲にあり、テーブルフローが20cm付近、スランプが21cm付近、シリンダーによるフローが15cm付近で可塑状ゲルになり経時的に或は脱水による水粉体比の低下と共にフローとスランプは低下する。シリカ系粉状素材であるスラグとCaを含む粉状硬化発現材からなる粉状体の水紛体比、全紛体中の硬化発現材比を調整する事により、上記地盤注入材の地盤中における可塑状流動特性や地盤中における可塑状ゲル化物の拡大を調整して、更にこの可塑状ゲルに到る迄のゲル化時間や可塑状ゲル保持持間を、促進剤又は遅延剤や流動化剤、保水材、解こう剤、気泡材等の添加剤を用いる事によって調整して、作業性や可塑状ゲルの大きさを調整できる。水粉体比が小さすぎたり、硬化発現材比が大きすぎると脱水によって地盤中で塊状ゲルの拡大が阻害されるため、その比率が重要である。 2) The flow through the table flow, slump, and cylinder shows the fluidity of the injection solution in which the hardened material is added to the slag, the table flow is in the range of 15 cm to 28 cm, the slump is in the range of 10 cm to 28 cm, and the flow through the cylinder is about 10 It is in the range of ~ 26cm, the table flow is around 20cm, the slump is around 21cm, the flow through the cylinder is around 15cm, and it becomes a plastic gel, and the flow and slump decrease with time or the water powder ratio decreases due to dehydration. . By adjusting the ratio of the powder body consisting of a powder-type hardened material containing slag and Ca, which is a silica-based powder material, and the ratio of the hardened material material in the entire powder, the plasticity of the above ground-injected material in the ground Adjusting the flow characteristics and expansion of the plastic gelled material in the ground, and further the gelation time and plastic holding time until reaching the plastic gel, an accelerator or a retarder, a fluidizing agent, The workability and the size of the plastic gel can be adjusted by using additives such as a water retaining material, a peptizer, and a foam material. If the water powder ratio is too small, or if the ratio of the cured material is too large, the expansion of the massive gel in the ground is inhibited by dehydration, so that ratio is important.

特に硬化発現材比が大きいと地盤中で脱水によって急速に大きな強度となりすぎ、ゲルの拡大を防ぐのみならず、周辺土に対して大きなコンクリート体が出来たと同様になり、地盤全体の一体化を防げられ、地震時に局部的な大きな応力を生じ破壊するため改良地盤の耐震性が低下する。又、地盤中で脱水により塊状体を形成するシリカ系粉状体からなる流動性注入液は、上述した人工の粉状素材のみならず掘削土砂や珪砂等を素材とし、それに粘土や増粘材や保水材を添加して流動化土として所定の流動特性即ちフローやスランプ値とし、かつ所定の水粉体比を示すように調整し、かつ脱水してテーブルフローが20cm以下になれば可塑状ゲルとなり土粒子間浸透せず亀裂逸脱しないように注入する事により周辺地盤がより密になるようにすることにより所定の地盤改良する事が出来る。勿論、上記素材として更に硬化発現材を加えれば強度は増加する。   In particular, if the ratio of hardened material is large, it will rapidly become too strong due to dehydration in the ground, not only preventing the gel from expanding, but also as if a large concrete body was created with respect to the surrounding soil, so that the entire ground could be integrated. The earthquake resistance of the improved ground deteriorates because it is prevented and breaks by generating a large local stress during an earthquake. In addition, the fluid injection solution made of silica-based powder that forms a lump by dehydration in the ground is made of not only the above-mentioned artificial powder material but also excavated earth and sand, etc., and clay and thickeners. Or water retention material is added to make the fluidized soil have a predetermined flow characteristic, that is, a flow or slump value, and is adjusted so as to exhibit a predetermined water powder ratio, and when dehydrated and the table flow becomes 20 cm or less, it is plastic. It is possible to improve the predetermined ground by making the surrounding ground denser by injecting it so that it does not penetrate between the soil particles and does not escape from the crack. Needless to say, the strength increases if a curing material is further added as the material.

3)該地盤注入材は送液過程、地盤への圧入過程で時間と共に流動性が変動していく。その流動特性の変化を効果的に利用する事により地盤中で塊状固結体を形成出来る一方、これが注入液の配合調整や注入管理を難しくさせるため、配合範囲の設定のみならず配合管理システム、圧入管理システムが重要になる。 3) The fluidity of the ground injection material fluctuates with time during the liquid feeding process and the press-fitting process into the ground. While it is possible to form a massive solid body in the ground by effectively utilizing the change in the flow characteristics, this makes it difficult to adjust the composition and control the injection, so not only the setting of the mixing range, The press-in management system becomes important.

4)該地盤注入材の混練や圧送並びに地盤中への圧入に適したワーカビリティは、テーブルフローで12cm以上好ましくは15cm以上、30cm未満、スランプ5cmより大きく好ましくはスランプは10cm以上、28cm以内、シリンダーによるフローで8cmより大きく、好ましくは約10cm以上、26cm以内である。スランプやフローを支配する水粉体比の決定が、ワーカビリティや土中における塊状体の形成と拡大に大きく影響する。時間と共に逐次変化するこれらの流動性を的確に判断し、スランプやフローによって水粉体比と硬化発現材比を管理して迅速に配合並びに水紛体比を調整することが地盤中に塊状の可塑状ゲルを形成しかつ拡大するために重要である。 4) Workability suitable for kneading and pumping of the ground injection material and press-fitting into the ground is 12 cm or more, preferably 15 cm or more and less than 30 cm, more than 5 cm slump, preferably 10 cm or more and 28 cm or less. The flow by the cylinder is larger than 8 cm, preferably not less than about 10 cm and not more than 26 cm. The determination of the water / powder ratio that governs slump and flow has a major impact on workability and the formation and expansion of lumps in the soil. It is possible to accurately determine the fluidity that changes sequentially with time, and to control the water powder ratio and the hardening material ratio by slump and flow to quickly adjust the composition and the liquid body ratio. Important for forming and expanding gels.

5)添加剤を添加すると添加量に応じた可塑状ゲルを形成するゲルタイムの調整ができる。促進材として水ガラスやアルミニウム塩を添加することにより容易にフローを小さくしたりゲル化時間を短縮する事が出来る。又スランプを20cm付近から10cm以下に減少させる事が出来る。又地盤中における脱水と共に可塑性ゲルを形成させかつそのゲルが可塑状を保持する時間を長くして圧入を継続する事により塊状ゲルが成長し地盤中に大きな塊状ゲル化物を形成し更に非可塑状ゲルを経て硬化体に変化させる事が出来る。 5) When an additive is added, the gel time for forming a plastic gel according to the amount added can be adjusted. By adding water glass or aluminum salt as a promoter, the flow can be easily reduced or the gelation time can be shortened. Also, the slump can be reduced from around 20 cm to 10 cm or less. In addition, a plastic gel is formed with dehydration in the ground, and by continuing the press-fitting for a longer time for the gel to retain its plastic shape, the bulk gel grows to form a large bulk gelled product in the ground, which is further unplasticized. It can be changed into a cured product through gel.

この場合、シリカ系粉状体とその硬化発現材の混合物をA液とし、水ガラス等の溶液性シリカやアルミニウム塩をB液として合流混合する事により、小さなフローや低スランプの可塑状グラウトを注入する事が出来る。しかし、空洞填充の場合は低いフロー値、低スランプの可塑状グラウトの注入は可能であるが、地盤への圧入工法の場合は地盤中で生ずる脱水によって急速に流動性が失われるため塊状ゲルの拡大による周辺地盤の圧縮が困難になる。このため合流注入しても注入管吐出口から地盤に注入される時点では、合流液のテーブルフローは12cm以上、スランプは5cmより大きく、シリンダーによるフローは8cmより大きい事が必要である。   In this case, a mixture of the silica-based powder and its curing agent is used as liquid A, and solution silica such as water glass or aluminum salt is combined as liquid B, so that a small flow or low slump plastic grout can be obtained. Can be injected. However, it is possible to inject plastic grout with a low flow value and low slump in the case of cavity filling, but in the case of press-fitting to the ground, fluidity is lost rapidly due to dehydration that occurs in the ground, so that the bulk gel It becomes difficult to compress the surrounding ground due to expansion. For this reason, it is necessary that the table flow of the merged liquid is 12 cm or more, the slump is larger than 5 cm, and the flow through the cylinder is larger than 8 cm at the time when it is injected into the ground from the injection tube discharge port even if the combined injection is performed.

6)骨材として粘土、土砂等の現場発生土、珪砂を加えることが出来る。骨材は増量材として役立つのみならず固結強度や流動性の調整にも役立つ。一般に粉体中の骨材の比率が多くなれば強度は小さくなり、骨材の粒径が大きくなればその流動性は低下する。
ベントナイト等の粘土や現場発生土における粘土やシルトやローム等細粒分や高分子剤や増粘材等は保水性や増粘剤としてすぐれ、地盤中に圧入された圧入材の脱水を遅らせ粉状体に対するバインダーとして作用して擬似的結合性のある流動体として作用し、分離分散することなく塊状ゲルを形成しその拡大に役立つ。
6) On-site generated soil such as clay and earth and sand can be added as aggregate. Aggregate not only serves as an extender, but also helps to adjust consolidation strength and fluidity. Generally, the strength decreases as the ratio of aggregate in the powder increases, and the fluidity decreases as the particle size of the aggregate increases.
Clay such as bentonite, clay, silt, loam, etc., fine particles, polymer agents, thickeners, etc. are excellent as water retention and thickeners, delaying the dehydration of the press-fitted material in the ground. It acts as a binder with a pseudo-bonding property by acting as a binder for the particles, and forms a lump gel without separation and dispersion, and helps to enlarge it.

7)硫酸アルミニウム等のアルミニウム塩や水ガラス(水ガラスと酸を混合して得られた酸性水ガラスも含むものも本発明では水ガラスとてみなすものとする)を添加するとスランプの減少、フローの減少、粘性の増大を生ずる。地盤中で地盤注入材が脈状に割裂する事なく可塑状ゲルが地盤中に形成して塊状ゲルが大きく成長するには、硬化材発現比、水紛体比、アルミニウム比、フロー値、スランプ値の範囲、シリカ溶液からのシリカ濃度等、の選定適用方法が重要となる。 7) Slump reduction, flow when aluminum salt such as aluminum sulfate or water glass (including acidic water glass obtained by mixing water glass and acid is also regarded as water glass in the present invention) is added. Decrease in viscosity and increase in viscosity. In order to grow a massive gel by forming a plastic gel in the ground without causing the ground injection material to split into veins in the ground, the hardened material expression ratio, water body ratio, aluminum ratio, flow value, slump value The selection application method of the range, the silica concentration from the silica solution, etc. is important.

8)セメント系懸濁型グラウトはただでさえ粘性が大きいのにそれを可塑状にすれば地盤中に開口する注入管の注入口からの圧入抵抗並びに注入口に到る迄の送液管の送液抵抗が極めて大きく、かつ送液管やポンプの中で詰まりやすいという問題がある。このため送液を容易にするために薄い配合を用いると地盤中で脈状になる。このため先願技術では裏込め注入と同じように流動性の良いセメント系懸濁液と可塑材を注入管に送液される前の時点で合液して瞬時に可塑状にして地盤中にスランプ5cm未満にして圧入する方法が提案された。しかし、注入管の前で可塑状になったセメント系可塑状グラウトが地盤中で脱水によって直ちに高強度になるため大きな塊状ゲルに成長するのは困難であり又、大きな注入圧力を必要として注入不能になるか、地盤を破壊して逸脱する。 8) Cement-based suspension grout is very viscous, but if it is made plastic, the resistance of press-fitting from the injection port of the injection tube that opens into the ground and the liquid feed tube up to the injection port There is a problem that the liquid feeding resistance is extremely large and the liquid feeding pipe and the pump are easily clogged. For this reason, if a thin composition is used to facilitate liquid feeding, it becomes a vein in the ground. For this reason, in the technology of the prior application, like the backfill injection, a cement-based suspension with good fluidity and a plastic material are mixed at the time before being sent to the injection pipe, and instantly plasticized into the ground. A method of press-fitting with a slump of less than 5 cm has been proposed. However, the cementitious plastic grout plasticized in front of the injection tube immediately becomes high strength due to dehydration in the ground, so it is difficult to grow into a large lump gel, and it is impossible to inject due to the high injection pressure. Or destroy the ground and deviate.

本発明者は裏込め注入や空隙充填のための可塑状グラウトの注入に比べて、地盤中に圧入して大きなゲルを形成して周辺土砂を圧縮する地盤改良の注入は全く異なる事に着目した。   The present inventor has noted that the injection of ground improvement that compresses the surrounding earth and sand by press-fitting into the ground to form a large gel, compared to injection of plastic grout for backfill injection and void filling, has been noted. .

本発明者は研究の結果、地盤中で圧入材が割裂によって逸脱せず、かつ大きな塊状ゲルに成長するための以下の必要条件並びに塊状ゲル化物の生成とその拡大のメカニズムを見出した。
1.該地盤注入材は、地盤中に注入される迄は流動性があるが、地盤中に注入されたあとは、地盤を割裂して逸脱しない事。
2.該地盤注入材は、地盤中に注入される前の段階で可塑状ゲルに到っているか、地盤中に注入されて加圧脱水によって流動性が低減して可塑状ゲルの塊状体を形成する事。
3.塊状体は地盤中で可塑状を保持し、その塊状体はその内部に後続して圧入される可塑状ゲルによって押し拡げられて、塊状体は拡大する。塊状体の外周部では押し拡げられる結果、更に脱水されて非可塑状となり流動性を失い、時間と共に外周部から固化を形成して大きな塊状固結体が形成されると共に、その周辺部の土砂の空隙を減少させて押し拡げて、静的に予め固める。
4.塊状体の内部は可塑状を保持している事により、更に該地盤注入材の圧入があれば塊状体の外周部の固化ゾーンがいくつか破れ、可塑状ゲルがその周辺部に押し出されて脱水して非可塑状となり、固化が拡大する。固化が或る程度以上に硬くなると通常のポンプ圧ではそれをつき破る事が困難になり圧入不能になる。その時点が塊状固化物の大きさとなる。
As a result of research, the present inventor has found the following necessary conditions for the press-fit material not to deviate by splitting in the ground and grow into a large lump gel, and the mechanism of formation and expansion of the lump gel.
1. The ground injection material is fluid until it is injected into the ground, but after it is injected into the ground, it should not deviate by splitting the ground.
2. The ground injection material reaches the plastic gel before being injected into the ground, or is injected into the ground and reduced in fluidity by pressure dehydration to form a lump of plastic gel. Thing.
3. The lump retains its plastic shape in the ground, and the lump is expanded by a plastic gel that is subsequently pressed into the lump, thereby expanding the lump. Results that are pushed open in the outer peripheral portion of the masses, further dehydrated to become a non-plastic-like loses fluidity, with large masses consolidating bodies form a solidified body from the outer peripheral portion with time is formed, the peripheral portion It reduces the voids in the earth and sand, spreads them, and pre-sets them statically.
4). Since the inside of the lump has a plastic shape, if there is further injection of the ground injection material, some solidification zones on the outer periphery of the lump will be broken, and the plastic gel will be pushed to the periphery to dehydrate it. As a result, it becomes non-plastic and the solidified body expands. When the solidified body becomes harder than a certain level, it becomes difficult to break through with normal pump pressure, and press fitting becomes impossible. The time becomes the size of the lump solidified product.

本発明者は研究の結果、送液中の送液管中の抵抗圧やポンプ中における詰まりが生ずる事なく地盤中に設置された注入管の先端部から地盤中に圧入されたあとでも流動性を有し、脱水されても可塑状を呈する該地盤注入材を圧入する事によって、地盤中で可塑状保持時間(加圧されれば流動状態になる時間)を有する可塑状ゲルを形成し、更に塊状体が成長する事を見出し、本発明を完成したものである。   As a result of research, the inventor has found that fluidity is maintained even after being injected into the ground from the tip of the injection pipe installed in the ground without causing resistance pressure in the liquid feeding pipe during pumping or clogging in the pump. And forming a plastic gel having a plastic holding time in the ground (a time when it is pressurized to be in a fluid state) by press-fitting the ground injection material that exhibits a plastic shape even when dehydrated, Furthermore, the present inventors have found that a massive body grows and completed the present invention.

例えば、表2に示すように同一の硬化発現材比8.05%で水粉体比が70%の配合例1、水粉体比が60%の配合例2は配合後可塑状ゲルになる迄のゲル化時間はそれぞれ210分とか90分を要する。これが水粉体比が50%になるとゲル化時間は1分になる。この事は配合時、地盤中に注入される前迄は可塑状に到っていない注入材が地盤中においては、脱水によって水紛体比が70%→60%(脱水率約15%)→50%(脱水率約30%)に低下するにつれてゲルタイムが1分迄減少し可塑状ゲルとなり塊状体を形成する。   For example, as shown in Table 2, Formulation Example 1 having the same cured material ratio of 8.05% and a water powder ratio of 70% and Formulation Example 2 having a water powder ratio of 60% become a plastic gel after blending. Gelation time up to 210 minutes or 90 minutes respectively. When the water powder ratio becomes 50%, the gelation time becomes 1 minute. This means that at the time of blending, when the injected material that has not reached the plastic state before being injected into the ground is mixed, the water body ratio is 70% → 60% (dehydration rate about 15%) → 50 due to dehydration. % (Dehydration rate of about 30%), the gel time is reduced to 1 minute, forming a plastic gel and forming a lump.

しかもゲル化時では可塑状保持時間は6時間であるから塊状ゲルは拡大しブリージングが小さく、粘性が増大して拡散しにくくなり固化物は大きな強度となる。このような特性は従来知られていなかった。即ち、流動性注入材は地盤中に圧入されてから水粉体比が70%→60%迄脱水する迄はゲル化に到らず、50%(脱水率約30%)になって、1分後には、可塑状ゲルを形成し、その時点での可塑状保持時間は6時間であって、圧入がつづくにつれゲル状のまま大きく生成し更に脱水或は硬化現象の進行にともない非流動性ゲルとなり固化する事を物語っている。   In addition, since the plastic holding time is 6 hours at the time of gelation, the bulk gel expands, the breathing is small, the viscosity increases, it is difficult to diffuse, and the solidified product has high strength. Such characteristics have not been known so far. That is, the flowable injection material does not reach gelation until the water powder ratio is dehydrated from 70% to 60% after being pressed into the ground, and becomes 50% (dehydration rate is about 30%). After a minute, a plastic gel is formed, and the plastic retention time at that time is 6 hours. As the press-fitting continues, the gel remains large and non-flowable as the dehydration or curing phenomenon progresses. It tells that it becomes a gel and solidifies.

従って、このように注入時点で可塑状を呈していなくても地盤中の脱水によって可塑状になり得る。このような流動性注入液の注入においては配合液を一液のまま注入しても、紛状体注入液をA液としアルミニウム、水ガラス等のゲル化促進材をB液とし合流注入しようと、或はA液を可塑状ゲルとし、B液を水ガラス等のゲル化促進剤としようとその手段は問わないで施工する事が出来る。   Therefore, even if it does not exhibit plasticity at the time of injection, it can become plastic by dehydration in the ground. In the injection of such fluid injection solution, even if the compounding solution is injected as a single solution, the powder injection solution is set as A solution, and the gelation promoting material such as aluminum and water glass is set as B solution. Alternatively, the liquid A can be applied to any plastic gel and the liquid B can be used as a gelation accelerator such as water glass regardless of the means.

以上の本発明者による研究の結果、以下のようにして可塑状ゲル注入材を圧入して地盤中に大きな塊状体を形成して強度増加による設計可能な信頼性のある地盤改良工法が可能になった。   As a result of the above research by the present inventor, a reliable ground improvement method that can be designed by increasing the strength by press-fitting a plastic gel injection material to form a large lump in the ground as follows is possible. became.

1.注入液そのものはポンプによる流動性があるが地盤中に注入したものが脈状に割裂を生じて不特定に浸透して固結しないようにする。なぜならばそれぞれの注入孔の受け持ち範囲内でゲル化物による塊状固結体が形成されてはじめて、その受け持ち範囲における土粒子間隙が減少して塊状固結体周辺の注入孔の間の地盤の密度増加が確実に期待できるからである。 1. The infusion solution itself is fluid by the pump, but the one injected into the ground will split into veins so that it will not penetrate and solidify indefinitely. This is because only when a solid aggregate is formed by gelation within the range of each injection hole, the soil particle gap in that range decreases and the density of the ground between the injection holes around the mass is increased. This is because it can be expected with certainty.

2.地盤中に注入したものが土粒子間浸透しないようにして複数の注入孔の間の地盤の土粒子を塊状体で押しのけるようにする。なぜならば、土粒子間に注入液が浸透したのでは複数の注入孔の間の地盤を圧縮することが出来ず、注入孔の受け持ち範囲における地盤の圧縮による密度増加が確実に期待できないからである。 2. The material injected into the ground is prevented from penetrating between the soil particles, and the soil particles on the ground between the plurality of injection holes are pushed away by a lump. This is because if the injection solution penetrates between the soil particles, the ground between the plurality of injection holes cannot be compressed, and an increase in density due to the compression of the ground in the range of the injection holes cannot be expected with certainty. .

