JPH11124574A - Grout and grouting work - Google Patents

Grout and grouting work

Info

Publication number
JPH11124574A
JPH11124574A JP29161297A JP29161297A JPH11124574A JP H11124574 A JPH11124574 A JP H11124574A JP 29161297 A JP29161297 A JP 29161297A JP 29161297 A JP29161297 A JP 29161297A JP H11124574 A JPH11124574 A JP H11124574A
Authority
JP
Japan
Prior art keywords
grout
liquid
mortar
ground
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29161297A
Other languages
Japanese (ja)
Other versions
JP3514614B2 (en
Inventor
Kazuo Shimoda
一雄 下田
Yasuharu Toshida
靖治 利田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMODA GIJUTSU KENKYUSHO KK
Toso Sangyo Co Ltd
Shimoda Gijutsu Kenkyusho KK
Original Assignee
SHIMODA GIJUTSU KENKYUSHO KK
Toso Sangyo Co Ltd
Shimoda Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMODA GIJUTSU KENKYUSHO KK, Toso Sangyo Co Ltd, Shimoda Gijutsu Kenkyusho KK filed Critical SHIMODA GIJUTSU KENKYUSHO KK
Priority to JP29161297A priority Critical patent/JP3514614B2/en
Publication of JPH11124574A publication Critical patent/JPH11124574A/en
Application granted granted Critical
Publication of JP3514614B2 publication Critical patent/JP3514614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the constituent mortar undergoes bleeding or separations into components and the grout can not be poured into a cavity without fail due to dilution with water. SOLUTION: In a grout poured into voids or gaps of ground or a structure and at the boundary between ground and a structure, flowable mortar based on a setting developing material is mixed with a flowable swelling liquid containing a montmorillonite clay mineral, whereupon the swelling liquid gels to permit the formation of a nonflowable plastic mass to prevent the mortar from undergoing bleeding, separations into components and dilution water and the pour of the grout into the aimed cavity without fail by limited grouting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、軟弱地盤内の大
間隙や空洞、岩盤等の硬質地盤内の破砕帯やクラック
(隙間)、地盤と構造物の境界面の空洞(トンネル等の
裏込も含む)及び地盤の弱い所(地盤注入工法の前処理
として注入する)や注入管設置時に発生した隙間に充填
する非流動性の可塑状グラウト材及びその注入工法に関
するものである。
The present invention relates to large gaps and cavities in soft ground, fracture zones and cracks (gap) in hard ground such as rock, and cavities at the interface between the ground and structures (backing of tunnels and the like). The present invention relates to a non-flowable plastic grout material to be filled in a place where the ground is weak (to be injected as a pretreatment of the ground injection method) or a gap generated when an injection pipe is installed, and an injection method thereof.

【0002】[0002]

【従来の技術】従来、大きな空洞や隙間などに充填する
グラウトとして、一液性のモルタル(主成分セメント)
が使用されている。
2. Description of the Related Art Conventionally, a one-part mortar (main cement) has been used as grout to fill large cavities and gaps.
Is used.

【0003】このモルタルには、空洞の大きさや施工性
(圧送距離や注入条件)、グラウトの特性(強度等)か
らセメントに加える骨材(又は増量材)として、砂、一
次鉱物微粉末(岩石、石英、石灰、ドロマイト等)、粘
土鉱物(ベントナイト、陶土等)や現場発生土(シル
ト、粘土分)等が用いられ、これらの骨材の1種又は2
種以上を組合わせて用いており、さらに起泡剤(エアモ
ルタル)、分散剤、遅延剤、早期強度発現材等を目的に
合わせて添加して調合されている。
[0003] This mortar contains sand, primary mineral fine powder (rock) as an aggregate (or filler) added to cement in view of the size of the cavity, workability (pumping distance and injection conditions), and grout properties (strength, etc.). , Quartz, lime, dolomite, etc.), clay minerals (bentonite, pottery clay, etc.) and soil generated on site (silt, clay) are used.
More than one kind is used in combination, and further, a foaming agent (air mortar), a dispersant, a retarder, an early strength developing material and the like are added according to the purpose, and are prepared.