3.地盤中に圧入されたゲルが塊状に固結体を形成し、なおかつ大径の固結塊に成長するようにする。このためには
(a) 該注入材としてシリカ系粉状体と水の混合物をスランプ5cmより大きく及び/又はテーブルフロー12cm以上及び/又はシリンダーによるフローが8cmより大きく、或は更にスランプ28cm以内及び/又はテーブルフローが30cm未満及び/又はシリンダーによるフローが28cm未満である流動性地盤注入材、又はこれにCaを含む粉状硬化発現材とを混合した地盤注入材とを用い、これを地盤中に圧入して脱水して形成される注入材そのものからなる塊状体の拡大によって土粒子を周辺に押しやり、地盤中に塊状固結体を造成し、地盤強化を図る。
(b) 該地盤注入材は脱水によってテーブルフローが20cm以下に達し得る。ここでテーブルフローが20cmになった時点を可塑状ゲルになった時点とみなす。
(c) 該地盤注入材は脱水が進むにつれ可塑状ゲルを経て非可塑状となって固化する。
(d) 該地盤注入材は硬化性流動化土又は非硬化性流動化土であって脱水によって流動性を失いテーブルフローが20cm以下に達し周辺地盤と同等又はそれ以上の強度を発現する配合とする。
(e) 該地盤注入材は水粉体比が30%以内で可塑状ゲルになる配合とすれば、地盤中に圧入し続ければ可塑状ゲルとなって塊状固結体が形成される。
3. The gel press-fitted into the ground forms a consolidated body in a lump shape and grows into a large-diameter consolidated lump. To this end
(a) A mixture of silica-based powder and water as the injection material is larger than 5 cm slump and / or a table flow of 12 cm or more and / or a cylinder flow is larger than 8 cm, or further within a slump of 28 cm and / or a table flow. Is less than 30 cm and / or a fluid ground injection material with a cylinder flow of less than 28 cm, or a ground injection material mixed with a powdery hardening material containing Ca, and this is pressed into the ground. The soil particles are pushed to the periphery by enlarging the lump made of the injection material itself that is formed by dehydration to create a lump consolidated body in the ground to strengthen the ground.
(b) The ground injection material can reach a table flow of 20 cm or less by dehydration. Here, the time when the table flow becomes 20 cm is regarded as the time when the plastic gel is formed.
(c) As the dehydration proceeds, the ground injection material passes through a plastic gel and becomes non-plastic and solidifies.
(d) The ground injecting material is a curable fluidized soil or a non-hardened fluidized soil, and loses fluidity by dehydration, and the table flow reaches 20 cm or less and exhibits a strength equal to or higher than that of the surrounding ground. To do.
(e) If the ground injection material has a water powder ratio of 30% or less and becomes a plastic gel, if it continues to be pressed into the ground, it becomes a plastic gel and a massive solid body is formed.

可塑状ゲルによる塊状体が地中で大きく成長して固結体になるには表1に示す条件が好ましい。   The conditions shown in Table 1 are preferred in order that the lump formed by the plastic gel grows greatly in the ground to become a consolidated body.

Figure 0004689555
Figure 0004689555

4.地表面近くは地盤隆起しやすく、又注入液が地表面に逸脱しやすいのでそのような現象を防止する手法も併用する。 4). Near the ground surface, the ground tends to rise, and the injected solution tends to deviate to the ground surface.

5.長距離の送液パイプ中で分離する事なく流動性を保持し得る事が建造物が密集した地盤の耐震補強に本技術を適用するための作業性を可能にする。 5. The ability to maintain fluidity without separation in a long-distance liquid feeding pipe enables workability for applying this technology to seismic reinforcement of ground with dense buildings.

6.砂地盤だけでなく粘性土地盤にも適用出来るようにする。
注入液の配合システムから送液管と注入管管路を経て地盤中に注入される経路において、流動性を保持しながら(上記要件5)地盤に注入されてから以上の1、2、3、4のいずれか又は複数の要件を満足するようにする。
6). Make it applicable not only to sandy ground but also to viscous ground.
In the route that is injected into the ground from the blending system of the injected solution through the liquid feeding tube and the injection tube line, while maintaining fluidity (the above requirement 5), the above 1, 2, 3, 4 or 4 is satisfied.

可塑状ゲルを呈する迄の時間を短縮するには、水ガラスやアルミニウム塩を加える事により調整出来る。即ちこれらはゲル化促進剤として作用する。水ガラスと硫酸等の酸を混合して水ガラスのアルカリを除去した酸性水ガラスを用いるときわめて早くゲルが形成される。本発明では酸性水ガラスも水ガラスとして扱う。この場合、重曹や炭酸ナトリウムを併用することによりゲル化時間を調整できる。又、リグニンスルフォン酸塩等のゲル化遅延剤を用いる事も出来る。   In order to shorten the time until the plastic gel is exhibited, it can be adjusted by adding water glass or aluminum salt. That is, they act as gelation accelerators. When acidic water glass obtained by mixing water glass and acid such as sulfuric acid to remove alkali of water glass is used, a gel is formed very quickly. In the present invention, acidic water glass is also treated as water glass. In this case, the gelation time can be adjusted by using sodium bicarbonate or sodium carbonate in combination. A gel retarder such as lignin sulfonate can also be used.

本発明の地盤注入材の代表的例を云えば、懸濁液を構成する主材となる紛体のシリカ系粉状体であるスラグに加えるセメント又は消石灰或は石膏或はフライアッシュ等からなる粉状の一種の硬化発現材は、使用する粉状素材中の50重量%未満、好ましくは1〜40重量%、更に好ましくは1〜20重量%、また水粉対比は20〜200重量%、好ましくは30〜150重量%である。ゲル化促進材を加える場合は注入材に含まれる粉体、つまり主材と硬化発現材の総量に対してアルミニウム塩をアルミニウム比が0.1〜3.0重量%(Al23換算で0.01〜0.52%)練り混ぜることにより、テーブルフロー12cm以上30cm未満、好ましくは15〜28cm、ゲルタイムが3分以内から数100分、可塑状保持時間が数時間から10時間以上、ブリージング率が10%以内好ましくは5%以内、スランプが5cmより大きく28cm以下好ましくは10〜28cm、シリンダーによるフローが8cmより大きく28cm未満好ましくは約10〜26cmの注入材となる。 A typical example of the ground injection material of the present invention is a powder made of cement, slaked lime, gypsum, fly ash or the like to be added to the slag, which is a powdery silica-based powder that is the main material constituting the suspension. a kind of productive material Jo is less than 50 wt% in powdery material used, preferably 1 to 40 wt%, more preferably 1-20 wt%, and water particles versus 20 to 200 wt%, preferably Is 30 to 150% by weight. When adding a gelation accelerator, the aluminum ratio is 0.1 to 3.0% by weight (in terms of Al 2 O 3) with respect to the total amount of the powder contained in the injection material, that is, the main material and the curing material. 0.01 to 0.52%) By mixing, the table flow is 12 cm or more and less than 30 cm, preferably 15 to 28 cm, the gel time is within 3 minutes to several hundred minutes, the plastic holding time is several hours to 10 hours or more, and breathing The rate is within 10%, preferably within 5%, the slump is greater than 5 cm and less than or equal to 28 cm, preferably 10 to 28 cm, and the flow through the cylinder is greater than 8 cm and less than 28 cm, preferably about 10 to 26 cm.

本発明のこのような特性により、又、ゲル化促進材として水ガラスや酸性水ガラス等のシリカ分を加えるとゲルタイムも可塑状保持時間も大幅に減少させる事が出来、又、ブリージングもスランプも更にフローも小さくなる。本発明の地盤注入材は地盤中に圧入されて可塑状ゲルとなり土粒子を周辺に押しやり、地盤中で大きな塊状固結体に成長し、地盤強化を図ることが出来る。   Due to these characteristics of the present invention, addition of silica such as water glass or acidic water glass as a gelation accelerator can greatly reduce gel time and plastic holding time, and also breathing and slumping. Furthermore, the flow becomes smaller. The ground injecting material of the present invention is pressed into the ground to become a plastic gel and pushes the soil particles to the periphery, grows into a large aggregate in the ground, and can strengthen the ground.

本発明は上述のとおり、シリカ系粉体或はそれにそれより少ないカルシウム系硬化発現材を加えた懸濁液を用いるが、使用する粉粒素材の種類と組合せ、および特定の配合比率で配合するようにしたから、目的に応じた流動特性、固結特性を呈する所望の注入材を地盤中に圧入して、地盤中に塊状固結体を造成することにより注入孔に囲まれた地盤の土粒子を周辺に押しやり、地盤強化を図ることができる。   As described above, the present invention uses a silica-based powder or a suspension to which less calcium-based curing agent is added, but is blended at a specific blending ratio and the type and combination of powder materials used. Therefore, the soil of the ground surrounded by the injection hole is formed by press-fitting a desired injection material exhibiting flow characteristics and consolidation characteristics according to the purpose into the ground, and creating a massive solid body in the ground. It is possible to push the particles around and strengthen the ground.

地盤中で塊状に固結には、加圧することにより流動できるものの、土粒子間には浸透せず、かつ脈状に割裂しない程度の可塑状ゲルを形成する地盤注入材であって、テーブルフローで表わすと12cm以上30cm未満、好ましくは15〜28cm、スランプでは5cmより大きく、好ましくは10〜28cm、シリンダーによるフローでは8cmより大きく、好ましくは約9〜26cmの範囲を示す地盤圧入材であることが好ましい。又、地盤中にて加圧脱水による可塑状ゲルの形成を考慮して注入前に可塑状ゲルになっているもの或は水粉体比が30%以内減少で可塑状ゲル(テーブルフローでほぼ20cm以内)になる場合である事が好ましい。   It is a ground injection material that forms a plastic gel that can flow by pressurization, but does not penetrate between soil particles and does not split into veins. It is a ground press-fitting material showing a range of 12 cm or more and less than 30 cm, preferably 15 to 28 cm, more than 5 cm for slumps, preferably 10 to 28 cm, more than 8 cm for cylinder flow, preferably about 9 to 26 cm. Is preferred. Also, considering the formation of a plastic gel by pressure dehydration in the ground, it is a plastic gel before injection or a water-to-powder ratio is reduced within 30% and a plastic gel It is preferable to be within 20 cm).

フロー値やスランプがこれ以下になると、地盤中で可塑状ゲルの塊状固結体の成長が困難になり、これ以上だと脱水しきるまえに脈状や亀裂状に割裂注入され塊状体が形成されにくい。   If the flow value or slump is below this level, it will be difficult to grow a solid aggregate of plastic gel in the ground, and if it exceeds this value, it will be split and injected into veins or cracks before it can be dehydrated, forming a mass. Hateful.

本発明は上述の通り、シリカ系粉状体であるスラグに加える硬化発現材の粉粒素材及び水を特定比率で配合するが、カルシウムを含む硬化発現材としてセメント、石灰、石膏、フライアッシュ、のいずれか(C材)と、水(W材)と混合する。 As described above, the present invention blends the powder material of the hardening developing material added to the slag that is a silica-based powder and water in a specific ratio, but as a hardening developing material containing calcium, cement, lime, gypsum, fly ash, Any of ( C material) and water (W material) are mixed.

なお、上記にてスラグは通常の4000(cm2/g) のブレーン等の一般品でもよいし、それ以上6000〜15000(cm2/g)ブレーン等の超微粒子スラグでもよい。 In the above, the slag may be a general product such as a normal 4000 (cm 2 / g) brane, or may be an ultrafine particle slag such as 6000 to 15000 (cm 2 / g) brane.

硬化発現材比は50重量%未満、好ましくは1〜40重量%、更に好ましくは1〜20重量%、また1〜10重量%の配合でも極めて優れた効果がある。硬化発現材が0の場合はスランプ並びにフローが上記条件を満たすと共に脱水して地盤に圧入された塊状体が周辺地盤と同等又はそれよりも高い強度を有する事が必要である。   The ratio of the cured material is less than 50% by weight, preferably 1 to 40% by weight, more preferably 1 to 20% by weight, and even 1 to 10% by weight has a very excellent effect. When the hardening expression material is 0, it is necessary that the slump and the flow satisfy the above conditions, and the lump that is dehydrated and press-fitted into the ground has the same or higher strength than the surrounding ground.

この場合の配合や水粉体比の選定は、上下にポーラスストーン又はろ紙を敷いたモールド中に注入材を填充し、想定した注入圧力に相当する圧力でシリンダーで加圧して脱水させて得られた供試体の強度を測定して、注入したあとの周辺土の平均的な土の密度に対応した強度と同程度又はそれよりも大きな強度になるように設定する事が出来る。勿論、硬化発現材を少量加えた場合も同様に配合を設定できる。水粉体比は20〜200%、好ましくは30〜150%の配合である。ここで、硬化発現材比とはC/(S+C)×100であり、また、水粉体比とはW/(S+C)×100であり、S、C、Wはそれぞれ重量である。   In this case, the composition and the water / powder ratio can be selected by filling the casting material in a mold with porous stones or filter paper on the top and bottom, pressurizing it with a cylinder at a pressure corresponding to the assumed filling pressure, and dehydrating it. Further, the strength of the test specimen can be measured and set so as to be equal to or greater than the strength corresponding to the average soil density of the surrounding soil after the injection. Of course, the composition can be similarly set when a small amount of the curing material is added. The water powder ratio is 20 to 200%, preferably 30 to 150%. Here, the cured material ratio is C / (S + C) × 100, the water powder ratio is W / (S + C) × 100, and S, C, and W are weights, respectively.

このような配合液は、混合すれば、水粉体比が小さければそのままで、水粉体比が大きい場合は地盤中で脱水することにより遅かれ早かれ塊状体になる。可塑状ゲルは力を加えれば流動するが静止すれば流動を停止する。可塑状ゲルとなるゲルタイムはテーブルフローがほぼ20cmになった時点とする。上記水粉体比、フロー、スランプを呈する流動性注入材はそのままで或は添加材を加えて地盤中で加圧脱水する事により水粉体比が大きい場合でも可塑状ゲルが地盤中に形成することが出来る。   When such a liquid mixture is mixed, it remains as it is when the water powder ratio is small, and when the water powder ratio is large, it is dehydrated in the ground and sooner or later becomes a lump. The plastic gel flows when force is applied, but stops flowing when it stops. The gel time for forming a plastic gel is when the table flow is approximately 20 cm. Even when the water powder ratio is large, the plastic gel is formed in the ground by leaving the fluid infusion material exhibiting the above water powder ratio, flow, and slump as it is or by adding the additive and dehydrating under pressure in the ground. I can do it.

地盤中において形成された塊状体は、流動性が少ない状態でありながら出来るだけ広範囲に拡大されて大きな塊状固結体を形成する必要がある。このためにはフローやスランプや水粉体比が重要であるし、更に硬化発現材比や添加材も重要である。   The lump formed in the ground needs to be enlarged as wide as possible to form a large lump solid body while being in a state of low fluidity. For this purpose, the flow, slump and water / powder ratio are important, and the ratio of the curing material and the additive are also important.

硬化発現材比が過大であると、セメント等を主材とするモルタルグラウトの特性が強くなり水が分離してブリージングが大きくなり可塑状ゲルになりにくく、かつ脱水によって可塑状ゲルでなく非可塑性ゲルとなって短時間のうちに固化して高強度固結体を形成する。このため割裂して逸脱するか固化して注入不能になる。硬化発現材比が50%未満、好ましくは1〜40%、更に好ましくは1〜20%の間で、最も好ましくは1〜15%であって、地盤中で可塑性ゲルを経て大きく成長した塊状固化物が形成される。特に硬化発現材比は1〜20%或は更に1〜10%程度だと強度が低く、地中での可塑状ゲル保持時間が長いため拡大しやすく、又改良された地盤も均等な強度になり密度が上昇した周辺地盤と一体化して耐震性にすぐれる。   If the ratio of cured material is excessive, the characteristics of the mortar grout made mainly of cement, etc. will be strong, the water will separate, the breathing will increase, and it will be difficult to become a plastic gel. It becomes a gel and solidifies in a short time to form a high strength consolidated body. For this reason, it splits and deviates or solidifies and becomes impossible to inject. Mass solidification that has a cured material ratio of less than 50%, preferably 1 to 40%, more preferably 1 to 20%, most preferably 1 to 15%, and has grown greatly through a plastic gel in the ground Things are formed. In particular, when the ratio of cured material is 1 to 20% or even 1 to 10%, the strength is low, the plastic gel retention time in the ground is long, and it is easy to expand, and the improved ground has an equal strength. It is integrated with the surrounding ground where the density is increased and has excellent earthquake resistance.

さらに、本発明はスラグと、硬化発現材としてセメント、石灰、石膏、フライアッシュのいずれかと、水からなる硬性懸濁液が、可塑性を発現する時間を調整するために硫酸アルミニウムやポリ塩化アルミニウム等のアルミニウム塩を含むこともできる。この場合、好ましくは硬化発現材比を2重量%以上50重量%未満、水粉体比20〜60重量%およびアルミニウム比を2.0重量%以下、好ましくは0.1〜1.0重量%、Al2O3換算で0.01〜0.35重量%である配合グラウトとする。ここで、アルミニウム比とはアルミニウム材/(S+C)×100である。アルミニウム材は重量を表す。 Furthermore, the present invention provides slag, any one of cement, lime, gypsum, fly ash as a hardening developing material, and a hard suspension composed of water, such as aluminum sulfate and polyaluminum chloride in order to adjust the time for developing plasticity. The aluminum salt can also be included. In this case, it is preferable that the ratio of the cured material is 2 wt% or more and less than 50 wt%, the water powder ratio is 20 to 60 wt%, and the aluminum ratio is 2.0 wt% or less, preferably 0.1 to 1.0 wt%. The blended grout is 0.01 to 0.35% by weight in terms of Al2O3. Here, the aluminum ratio is aluminum material / (S + C) × 100. Aluminum material represents weight.

なお、上記においてゲル化促進剤としてのアルミニウム塩や水ガラスは、シリカ系粉状体、硬化発現材と混合してポンプで地盤に圧入しても良いし、注入管中、或は注入管の近くで合流混合しても良いし、或はシリカ系粉状体と硬化発現材とゲル化促進剤の混合液を注入する過程で更にゲル化促進剤を合流混合して注入しても良い。   In the above, the aluminum salt or water glass as a gelation accelerator may be mixed with a silica-based powder or a hardening developing material and press-fitted into the ground with a pump, or in the injection tube or in the injection tube. It may be merged and mixed in the vicinity, or a gelation accelerator may be further merged and injected in the course of injecting a mixed solution of a silica-based powder, a curing agent and a gelation accelerator.

さらに本発明は、硬化発現材として石膏、又は石膏セメント、石灰、フライアッシュ、のいずれか(G)と、水(W)を混合する。石膏比、又は石膏の混合物を50重量%未満、好ましくは2〜40重量%、水粉体比を20〜200重量%、好ましくは30〜150重量%の配合グラウトとする。ここで、石膏比、石膏の混合物比とはG/(S+G)×100(%)であり、また、水粉体比とはW/(S+G)×100(%)である。G、S、Wいずれも重量を表す。 Furthermore, in the present invention, gypsum, or any of gypsum and cement, lime, fly ash ( G) and water (W) are mixed as a hardening developing material. A blended grout having a gypsum ratio or a mixture ratio of gypsum of less than 50% by weight, preferably 2 to 40% by weight, and a water powder ratio of 20 to 200% by weight, preferably 30 to 150% by weight. Here, the gypsum ratio and the mixture ratio of gypsum are G / (S + G) × 100 (%) , and the water powder ratio is W / (S + G) × 100 (%) . G , S, and W all represent weight.

さらに本発明は、粉粒素材の主材としてスラグに、焼却灰、粘土、土砂のような現場発生土、および珪砂等を加え、硬化発現材としてセメント、石灰、石膏、フライアッシュ、のいずれかと、水に加えて混合する。又、本発明の地盤注入材は発泡剤や起泡剤を加えて流動性をよくし、或は軽量化を図ることが出来る。上記において、粘土としてベントナイトやさらに高分子系増粘剤すなわちポリビニルアルコールやカルボキシメチルセルローズ(CMC)やメチルセルローズ等を添加することにより水に対する分散性を抑制し、沈殿を少なくし、ワーカビリティの改善効果或は保水材として又上記主材となる粉粒素材のバインダーとしての役割をし、擬似ゲル状にして流動性を保持しながら分散しにくい構造をもつ流動体を形成する。この結果地盤中における脱水を低減し、塊状性の拡大を促進する。 Furthermore, the present invention adds in-situ generated soil such as incinerated ash, clay, earth and sand, silica sand, etc. to slag as the main material of the granular material, and cement, lime, gypsum, fly ash as the hardening developing material and Add to water and mix. Further, the ground injection material of the present invention can be improved in fluidity by adding a foaming agent or a foaming agent, or reduced in weight. In the above, by adding bentonite and further polymer thickeners such as polyvinyl alcohol, carboxymethylcellulose (CMC), methylcellulose, etc. as clay, water dispersibility is suppressed, precipitation is reduced, and workability is improved. It acts as an effect or as a water-retaining material and as a binder of the above-mentioned powder material that is the main material, and forms a fluid having a structure that is difficult to disperse while maintaining fluidity in a pseudo-gel form. As a result, the dehydration in the ground is reduced and the expansion of the blockiness is promoted.

本発明は静的可塑状ゲル圧入工法というべき工法であって、サンドコンパクション工法のように大きな機械で振動等を生じず、又低スランプのモルタル圧入工法のように流動性のないモルタルを特殊な装置で圧入する工法のように大きな設備を必要としない。このため本発明工法は通常の注入工法に用いる簡便な装置を用いて静的にかつ騒音がなく作業場所の狭い領域でも簡単に施工出来るため、きわめて公害のない作業性に優れた工法といえる。又曲線状にボーリングして設置出来る注入管を通して注入出来るので建造物下の斜め注入、水平注入は勿論、曲線と水平を組合せた建造物直下の耐震補強注入も出来る。以下に本発明の施工法について説明する。   The present invention should be called a static plastic gel press-in method, and does not generate vibration or the like in a large machine like a sand compaction method, and a non-fluid mortar like a low slump mortar press-in method. Large equipment is not required unlike the press-fitting method. For this reason, the construction method of the present invention can be said to be a construction method having excellent workability with no pollution because it can be easily constructed statically and without noise and in a narrow work area using a simple apparatus used in a normal injection construction method. In addition, since it can be injected through an injection pipe that can be installed by boring in a curved shape, it can be injected obliquely under the building, horizontal injection, as well as seismic reinforcement injection directly under the building combining curved and horizontal. The construction method of the present invention will be described below.

上述の本発明にかかる地盤注入材は地盤中に挿入した注入管を通して、老朽トンネルの空隙充填、シールドトンネルの裏込注入、基礎の空隙充填、護岸背部の空隙充填に適している事は勿論であるが、更に地盤中に圧入し、土粒子を周辺に押しやって塊状に固結しながら周辺土砂を押しやって地盤強化を図ったり、同じ原理で沈下した建造物の復元注入工法に適している。このような可塑性注入材の注入に当たり、初期注入圧力を低くして先行注入物の脱水を図りながら注入圧力を段階的に高め、或は注入と中断を繰り返して間欠的に加圧しながら注入し、これにより可塑性を呈するゲル化物の土粒子間浸透と地盤の割裂による逸脱を防ぎながら土粒子を周辺に押し広げて地盤の密度を増大させながら固結してもよい。   The above-mentioned ground injection material according to the present invention is suitable for filling the gap of the old tunnel, filling the back of the shield tunnel, filling the gap of the foundation, filling the gap of the revetment back through the injection pipe inserted into the ground. However, it is suitable for the restoration injection method of a building that has been submerged by the same principle, such as pressing into the ground, pushing soil particles to the periphery and solidifying it in a lump, pushing the surrounding soil and strengthening the ground. In injecting such plastic injection material, the initial injection pressure is lowered and the injection pressure is increased stepwise while dehydrating the preceding injection, or injection is performed while intermittently pressurizing by repeating injection and interruption, Thus, the gelled product exhibiting plasticity may be consolidated while increasing the density of the ground by spreading the soil particles to the periphery while preventing the penetration due to the penetration between the ground particles and the splitting of the ground.

しかも、この注入は複数の注入ポイントからの同時注入方式、別の注入ポイントへの切り替え注入、即ち図2(b)のような連続注入方式、1つの注入ポイントから他の注入ポイントに移行して注入してから再び戻ってきて繰り返し注入するインターバル注入方式、またはこれら方式を組み合わせて行われる。   In addition, this injection is performed by simultaneous injection from a plurality of injection points, switching injection to another injection point, that is, continuous injection as shown in FIG. 2 (b), and shifting from one injection point to another injection point. An interval injection method in which the injection is performed again after returning and then repeatedly injected, or a combination of these methods is performed.

さらに、本発明にかかる地盤注入材は複数の注入ポイントから注入して注入ポイント間の地盤を拘束し、注入管間の地盤密度を増大して地盤を固結することもできる。このような効果を期待出来るのは複数の注入管を0.5m以上3m以内の間隔で地盤に設置するのが望ましい。これ以上だと密度上昇による圧入地盤全体の一体化した地盤改良効果が得られず、局部的な地盤改良となってしまう。なお、本発明注入材の地盤への注入に際し、地盤が粘性土の場合或は粘性土層を介在した地盤の場合、地盤中にドレーン材を設置して地盤中に注入された可塑性注入材の脱水あるいは地盤の脱水を促進しながら注入を行えばより効果的である。   Furthermore, the ground injection material according to the present invention can be injected from a plurality of injection points to constrain the ground between the injection points, and the ground density between the injection pipes can be increased to consolidate the ground. In order to expect such an effect, it is desirable to install a plurality of injection pipes on the ground at intervals of 0.5 m or more and 3 m or less. If it is more than this, the integrated ground improvement effect of the entire press-fitted ground due to the density rise cannot be obtained, resulting in local ground improvement. In addition, when injecting the injection material of the present invention into the ground, if the ground is a viscous soil or a ground with a viscous soil layer interposed, a drain material is installed in the ground and the plastic injected material injected into the ground. It is more effective if injection is performed while promoting dehydration or ground dehydration.

上述の注入は例えば次の(a)、(b)に示す注入管を用いて行われる。
(a) 先端部に削孔部又は吐出口がある注入管。
(b) 軸方向に複数の吐出口を有する注入管。
(c) 外管に少なくとも一つの袋体パッカを備えた注入管。
(d) 管路に吐出口と透水材でおおわれた吸水口を設けた注入管。
The above-described injection is performed using, for example, the following injection tubes shown in (a) and (b).
(a) An injection tube having a drilled portion or discharge port at the tip.
(b) An injection tube having a plurality of discharge ports in the axial direction.
(c) An injection tube having at least one bag packer on the outer tube.
(d) An injection pipe provided with a water suction port covered with a discharge port and a water-permeable material in the pipeline.

軟弱地盤等の強度を大幅に向上させるために、多量の可塑性ゲルを一度に過大の量を地盤中に形成すると、地盤表面に隆起が生じたり、側方向に地盤を破壊し、逸脱して当該地盤の強度が設定通りに向上しない事態が生じやすい。このため本地盤注入材の特性を生かし、注入初期には低吐出量で注入し徐々に注入圧力を上げて所定の注入圧の範囲で圧入し続けて注入量の増大を図るのが望ましい。注入前の地盤の強度(N値等)、注入深度(上載圧)、注入圧力、注入量、1本当りの受け持ち面積から、注入後の改良強度を把握出来る。或は更に地盤変位を加味すれば更に正確となる。又注入中は流動性があり、注入を停止すると、流動性が停止してゲル化或は加圧脱水して擬固状態が現出することから、対象注入土層に少量ずつインターバル方式(時間の間隔をあけて注入する)で反復注入して擬固せしめ、注入された地盤を破壊することなく、圧密し、排除された水分は周辺の土粒子間に分散させ、地盤側方に対する圧密と脱水を行い、ゲル化物による固結径を大きくし或はこれらのグラウトを一定のタイムラグ(時間差)をもって注入する事も効果的である。   If an excessive amount of plastic gel is formed in the ground at the same time in order to greatly improve the strength of soft ground, etc., the ground surface will be raised, the ground will be destroyed in the lateral direction, and the There is a tendency that the strength of the ground does not improve as set. For this reason, it is desirable to take advantage of the characteristics of the ground injecting material and to inject at a low discharge amount at the initial stage of injection, gradually increase the injection pressure, and continue to press fit within a predetermined injection pressure range to increase the injection amount. The improvement strength after injection can be grasped from the strength (N value, etc.) of the ground before injection, the injection depth (top loading pressure), the injection pressure, the injection amount, and the handling area per one. Or more accurate if the ground displacement is taken into account. In addition, fluidity is present during the injection, and when the injection is stopped, the fluidity stops and gelation or pressure dehydration occurs, and a pseudo-solid state appears. Inject at repeated intervals) to make it quasi-solidify, compacting without destroying the injected ground, disperse the excluded water among the surrounding soil particles, It is also effective to perform dehydration, increase the consolidated diameter of the gelled product, or inject these grouts with a certain time lag (time difference).

例えば縦方向の注入にあっては、インターバル方式により回を重ねて注入を行い、先行して注入された地盤注入材に対し、重ねて、該地盤注入材を圧入して、当該地盤を割裂する事なく、地盤注入材を反復的に圧入することにより、当該地盤の側方に対する圧密脱水を行い、地盤強化が行われる。或は当該地盤の所定エリアに所定数の削孔を形成し、各削孔に対し、地盤注入材を所定タイムラグを介し、一か所で設計量を一挙に地盤注入材の注入が行われないように、設計注入量を幾つかに分割して注入することも出来る。このようにして各削孔の可塑性グラウトを相互に所定タイムラグで各土層、又は、各ステージ毎にインターバル方式により注入し、先行して注入した可塑性グラウトが周辺地盤を圧密し、又は、自ら、又は、注入液が脱水することをもって、追い討ち的に重ね注入をすることにより、当該所定数の多数の削孔内に注入する地盤注入材が各削孔の地盤に対し土層又は各ステージ毎に、同様に側方に圧密脱水作用を行い、強度をアップし、全体的に変位を抑制し、当該所定エリアの地盤の強度を増強する事が出来る。   For example, in the case of vertical injection, injection is performed by repeating the interval method, and the ground injection material is pressed into the ground injection material previously injected, and the ground is split. By repeatedly press-fitting the ground injection material, the side of the ground is consolidated and dewatered to strengthen the ground. Alternatively, a predetermined number of holes are formed in a predetermined area of the ground, and the ground injection material is not injected into the ground injection material at a single point through the predetermined time lag for each hole. In this way, the design injection amount can be divided into several parts. In this way, the plastic grout of each drilling hole is injected with each soil layer at each predetermined time lag by an interval method for each stage, and the plastic grout previously injected consolidates the surrounding ground, or by itself, Alternatively, when the injection solution is dehydrated, the ground injection material to be injected into the predetermined number of holes is added to the ground of each hole by each soil layer or each stage. Similarly, it is possible to perform consolidation dehydration on the side, increase the strength, suppress the displacement as a whole, and enhance the strength of the ground in the predetermined area.

例えば所定深度まで先端に吐出口のある注入管を挿入し、注入管の引き上げステップを非可塑状ゲルになる前の可塑状ゲルの範囲内に吐出口が位置するようにステップアップしながら可塑状ゲルの塊状体を拡大せしめて圧入する。更には、削孔に挿入する注入管に袋体を地表面近くの領域にセットし、内部に懸濁型グラウトを圧入して袋を周辺に膨張させて周辺地盤を圧密することにより、地表面に可塑性注入材を逸脱する事なく地表面を改良し、かつ該袋体より下方から本地盤注入材を圧入する事により、該袋体硬化体に対する可塑状ゲルの乗り越えがなく、該袋体による拘束効果により地盤の隆起等の変位がなく、地盤脱水作用による強度が全体に及び、強度向上が全領域的に図れるようにする事が出来る。   For example, an injection tube with a discharge port at the tip is inserted up to a predetermined depth, and the step of pulling up the injection tube is stepped up so that the discharge port is positioned within the range of the plastic gel before becoming a non-plastic gel. Enlarge and press the gel lump. Furthermore, the bag body is set in an area near the ground surface in the injection tube to be inserted into the drilling hole, the suspension type grout is press-fitted inside, the bag is inflated to the periphery, and the surrounding ground is consolidated. By improving the ground surface without deviating from the plastic injection material and press-fitting the ground injection material from below the bag body, the plastic gel does not get over the bag body cured body. Due to the restraining effect, there is no displacement of the ground uplift and the like, and the strength due to the ground dewatering action can be achieved over the entire area, and the strength can be improved over the entire region.

この場合、袋体の設置領域は地表面に近い深度、例えば3m範囲(特に1.5m範囲)内にあるようにするのが好ましい。なぜならこの領域は可塑状ゲルといえども地表面に逸脱しやすいからである。又、同じ理由でこの地表面に近い領域には注入孔を密に設置することにより地表面の圧縮の均等化を図り、かつ地表面隆起を防ぐ事が出来る。なぜならば地表面に近い深度例えば3m以内(特に1.5m以内)の領域では一本の注入孔から多量の注入を行うと土被りが少ないために地表面に逸脱しやすく、かつ地盤隆起を起こしやすいからである。従って、この領域は注入孔を深度の大きい領域よりも密にして一本当りの注入量を少なくする事によって地表面付近を均等に強化出来る。   In this case, it is preferable that the installation area of the bag body be within a depth close to the ground surface, for example, within a 3 m range (particularly, a 1.5 m range). This is because even in a plastic gel, this region tends to deviate to the ground surface. For the same reason, it is possible to equalize the compression of the ground surface and prevent the ground surface from being raised by installing injection holes densely in a region close to the ground surface. This is because in a region close to the ground surface, for example, within 3 m (especially within 1.5 m), if a large amount of injection is carried out from a single injection hole, the soil cover will be small and it will be easy to deviate from the ground surface and cause ground uplift. It is easy. Therefore, in this region, the vicinity of the ground surface can be uniformly strengthened by making the injection hole denser than the region having a large depth and reducing the injection amount per one.

又、地表面の地盤改良は上載圧が少ないために地盤隆起を起こしやすく、地盤隆起は地表面数m径に及ぶ。従って、注入する注入孔を隣接する注入孔へ移行するのではなく地盤隆起の影響範囲外の注入孔に移行して注入し、地盤隆起が治まった時点で隣接する注入孔の注入を行うのが望ましい。又、地表面に近い領域においては上部から下方に注入ステップを移行して本地盤注入材を圧入して地表面付近の地盤を圧縮してから改良地盤の最下部まで注入管を挿入し、下部から上方に注入ステップを移行して注入することにより地表面の地盤隆起を低減して、或は上部の拘束効果によりそれより下の確実な改良が可能になる。   In addition, the ground improvement on the ground surface is likely to cause a ground uplift due to a low overlay pressure, and the ground uplift reaches a diameter of several m on the ground surface. Therefore, the injection hole to be injected is not transferred to the adjacent injection hole, but is transferred to the injection hole outside the influence range of the ground uplift, and the injection of the adjacent injection hole is performed when the ground uplift is cured. desirable. In the area close to the ground surface, the injection step is shifted from the upper part to the lower part, the ground injection material is press-fitted to compress the ground near the ground surface, and then the injection pipe is inserted to the bottom of the improved ground. By shifting the injection step upward from the base, the ground surface ridges can be reduced by the injection, or the lower restraint can be reliably improved by the upper restraint effect.

更に、本地盤注入材の当該地盤に対する注入において、土中水分が排除されるように、排水用のドレーン材を併設して、間欠的(時間をあけて注入する)な排水効果(注入を中断している間に脱水する)による地盤の側方圧密脱水効果を促進させ、或は可塑性注入材の脱水を促進する事が出来る(このドレーン材の適用は粘性土層の地盤強化に適している)。或は排水管を設置して地下水を排除し、当該圧密による速度を向上させるようにする。なお注入管側面に吐出口の他に吸水口を設ける事によって吐出口から注入材を圧入しながら吸水口から注入材の過剰水や土中水を注入圧で吸い上げてドレーン効果を可能にする。   In addition, in order to eliminate soil moisture in the injection of this ground injection material into the ground, drainage material for drainage is also provided, and intermittent drainage effect (injection is suspended) It is possible to promote the side consolidation dehydration effect of the ground by dehydrating during the operation, or to accelerate the dehydration of the plastic injection material (application of this drain material is suitable for the strengthening of the soil of the cohesive soil layer) ). Alternatively, drainage pipes are installed to remove groundwater and increase the speed of consolidation. By providing a water inlet in addition to the outlet on the side surface of the injection pipe, the drain effect can be achieved by sucking in excess water or soil water from the inlet through the inlet while injecting the inlet from the outlet.

更に地盤の隆起等の変化を計測するためにレーザー等のセンサーにより、リアルタイムで当該変化を測定し、地盤の圧縮量を把握し、或は、当該変化が設計的に異常を生じた時には、即応的に可塑性グラウトの注入を調整したり、或は、注入装置の制御装置を介し、注入量や注入深度の変更を行い、或は注入液の比重や注入量やインターバル時間等を自動的に切り換え的に調整して、所定変位を超えないうちに他のステージに移行し、設計通りの圧密脱水による地盤強度の向上が確実に行うことが出来、上記地盤の変位測定は地表面における地盤隆起の測定の他、ストレンゲージを張った計測棒を地盤中にセットして測定方向への地盤の部位の変化を知ることが出来、又、地盤中に間隙水圧計を設けて、圧密脱水状況を把握することが出来る。   Furthermore, in order to measure changes in the ground uplift, etc., a sensor such as a laser measures the change in real time and grasps the amount of compression of the ground, or responds immediately when the change causes an abnormal design. The injection of plastic grout is adjusted, or the injection volume and injection depth are changed via the controller of the injection device, or the specific gravity of the injection solution, injection volume, interval time, etc. are automatically switched. It is possible to move to another stage before the predetermined displacement is exceeded, and the ground strength can be reliably improved by compaction dehydration as designed. In addition to measurement, a measuring rod with a strain gauge can be set in the ground to detect changes in the ground part in the direction of measurement, and a pore water pressure gauge is installed in the ground to determine the consolidation dehydration status. Can

図1は注入配置を示す。この発明は、本地盤注入材を注入管から軟弱地盤に低速で圧入すると、注入圧力を加えている間は流動性を呈する可塑状ゲルが塊状ゲルの範囲を拡げるが、地盤中の注入材の先進部では注入圧力による周辺土粒子への脱水によってグラウトの含水量が低減して流動性が失われ可塑状ゲルから非可塑状ゲルになる。このようにして注入孔の間の土の密度が増大して地盤の強度が増加し、地盤を強化する。注入孔間隔は上質や目標改良度や土かぶりの大きさに応じ0.5〜3.0mが有効である。   FIG. 1 shows the injection arrangement. In this invention, when the ground injection material is pressed into the soft ground from the injection pipe at a low speed, the plastic gel exhibiting fluidity expands the range of the bulk gel while the injection pressure is applied. In the advanced part, the water content of the grout is reduced by dehydration to the surrounding soil particles by the injection pressure, the fluidity is lost, and the plastic gel is changed to the non-plastic gel. In this way, the density of the soil between the injection holes is increased, the strength of the ground is increased, and the ground is strengthened. The injection hole interval is effectively 0.5 to 3.0 m depending on the quality, the target improvement degree, and the size of the soil cover.

次に、この出願の発明の実施形態を実施例の態様として図2に従って説明すれば以下の通りである。この場合の注入は図2(a)のようにロッド注入管を用いて下から上、又は上から下に順次注入する。或は二重管ダブルパッカ注入外管を設置し内管から複数の吐出口を経て注入してもよい。この場合は地盤における可塑状ゲルが非可塑状ゲルになる前の状態になっている範囲にその吐出口が位置するようにステージが移動するようにするのがゲル化物を拡大する上で好ましい。   Next, an embodiment of the invention of this application will be described as an embodiment example with reference to FIG. In this case, as shown in FIG. 2A, the rod injection tube is used to sequentially inject from the bottom to the top or from the top to the bottom. Alternatively, a double pipe double packer injection outer pipe may be installed to inject from the inner pipe through a plurality of discharge ports. In this case, it is preferable from the viewpoint of enlarging the gelled product that the stage is moved so that the discharge port is located in a range in which the plastic gel in the ground is in a state before becoming the non-plastic gel.

図2(b)の実施形態はインターバル方式の基本的実施例の態様を示すものであり、所定の軟弱地盤3、同様に在来態様同様の形式により所定ピッチの横方向に介して削孔4を所定深度に形成し、図示しない注入管9を該削孔4に挿入し、地上の図示しない注入装置から懸濁型の可塑状グラウトを所定のタイムラグでインターバル方式により当該注入管9の所定ステージに変換しながら連ねながら注入し、又、所定ステップアップ、或はステップダウンを介し、反復して、注入を地盤3のゾーンごとに反復して追い討ち式に行っていく。この場合、注入管は注入管ロッドを用いてもよいし、注入外管内に注入内管を挿入して注入ステージを移向して注入してもよい。   The embodiment of FIG. 2 (b) shows an aspect of the basic example of the interval system, and the drilling holes 4 are formed in a predetermined soft ground 3, and in the same manner as in the conventional mode, in a lateral direction with a predetermined pitch. Is formed at a predetermined depth, an injection pipe 9 (not shown) is inserted into the drilling hole 4, and a suspension type plastic grout is injected from an injection apparatus (not shown) on the ground by a predetermined time lag at a predetermined stage of the injection pipe 9 Further, the injection is repeated through a predetermined step-up or step-down, and the injection is repeated for each zone of the ground 3 in a chasing manner. In this case, an injection tube rod may be used as the injection tube, or injection may be performed by inserting the injection inner tube into the outer injection tube and moving the injection stage.