【0004】[0004]

【発明が解決しようとする課題】上記従来のモルタルの
注入は、すべて一液性(調合槽で一度にモルタルを調合
して、一台のポンプで注入する方法)で行われているた
め、注入するモルタルはポンプで圧送するのに十分な流
動性を保つ必要があり、その結果どうしてもブリージン
グ(余剰水)が発生し、またセメントが硬化するには長
時間(2〜3時間)を要することから、長時間この流動
状を保ったまま状態に置かれることになる。
The above-mentioned conventional mortar injection is performed all in a one-liquid manner (a method in which mortar is prepared at once in a mixing tank and injected by one pump). It is necessary to maintain sufficient fluidity for the mortar to be pumped by pumping, and as a result, breathing (excess water) is inevitably generated, and it takes a long time (2 to 3 hours) for the cement to harden. For a long time, this fluidity is maintained.

【0005】このため、注入されたモルタル(グラウ
ト)は、充填された後にブリージングを起こして体積が
減少し、さらに流動状であるために材料分離を起こして
均一な強度が得られないという問題がある。
[0005] For this reason, the injected mortar (grout) has a problem that after filling, bleeding occurs and the volume decreases, and since it is in a fluid state, material separation occurs and uniform strength cannot be obtained. is there.

【0006】また、注入個所に地下水がある場合にはグ
ラウト材が水に希釈されて流失するという問題があり、
さらに注入時点で流動状であるために不必要な遠方まで
逸走し易く、目的の空洞に確実に充填することが出来な
いという致命的な問題点を包含している。
[0006] In addition, when there is groundwater at the injection point, there is a problem that the grout material is diluted by water and flows away.
Furthermore, since it is fluid at the time of injection, it easily escapes to an unnecessary distance, and the fatal problem that a desired cavity cannot be reliably filled is included.

【0007】このような問題を解決するには、モルタル
がブリージング(体積減少)や材料分離を起こさず、所
定の空洞に確実に充填できるグラウト材(モルタル)の
開発が望まれている。
[0007] In order to solve such a problem, it is desired to develop a grout material (mortar) capable of reliably filling a predetermined cavity without causing bleeding (volume reduction) or material separation.

【0008】[0008]

【課題を解決するための手段】この発明は、地盤、構造
物、あるいは地盤と構造物の境界面などの空洞や隙間に
充填するグラウト材であって、硬化発現材を主成分とし
た流動性のモルタルにモンモリロナイト粘土鉱物を含有
した流動性の膨潤液を加えることにより、前記、膨潤液
をゲル化させて非流動性の可塑状に変質させるようにし
た可塑状グラウト材及びグラウト工法を提案するもので
ある。
SUMMARY OF THE INVENTION The present invention relates to a grout material for filling cavities and gaps in the ground, a structure, or an interface between the ground and the structure. By adding a fluid swelling liquid containing a montmorillonite clay mineral to the mortar, a plastic grout material and a grout method are proposed, in which the swelling liquid is gelled to be transformed into a non-flowable plastic. Things.

【0009】セメント等の硬化発現材を主成分とし、こ
れに種々の骨材や添加剤を加えた従来の流動性のモルタ
ルに、モンモリロナイト粘土鉱物(その代表的な鉱物は
ベントナイトであるため、以下単にベントナイトとい
う)を含有した流動性の膨潤液を加えることにより、硬
化発現材から溶解したアルカリ性のカルシウムイオン
(陽イオン)等の電解質イオンがベントナイト粒子(陰
に帯電)表面に吸着され、電気化学的作用(荷電置換)
により、ベントナイトの膨潤液は一種のゲル化反応を起
こし、急激(瞬時に近い短時分)に粘性が増大して流動
性を失い、非流動性の可塑状グラウトに変質する。
A conventional mortar containing a hardening material such as cement as a main component and various aggregates and additives is added to a montmorillonite clay mineral (a typical mineral is bentonite. By adding a fluid swelling solution containing simply bentonite), electrolyte ions such as alkaline calcium ions (cations) dissolved from the hardening material are adsorbed on the surface of the bentonite particles (negatively charged), and electrochemically Action (charge replacement)
As a result, the bentonite swelling liquid undergoes a kind of gelling reaction, and the viscosity increases rapidly (short time, which is almost instantaneous), the fluidity is lost, and the bentonite is transformed into a non-flowable plastic grout.