この場合、各サイクルに於ける注入は注入初期にあっては逸脱しないように低圧で注入し、地盤3内の排水を行いながら、或は注入液の脱水を行いながら注入し所定タイミングの後、圧送を停止すると、前述の如く流動性を失って経時的に固化し、後注入する地盤注入材は先行して形成されている可塑状ゲルを内側から側方向に押しやり、上側の地上方向には逸脱せず、追い討ち的に横方向に重合する方式で注入され、側方地盤の圧密脱水を図り、注入部位の外用部に於ける脱水が図られて可塑状ゲルの硬化物による硬化体が形成され、後注入の地盤注入材による可塑状ゲル化物が重なって大きな塊に増大していく。   In this case, the injection in each cycle is injected at a low pressure so that it does not deviate in the initial stage of injection, and it is injected while draining the ground 3 or dehydrating the injection solution, and after a predetermined timing, When the pumping is stopped, the fluidity is lost and solidified with time as described above, and the ground injecting material to be injected later pushes the plastic gel formed in advance from the inside to the side, and the upper ground direction. Injected in a laterally polymerized manner without deviating from the side, compacted dehydration of the side ground, dehydrated in the external part of the injection site, cured by a hardened plastic gel Is formed, and the plastic gelled material by the ground injection material for post-injection overlaps to increase into a large lump.

この場合、当該地盤3の所定エリアに対し、削孔を横方向所定間隔を介し、設定数多数の削孔4を形成させ、各削孔に対し、各別個に注入管9を挿入し、所定タイムラグでバルブ5、ポンプpを介し而して注入装置に接続し、本地盤注入材をコンピューターを有するコントローラー6により所定のプログラムを介して、削孔4に対する注入タイミングをコンピューターを介してずらして、横方向に並列的に形成された該削孔4に対し、バルブ5、コントローラー6を介して所定タイムラグで、インターバル方式により、本地盤注入材を注入して地盤の相隣る削孔4の側方地盤の全領域的な圧密脱水を行って結果的に全領域的な地盤の強度の向上を図ることが出来る。   In this case, a predetermined number of holes 4 are formed in a predetermined area of the ground 3 at predetermined intervals in the transverse direction, and injection pipes 9 are inserted into the respective holes separately. The time 5 lag is connected to the injection device via the valve 5 and the pump p, and the injection material to the drilling hole 4 is shifted via the computer by a controller 6 having a computer to shift the injection timing of the ground injection material through the computer. For the holes 4 formed in parallel in the lateral direction, the ground injection material is injected by the interval method at a predetermined time lag through the valve 5 and the controller 6 and the adjacent holes 4 side of the ground. Consolidation dehydration of the entire area can be performed, and as a result, the strength of the entire area can be improved.

すなわち、改良地盤は注入孔を介し注入を、又、所定の領域に一度に多量の本地盤注入材を圧入すると周辺土が充分な範囲を圧密する前に破壊したり、地盤隆起したりしてしまうが、全注入量を分割してインターバルで圧入すると可塑性であるがために注入の中断により流動が停止し、その位置に保持され、その周辺土は圧密脱水されている時間と、可塑性グラウトの脱水の時間が与えられ順次塊状可塑性ゲルによる固結体の大きさが成長し柱状固結体とその柱状固結体に挟まれた密度の増加した複合地盤となる。   In other words, the improved ground is injected through the injection hole, and if a large amount of the ground injection material is injected into a predetermined region at once, the surrounding soil may be destroyed before the sufficient area is consolidated, or the ground may rise. However, if the total injection volume is divided and press-fitted at intervals, it will be plastic, so the flow will stop due to the interruption of the injection, it will be held in that position, the surrounding soil will be consolidated and dehydrated, and the plastic grout Given the time for dehydration, the size of the solidified body by the bulk plastic gel grows sequentially, and the composite ground with an increased density sandwiched between the columnar solidified body and the columnar solidified body.

もちろん、当該態様にあっては、所定のインターバル方式をとることにより、所定タイミングで全削孔4を一巡した後は、初期の削孔4に戻ることが可能であり、該管のインターバルの本地盤注入材の注入において、形成された可塑状ゲルの塊状体は固化し、地盤3に対する圧密状態を維持する。即ち、改良地盤は注入孔を介し注入を、又、所定の領域に一度に多量の本地盤注入材を圧入すると周辺土が充分な範囲を圧密する前に破壊してしまうが、全注入量を分割してインターバルで圧入すると可塑性であるがため注入の中断により流動が停止し、その位置に保持され、その周辺土は圧密脱水されてる時間と、可塑状ゲルの脱水の時間が与えられ順次塊状可塑状ゲルによる固結体の大きさが成長し柱状固結体とその柱状固結体に挟まれた密度の増加した領域の複合地盤となる。   Of course, in this mode, by taking a predetermined interval method, it is possible to return to the initial drilling hole 4 after making a round of all the drilling holes 4 at a predetermined timing. In the injection of the board injection material, the formed mass of the plastic gel is solidified and maintains a compacted state with respect to the ground 3. In other words, the improved ground is injected through the injection hole, and if a large amount of the main ground injection material is pressed into a predetermined area at once, the surrounding soil will be destroyed before the sufficient range is consolidated. When it is divided and press-fitted at intervals, it is plastic, so the flow stops when the injection is stopped, and it is held at that position, and the surrounding soil is given a time for consolidation dehydration and a time for dehydration of the plastic gel. The size of the consolidated body by the plastic gel grows and becomes a composite ground of the columnar consolidated body and the increased density region sandwiched between the columnar consolidated body.

このため、注入圧力は地盤隆起に作用するよりも側方向への圧密作用が生ずる。   For this reason, the injection pressure produces a consolidation action in the lateral direction rather than acting on the ground uplift.

尚、削孔4の軸方向上方向には所定タイムラグで注入する可塑状ゲルの機能により、変位が垂直方向よりも水平方向に起こり易く、従って、地盤3の上方への隆起は避けられる。   In addition, due to the function of the plastic gel injected at a predetermined time lag in the axial direction upward of the drilling hole 4, the displacement is more likely to occur in the horizontal direction than in the vertical direction, and therefore, the upward protrusion of the ground 3 can be avoided.

図2(c)は引張強度を有する注入管を有する注入管9(或は、注入管に引張材を抱き合わせた補強材でもよい)を地盤に設置して可塑性グラウトを圧入した場合の地盤の強化モデルを図示する。図2(c)に示す様に、地盤を削孔して注入管9を埋設して所定の位置で可塑性注入材を圧入して周辺地盤に固結体形成することにより、周辺の土が圧縮して固結による大きな土中アンカーが形成される。該土中アンカーによって引張強度を有する注入管9が地盤に定着される。この状態だけでも地盤が変位しようと、引張体に伸びが生じ地盤に引張強度が付与される。   Fig. 2 (c) shows the strengthening of the ground when an injection tube 9 having an injection tube having tensile strength (or a reinforcing material obtained by tying the injection tube with a tensile material) is placed on the ground and a plastic grout is press-fitted. The model is illustrated. As shown in Fig. 2 (c), the ground is compressed by forming a solid body in the surrounding ground by drilling the ground and embedding the injection pipe 9 and press-fitting the plastic injection material at a predetermined position. Thus, a large soil anchor is formed by consolidation. The injection pipe 9 having a tensile strength is fixed to the ground by the soil anchor. Even in this state alone, if the ground is displaced, the tensile body is stretched and tensile strength is imparted to the ground.

なお、図2(a),(b)において注入外管から注入内管を通して注入する場合、軸方向に複数の吐出口を有する注入外管には吐出口にゴムスリーブを被せて逆止弁の役をする。この注入外管内にシングルパッカ或はダブルパッカを有する注入内管を挿入して最下部の外管吐出口から本地盤注入材を圧入しては上方へステップアップし圧入して地盤強化を行う。   2 (a) and 2 (b), when injecting from the outer injection tube through the inner injection tube, the outer injection tube having a plurality of discharge ports in the axial direction is covered with a rubber sleeve over the discharge port. To play a role. An injection inner tube having a single packer or a double packer is inserted into the injection outer tube, and the ground injection material is press-fitted from the lower outer tube discharge port, and then stepped up and pressed to strengthen the ground.

この場合注入外管の設置のためのボーリング作業と注入作業は別々に行うことが出来る。又、注入外管内を再ボーリングして再注入することも出来るし、注入深度毎に確実な注入が出来、かつ注入外管の引張力を地盤に付与でき杭効果を得ることも出来る。   In this case, the boring operation and the injecting operation for installing the outer injection tube can be performed separately. Further, the inside of the outer injection pipe can be re-bored and re-injected, and the injection can be reliably carried out at every injection depth, and the tensile force of the outer injection pipe can be applied to the ground, and the pile effect can be obtained.

また、本発明注入材と溶液型注入材を併用する事によって砂質土と粘性土の互層からなる地盤を改良することが出来る。本粘性土は溶液型グラウトによる浸透注入が不可能なためゲル強度の大きい懸濁型グラウトの脈状注入が行われていたが、所定範囲に注入する事が不可能なためその効果は不確実だった。しかるに上記注入管を用いて浸透不能な土層に可塑状グラウトによる圧密注入を行い、浸透注入可能な土層は溶液型グラウトで改良する事が可能になる。例えば溶液型グラウトを注入した上で本地盤注入材を圧入すれば全体の地盤改良が可能になる。   Moreover, the ground which consists of an alternating layer of sandy soil and clay soil can be improved by using together this invention injection material and solution type | mold injection material. This viscous soil was not able to infiltrate with solution type grout, so suspension type grout with high gel strength was injected into vein, but its effect was uncertain because it could not be injected within the specified range. was. However, the above-mentioned injection tube is used to perform compaction injection with a plastic grout on the impervious soil layer, and the permeation-impregnated soil layer can be improved with a solution-type grout. For example, if the ground injection material is injected after solution type grout is injected, the entire ground can be improved.

而して、上述の如く、この出願の発明においては、各削孔4に注入された本地盤注入材は地盤3の側方の加圧脱水作用を行って上方への逸脱は阻止される。従って、地盤の隆起等は生じ難いが、地盤表面の隆起や各相隣る削孔相互間の変形量を測定するために図3に示すようにレベルセンサーによるレベル検出方式を用いる。図3に示すようにレーザービーム発生装置11に対し、地上部の地表面或は建造物注入の影響を受ける位置に設けたレーザー受信装置12を介し、レーザービームセンサー15を設ける。   Thus, as described above, in the invention of this application, the main ground injecting material injected into each drilling hole 4 performs a pressure dehydrating action on the side of the ground 3 to prevent upward deviation. Therefore, although it is difficult for the ground to be raised, a level detection method using a level sensor is used as shown in FIG. 3 in order to measure the amount of deformation on the ground surface and between adjacent holes. As shown in FIG. 3, a laser beam sensor 15 is provided to the laser beam generating device 11 via a laser receiving device 12 provided on the ground surface of the ground part or a position affected by the injection of the building.

そして、受信装置およびコンピューター17を介し、適宜注入制御装置18により、図に示す様に注入管9に対する注入ステージの移向、本地盤注入材の注入の注入量やインターバル時間や比重等を調整的に制御するようにする。このときレーザービーム発生装置11から発生するレーザービームが精密に作製されたレーザービームセンサー15に対し、受信装置12が上下に変位し、地盤3の隆起等が正確に検出される。そして、コンピューター17を介し、図示しない注入制御装置を発停し、間欠的に注入する本地盤注入材の側方地盤の圧密脱水に最適なタイミングと量で注入を行い、地盤の隆起等を測定しながら、注入の中止、注入量の調整、他の注入地点への移向等最適に注入を行う。   Then, through the receiving device and the computer 17, the injection control device 18 appropriately adjusts the transfer of the injection stage to the injection tube 9, the injection amount of the injection of the ground injection material, the interval time, the specific gravity and the like as shown in the figure. To control. At this time, the receiving device 12 is displaced up and down with respect to the laser beam sensor 15 in which the laser beam generated from the laser beam generating device 11 is precisely produced, and the uplift of the ground 3 is accurately detected. Then, an injection control device (not shown) is started and stopped via the computer 17, and injection is performed at the optimum timing and amount for the consolidation and dehydration of the side ground of the main ground injection material to be intermittently injected to measure the ground uplift and the like. However, the injection is optimally performed such as stopping the injection, adjusting the injection amount, and moving to another injection point.

なお、当該図3に示す様に、注入の圧密体の側方変位や地盤の隆起等の計測検知はレーザー光線を用い、又、光学的に検知する為に、mm単位の精密な計測が必要である。   As shown in FIG. 3, laser beam is used for measurement detection such as lateral displacement of the compacted body of injection and ground uplift, and precise measurement in mm is required for optical detection. is there.

従って、当該削孔4の変位や地盤3の隆起は広範囲に亘って精密な計測が可能であり、該地盤3の変位等の微少な変位を正確に、検出して設計通りの地盤3の強度向上が行える。   Accordingly, the displacement of the drilling hole 4 and the bulge of the ground 3 can be measured accurately over a wide range, and a minute displacement such as the displacement of the ground 3 can be accurately detected and the strength of the ground 3 as designed. Improvements can be made.

而して、上述実施例において、側方地盤3に対する圧密脱水作用を介し、該地盤3の強度を向上することが基本的には可能であるが、本地盤注入材の該地盤3に対する注入部位に地盤3中の水分が他方に逸走して他の地盤3部分の流動性を高めたりする虞れがあるが為に、液状化現象等の潜在的な原因を除くべく、本地盤注入材の注入に伴って排除される地盤3中の水分を強制的に配設するべくペーパードレーンやサンドドレーン等のドレーン材(排水性や土性の異なる地層を貫通して)を併設し、圧密作用と脱水作用を両方に亘って積極的に行うことが出来る。   Thus, in the above-described embodiment, it is basically possible to improve the strength of the ground 3 through the consolidation dehydration action on the side ground 3, but the injection site of the ground injection material to the ground 3 is possible. In order to eliminate potential causes such as liquefaction phenomenon, the moisture in the ground 3 may escape to the other and increase the fluidity of other ground 3 parts. In order to forcibly dispose the moisture in the ground 3 that is removed along with the injection, a drain material such as a paper drain or sand drain (through drainage and soil layers with different drainage properties) is provided together with the compaction action. The dehydration action can be performed positively over both.

図4は改良すべき地盤に屈曲して、また屈曲と直線を任意に組み合わせボーリングし、或はたて杭から建造物の基礎下に水平ボーリングして得られたボーリング孔中に、複数の外管吐出口を有する外管を設置し、この外管内に、内管を移動自在に挿入し、これにより内管と出口から外管吐出口を経て本地盤注入材を地盤中に注入するようにした態様を示すものであり、これにより地盤注入を施し難い既設構造物下方の支持地盤を急速かつ確実に、かつ経済的に地盤注入し、地盤沈下や、地震時における地盤の液状化を未然に防止する事が出来る。   FIG. 4 shows a plurality of outer holes in a borehole obtained by bending to the ground to be improved, boring with any combination of flexure and straight line, or horizontal boring from the pile to the foundation of the building. Install an outer pipe with a pipe discharge port, insert the inner pipe into this outer pipe movably, and inject this ground injection material into the ground from the inner pipe and outlet through the outer pipe discharge port As a result, the supporting ground under the existing structure, which is difficult to be injected, can be injected quickly, reliably and economically to prevent subsidence or liquefaction of the ground during an earthquake. Can be prevented.

図4(a)は構造物直下の改良すべき地盤処理の基本模式図である。図4(a)に示されるように、ビル、廃棄物処理場、溜め池、貯水池等、移動不可能な構造物の直下の改良すべき地盤の近傍地表面から地盤中に屈曲して、または屈曲と直線を組み合わせて、ボーリング孔を形成する。次にこのボーリング孔中に設けた注入管から可塑性注入材を圧入する。   FIG. 4 (a) is a basic schematic diagram of the ground treatment to be improved directly under the structure. As shown in FIG. 4 (a), bent from the ground surface near the ground to be improved directly under an immovable structure such as a building, a waste disposal site, a reservoir, a reservoir, or the like, or into the ground Boring holes are formed by combining bending and straight lines. Next, a plastic injection material is press-fitted from an injection tube provided in the borehole.

図4(b)は構造物下方の地盤注入例であり、構造物下方の深さ方向に複数層積層して処理することも出来る。   FIG. 4B is an example of ground injection below the structure, and a plurality of layers can be laminated in the depth direction below the structure.

次にこの出願の発明を実施しようとする他の実施例の態様を図5に示す。図5(a)は地盤中にケーシング等管体を設けた上で鉄筋等の引張材を挿入した上で、地盤注入材に圧入しながらケーシングを引き抜き、地盤中に塊状固結体を形成し周辺地盤を圧縮して強化するのみならず、圧縮杭又は引張杭としての効果もある杭体との複合的地盤強化を図る態様であり、図5(b)は可塑性注入材の圧入による杭基礎の地盤の強化モデルであり、図5(c)は土留め壁における可塑性注入材によるアンカー形成の態様を示す。図5(b)、図5(c)とも図5(a)の手法を用いてもよいし、引張力を有する外管を用いて内管から注入する事により外管の引張材としての効果を付与してもよい。   Next, FIG. 5 shows another embodiment in which the invention of this application is to be carried out. Fig. 5 (a) shows a case where a tubular body such as a casing is provided in the ground and a tensile material such as a reinforcing bar is inserted, the casing is pulled out while being pressed into the ground injection material, and a solid aggregate is formed in the ground. In addition to compressing and strengthening the surrounding ground, this is a mode in which composite ground reinforcement with a pile body that is also effective as a compression pile or tensile pile is intended. Fig. 5 (b) is a pile foundation by press-fitting plastic injection material. Fig. 5 (c) shows a mode of anchor formation by a plastic injection material on the earth retaining wall. 5 (b) and 5 (c) may use the method of FIG. 5 (a), or the effect of the outer tube as a tensile material by injecting from the inner tube using an outer tube having a tensile force. May be given.

本発明の注入管理方法としては、地盤注入材の配合から注入材送液系統を通して地盤中の複数の注入ポイントに注入するまでの注入状況を画面表示し、一括監視を行って注入管理を行う。   As the injection management method of the present invention, the injection status from the mixing of the ground injection material to the injection into a plurality of injection points in the ground through the injection material feeding system is displayed on the screen, and the injection management is performed by performing batch monitoring.

図6は、本発明の実施に供される注入管理方法の一具体例を示すフローシートであって、集中管理装置X1により注入状況の一括監視、管理を行い、常にその状況が注入監視盤X2に画面表示される。   FIG. 6 is a flow sheet showing a specific example of the injection management method used in the implementation of the present invention. The centralized management device X1 performs batch monitoring and management of the injection status, and the status is always in the injection monitoring panel X2. Is displayed on the screen.

図7に集中管理装置X1の操作フローチャートを示しながら、図6について説明する。まず注入目的、注入条件に応じて注入仕様ファイルを集中管理システムX1に予め設定しておき(システム仕様設定登録)、次いで集中管理装置X1の開始スイッチをONにしてデータ記録を開始する。このとき、注入監視盤X2にもランプでON表示がなされており、注入データが画面に表示される。なお、ここで云う注入仕様ファイルとは材料の配合量、グラウトの流動規定値(適正流動範囲)、また圧力規定値(適正圧力範囲)、規定注入量(適正積算注入量範囲)、すなわち、所望のグラウトの流動特性、注入圧力、流量(単位時間当たり流量及び/又は積算流量)等である。又、上記において地盤隆起の適正範囲を加えても良い。   FIG. 6 will be described with reference to FIG. 7 showing an operation flowchart of the centralized management apparatus X1. First, an injection specification file is previously set in the central management system X1 according to the injection purpose and injection conditions (system specification setting registration), and then the start switch of the central management device X1 is turned on to start data recording. At this time, the injection monitoring panel X2 is also turned ON by a lamp, and injection data is displayed on the screen. The injection specification file referred to here is the amount of material blended, the specified flow rate of the grout (appropriate flow range), the specified pressure value (appropriate pressure range), the specified injection amount (appropriate integrated injection range), that is, desired The flow characteristics of the grout, injection pressure, flow rate (flow rate per unit time and / or integrated flow rate), and the like. In the above, an appropriate range of ground uplift may be added.

集中管理装置X1の指示により、水、粉粒素材が、それぞれ計量器23を備えた水タンク4、及び粉粒素材を貯蔵するホッパ25からミキサー27へ定量供給され、攪拌混合される。またこの時点でゲル化促進剤を添加する場合は、ゲル化促進剤を貯蔵するホッパ26より計量器23を介して添加される。   In accordance with an instruction from the central control device X1, water and powder material are supplied in a fixed amount from the water tank 4 provided with the measuring device 23 and the hopper 25 storing the powder material to the mixer 27, and are mixed by stirring. In addition, when adding the gelation accelerator at this time, the gelation accelerator is added from the hopper 26 for storing the gelation accelerator via the measuring device 23.

ミキサー27内で充分に混合されたグラウトはミキサー27に取り付けられた或は別に備えられた流動特性計測装置28により流動測定が行われ、結果は集中管理装置X1を介して注入監視盤に表示される。ここで示す流動特性とはグラウトのフロー、或はスランプ、ゲルタイム、或は粘度、或はせん断強度(コーンによる貫入測定等が用いられる)等により判断されるものである。所定の流動性が得られると配合完了となり、グラウトはミキサー27より導管29を介して、さらにグラウトポンプ30へと送液される。また所定の流動性が得られていない場合、集中管理装置X1の指示により再度、材料(水、或は粉粒素材、或はゲル化促進剤)の添加が行なわれ、これは所定の流動特性が得られるまで繰り返される。   The grout sufficiently mixed in the mixer 27 is subjected to flow measurement by a flow characteristic measuring device 28 attached to the mixer 27 or separately provided, and the result is displayed on the injection monitoring board via the central control device X1. The The flow characteristics shown here are determined by the grout flow, slump, gel time, viscosity, shear strength (cone penetration measurement or the like is used), and the like. When the predetermined fluidity is obtained, the blending is completed, and the grout is further fed from the mixer 27 through the conduit 29 to the grout pump 30. In addition, when the predetermined fluidity is not obtained, the material (water, the granular material, or the gelation accelerator) is added again according to the instruction of the central control device X1, and this is the predetermined flow characteristic. Is repeated until is obtained.

ここではミキサー27内から直接グラウトを取り出すことも可能であり、流動特性計測装置28および集中管理装置X1を介さなくても、実際に手動で流動性を確認することも出来る。   Here, it is also possible to take out the grout directly from the mixer 27, and it is possible to actually confirm the fluidity manually without using the flow characteristic measuring device 28 and the central control device X1.

グラウトポンプ30へと送られたグラウトは注入過程へと移向する。集中管理装置X1からの指示により、バルブ5が開けられ、グラウトポンプ30は所望の圧力でグラウトを加圧する。加圧されたグラウトは、導管29´、注入ホース31、注入管9を介して地盤3に注入、圧入される。   The grout sent to the grout pump 30 is transferred to the injection process. In response to an instruction from the central control device X1, the valve 5 is opened, and the grout pump 30 pressurizes the grout with a desired pressure. The pressurized grout is injected and press-fitted into the ground 3 through the conduit 29 ′, the injection hose 31 and the injection pipe 9.

導管29´には、圧力計p0、流量計f0が取り付けられ、測定された注入圧力、流量(単位時間当たり流量及び/又は積算流量)は流量圧力制御装置32に送信されるとともに、集中管理装置X1により管理される。 A pressure gauge p 0 and a flow meter f 0 are attached to the conduit 29 ′, and the measured injection pressure and flow rate (flow rate per unit time and / or integrated flow rate) are transmitted to the flow pressure control device 32 and concentrated. Managed by the management device X1.

注入圧力および流量が、予め設定された圧力規定値(適正圧力範囲)、規定注入量(適正積算注入量範囲)でない場合、或は地盤隆起量が適正範囲より大きくなった場合、注入は中断されるか、もしくは集中管理装置により調整、及び制御の指示が送信される。また常時データは注入監視盤に画面表示されるので注入状況に応じて、注入条件の変更が可能であり、または注入緊急停止が行える。   Injection is interrupted if the injection pressure and flow rate are not a preset pressure regulation value (appropriate pressure range) or prescribed injection amount (appropriate integrated injection amount range), or if the ground uplift is greater than the appropriate range. Or an instruction for adjustment and control is transmitted by the centralized management apparatus. In addition, since the data is always displayed on the injection monitoring board, the injection conditions can be changed or the emergency injection can be stopped according to the injection status.

なお、流量計f0としては、回転流量計、電磁流量計等、任意の流量計を使用でき、パルスで出力された電気信号が流量は流量圧力制御装置32を介して集中管理装置X1に入力され、カウントされる。流量計f0及び/又は圧力計p0からの情報に基づく集中管理装置X1からの指示によりグラウトポンプ30の回転数を調整して毎分流量や注入圧力を制御する。 As the flow meter f 0 , an arbitrary flow meter such as a rotary flow meter or an electromagnetic flow meter can be used, and an electric signal output as a pulse is input to the centralized management device X 1 via the flow pressure control device 32. And counted. Controlling the each shunt amount and injection pressure by adjusting the rotational speed of the grout pump 30 in accordance with an instruction from the flow meter f 0 and / or the central control device X1 based on information from the pressure gauge p 0.

また、集中管理装置X1により、インバータによってポンプの回転数を調節して流量を制御する。   Further, the central control device X1 controls the flow rate by adjusting the rotational speed of the pump with an inverter.

グラウトポンプ30はインバータ又は無断変速機を有するポンプ、或はリターン装置を有するポンプであってもよい。インバータや無断変速機は集中管理装置X1の指示を受けなくても、直接流量を調整して所定の圧力値にセットすることもできる。またリターン装置も直接調整して導管29´の圧力が所望の圧力を保つようにリターンさせることも可能である。なお、上述の調整は手動で行ってもよい。   Grout pump 30 may be a pump having an inverter or a continuously variable transmission, or a pump having a return device. The inverter and the continuously variable transmission can directly adjust the flow rate and set it to a predetermined pressure value without receiving an instruction from the central control device X1. The return device can also be adjusted directly to return the pressure in the conduit 29 'to maintain the desired pressure. The above adjustment may be performed manually.

またグラウトポンプ30に代えて、コンプレッサを用いることも出来る。ミキサー7からグラウトをまず、加圧容器を設けて、これに充填し、次いでコンプレッサの作動により加圧容器中のグラウトを加圧して加圧注入グラウトとする。   A compressor may be used instead of the grout pump 30. The grout from the mixer 7 is first provided with a pressurized container and filled therein, and then the grout in the pressurized container is pressurized by the operation of the compressor to form a pressurized injection grout.

注入管9にはバルブ5が取り付けられ、このバルブ5は集中管理装置X1からの電気信号によって自動的に開閉される。複数本の注入管9を用いて、地盤3中の複数の注入ポイント22からの同時注入、連続注入、インターバル注入、またはこれらを組み合せて注入を行なう。またバルブ5は注入が完了した時点で手動により閉束することも出来る。   A valve 5 is attached to the injection pipe 9, and this valve 5 is automatically opened and closed by an electrical signal from the central control device X1. Using a plurality of injection pipes 9, simultaneous injection from a plurality of injection points 22 in the ground 3, continuous injection, interval injection, or a combination thereof is performed. The valve 5 can be manually closed when the injection is completed.

全ての注入が完了の後、集中管理装置X1の開始スイッチをOFFにすることにより集中管理装置X1によるデータの記録が終了する。   After all injections are completed, turning off the start switch of the central management device X1 ends the data recording by the central management device X1.

配合から注入までのデータを集中管理装置X1に送信し、注入監視盤X2に画面表示することにより注入状況の一括監視を行なって、グラウトの流動特性、送液系統の注入圧力、流量を所定の範囲に維持しながら注入するとともに、注入の完了、中止、継続、また再注入を行なう。   The data from blending to injection is sent to the central control device X1, and the injection status is monitored by displaying the screen on the injection monitoring board X2, and the flow characteristics of the grout, the injection pressure of the liquid delivery system, and the flow rate are determined in advance. Inject while maintaining the range and complete, stop, continue or reinject.

また集中管理装置X1の指示により自動開閉されるゲル化促進材分岐バルブ34を設置することにより、ゲル化促進剤の配合時を管理する。予めシステム仕様設定にゲル化促進剤の添加時を登録し、ミキサー27内での混合、グラウトポンプ30への送液前の添加、およびゲル化促進剤ポンプ35を介することでグラウトポンプ30から圧送されたグラウトにゲル化促進剤を添加することも可能である。   In addition, by installing a gelation promoting material branch valve 34 that is automatically opened and closed in accordance with an instruction from the central management device X1, the mixing time of the gelation accelerator is managed. The time of addition of the gelation accelerator is registered in advance in the system specification settings, mixed in the mixer 27, added before feeding to the grout pump 30, and pumped from the grout pump 30 via the gelation accelerator pump 35. It is also possible to add a gelling accelerator to the finished grout.

本発明に使用される注入工法は図6において、流動特性計測装置28、流量圧力制御装置32や地盤(或は構造物)変位計測器或は更に自動開閉可能なバルブ5を設け、これを集中管理装置X1に接続し、かつデータを注入監視盤X2に画面表示したことに特徴を有する。注入監視盤X2には注入年月日、注入時間等の「時データ」、材料の配合量、グラウト性状等の「グラウトデータ」、注入ブロックNo.、注入孔の孔番、注入ポイント等の「場所データ」、注入圧力、流量(単位時間流量や積算流量)等の「注入データ」が表示される。その他、注入液識別データや地盤(或は構造物)変位データを表示することも出来る。   In FIG. 6, the injection method used in the present invention is provided with a flow characteristic measuring device 28, a flow pressure control device 32, a ground (or structure) displacement measuring device, or a valve 5 that can be automatically opened and closed. It is characterized in that it is connected to the management device X1 and the data is displayed on the injection monitoring board X2. The injection monitoring board X2 includes “hour data” such as injection date, injection time, “grout data” such as material blending amount, grout properties, injection block number, injection hole number, injection point, etc. “Injection data” such as “location data”, injection pressure, and flow rate (unit time flow rate and integrated flow rate) are displayed. In addition, injection liquid identification data and ground (or structure) displacement data can also be displayed.

図8に例えば10本の送液系統を有する注入を行った際の送液系統のデータ(流量、圧力、積算流量、最大圧力の合計40データ)を注入監視盤X2上に一つの画面で表示した画面を示す。図8の画面を詳述すると、以下の通りである。   FIG. 8 shows, for example, liquid feeding system data (a total of 40 data of flow rate, pressure, integrated flow rate, and maximum pressure) at the time of injection having 10 liquid feeding systems on one screen on the injection monitoring panel X2. Shows the screen. The screen of FIG. 8 will be described in detail as follows.

上半分の2画面:
グループ1:1号〜5号の積算流量、最大圧力デジタル表示
グループ2:6号〜10号の積算流量、最大圧力デジタル表示
積算流量は20分間の注入量である。また最大圧力は30秒毎に表示され、19分30秒から20分までの間の最大値を表示した。最大圧力が設定圧力以上になり続けたら、その送液系統の注入は終了することの判断になる。また、積算流量が設定積算流量に達した場合も、この送液系統の注入は終了することの判断になる。
Upper two screens:
Group 1: No. 1 to No. 5 integrated flow rate, maximum pressure digital display Group 2: No. 6 to No. 10 integrated flow rate, maximum pressure digital display The integrated flow rate is an injection amount for 20 minutes. The maximum pressure was displayed every 30 seconds, and the maximum value from 19 minutes 30 seconds to 20 minutes was displayed. If the maximum pressure continues to be higher than the set pressure, it is judged that the injection of the liquid delivery system is finished. Further, when the integrated flow rate reaches the set integrated flow rate, it is determined that the injection of the liquid feeding system is finished.

下半分の2画面:
グループ3:1号〜5号の流量、圧力 トレンド表示
グループ4:6号〜10号の流量、圧力 トレンド表示
2画面のそれぞれの左側は各送液系統における時間(t)の経過に対応した瞬時流量と瞬時圧力のチャートを示し、右側は19分30秒から20分までの平均瞬時流量(l/分)と平均瞬時圧力(MPa)を示す。
Lower half 2 screens:
Group 3: Flow and pressure trend display of No. 1 to No. 5 Group 4: Flow and pressure trend display of No. 6 to No. 10 The left side of each of the two screens is an instant corresponding to the passage of time (t) in each liquid delivery system A chart of flow rate and instantaneous pressure is shown, and the right side shows average instantaneous flow rate (l / min) and average instantaneous pressure (MPa) from 19 minutes 30 seconds to 20 minutes.

このようにして、図8の画面に示されるように、注入監視盤X2には送液系統No.1〜10の送液状態が同時に表示されるが、一つの送液系統毎に画面を切り換えながら表示することもできる。なお、流量圧力制御装置32における設定圧力、実際圧力、送液流量、積算送液流量を同一画面または別の画面に表示してもよい。これにより、圧力、流量との関係をリアルタイムで把握でき、注入を所定の設定範囲内に納まるように管理できる。また、図8において最大圧力の代わりに、圧力や流量を表示してもよい。さらに、集中管理装置X1は注入仕様ファイル、注入結果一覧表、注入チャート、日計表、週計表、月計表等の帳票作成ならびに解析データの作成をも行うことができる。   In this way, as shown in the screen of FIG. 8, the liquid feeding states of the liquid feeding systems No. 1 to 10 are simultaneously displayed on the injection monitoring panel X2, but the screen is switched for each liquid feeding system. Can also be displayed. The set pressure, the actual pressure, the liquid supply flow rate, and the integrated liquid supply flow rate in the flow rate pressure control device 32 may be displayed on the same screen or different screens. Thereby, the relationship between the pressure and the flow rate can be grasped in real time, and the injection can be managed so as to be within a predetermined setting range. Further, in FIG. 8, pressure and flow rate may be displayed instead of the maximum pressure. Furthermore, the centralized management apparatus X1 can also create forms such as injection specification files, injection result lists, injection charts, daily tables, weekly tables, monthly tables, and analysis data.

注入仕様ファイルは集中管理装置X1の動作設定ファイルであり、注入液送液系統の注入完了条件の規定圧力値、規定注入量の設定を行う。各帳票ファイルは登録された流量、圧力、積算流量あるいは最大圧力の各データと、孔番等の手動入力、または自動入力によるデータとから変換作成される。さらに解析データは各帳票から変換作成される。   The injection specification file is an operation setting file of the centralized management device X1, and sets the specified pressure value and the specified injection amount for the injection completion condition of the injection liquid feeding system. Each form file is converted and created from the registered flow rate, pressure, integrated flow rate or maximum pressure data and data such as manual input or automatic input of hole numbers. Furthermore, analysis data is converted and created from each form.

図8の注入監視盤X2の画面において、各送液系統の1本毎に一枚ずつ、例えば図9に示される注入孔における注入ポイント毎に、ブロックNo.、注入孔No.、及びステージNo.とともに、圧力、流量、チャートを表示することもできる。   In the screen of the injection monitoring board X2 in FIG. 8, one for each liquid delivery system, for example, for each injection point in the injection hole shown in FIG. , Injection hole No. , And stage no. At the same time, pressure, flow rate, and chart can be displayed.

さらに、これらのデータから注入孔毎に、例えば、図9のブロックNo.1、注入孔No.3について表示すれば、図10に示されるように、各ステージ毎に、時間tに対する注入圧力P、流量Q、及び積算流量を表示することもできる。又、これらを図11に示すように三次元的に表示する事によって、各ステージでのN値と土被り圧から想定した許容注入圧力、範囲、目標N値から想定した許容注入量を基準に設定した。各注入ステージにおける注入量から、注入前のN値のデータから注入後の目標N値に対応した地盤改良効果の予測がリアルタイムで可能になり、流量を制御する。   Further, from these data, for example, the block No. of FIG. 1, injection hole No. If 3 is displayed, as shown in FIG. 10, the injection pressure P, the flow rate Q, and the integrated flow rate with respect to time t can be displayed for each stage. In addition, by displaying these three-dimensionally as shown in FIG. 11, the allowable injection pressure assumed from the N value and soil cover pressure at each stage, the range, and the allowable injection amount assumed from the target N value are used as a reference. Set. From the injection amount at each injection stage, the ground improvement effect corresponding to the target N value after injection can be predicted in real time from the N value data before injection, and the flow rate is controlled.

このようにして、加圧注入グラウトの所定設定の流量ないしは設定圧力をもって、或は限界範囲内の流量ないしは圧力をもって、送液圧入する。この結果、確実にかつ改良効果の予測迄可能になる。又、上記の設定圧力、設定注入量は試験注入のデータを加味して補正する事が出来る。   In this way, liquid feeding is injected with a predetermined flow rate or set pressure of the pressure injection grout, or with a flow rate or pressure within a limit range. As a result, it is possible to reliably and predict the improvement effect. The set pressure and the set injection amount can be corrected in consideration of the test injection data.

以下、本発明を実施例に基づき具体的に記述するが、本発明はこれら実施例によって限定されるものではない。   EXAMPLES Hereinafter, although this invention is described concretely based on an Example, this invention is not limited by these Examples.

使用材料
(1) スラグ
高炉スラグ、8000ブレーン値
(2) セメント
普通ポルトランドセメント:PC、硬化発現材
(3) 消石灰
工業用水酸化カルシウム、ゲル化促進剤および硬化発現材
(4) 石膏
半水石膏、硬化発現材
(5) フライアッシュ
火力発電所より排出される石炭灰、密度1.9〜2.3g/cm3、粒度分布0.1mm以下が90%以上
(6) ベントナイト
保水材および増粘材
(7) 硫酸バンド
硫酸アルミニウム、Al23=17.2%、ゲル化促進剤
(8) 水ガラス
JIS3号水ガラス、SiO2=29.0%、Na2O=9.0%、モル比3.3、ゲル化促進剤
(9) 起泡剤
事前発泡型エア発生剤
(10) アルミニウム粉末
事後発泡型エア発生剤
Materials used
(1) Slag Blast furnace slag, 8000 brane value
(2) Cement Ordinary Portland cement: PC, hardened material
(3) Slaked lime Industrial calcium hydroxide, gelling accelerator and curing agent
(4) Gypsum Hemihydrate gypsum, hardening material
(5) Fly ash Coal ash discharged from thermal power plants, density 1.9-2.3g / cm 3 , particle size distribution 0.1mm or less is 90% or more
(6) Bentonite water retention and thickening material
(7) Sulfuric acid band Aluminum sulfate, Al 2 O 3 = 17.2%, gelation accelerator
(8) Water glass
JIS No. 3 water glass, SiO 2 = 29.0%, Na 2 O = 9.0%, molar ratio 3.3, gelation accelerator
(9) Foaming agent Pre-foaming air generating agent
(10) Aluminum powder Post foaming air generating agent

配合例1〜3
スラグ、セメント、水を練り混ぜる。スラグとセメントの配合量は同様にして水の配合量のみを変化させた。このようにして得られた配合例1〜3の地盤注入材の調整条件及び物性値を下記の表2に示す。
Formulation Examples 1-3
Mix slag, cement and water. The blending amount of slag and cement was similarly changed only the blending amount of water. Table 2 below shows the adjustment conditions and physical property values of the ground injection materials of Formulation Examples 1 to 3 thus obtained.

Figure 0004689555
Figure 0004689555

表2において、ゲル化時間とは配合後可塑性ゲルを呈するまでの時間を云い、テーブルフローがほぼ20cmとなった時点をゲル化時間とする。又、可塑性保持時間とは静止しておけばゲル状を保持するが、力を加えると流動する状態を呈している時間を云う。   In Table 2, the gelation time refers to the time until the plastic gel is formed after blending, and the time when the table flow becomes approximately 20 cm is defined as the gelation time. The plastic holding time refers to the time during which a gel-like state is maintained if it is stationary, but is in a state of flowing when a force is applied.

配合例4,5
スラグ、セメント、水を練り混ぜる。水の配合量は上記の配合例1と同様にて、スラグとセメントの配合量を変化させた。このようにして得られた配合例4,5の地盤注入材の調整条件及び物性値を下記の表3に示す。
Formulation Examples 4 and 5
Mix slag, cement and water. The amount of water blended was the same as in Formulation Example 1 above, and the blending amount of slag and cement was changed. Table 3 below shows the adjustment conditions and physical property values of the ground injection materials of Formulation Examples 4 and 5 thus obtained.

Figure 0004689555
Figure 0004689555

表3より、硬化発現材比が大きくなるとブリージング率が大きくなり、可塑状保持時間が極めて短くなって、初期粘性も高くなり、脱水によって急速に水粉体比が低下し脈状に割裂注入されやすい。よって硬化発現材比は50%より少なく、硬化発現材としてセメントを使用する場合は、好ましくは1〜40%、さらに好ましくは1〜20%、最も好ましくは1〜10%が適している。なお本発明において、ポルトランドセメントでなくても高炉セメント、アルミナセメント、早強セメント、スラグセメント、その他任意のセメントを用いる事が出来る。   From Table 3, as the ratio of cured material increases, the breathing rate increases, the plasticity retention time becomes extremely short, the initial viscosity also increases, and the water-to-powder ratio decreases rapidly due to dehydration, so that the vein is split and injected. Cheap. Therefore, the ratio of the hardening developing material is less than 50%, and when cement is used as the hardening developing material, it is preferably 1 to 40%, more preferably 1 to 20%, and most preferably 1 to 10%. In the present invention, blast furnace cement, alumina cement, early-strength cement, slag cement, or any other cement can be used without using Portland cement.