【0010】その結果、このグラウト材はブリージン
グ、材料分離、水の希釈及び体積の収縮も防止されるこ
とになると共に、不必要な遠方までの逸走が防止されて
目的の空洞に確実に充填され、限定注入が可能となる。
As a result, the grout material is prevented from bleeding, material separation, water dilution and volume shrinkage, and is prevented from undesirably escaping far away, so that the desired cavity is securely filled. , Limited injection is possible.

【0011】なお、ベントナイトは、主成分がモンモリ
ロナイト粘土鉱物で、その性質は水に接すると著しく膨
潤及び分散し、コロイド(粒径0.001〜0.01ミクロン)
になって著しく粘性も増大する。
The bentonite is mainly composed of a montmorillonite clay mineral. Its properties are that it swells and disperses remarkably when it comes in contact with water, and its colloid (particle diameter: 0.001 to 0.01 micron)
And the viscosity also increases significantly.

【0012】このため、ベントナイトは膨潤能力が大き
いほど、セメントなどのアルカリ性も示す硬化発現材に
よるゲル化能力が大きくなり、可塑状に変質する効果も
大となる。
For this reason, as the swelling ability of bentonite increases, the gelling ability of a hardening material which also exhibits alkalinity, such as cement, increases, and the effect of transforming into a plastic state also increases.

【0013】従来の一液性の流動性のモルタル(A液)
に膨潤したベントナイト液(B液)を加えて、非流動性
の可塑状グラウトに変質(可塑状グラウトの強弱)させ
るには、A液中の水分や硬化発現材及び骨材の種類や
量、またベントナイト(B液)の種類や量及びその膨潤
度に影響される。
Conventional one-part fluid mortar (Solution A)
In order to add the swollen bentonite solution (solution B) to the non-flowable plastic grout (the strength of the plastic grout), the type and amount of the moisture in the solution A, the hardening material and the aggregate, It is also affected by the type and amount of bentonite (B solution) and the degree of swelling.

【0014】このなかでも特に影響を及ぼすものは、第
一にベントナイトの膨潤度及びその量であり、第二にグ
ラウト中(A+B液)に含まれる水分量である。
Among them, the one which particularly affects the first factor is the degree of swelling of bentonite and its amount, and the second is the amount of water contained in the grout (A + B solution).

【0015】以上のことから、A、B液の条件によって
非流動性の可塑状グラウトに変質できるかどうかが大き
く異なるため、ベントナイトの含有量の多少によって変
質条件を特定することは出来ない。
[0015] From the above, since whether or not it can be transformed into a non-flowable plastic grout varies greatly depending on the conditions of the liquids A and B, the transformation conditions cannot be specified depending on the content of bentonite.

【0016】なお、本発明でいう可塑状グラウトとは、
非流動体でそれ自身流動性はないが、物理的作用(たと
えば加圧、あるいは加重など)を与えると容易に流動化
する性質をいう。
The term "plastic grout" as used in the present invention means:
It is a non-fluid and does not have fluidity itself, but it easily fluidizes when given a physical action (for example, pressurization or weighting).

【0017】[0017]

【実施例】本発明者らは鋭意研究の結果、従来の流動性
のモルタルに、流動性のベントナイト膨潤液を加えて膨
潤液をゲル化させ、非流動性のモルタルに流動性の膨潤
液を加えて膨潤液をゲル化させ、非流動性の可塑状グラ
ウトに変質させることにより、ブリージング、材料分離
及び水の希釈を防止し、さらに不必要な遠方までの逸走
を防止し、空洞に確実に充填できる効果があることを突
き止め、非流動性の可塑状グラウトとしての本発明を完
成したものである。
EXAMPLES As a result of intensive studies, the present inventors have found that a fluidized bentonite swelling liquid is added to a conventional fluidized mortar to gel the swelling liquid, and the fluidized swelling liquid is added to a non-fluid mortar. In addition, by gelling the swelling liquid and transforming it into a non-flowable plastic grout, it prevents breathing, material separation and dilution of water, and also prevents unnecessary escape to a far distance, ensuring that the cavity It has been found that there is an effect that can be filled, and the present invention has been completed as a non-flowable plastic grout.