配合例6,7
表1の配合例1,2に硫酸バンドを添加し、ゲル化を促進させた。ここでゲル化を促進するとは配合後可塑性を呈するまでの時間を短縮し、或はフローを小さくすることを云う。このようにして得られた配合例6,7の地盤注入材の調整条件及び物性値を下記の表4に示す。
Formulation Examples 6, 7
A sulfate band was added to Formulation Examples 1 and 2 in Table 1 to promote gelation. Here, to promote gelation means to shorten the time until the plasticity is exhibited after blending or to reduce the flow. Table 4 below shows the adjustment conditions and physical property values of the ground injection materials of Formulation Examples 6 and 7 thus obtained.

Figure 0004689555
Figure 0004689555

表4より、硫酸バンドを添加することで、ゲルタイムが短縮されるが、可塑状保持時間はそれ程短縮されず、またブリージング率も減少し、可塑状グラウトとしての作業性が向上できると考えられる。ただし、硫酸バンドには強度発現を低下させる性質のあるため、粉体に対して添加量は2.0%以内、好ましくは1.0%以内を用いる。   From Table 4, it can be considered that by adding a sulfuric acid band, the gel time is shortened, but the plastic holding time is not so much reduced, and the breathing rate is also reduced, so that the workability as a plastic grout can be improved. However, since the sulfuric acid band has the property of reducing the strength expression, the addition amount is within 2.0%, preferably within 1.0% with respect to the powder.

配合例8
スラグ、消石灰、水を練り混ぜる。硬化発現材として消石灰を使用し、硬化発現材比また水粉体比は配合例2と同様にした。このようにして得られた配合例8の地盤注入材の調整条件及び物性値を下記の表5に示す。
Formulation Example 8
Mix slag, slaked lime, and water. Slaked lime was used as the hardening developing material, and the hardening developing material ratio or water powder ratio was the same as in Formulation Example 2. Table 5 below shows the adjustment conditions and physical property values of the ground injection material of Formulation Example 8 obtained as described above.

Figure 0004689555
Figure 0004689555

表5より、硬化発現材として消石灰を使用すると、セメントを用いた配合よりもゲルタイム、可塑状保持時間が短くなり、強度発現も顕著である。硬化発現材として消石灰を用いた場合、硬化発現材比は50%より少なく、好ましくは1〜40%、さらに好ましくは1〜20%、最も好ましくは1〜10%が適している。さらに水粉体比は20〜200%、好ましくは40〜150%が適している。   From Table 5, when slaked lime is used as a hardening developing material, gel time and plastic holding time are shortened and strength development is remarkable as compared with blending using cement. When slaked lime is used as the hardening developing material, the hardening developing material ratio is less than 50%, preferably 1 to 40%, more preferably 1 to 20%, and most preferably 1 to 10%. Furthermore, the water powder ratio is 20 to 200%, preferably 40 to 150%.

配合例9,10
スラグ、石膏、水を練り混ぜる。硬化発現材として石膏を使用し、硬化発現材比また水粉体比は配合例2と同様にした。このようにして得られた配合例9,10の地盤注入材の調整条件及び物性値を下記の表6に示す。
Formulation Examples 9 and 10
Mix slag, plaster and water. Gypsum was used as the curing expression material, and the ratio of the curing expression material or the water powder ratio was the same as in Formulation Example 2. Table 6 below shows the adjustment conditions and physical property values of the ground injection materials of Formulation Examples 9 and 10 thus obtained.

Figure 0004689555
Figure 0004689555

表6より、硬化発現材として石膏を使用すると、セメントや消石灰よりもスラグとの反応に乏しいため、ゲルタイム、可塑状保持時間が長く、よって強度発現も遅い。硬化発現材として石膏を用いた場合、硬化発現材比は50%より少なく、好ましくは2〜40%とし、さらに水粉体比は20〜200%、好ましくは30〜150%が適している。また補強材を加えたり、強度発現に優れたセメントや消石灰を併用することもできる。   From Table 6, when gypsum is used as a hardening developing material, the reaction with slag is poorer than that of cement and slaked lime, so that the gel time and the plastic holding time are long, and the strength development is also slow. When gypsum is used as the hardening developing material, the hardening developing material ratio is less than 50%, preferably 2 to 40%, and the water powder ratio is 20 to 200%, preferably 30 to 150%. Further, a reinforcing material can be added, or cement and slaked lime excellent in strength development can be used in combination.

配合例11,12
スラグ、フライアッシュ、水を練り混ぜる。硬化発現材としてフライアッシュを使用し、硬化発現材比また水粉体比は配合例2と同様にした。このようにして得られた配合例11,12の地盤注入材の調整条件及び物性値を下記の表7に示す。
Formulation Examples 11 and 12
Mix slag, fly ash and water. Fly ash was used as a hardening developing material, and the hardening developing material ratio or water powder ratio was the same as in Formulation Example 2. Table 7 below shows the adjustment conditions and physical property values of the ground injection materials of Formulation Examples 11 and 12 thus obtained.

Figure 0004689555
Figure 0004689555

表7より、硬化発現材としてフライアッシュを使用すると、石膏と同様にセメントや消石灰に比べてスラグとの反応に乏しいため、ゲルタイム、可塑状保持時間が長く、よって強度発現も遅い。硬化発現材としてフライアッシュを用いた場合、硬化発現材比は50%より少なく、好ましくは2〜40%とし、さらに水粉体比は20〜200%、好ましくは30〜150%が適している。また補強材を加えたり、強度発現に優れたセメントや消石灰を併用することもできる。   From Table 7, when fly ash is used as a hardening developing material, since the reaction with slag is poor compared to cement and slaked lime as with gypsum, the gel time and plasticity retention time are long, and therefore the strength development is also slow. When fly ash is used as the hardening developing material, the hardening developing material ratio is less than 50%, preferably 2 to 40%, and the water powder ratio is 20 to 200%, preferably 30 to 150%. . Further, a reinforcing material can be added, or cement and slaked lime excellent in strength development can be used in combination.

配合例13
スラグ、消石灰、ベントナイト、水を練り混ぜる。配合例8を参考にベントナイトを加える。このようにして得られた配合例13の地盤注入材の調整条件及び物性値を下記の表8に示す。
Formulation Example 13
Mix slag, slaked lime, bentonite and water. Bentonite is added with reference to Formulation Example 8. Table 8 below shows the adjustment conditions and physical property values of the ground injection material of Formulation Example 13 obtained as described above.

Figure 0004689555
Figure 0004689555

表8より、ベントナイトを加えることにより粘性が増しゲルタイムは早くなるが、可塑状保持時間は長くなり、強度発現も遅くなる。またベントナイトは増粘材としてだけでなく、保水材としての効果も発揮するためブリージングが減り、水に希釈されにくいグラウトとなる。ベントナイトの添加量は40%以内、好ましくは30%以内が適している。   From Table 8, by adding bentonite, the viscosity increases and the gel time increases, but the plastic holding time increases and the strength development also decreases. In addition, bentonite exhibits not only a thickening material but also an effect as a water retaining material, so that breathing is reduced and the grout is difficult to be diluted with water. The amount of bentonite added is within 40%, preferably within 30%.

[可塑性グラウトとしての要因と条件]
(1) 硬化発現材比
グラウトに含まれる粉体、つまりスラグと硬化発現材の含有量に対する硬化発現材の含有量:硬化発現材重量/(スラグ重量+硬化発現材重量)×100[%]
スラグは硬化発現材に含まれるカルシウムと反応し固結強度を得る。しかし硬化発現材の配合量が多いと、可塑状グラウトとしての特性が低下する。即ち、沈殿してブリージングが大きくなり沈殿したものは流動しにくく可塑状ゲルになりにくいため、硬化発現材比は50%未満とするが、その好ましい範囲は硬化発現材としてセメント、或は消石灰を用いる場合、1〜40%、好ましくは1〜20%、さらに好ましくは1〜10%である。また硬化発現材として石膏、或はフライアッシュを用いる場合は2〜40%が好ましい。
[Factors and conditions as plastic grout]
(1) Curing material ratio Content of powders contained in grout, that is, content of curing material with respect to the content of slag and curing material: Curing material weight / (Slag weight + Curing material weight) x 100 [%]
The slag reacts with calcium contained in the hardening developing material to obtain consolidated strength. However, when the compounding amount of the curing developing material is large, the characteristics as a plastic grout are deteriorated. That is, since the precipitated and increased breathing and the precipitated material hardly flows and does not easily become a plastic gel, the ratio of the cured material is less than 50%, but a preferable range is cement or slaked lime as the cured material. When used, it is 1 to 40%, preferably 1 to 20%, more preferably 1 to 10%. Moreover, when using gypsum or fly ash as a hardening expression material, 2 to 40% is preferable.

(2) 水粉体比
グラウト中の粉体に対する水の含有量:水重量/(スラグ重量+硬化発現材重量)×100[%]
この値が小さいと可塑状になりやすい。即ち配合後可塑状ゲルになる時間が短くなり、かつフロー値が小さくなる。しかし水粉体比が小さすぎると作業性を損なうため、その範囲は20〜200%、好ましくは30〜150%、更に硬化発現材としてセメント、或は消石灰を用いる場合は40〜150%(重量比)が好ましく、最も好ましくは120%以下とするが、水ガラスを促進剤として用いる場合は、水粉体比は大きくとることができる。その他、混合条件、環境、また材料により、グラウトの性状は異なってくるため、後に示すブリージング率、フロー値、強度の測定が重要となる。
(2) Water-powder ratio Water content with respect to the powder in the grout: water weight / (slag weight + cured material weight) × 100 [%]
When this value is small, it tends to be plastic. That is, the time for forming a plastic gel after blending is shortened and the flow value is decreased. However, if the water powder ratio is too small, the workability is impaired. Therefore, the range is 20 to 200%, preferably 30 to 150%. Furthermore, when cement or slaked lime is used as a hardening developing material, 40 to 150% (weight) Ratio) is preferable, and most preferably 120% or less. However, when water glass is used as an accelerator, the water powder ratio can be increased. In addition, since the properties of the grout differ depending on the mixing conditions, environment, and materials, the measurement of the breathing rate, flow value, and strength described later is important.

(3) 硫酸バンド添加量
グラウト中の粉体に対する硫酸バンドの添加量:硫酸バンド重量/(スラグ重量+硬化発現材重量)×100[%]
硫酸バンドはゲル化促進剤であり、スラグとその硬化発現材の流動性ある状態の中に添加すると、ゲル化を促進させ、可塑状ゲルになる時間を早める。ただし、硫酸バンドには固結強度を低下させる作用もあるので、その添加量は2.0%以下、好ましくは0.1〜1.0%とする。
(3) Amount of sulfuric acid band added Amount of sulfuric acid band added to the powder in the grout: sulfuric acid band weight / (slag weight + curing material weight) × 100 [%]
The sulfuric acid band is a gelation accelerator, and when added to the fluid state of the slag and its cured material, it promotes gelation and accelerates the time to become a plastic gel. However, since the sulfuric acid band also has an effect of reducing the consolidation strength, its addition amount is 2.0% or less, preferably 0.1 to 1.0%.

(4) ベントナイト添加量
グラウト中の粉体に対するベントナイトの添加量:ベントナイト重量/(スラグ重量+硬化発現材重量+ベントナイト重量)×100[%]
ベントナイトは保水材および増粘材であり、またグラウトの有効成分とみなしグラウト中の粉体に含む。ベントナイト添加量は40%以内、好ましくは30%以内とする。
(4) Bentonite addition amount Bentonite addition amount to the powder in the grout: Bentonite weight / (slag weight + hardening material weight + bentonite weight) × 100 [%]
Bentonite is a water retention material and a thickening material, and is regarded as an active ingredient of the grout and contained in the powder in the grout. The bentonite addition amount is within 40%, preferably within 30%.

(5) ゲルタイム
ここでは一般的な水ガラス系グラウトにみられるような固化状となる化学的ゲル化を意味するのではなく、配合後、自重による流動性がなくなり、力を加えると流動する可塑状ゲルとなるまでの物理的ゲル化時間をゲルタイムと表現する。一般の水ガラスを主材とするグラウトと違って、明確なゲル化時間を示すことはできない。よってテーブルフローを用いてその値が20cm以下になった時をゲル化とみなし、これをゲルタイムとした。
(5) Gel time Here, it does not mean chemical gelation that is solidified like that found in common water glass grouts, but it loses its fluidity due to its own weight after compounding. The physical gelation time until it becomes a gel is expressed as gel time. Unlike a grout made from a common water glass, it cannot show a clear gelation time. Therefore, when the value became 20 cm or less using the table flow, it was regarded as gelation, and this was defined as gel time.

(6) 可塑状保持時間
アスファルト針入度試験方法JIS K 2530-1961に準じて総質量230g、先端角度15度、36mmの貫入コーンを用いて静的貫入抵抗を測定し、貫入抵抗値が0.01MN/m2を越えた時非可塑状ゲルとなって固結または硬化とみなし、ゲル化から固結に至るまでの時間を可塑状保持時間とした。
(6) Plasticity retention time Asphalt penetration test method According to JIS K 2530-1961, static penetration resistance was measured using a penetration cone with a total mass of 230 g, tip angle of 15 degrees, and 36 mm. When exceeding .01 MN / m 2 , it became a non-plastic gel and was regarded as consolidated or cured, and the time from gelation to consolidation was defined as the plastic retention time.

(7) ブリージング率
配合後、グラウトを充分に混合させ、次いで、200mlメスシリンダにグラウトを入れて静止密閉し、1時間経過後にブリージング水量(上ずみ液)を測定し、次式よりブリージング率を求める。(ブリージング水量/メスシリンダ容量)×100[%]
ここでは1時間経過後のブリージング率を示す。1時間経過後のブリージング率が10%以上の配合では、注入液が分離しやすく脈状または亀裂状に注入されやすい。その後、時間が経過すると更にブリージング率が増大するので、従って1時間経過のブリージング率は10%以下、好ましくは5%以内の配合が好ましい。
(7) Breathing rate After blending, mix the grout thoroughly, then place the grout in a 200 ml graduated cylinder and seal it statically. After 1 hour, measure the amount of breathing water (superior liquid). Ask. (Breathing water volume / measuring cylinder capacity) x 100 [%]
Here, the breathing rate after 1 hour is shown. When the composition has a breathing rate of 10% or more after the lapse of 1 hour, the injected solution is easily separated and easily injected in the form of veins or cracks. Thereafter, the breathing rate further increases as time elapses. Therefore, the blending rate after 10 hours is preferably 10% or less, and preferably 5% or less.

(8) フロー値
フロー試験(JIS R 5201テーブルフロー)に基づき、グラウトに15秒間に15回の落下運動を与え、その広がりを測定した。可塑状グラウトとしては約18〜19cmが適しているとされているが、本発明ではフロー値が20cm以下になる時点で自重による流動性がなくなったものとして、ゲルタイムとした。本発明における流動性注入材は地盤中に注入して加圧脱水によって水粉体比が低下してテーブルフローが20cm以下に至る配合が用いられる。
(8) Flow value Based on the flow test (JIS R 5201 table flow), the grouting was subjected to 15 drop motions in 15 seconds and the spread was measured. About 18-19 cm is said to be suitable as the plastic grout, but in the present invention, the fluidity due to its own weight disappeared when the flow value became 20 cm or less, and the gel time was used. The flowable injecting material in the present invention is used in such a composition that the water-to-powder ratio is lowered by pressure dehydration by pouring into the ground and the table flow reaches 20 cm or less.

またシリンダーによるフローは、高さ8cm、直径8cmの円筒にグラウトを詰め、円筒を取り除いたときのグラウトの広がりを測定するものである。上述のテーブルフローよりも簡易に測定できるため現場などで用いられることが多いが、簡易であるため人為的な誤差が生じる可能性がある。図12に、テーブルフローとシリンダーによるフローのおおよその関係を示す。   The flow by the cylinder is to measure the spread of the grout when a cylinder having a height of 8 cm and a diameter of 8 cm is filled with the grout and the cylinder is removed. Since it can be measured more easily than the above table flow, it is often used in the field. However, since it is simple, an artificial error may occur. FIG. 12 shows the approximate relationship between the table flow and the cylinder flow.

このような配合では、水粉体比が大きな配合でも脱水によって地盤中で水粉体比が20%以下になり可塑状ゲルから非可塑状ゲルを経て固化する。   In such a blend, even if the water powder ratio is large, the water powder ratio becomes 20% or less in the ground due to dehydration and solidifies from a plastic gel through a non-plastic gel.

(9) 一軸圧縮強度
配合後、充分に混合したグラウトを直径5cm、高さ10cmのモールドにつめ、静止した状態で1日養生し、一軸圧縮強度を測定した。
(9) Uniaxial compressive strength After blending, a well mixed grout was put into a mold having a diameter of 5 cm and a height of 10 cm, cured for one day in a stationary state, and the uniaxial compressive strength was measured.

配合例14
スラグ、消石灰、ベントナイト、水を練り混ぜ、水ガラスを添加する。上記、配合例13を400ml配合し、さらに水ガラスを加えた。このようにして得られた配合例14の地盤注入材の調製条件および物性値を下記の表9に示す。
Formulation Example 14
Mix slag, slaked lime, bentonite and water, and add water glass. 400 ml of the above blending example 13 was blended, and water glass was further added. The preparation conditions and physical property values of the ground injection material of Formulation Example 14 thus obtained are shown in Table 9 below.

Figure 0004689555
Figure 0004689555

(1) シリカ濃度
グラウト中のSiO
水ガラスのSiO%×(水ガラス重量/グラウト重量)[%]
本出願人による実験によればグラウトを可塑状、および固結させるためには、その他の材料の配合比率にもよるが、シリカ濃度は0.2〜7.0%とする。ただし3号水ガラスのモル比以下の低モル比水ガラスを用いる場合は3.0〜7.0%が好ましい。勿論高モル比の水ガラスや粉状水ガラスを用いる事も出来る。また水ガラスと酸を混合してなる酸性水ガラスもゲル化促進剤として用いることができる。この場合も本発明では水ガラスと表現する。
(1) Silica concentration SiO 2 amount in grout SiO 2 % of water glass × (water glass weight / grouting weight) [%]
According to the experiment by the present applicant, the silica concentration is set to 0.2 to 7.0% in order to plasticize and solidify the grout, although it depends on the blending ratio of other materials. However, when a low molar ratio water glass having a molar ratio of No. 3 water glass or less is used, 3.0 to 7.0% is preferable. Of course, water glass or powdery water glass having a high molar ratio can also be used. An acidic water glass obtained by mixing water glass and acid can also be used as a gelation accelerator. This case is also expressed as water glass in the present invention.

(2) 特性および比較
表8の配合の特徴としてゲルタイムの調製がしやすく、また可塑状保持時間はやや短いが早期強度の発現は顕著であることがあげられる。よって早期強度の発現を重要視する場合に適している。可塑状グラウト(上記の表8における配合例13)をA液として、水ガラスをB液としてA液のゲルタイムを短縮させることができる。またグラウトをゲル化後よく練り混ぜることによって、早期強度の発現は低下するが可塑状保持時間を長くすることができる。よってゲル化後よく練り混ぜたものを注入することにより長時間の注入を要する目的やインターバル注入により、一度注入した注入ポイントに再度注入をくり返して、注入体を拡大する地盤改良に適している。
(2) Characteristics and comparison The characteristics of the formulation shown in Table 8 are that gel time can be easily prepared, and that the plasticity retention time is slightly short, but the early strength development is remarkable. Therefore, it is suitable when importance is placed on the expression of early strength. The gel time of A liquid can be shortened by using plastic grout (formulation example 13 in Table 8 above) as A liquid and water glass as B liquid. Further, by kneading the grout well after gelation, the expression of early strength is reduced, but the plastic holding time can be lengthened. Therefore, it is suitable for ground improvement in which the injection body is expanded by injecting the mixture well-mixed after gelation for the purpose of requiring long-time injection or repeated injection at the injection point once injected by interval injection.

配合例15,16
エア発生剤として事前発泡型の起泡剤と事後発泡型のアルミニウム粉末をスラグとセメントの懸濁液に混合した。その配合例15,16を表10、表11に示す。
Formulation Examples 15 and 16
As the air generating agent, a prefoaming foaming agent and a post foaming aluminum powder were mixed in a suspension of slag and cement. The blending examples 15 and 16 are shown in Table 10 and Table 11.