【0018】即ち、硬化発現材を主成分とし、これに種
々の骨材や添加剤を加えた従来の一液性の流動性モルタ
ルに、モンモリロナイト粘土鉱物を含有した流動性の膨
潤液を加えることにより、ベントナイトの膨潤液は、セ
メント等の硬化発現材から溶解したアルカリ性のカルシ
ウムイオン(陽イオン)などの電解質イオンが、ベント
ナイト粒子(陰に帯電)表面に吸着されて電気化学的作
用(荷電置換)により、一種のゲル化反応を起こして急
激(瞬時に近い短時分)に粘性が増大し、流動性を失っ
て非流動性の可塑状グラウトに変質し、ブリージング、
材料分離及び水の希釈も防止すると共に、不必要に遠方
まで逸走することを防止し、目的の空洞に確実に充填で
きる。
That is, a fluid swelling liquid containing a montmorillonite clay mineral is added to a conventional one-part fluid mortar containing a hardening material as a main component and various aggregates and additives. In the swelling liquid of bentonite, electrolyte ions such as alkaline calcium ions (cations) dissolved from a hardening material such as cement are adsorbed on the surface of the bentonite particles (negatively charged) and electrochemically act (charge replacement). ) Causes a kind of gelation reaction, causing the viscosity to increase rapidly (short time near instantaneous), loses fluidity and changes to a non-flowable plastic grout,
Material separation and dilution of water are prevented, and unnecessary runaway is prevented, so that the target cavity can be reliably filled.

【0019】その結果この非流動性の可塑状グラウト
は、限定注入としても非常に有効であることが判明し
た。
As a result, it has been found that this non-flowable plastic grout is very effective as a limited injection.

【0020】一液性の流動状から非流動性の可塑状に変
質したか否かの判定は、グラウトの性質(たとえば骨材
の粒子径や比重など)に若干左右されるが、本発明で
は、円筒フローコン測定(アクリル板に内径80mm、高さ
80mmの円筒を置き、この中にモルタルを満たした後、円
筒を静かに持ち上げ、そのときのモルタルの広がり、即
ち直径を測定し、cmの単位をもって表した)に準じた目
安として、モルタルの広がりが約13cm以下で、かつ上部
の広がりに対して、下部の広がりが約 1.7倍以下の場合
を可塑状グラウトとした。
The determination of whether or not a one-part fluid state has been transformed into a non-flowable plastic state depends somewhat on the properties of grout (eg, the particle size and specific gravity of the aggregate). , Cylindrical flow-con measurement (80 mm inside diameter, height on acrylic plate)
After placing a cylinder of 80 mm and filling the mortar in this, gently lift the cylinder and measure the spread of the mortar at that time, that is, measure the diameter and express it in cm.) Is about 13 cm or less, and the spread of the lower part is about 1.7 times or less the spread of the upper part.

【0021】なお、通常のグラウトポンプで、実用的な
距離まで圧送できるフロー値は、約15cm程度以上といわ
れている。
It is said that the flow value that can be pumped to a practical distance by a normal grout pump is about 15 cm or more.

【0022】また、本発明の可塑状グラウトは非流動性
であるため、従来の流動性のモルタルのように通常のグ
ラウトポンプでは、一液性での施工はできない。
Further, since the plastic grout of the present invention is non-flowable, it cannot be applied with a conventional grout pump like a conventional flowable mortar in a one-pack type.

【0023】従って、本発明の可塑状グラウトの施工
は、原則として、硬化発現材を主成分とした流動性のモ
ルタルをA液とし、ベントナイトを含有した流動性の膨
潤液をB液とし、それぞれ別々のグラウトポンプで圧送
し、注入口付近でA、B液を合流混合することにより、
前記B液の膨潤液をゲル化させ、非流動性の可塑状に変
質させたグラウトを注入する、いわゆる二液性の施工と
なる。
Therefore, in principle, the plastic grout of the present invention is constructed by using a liquid A as a fluid mortar containing a hardening material as a main component and a liquid B as a fluid swelling liquid containing bentonite. By pumping with separate grout pumps and joining and mixing liquids A and B near the inlet,
This is a so-called two-pack construction in which the swelling liquid of the B liquid is gelled and grout that has been transformed into a non-flowable plastic is injected.