Figure 0004689555
Figure 0004689555

Figure 0004689555
Figure 0004689555

(1) 起泡剤添加量
グラウト中に含まれるセメントに対する起泡剤の含有量を起泡剤重量/(セメント重量)×100 〔%〕とすると、起泡剤添加量は0.5〜1.5%(対セメント重量比)が好ましい。
(1) Foaming agent addition amount When the content of the foaming agent with respect to the cement contained in the grout is the foaming agent weight / (cement weight) × 100 [%], the foaming agent addition amount is 0.5 to 1. .5% (weight ratio of cement) is preferred.

(2) アルミニウム粉末添加量
アルミニウム粉末はセメント等のアルカリに反応して水素ガス(起泡)を発生する。グラウト中に含まれる粉末に対するアルミニウム粉末の含有量をアルミニウム比:アルミニウム粉末重量/粉状体重量 ×100 〔%〕とすると、アルミニウム比0.01%程度が効果的である。
(2) Addition amount of aluminum powder Aluminum powder reacts with alkali such as cement to generate hydrogen gas (foaming). Assuming that the content of aluminum powder relative to the powder contained in the grout is aluminum ratio: aluminum powder weight / powder body weight × 100 [%], an aluminum ratio of about 0.01% is effective.

(3) 配合例15、16の特性および比較
エア発生剤には固結体の密度を小さくすることの他に流動性を向上させる効果がある。
(3) Characteristics and Comparison of Formulation Examples 15 and 16 The air generating agent has the effect of improving fluidity in addition to reducing the density of the consolidated body.

本発明野外注入実験を行った。配合液は表12の配合例を用い、対象とした地盤はおよそN値が7、相対密度が40%、細粒分含有率が20%未満である砂質土地盤である。比較例として従来の水ガラス系懸濁型瞬結配合(以下、瞬結配合)の比較例1は瞬結配合(ゲル化時間10秒、可塑状保持時間なし)であり、比較例2はLW(ゲル化時間1分、可塑状保持時間なし)である。比較例1、比較例2の配合はそれぞれ表13、表14に示す。又実施例1の配合例を用いた実施例を表12に示す。配合液の混合と可塑状ゲルの生成と圧入状況についても区分をA〜Fに示す。掘削調査における固結状況をI〜VIに示す。   The field injection experiment of the present invention was conducted. The blending solution uses the blending examples shown in Table 12, and the target ground is sandy ground having an N value of 7, a relative density of 40%, and a fine particle content of less than 20%. As a comparative example, Comparative Example 1 of a conventional water glass suspension type instantaneous setting compound (hereinafter referred to as an instantaneous setting compound) is an instantaneous setting (gelation time 10 seconds, no plastic holding time), and Comparative Example 2 is an LW. (Gelging time 1 minute, no plastic holding time). The formulations of Comparative Example 1 and Comparative Example 2 are shown in Table 13 and Table 14, respectively. Examples using the formulation example of Example 1 are shown in Table 12. A to F are also shown for the mixing of the mixture, the formation of the plastic gel, and the press-fitting situation. The consolidation status in the excavation survey is shown in I-VI.

表12より区分Aによる圧入では配合後、混合装置中で混合して可塑状ゲルとしてそのまま圧入不能になる迄圧入した場合、可塑状ゲル化物によるほぼ球状の固結体を形成した。ゲル状塊状体の成長は可塑状保持時間が長く強度が大きくない水粉体比、硬化発現体比配合が大きな塊状体をつくる。   As shown in Table 12, in the case of press-fitting according to Category A, when blended and mixed in a mixing apparatus and then press-fitted as plastic gel until it became impossible to press-fit, a substantially spherical solid body formed of a plastic gel was formed. The growth of the gel-like lump forms a lump having a large plastic-retaining time and a high water / powder ratio and a high ratio of the cured substance.

区分Bによる圧入では、複合装置の混合工程中で可塑状ゲルにならないうちに注入を開始して注入過程中で可塑状ゲルに到ったが、そのまま注入不能になる迄圧入した場合、形状が不定形になるが注入対象範囲内に塊状固結体を形成した。これは圧入初期において流動性が充分ある配合液が地盤の圧入抵抗の小さく弱い方向に圧入され脱水と共に流動性が低下し、更に地盤注入前に可塑状になった注入材が圧入されて塊状体が拡大して固化したものと思われる。この場合、球状体でなくとも弱い部分を中心に締固めたものであるから不定形になっても改良効果は充分得る事が出来る。   In the press-fitting according to the section B, the injection is started before the plastic gel is formed in the mixing process of the composite device and reaches the plastic gel in the injection process. Although it was indefinite, a massive solid body was formed within the injection target range. This is because the liquid mixture with sufficient fluidity in the initial stage of press-fitting is pressed in a direction where the press-fitting resistance of the ground is small and weak, and the fluidity decreases with dehydration. Seems to have expanded and solidified. In this case, even if it is not a spherical body, it is compacted around a weak portion, so that the improvement effect can be sufficiently obtained even if it becomes indefinite.

区分Cによる圧入では混合工程中、そのステージの圧入が完了する迄は可塑状ゲルには到らないが、圧入時間と共に圧力が上昇し最終的に注入量がゼロになって注入が不能になったもので、掘削結果の調査では注入初期では流動性が大きいため一部受持ち範囲外迄脈状に割裂注入されるものの、地盤中で脱水によって流動性が失われ受持ち範囲内で可塑状ゲルの形成と共に塊状ゲルが大きく成長し、周辺地盤を圧縮強化する効果が得られる。   In the press-fitting according to section C, the plastic gel is not reached until the press-fitting of the stage is completed during the mixing process, but the pressure rises with the press-fitting time, and finally the injection amount becomes zero and the injection becomes impossible. In the investigation of the excavation results, the fluidity is high at the beginning of the injection, so it is partly split and injected to the outside of the handling range, but the fluidity is lost due to dehydration in the ground and the plastic gel is within the handling range. The lump gel grows greatly with the formation, and the effect of compressing and strengthening the surrounding ground is obtained.

区分Dによる注入では、ゲル化後可塑状保持時間のない通常の水ガラスグラウトであってゲル化と共に圧力は上昇するが、更に注入すれば脈状に割裂して受持ち範囲以外迄逸脱して脈状に固結する。このため対象地盤を高密度化する効果は殆どない。   In the injection by section D, it is a normal water glass grout with no plastic holding time after gelation, and the pressure increases with gelation. Consolidate into a shape. For this reason, there is almost no effect of increasing the density of the target ground.

区分Eによる注入では、一般の可塑状を呈さない配合液であって注入中に初圧のまま圧力上昇を示さず、注入対象範囲外へ逸脱して改良効果は殆ど生じない。   The injection according to the section E is a compounded liquid that does not exhibit a general plastic state, and does not show an increase in pressure while maintaining the initial pressure during injection, and deviates outside the injection target range and hardly improves.

区分Fによる圧入では、地盤中への注入時点においてすでに流動性が極めて低いから注入管吐出口から地盤に吐出されるとすぐに吐出口の外側で脱水が生じ、その後続いて吐出口の内側の注入材の脱水現象が起こり、更に加圧するにつれ注入管内の注入材の脱水が注入管内の上方に及び、ついには注入管全体が固化して注入不能に陥る事がわかった。   In the press-fitting according to the section F, the fluidity is already very low at the time of injection into the ground, so dehydration occurs immediately outside the discharge port as soon as it is discharged from the injection tube discharge port, and then the inside of the discharge port It was found that the dehydration phenomenon of the injection material occurred, and as the pressure was further increased, the injection material in the injection tube dehydrated upward in the injection tube and finally the entire injection tube solidified and became unable to be injected.

このようにして流動性の少ない可塑性グラウトを地盤中に注入すると、いくらポンプ圧を上げても注入不能になり亀裂注入も生じないという現象が生ずる事になった。このような現象は注入管に流入する前に、粉状注入液と可塑材をそれぞれ混合してスランプ5未満の可塑状ゲルを注入した場合にも生ずる現象である。   Injecting a plastic grout with low fluidity into the ground in this way resulted in the phenomenon that no matter how much the pump pressure was raised, no injection was possible and no crack injection occurred. Such a phenomenon is also a phenomenon that occurs when a plastic gel less than the slump 5 is injected by mixing the powder injection solution and the plastic material before flowing into the injection tube.

区分A,B,Cにおいては注入後の掘削調査において固結体の体積と注入量を測定したところ、その脱水量はほぼ30%以内であった。配合液が30%の脱水で可塑状ゲルになる組成の地盤中に圧入すれば、塊状ゲルが形成されやすい事がわかった。すなわち上記流動範囲の注入材を注入不能になる迄加圧脱水して地盤中に圧入すれば、脱水率がほぼ30%以内で流動不能な塊状ゲルが地盤中に形成される事がわかった。これらの現象も含めて種々の野外圧入実験より該注入液の注入時の配合液が注入時点で可塑状ゲルに到っているか、或は注入開始時点では可塑状ゲルになっていなくても注入中に地盤中に注入される前の段階で、可塑状ゲルに到るか、或は配合液から30%以内の脱水によって可塑状ゲルが注入中に形成されるように配合を設定すれば地盤中で塊状ゲルが形成されることがわかった。   In categories A, B, and C, the volume of the consolidated body and the injection amount were measured in the excavation survey after injection, and the dehydration amount was within about 30%. It turned out that a block gel is easy to be formed if it press-fits into the ground of the composition whose composition liquid turns into a plastic gel by 30% dehydration. In other words, it was found that if the injection material in the above flow range was pressure dehydrated until it became uninjectable and pressed into the ground, a solid gel that could not flow with a dehydration rate of approximately 30% or less was formed in the ground. From various field injection experiments including these phenomena, the compounded liquid at the time of injection reaches the plastic gel at the time of injection, or even if it does not become a plastic gel at the start of injection If the composition is set so that the plastic gel is reached before it is injected into the ground, or the plastic gel is formed during the injection by dehydration within 30% of the composition liquid It was found that a bulk gel was formed therein.

表12は、N値が10以下の地盤における改良効果の例である。例えば具体的には配合例3の場合、配合後5分間混合し毎分吐出量5l/min、初期圧力1.0MN/m2、最径圧力3.0MN/m2で、注入速度がゼロになり圧入不能になった。全注入量が150lの圧入で掘削調査の結果、ほぼ100l(脱水率30%)の塊状ゲルが形成されている事がわかった。 Table 12 is an example of the improvement effect in the ground where the N value is 10 or less. For example, in the case of compounding example 3, for 5 minutes after compounding, the discharge rate is 5 l / min per minute, the initial pressure is 1.0 MN / m 2 , the maximum diameter pressure is 3.0 MN / m 2 , and the injection speed is zero. It became impossible to press fit. As a result of excavation investigation with a total injection volume of 150 liters, it was found that a bulk gel of approximately 100 liters (dehydration rate of 30%) was formed.

可塑状ゲルの圧入工法は、地盤中で流動性の低下する可塑状ゲルの圧入であるから、ポンプ圧で圧入出来る範囲の緩い地盤が対象となり、通常N値が15以下、最も好ましくはN値が10以下の軟弱地盤である。しかし液状化防止や基礎の補強にあってはN値が15以上或は20以上の地盤を更に改良する場合がある。このような地盤条件と目的に対して本発明者はいくつかの野外注入試験で実験2の区分B,Cによる手法がきわめて効果的である事がわかった。   The plastic gel press-in method is a press-fit of a plastic gel whose fluidity decreases in the ground, so it is intended for loose ground that can be press-fitted with pump pressure, and usually has an N value of 15 or less, most preferably N value Is 10 or less soft ground. However, in order to prevent liquefaction and to reinforce the foundation, the ground having an N value of 15 or more or 20 or more may be further improved. For such ground conditions and purposes, the present inventor has found that the methods according to the sections B and C of Experiment 2 are extremely effective in several field injection tests.

このような地盤では配合例3をA区分のように注入した場合、注入後注入圧が上昇し大きな塊状のゲルが得られにくいか、配合例2を3時間混合後、毎分吐出量5l/minで初期圧力0.1MN/m2で注入したところ、5分後1.0MN/m2となり更に最終圧力3MN/m2で全注入量が50lになるように圧入した。同塊状固化体の先行部に一部亀裂が認められ中心部側が亀裂を中心に大きな厚さの塊状固化体が形成された。 In such a ground, when compounding example 3 is injected as in section A, the injection pressure rises after injection and it is difficult to obtain a large lump gel, or after mixing compound example 2 for 3 hours, the discharge rate is 5 l / min. When min was injected at an initial pressure of 0.1 MN / m 2 , the pressure became 1.0 MN / m 2 after 5 minutes, and the total pressure was 50 l at a final pressure of 3 MN / m 2 . Partial cracks were observed in the leading part of the solidified solid body, and a large solidified body having a large thickness centered on the crack on the center side was formed.

即ち注入時に可塑状ゲルの状態の圧入はN値が15以内でも地盤中で可塑状ゲルが成長し拡大するが、地盤のN値が15以上になると可塑状ゲルのまま圧入し続ける事が困難となる。しかし、注入初期において可塑状ゲルでない状態の配合液を地盤に注入する事によりN値が15以上の大きな地盤でも脈状に亀裂を形成しながら割裂脱水して可塑状ゲルになると、流動性が低下し亀裂中でゲルとなりそのゲルを中心に塊状ゲルが拡大して大きな塊状ゲルに成長する。この場合球状体ではないが受持ち範囲内で周辺地盤の密度を上昇させ、地盤の高強度化が可能になる。   That is, when the N-value is 15 or less, the plastic gel grows and expands in the ground at the time of injection, but if the N-value of the ground is 15 or more, it is difficult to continue to press-fit with the plastic gel. It becomes. However, by injecting into the ground a compounded liquid that is not a plastic gel in the initial stage of injection, even if the ground has a N value of 15 or more, it splits and dehydrates into a plastic gel while forming a vein-like crack. It lowers and becomes a gel in the crack, and the massive gel expands around the gel and grows into a large massive gel. In this case, although it is not a spherical body, the density of the surrounding ground is increased within the range of handling, and the strength of the ground can be increased.

このような結果は、注入初期において流動性のよい配合液を注入して亀裂注入を行った後、可塑状ゲルの圧入に切り替えて注入する事によって可塑状ゲルを圧入するには地盤密度が高いか地盤改良を必要とする地盤改良のために極めて効果的な手段である事を見出した。同様に流動性のよい配合液と可塑状ゲルを交互に圧入し、亀裂注入塊状ゲルの圧力を繰り返しながら所定領域における塊状ゲルの拡大を行って圧入しにくい密度の地盤の強化を行う事が出来る。   Such a result is that the ground density is high in order to press-fit the plastic gel by injecting the plastic gel by switching to the press-fit of the plastic gel after injecting cracking by injecting a liquid composition with good fluidity at the initial stage of injection. It was found that this is an extremely effective means for ground improvement that requires ground improvement. Similarly, it is possible to reinforce the ground with a density that is difficult to press by alternately injecting a liquid mixture with good fluidity and a plastic gel, and expanding the bulk gel in a predetermined area while repeating the pressure of the crack injection block gel .

このようにして従来のセメントグラウトやLWグラウトのみでは単に脈状に逸脱するのみであるが、途中で可塑状ゲルに到る注入材或は可塑性ゲル状の注入材の圧入を行う事により、可塑状ゲル圧入工法の適用範囲が飛躍的に拡大する事がわかった。   In this way, the conventional cement grout and LW grout only deviate in a pulse shape. However, the injection of the injection material that reaches the plastic gel or the injection material of the plastic gel in the middle of the plastic grout can be performed. It has been found that the scope of application of the gel gel press-in method greatly expands.

具体的な手法としてS材とC材を有効成分とする可塑状ゲル或は更に流動性調整材を混合した可塑状ゲルを注入しながら流動性調整材の種類や量を選定して混合して注入する事により流動性の良い注入材と流動性の低い注入材の注入を組合せて注入する事も出来るし、或はA液として流動性の良い注入材又は流動性調整材を加えた可塑状ゲルを注入しながら流動性調整材を合流して圧入する方法を併用しながら亀裂注入塊状圧入を組合せる事が出来る。
野外注入実験
As a specific method and mixed by selecting the kind and amount of fluidity-adjusting agent while injecting a plastic gel or more plastic-like gel obtained by mixing the fluidity controlling agent as an active ingredient the S material and material C It is possible to inject a combination of an injection material with good fluidity and an injection material with low fluidity, or a plastic with addition of an injection material or fluidity adjustment material with good fluidity as A liquid. Crack injection lump press-in can be combined with a method in which fluidity adjusting materials are joined and injected while injecting a gel-like gel.
Field injection experiment

Figure 0004689555
Figure 0004689555

表12における固結状況の説明
掘削調査における固結体の形状
I 直径30〜70cmのほぼ球体の大きな塊状固結体形成
II 形状が球状でなく不定形であるが、直径20〜50cm塊状固結体形成
III 一部の先端部は注入範囲外迄脈状もみられたが、受持範囲内で直径20〜50cm
塊状固結体形成
IV 厚さ1〜10cmの脈状
注入範囲外へ逸脱
V 厚さ1〜5cmの脈状
注入範囲外へ逸脱
VI 注入孔の大きさの固結体のみ
Explanation of consolidation status in Table 12 Shape of consolidated bodies in excavation survey I Formation of large massive solid bodies of approximately spherical shape with a diameter of 30 to 70 cm
II The shape is not spherical but irregular, but formed into a solid aggregate with a diameter of 20-50cm
III Although some of the tips were pulsated outside the injection range, the diameter was 20 to 50 cm within the range.
Massive solid body formation
IV 1-10cm thick vein
Deviation outside the injection range V Thickness 1-5cm
Deviation out of injection range
VI Only the size of the injection hole

Figure 0004689555
Figure 0004689555

Figure 0004689555
Figure 0004689555

Figure 0004689555
Figure 0004689555

Figure 0004689555
Figure 0004689555

本発明における図1に示す試験施工による研究の結果、以下のように注入設計することにより地盤強化効果をうることが判った。   As a result of the research by the test construction shown in FIG. 1 in the present invention, it was found that the ground reinforcement effect can be obtained by the injection design as follows.

図1において注入間隔は0.5〜3.0mとする。改良率は5〜40%とする。ここで改良率とは1注入孔の分担改良面積1m2当りに換算して固結塊の断面積に相当し、改良率5〜40%とは0.05〜0.4m2を意味する。又、この改良率は改良対象地盤のN値と改良目標N値から1孔当りの受持面積のうちの間隙の減少量が算出され、その減少量がゲル化物に置き換えられる面積に対応することから算出される。以下、表17に本発明における地盤強化として有効な設計例を示す。これは実施例2で砂地盤にて行った実験例に基づくものであり、注入配置は図1(ロ)に示す正方形配置、注入間隔は1m、2m、また改良率は5%、10%、15%、20%である。 In FIG. 1, the injection interval is 0.5 to 3.0 m. The improvement rate is 5 to 40%. Here it corresponds to the cross-sectional area of the conversion to consolidated mass and improved rate allocation improvement area 1 m 2 per 1 injection hole, the improvement ratio 5-40% means 0.05~0.4m 2. In addition, this improvement rate is calculated from the reduction amount of the gap in the receiving area per hole from the N value of the improvement target ground and the improvement target N value, and the reduction amount corresponds to the area to be replaced by the gelled product. Is calculated from Table 17 shows design examples effective as ground reinforcement in the present invention. This is based on the experimental example performed on the sand ground in Example 2, the injection arrangement is a square arrangement shown in FIG. 1 (b), the injection interval is 1 m, 2 m, and the improvement rate is 5%, 10%, 15% and 20%.

Figure 0004689555
Figure 0004689555

このように算出された注入量が所定深度に収まるように毎分注入速度(l/min)と注入圧力を設定していくことが必要である。このためには毎分吐出量5〜50l/min、注入圧力0.5〜10MPで注入管理しながら注入するのが望ましいことが判った。   It is necessary to set the injection rate (l / min) and the injection pressure per minute so that the injection amount calculated in this way falls within a predetermined depth. For this purpose, it has been found that it is desirable to perform injection while controlling injection at a discharge rate of 5 to 50 l / min per minute and an injection pressure of 0.5 to 10 MP.

この際、地盤隆起は20cm以内、好ましくは10cm以内に収めれば数日後には地盤中のゲルが脱水によって地盤隆起が5〜10cm程度に収まることが判った。   At this time, it was found that if the ground uplift is within 20 cm, preferably within 10 cm, the gel in the ground will be within about 5-10 cm due to dehydration after several days.

又、注入深度がGL3.0m以浅になると地盤がやや隆起しやすくなり、GL1.5m以浅になると10cm以上に隆起することが判った。従って、3.0m以浅、或は1.5m以浅において地盤隆起しにくい対応、即ち請求項30〜36の対応をとることが有効であることが判った。また、地盤改良効果は上記注入孔間隔の範囲で複数本の削孔から圧入することによって互いに拘束しあってその間の地盤が圧縮されてはじめて可能であることが判った。   In addition, it was found that when the implantation depth was GL 3.0 m or less, the ground was slightly raised, and when the GL was 1.5 m or less, it was raised to 10 cm or more. Accordingly, it has been found that it is effective to take measures corresponding to the ground uplifting at a depth of 3.0 m or less, or 1.5 m or less, that is, the measures of claims 30 to 36. Further, it has been found that the ground improvement effect is possible only when the ground is compressed by being pressed into each other by press-fitting from a plurality of holes in the range of the injection hole interval.