【0024】しかし、非流動性の可塑状グラウトでも圧
送可能なポンプがあれば一液性で施工することもでき
る。
However, if there is a pump capable of pumping even non-flowable plastic grout, it is also possible to carry out one-liquid construction.

【0025】本発明のA液(モルタル)に用いる硬化発
現材は、難溶性アルカリ物質で、水と混ぜると硬化する
もので、代表的なものでは、セメント、セメントとスラ
グ、スラグと石灰(消石灰、生石灰)等もあげることが
出来る。
The hardening developing material used in the liquid A (mortar) of the present invention is a hardly soluble alkali substance, which hardens when mixed with water. Typical examples include cement, cement and slag, slag and lime (slaked lime). , Quicklime) and the like.

【0026】また、本発明のA液に加える骨材(又は増
量材)として砂、フライアッシュ、一次鉱物微粉末(岩
石、石英、石灰石、ドロマイトなど)、粘土鉱物(ベン
トナイト、陶土等)や、現場発生土(シルト、粘土分を
含んだ土及びシールド泥水など)等をあげることが出
来、また、これらの骨材の一種又は二種以上を組合わせ
ることが出来る。
The aggregate (or extender) to be added to the liquid A of the present invention includes sand, fly ash, fine powder of primary minerals (rock, quartz, limestone, dolomite, etc.), clay minerals (bentonite, clay, etc.), Site-generated soil (silt, soil containing clay, shield mud, etc.) and the like can be mentioned, and one or more of these aggregates can be used in combination.

【0027】さらに従来のモルタルに添加している起泡
剤、分散剤、遅延剤、早期強度発現材を目的に合わせ
て、添加することが出来る。
Further, a foaming agent, a dispersing agent, a retarder, and an early-strength developing material which have been added to conventional mortars can be added according to the purpose.

【0028】また、本発明のB液に用いる膨張液は、モ
ンモリロナイト粘土鉱物を主成分としたもので、代表的
なものとしてベントナイトをあげることが出来る。
The swelling liquid used in the liquid B of the present invention contains a montmorillonite clay mineral as a main component, and a typical example is bentonite.

【0029】本発明の施工方法は、特に限定されるもの
ではないが、原則的には二液性で行う。
Although the construction method of the present invention is not particularly limited, it is carried out in principle with two components.

【0030】構造物内の空間や構造物と地盤の境界面の
空洞(トンネルの裏込等含む)の注入では、目的の箇所
に設けたグラウトホールの手前まで別々に圧送してきた
流動性のA液とB液を合流混合し、可塑状グラウトに変
質させた上で空洞内に注入する方法が一般には採られ
る。
In the injection of the space in the structure or the cavity at the boundary surface between the structure and the ground (including the backing of a tunnel, etc.), the fluid A is separately pumped up to just before a grout hole provided at a target location. A method is generally adopted in which the liquid and the liquid B are mixed and mixed, transformed into a plastic grout, and then injected into a cavity.

【0031】また、地盤内の空洞や大きな隙間では、目
的の箇所までボーリングなどで穿孔し、注入管を設けて
注入する。
In a cavity or a large gap in the ground, a hole is drilled to a target location by boring or the like, and an injection pipe is provided for injection.

【0032】なお、注入管が単管の場合は注入管の手前
でA、B液を合流混合させ、注入管が二重管の場合は、
先端部でA、B液を合流混合させて可塑状グラウトに変
質させて注入する方法が採られる。
When the injection tube is a single tube, the liquids A and B are merged and mixed in front of the injection tube, and when the injection tube is a double tube,
A method is adopted in which the liquids A and B are combined and mixed at the tip to transform into a plastic grout and injected.

【0033】また、地盤注入工法に用いる場合は、その
注入工法の注入管を利用して注入することになる。
In the case of using for the ground injection method, injection is performed by using an injection pipe of the injection method.

【0034】以下、本発明のグラウトについて、さらに
実施例をあげて詳しく説明する。
Hereinafter, the grout of the present invention will be described in more detail with reference to examples.