本発明は特定の可塑状ゲル注入材を地盤中に圧入して時間の経過とともに、或は加圧脱水により可塑状ゲルからなる塊状体を地盤中に形成しながら土粒子を周辺に押しやり、地盤中に可塑状ゲル注入材そのものの塊状体を形成し、地盤強化を図るものであるから、土木建築分野への利用可能性が高い。   The present invention is a method in which a specific plastic gel injection material is press-fitted into the ground and the soil particles are pushed to the periphery while forming a lump of plastic gel in the ground by elapse of time or by pressure dehydration, Since it is intended to strengthen the ground by forming a lump of plastic gel injection material itself in the ground, it can be used in the civil engineering and construction field.

可塑性グラウト圧入による地盤強化モデル図であり、(イ)は改良対象領域に対する可塑性グラウトによる固結体の配置を示す柱取り合い断面図であり、(ロ)、(ハ)は平面図および可塑性注入材の注入配置図である。(ロ)は正方形配置図であり、(ハ)は三角形配置図である。It is a model figure of ground reinforcement by plastic grout press-fitting, (a) is a cross-sectional view of column connection showing the arrangement of consolidated bodies by plastic grout in the area to be improved, (b) and (c) are plan views and plastic injection material FIG. (B) is a square layout, and (C) is a triangular layout. (a)は所定エリアの地盤に相隣って削孔した可塑状ゲルのロッド注入管による下から上への引上げ注入の態様の断面図であり、(b)は所定エリアの地盤に相隣って注入外管を設置し、注入内管から可塑状ゲルを圧入する例を示した断面図であって、1つのポンプからバルブ5をきりかえながらインターバル方式による圧入態様の断面図であり、(c)は引張強度のある注入管の所定設置に間隔をあけて可塑状ゲルによる固結体を形成し、又注入管の引張強度を固体による地盤の高密度体による補強効果を示す断面図である。(a) is a cross-sectional view of a state of pull-up injection from the bottom to the top by a rod injection tube of plastic gel drilled adjacent to the ground of a predetermined area, (b) is adjacent to the ground of the predetermined area It is a cross-sectional view showing an example in which an outer injection pipe is installed and a plastic gel is press-fitted from the injection inner pipe, and is a cross-sectional view of a press-fitting mode by an interval method while switching the valve 5 from one pump, (c) is a cross-sectional view showing the effect of reinforcing the injection tube tensile strength by a high density body of solid ground by forming a solidified body with a plastic gel at intervals between predetermined installations of the injection tube having tensile strength. It is. 地盤の施工中途における、変位計測態様の模式図である。It is a schematic diagram of the displacement measurement aspect in the middle of construction of the ground. (a)、(b)は構造物直下の耐震補強注入の基本模式図であって断面図である。(a), (b) is a basic schematic view and a cross-sectional view of the seismic reinforcement injection just under the structure. (a)は削孔したケーシング内に鉄筋を挿入しケーシング引き抜きによる可塑状ゲルの圧入の模式図であり、可塑状ゲルは逸脱しないため周辺地盤を圧密して大きな強度を有するグラウトパイルを形成する。(b)は可塑性グラウトによる杭基礎の地盤強化の断面図であり、(c)は土留め壁における可塑性グラウトの圧入によるアンカー形成の断面図である。(a) is a schematic diagram of press-fitting of a plastic gel by inserting a reinforcing bar into a drilled casing and pulling out the casing. Since the plastic gel does not deviate, the surrounding ground is consolidated to form a grout pile having a large strength. . (b) is a cross-sectional view of ground reinforcement of a pile foundation by plastic grout, and (c) is a cross-sectional view of anchor formation by press-fitting of plastic grout in the retaining wall. 本発明における材料の混合およびグラウトの注入までの注入管理方法の一具体例を示すフローシートである。It is a flow sheet which shows one specific example of the injection | pouring management method until mixing of the material in this invention and injection | pouring of grout. 集中管理装置の操作、および集中管理システムが管理する配合と注入のフローチャートである。It is the flowchart of the mixing | blending and injection | pouring which operation of a centralized management apparatus and the centralized management system manages. 集中管理装置を用い、送液系統10本についての積算流量と最大圧、および流量と圧力を注入監視盤に表した画面表示の例である。It is an example of the screen display which represented the integrated flow volume and the maximum pressure about 10 liquid feeding systems, and the flow volume and the pressure on the injection | pouring monitoring board using the centralized control apparatus. 注入領域の4つの注入ブロック区分No.1〜4を注入監視盤に表した画面表示の例である。The four injection block sections No. It is an example of the screen display which expressed 1-4 on the injection | pouring monitoring board. 地盤のステージNo.1〜3における流量と注入圧力を注入監視盤に表したグラフ(チャート)である。Ground stage No. It is the graph (chart) which represented the flow volume and injection | pouring pressure in 1-3 on an injection | pouring monitoring board. 注入量、または注入圧の三次元的表示例である。It is an example of a three-dimensional display of the injection amount or the injection pressure. テーブルフローとシリンダーによるフローの関係を表したグラフである。It is a graph showing the relationship between a table flow and the flow by a cylinder.

符号の説明Explanation of symbols

3 地盤
4 削孔
5 バルブ
6 コントローラー
7 コンピューター
8 ケーシング
9 注入管
10 鉄筋
11 レーザービーム発生装置
12 レーザー受信装置
14 フーチング
15 レーザービームセンサー
16 鋼管注入管
17 コンピューター
18 注入制御装置
19 補強支持杭
20 杭基礎
21 土留め壁
22 注入ポイント
23 計量器
24 水タンク
25 ホッパ
26 ゲル化促進剤ホッパ
27 ミキサー
28 流動特性計測装置
29 導管
29´導管
30 グラウトポンプ
31 注入ホース
32 流量圧力制御装置
34 ゲル化促進剤分岐バルブ
35 ゲル化促進剤ポンプ
36 レベルセンサー
X1 集中管理装置
X2 注入監視盤
0 流量計
0 圧力計
3 Ground 4 Drilling hole 5 Valve 6 Controller 7 Computer 8 Casing 9 Injection pipe
10 Rebar
11 Laser beam generator
12 Laser receiver
14 Footing
15 Laser beam sensor
16 Steel pipe injection pipe
17 Computer
18 Injection controller
19 Reinforced support pile
20 Pile foundation
21 Earth retaining wall
22 Injection points
23 Weighing scale
24 water tank
25 Hopper
26 Gelling accelerator hopper
27 Mixer
28 Flow characteristics measuring device
29 conduit
29´ conduit
30 grout pump
31 Injection hose
32 Flow pressure controller
34 Gelation accelerator branch valve
35 Gelling accelerator pump
36 Level sensor X1 Central control device X2 Injection monitoring panel f 0 Flow meter p 0 Pressure gauge

Claims (13)

地盤中に設けた複数の注入孔を介して、可塑状ゲル注入材を圧入して、地盤中で塊状体を形成しながら地盤土粒子を周辺に押しやり地盤中に複数の塊状体を形成すると共に、該複数の注入孔周辺部の地盤の密度を増加して地盤強化する地盤強化方法であって、
該可塑状ゲル注入材は、
(1) スラグ(S材)
(2) セメント、フライアッシュ、石灰および石膏の群から1つ選択される粉状硬化発現材(C材)
(3) 水(W材)
のうち、(1)と(2)と(3)を有効成分として含み、
該可塑状ゲル注入材は圧入時のテーブルフローが12cm以上30cm未満、及び/又はスランプが5cmより大きく28cm以下、及び/又はシリンダーによるフローが8cmより大きく28cm未満であって、地盤中への圧入前又は圧入中に可塑状ゲルに至る注入材であり、脱水率30%以内で可塑状ゲルに至り、地盤中で脱水によって流動性を失って塊状体を形成し、周辺地盤と同等又はそれ以上の強度を発現する注入材であることを特徴とする地盤強化方法。
The plastic gel injection material is press-fitted through a plurality of injection holes provided in the ground, and the ground soil particles are pushed around while forming a lump in the ground to form a plurality of lump in the ground. A ground strengthening method for increasing the density of the ground around the plurality of injection holes and strengthening the ground,
The plastic gel injection material is
(1) Slag (S material)
(2) Powdery hardening material (C material) selected from the group consisting of cement, fly ash, lime and gypsum
(3) Water (W material)
Sac Chi comprises as an active ingredient (1) and (2) (3),
The plastic gel injection material has a table flow of 12 cm or more and less than 30 cm at the time of press-fitting, and / or a slump of greater than 5 cm and less than or equal to 28 cm, and / or a cylinder flow of greater than 8 cm and less than 28 cm, and press-fitting into the ground It is an injection material that reaches the plastic gel before or during press-fitting, reaches the plastic gel within 30% of the dehydration rate, loses fluidity due to dehydration in the ground, forms a lump, and is equivalent to or higher than the surrounding ground A ground strengthening method characterized by being an injection material that develops the strength of the ground.
請求項において、該可塑状ゲル注入材の硬化発現材比が1〜40重量パーセントである地盤強化方法。
ただし、硬化発現材比=C/(S+C)×100(%)であり、S、Cはいずれも重量を示す。
The ground strengthening method according to claim 1 , wherein a ratio of the cured material of the plastic gel injection material is 1 to 40 percent by weight.
However, hardening expression material ratio = C / (S + C) × 100 (%), and S and C both indicate weight.
請求項1又は2において、該可塑状ゲル注入材の水紛体比が20〜200重量パーセントである地盤強化方法。
ただし、水紛体比=W/(S+C)×100(%)であって、S、C、Wはいずれも重量を示す。
The ground strengthening method according to claim 1 or 2 , wherein a water powder ratio of the plastic gel injection material is 20 to 200 weight percent.
However, the water body ratio = W / (S + C) × 100 (%), and S, C, and W all indicate weight.
請求項1、2又は3において、該可塑状ゲル注入材はゲル化促進剤、ゲル化遅延剤、増粘剤、保水材、解膠剤、気泡剤、又は流動化材からなる流動性調整材を含む地盤強化方法。 4. The fluidity adjustment according to claim 1, 2 or 3 , wherein the plastic gel injection material comprises a gelling accelerator, a gelation retarder, a thickener, a water retention material, a peptizer, a foaming agent, or a fluidizing material. Ground strengthening method including materials. 請求項1〜4の何れか一項において、改良すべき地盤中に注入管を設置し、この注入管を上方にまたは下方に移動して圧入ステージを移行させながら該注入管を通して該可塑状ゲル注入材を圧入し、地盤中に塊状固結体を形成する地盤強化方法。 The plastic gel according to any one of claims 1 to 4, wherein an injection tube is installed in the ground to be improved, and the plastic gel is passed through the injection tube while moving the injection tube upward or downward to move the press-fitting stage. A ground strengthening method in which an injection material is pressed in to form a massive solid body in the ground. 請求項において、注入管の引き上げステップを、固化する前の塊状体の範囲内に吐出口が位置するようにステップアップしながら塊状体を拡大せしめて圧入する地盤強化工法。 6. The ground strengthening method according to claim 5, wherein the step of pulling up the injection tube is stepped up so that the discharge port is positioned within the range of the block before solidification, and the block is expanded and press-fitted. 請求項5又は6において、注入孔間隔を0.5m〜3mとし、注入孔間の地盤密度を高めて地盤を強化する地盤強化方法。 7. The ground strengthening method according to claim 5, wherein the interval between the injection holes is 0.5 m to 3 m and the ground density between the injection holes is increased to strengthen the ground. 請求項5、6又は7において、注入液の吐出量は5〜50 l/min、注入圧力は0.5〜10MPの範囲内に注入量と注入圧力を管理して注入する地盤強化方法。 8. The ground strengthening method according to claim 5, 6 or 7, wherein the injection amount is 5 to 50 l / min and the injection pressure is in the range of 0.5 to 10 MP by controlling the injection amount and the injection pressure. 請求項1〜8の何れか一項において、スラグに加える硬化発現材は、使用する粉状素材中の50重量%未満、水粉対比は20〜200重量%であり、ゲル化促進材を加える場合は注入材に含まれる粉体の総量に対してアルミニウム塩をアルミニウム比が0.1〜3.0重量%練り混ぜることにより、テーブルフロー12cm以上30cm未満、ゲルタイムが3分以内から数100分、可塑状保持時間が数時間から10時間以上、ブリージング率が10%以内、スランプが5cmより大きく28cm以下、シリンダーによるフローが8cmより大きく28cm未満となるようにしたものであることを特徴とする地盤強化方法。In any one of Claims 1-8, the hardening expression material added to slag is less than 50 weight% in the powdery raw material to be used, and a water powder contrast is 20 to 200 weight%, and the case where a gelling accelerator is added Is a table flow of 12 cm or more and less than 30 cm by mixing an aluminum salt with an aluminum ratio of 0.1 to 3.0% by weight with respect to the total amount of powder contained in the pouring material, gel time is within 3 minutes to several hundred minutes, The ground characterized in that the plastic holding time is from several hours to 10 hours or more, the breathing rate is within 10%, the slump is greater than 5 cm and less than 28 cm, and the flow through the cylinder is greater than 8 cm and less than 28 cm. Strengthening method. 請求項1〜9の何れか一項において、注入初期において可塑状ゲルでない状態の流動性の良い注入材と可塑状ゲルの注入材を併用し、前記流動性の良い注入材で地盤に割裂部を形成し、前記可塑状ゲルの注入材で割裂部を押し拡げて塊状固結体を形成して周辺地盤を高密度化する事によって可塑状ゲルを圧入しにくい密度の地盤を改良する事を特徴とする地盤強化方法。 In any one of Claims 1-9, the injection | pouring material of the fluidity | liquidity of the state which is not a plastic gel in the initial stage of injection | pouring and the injection | pouring material of a plastic gel are used together, and it is a split part in the ground with the said fluidity | liquidity injection material. To improve the ground of a density that is difficult to press-fit the plastic gel by forming a solidified body by expanding the split part with the plastic gel injection material and densifying the surrounding ground A ground strengthening method characterized by 1〜10の何れか一項において、該注入材の配合系統に配合制御装置、また注入材送液系統に流量圧力制御装置および流量計、圧力計を設け、或は更に地盤変位計を設け、これらから検出されたデータ信号を注入監視盤を備えた集中管理装置に送信し、これらデータを注入監視盤に画面表示することにより注入材の配合から圧入までの状況の一括監視を行って、送液系統におけるそれぞれの注入圧力及び/又は流量を所定の範囲に維持しながら圧入するとともに、上記データの情報に基づき、注入の完了、中止、継続、注入ポイントの移動、又は再注入を行うことを特徴とする地盤強化方法。 In any one of 1-10, a blending control device is provided in the blending system of the injection material, a flow rate pressure control device and a flow meter and a pressure gauge are provided in the injection material feeding system, or a ground displacement meter is further provided. The data signals detected from these are sent to a central control unit equipped with an injection monitoring board, and these data are displayed on the injection monitoring board to perform batch monitoring of the conditions from injection material blending to press-fitting. Injecting while maintaining each injection pressure and / or flow rate in the liquid system within a predetermined range, and completing, stopping, continuing, moving the injection point, or reinjecting based on the information of the above data A ground strengthening method characterized. 1〜10の何れか一項において、該注入材の配合を管理する制御装置、該注入材の送液を管理する流量圧力制御装置及び圧力計、流量計を有し、これらから検出されたデータを注入監視版を備えた集中管理装置に送信し、注入材の配合、注入孔、圧入ステージ、圧入状況を前記注入監視版の画面に表示し、一括監視を行って注入管理することを特徴とする地盤強化方法。 The control device that manages the composition of the injection material, the flow pressure control device that manages the liquid feeding of the injection material, the pressure gauge, and the flow meter in any one of 1 to 10 , and data detected therefrom Is transmitted to a centralized control device equipped with an injection monitoring version, and the composition of the injection material, injection hole, press-in stage, and press-in status are displayed on the screen of the injection monitoring version, and injection monitoring is performed by performing batch monitoring. How to strengthen the ground. 請求項12において、前記集中管理装置に注入圧力及び/又は流量および注入量の設定値、地盤変位量、並びにこれらの許容範囲を予め設定しておき、上記設定範囲を維持するように注入管理する地盤強化方法。 In Claim 12 , the injection pressure and / or the flow rate and the injection amount set value, the ground displacement amount, and the allowable range thereof are set in advance in the centralized management device, and the injection management is performed so as to maintain the set range. Ground strengthening method.
JP2006221158A 2005-08-16 2006-08-14 Ground strengthening method Active JP4689555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221158A JP4689555B2 (en) 2005-08-16 2006-08-14 Ground strengthening method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005236068 2005-08-16
JP2005236068 2005-08-16
JP2006221158A JP4689555B2 (en) 2005-08-16 2006-08-14 Ground strengthening method

Publications (2)

Publication Number Publication Date
JP2007077794A JP2007077794A (en) 2007-03-29
JP4689555B2 true JP4689555B2 (en) 2011-05-25

Family

ID=37938389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221158A Active JP4689555B2 (en) 2005-08-16 2006-08-14 Ground strengthening method

Country Status (1)

Country Link
JP (1) JP4689555B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699060B2 (en) * 2017-09-07 2020-05-27 国立研究開発法人 海上・港湾・航空技術研究所 Construction method using equivalent improvement rate of compaction method
JP6395238B1 (en) * 2017-12-01 2018-09-26 強化土エンジニヤリング株式会社 Ground reinforcement method and injection pipe device
CN114808922B (en) * 2022-04-19 2024-01-26 中国建筑第五工程局有限公司 Building engineering complex foundation grouting device
JP7427210B2 (en) * 2022-06-16 2024-02-05 株式会社鴻池組 Ground improvement material and its manufacturing method
JP7193105B1 (en) * 2022-10-03 2022-12-20 強化土エンジニヤリング株式会社 Ground injection method using ground injection material and ground injection material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124574A (en) * 1997-10-07 1999-05-11 Shimoda Gijutsu Kenkyusho:Kk Grout and grouting work
JP2002155277A (en) * 2000-11-22 2002-05-28 Sumitomo Osaka Cement Co Ltd One-part plastic grout
JP2002212558A (en) * 2001-01-12 2002-07-31 Shimoda Gijutsu Kenkyusho:Kk Grouting material for void filling
JP2003105745A (en) * 2001-10-02 2003-04-09 Kyokado Eng Co Ltd Improvement work method of soft ground

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124574A (en) * 1997-10-07 1999-05-11 Shimoda Gijutsu Kenkyusho:Kk Grout and grouting work
JP2002155277A (en) * 2000-11-22 2002-05-28 Sumitomo Osaka Cement Co Ltd One-part plastic grout
JP2002212558A (en) * 2001-01-12 2002-07-31 Shimoda Gijutsu Kenkyusho:Kk Grouting material for void filling
JP2003105745A (en) * 2001-10-02 2003-04-09 Kyokado Eng Co Ltd Improvement work method of soft ground

Also Published As

Publication number Publication date
JP2007077794A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP5270819B2 (en) Ground strengthening method
JP4610581B2 (en) Ground strengthening method
JP2006257281A (en) Plastic grouting material, method of toughening ground and method and device for controlling grouting to ground
JP4689556B2 (en) Ground consolidation method using plastic gel injection material
JP2008002076A (en) Ground reinforcing method and press-in management method
JP4628378B2 (en) Ground strengthening method
JP5390060B2 (en) Ground strengthening method
Liu et al. Effects of cementitious grout components on rheological properties
JP4972661B2 (en) Ground injection method
CN102561372B (en) Plugging method for downcomer for well-point dewatering of deep foundation pit
JPS6248009B2 (en)
JP4689555B2 (en) Ground strengthening method
KR101589298B1 (en) Permeable compacting grouting method using real-time optimization auto grouting system
CN109338999A (en) Using the construction method of cement sand and gravel processing side slope in a kind of rock
CN101761073A (en) Improved construction technology of CFG (cement fIying-ash gravel) pile
JP2006056909A (en) Plastic grout and grouting technique
JP2007040096A (en) Ground reinforcing method, managing method of pressure injection into ground, and managing device used for pressure injection
CN102995513A (en) Foundation treatment method for accurately regulating and controlling differential settlement of old and new road beds by using expanding materials
CN104762957B (en) A kind of spiral pore-forming rams the construction method that expands CFG stake
JP2008223475A (en) Grouting method
JP2007239443A (en) Suck-out preventive injection method
CN111908853A (en) Self-compacting soil, preparation method thereof and construction method for backfilling municipal cavity
JP4762200B2 (en) Ground strengthening method by simultaneous multi-point injection
JP2007077796A (en) Reinforced earth method
Warner et al. Limited Mobility Grouting--Past, Present, and Future

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250