【0035】実験に用いた材料は、A液の硬化発現材と
してセメント(普通ポルトランド)、スラグ(水さいス
ラグで商品名セラメント)、石灰(工業用消石灰)、骨
材として粘土鉱物のベントナイト(豊順洋行の200メッ
シュの商品名「浅間」などの国産品及び200メッシュの
アメリカ産)、陶土、一次鉱物微粉末としてミクロサン
ドを用いた。また、起泡剤は動物性蛋白質系を用いた。
The materials used in the experiments were cement (normal Portland), slag (trade name of cement as water slag), lime (industrial slaked lime) as a hardening material of liquid A, and bentonite (a clay mineral as an aggregate). A domestic product such as Toyoma Yoko's 200-mesh product name "Asama" and a 200-mesh American product), porcelain clay, and microsand were used as the primary mineral fine powder. An animal protein system was used as the foaming agent.

【0036】また、B液のモンモリロナイト粘土鉱物と
しては、前記のベントナイトを用いた。
The bentonite described above was used as the montmorillonite clay mineral of the liquid B.

【0037】「実験−1」"Experiment-1"

【0038】本発明のA液(従来のモルタルに相当)の
流動性とブリージングを測定し、表1の結果を得た。
The fluidity and breathing of the liquid A of the present invention (corresponding to a conventional mortar) were measured, and the results shown in Table 1 were obtained.

【0039】[0039]

【表1】 [Table 1]

【0040】流動性の実験は、上記円筒フローコン測定
で行い、ブリージングは500mlメスシリンダーで静置し
3時間後に測定し、単位として%で表した。
The experiment of fluidity was carried out by the above-mentioned cylindrical flow-con measurement, and the breathing was measured 3 hours after leaving still in a 500 ml measuring cylinder, and expressed in% as a unit.

【0041】表1の実験結果から、モルタルをグラウト
ポンプで圧送する限界といわれるフロー値15cm以上で
は、ブリージングは約1%以上であり、最も適した流動
性(フロー値20〜30cm程度)で2〜5%あることが判
る。
From the experimental results shown in Table 1, at a flow value of 15 cm or more, which is said to be the limit at which mortar is pumped by a grout pump, breathing is about 1% or more, and the most suitable fluidity (flow value of about 20 to 30 cm) is 2%. It can be seen that there is about 5%.

【0042】なお、フロー値とブリージングは配合、特
に骨材の種類により異なる。
Incidentally, the flow value and the breathing are different depending on the composition, particularly the kind of the aggregate.

【0043】例外として、エアモルタル(No.10,No.1
1)は水を気泡で包含するためブリージングは発生しな
い。
As an exception, air mortar (No. 10, No. 1)
In 1), water is contained in bubbles, so no breathing occurs.

【0044】また、骨材を使用しない配合(No.3)を参
考に示した。以上により、一液性の流動性のモルタル
(エアモルタルを除く)は、フロー値約15cm以上ではブ
リージングの発生を完全に防止することが出来ない。
The composition (No. 3) in which no aggregate is used is shown for reference. As described above, a one-part fluid mortar (excluding air mortar) cannot completely prevent the occurrence of breathing when the flow value is about 15 cm or more.

【0045】「実験−2」"Experiment-2"

【0046】上記実験−1のA液(流動性のモルタル)
にB液としてベントナイトの膨潤液を加えて、非流動性
の可塑状グラウトに変質する実験を行い、その結果を表
2に示す。
Solution A (fluid mortar) in Experiment 1 above
An experiment was conducted in which a swelling solution of bentonite was added as a liquid B to transform into a non-flowable plastic grout, and the results are shown in Table 2.

【0047】[0047]

【表2】 [Table 2]

【0048】表2より、流動性のA液に、同じく流動性
のB液を加えると、ほとんど瞬時に近い状態でブリージ
ングの全くない非流動性の可塑状グラウトに変質した。
As shown in Table 2, when the fluid B was added to the fluid A, the fluid was almost instantaneously transformed into a non-flowable plastic grout having no breathing.

【0049】この実施例から見ると、変質した可塑状グ
ラウトの状態は、フロー値で下部で13〜 9cm、上部で7.
7〜7.8cmの円錐形を示していた。
According to this example, the state of the transformed plastic grout is 13 to 9 cm in the lower part and 7.
It showed a cone of 7-7.8 cm.

【0050】なお、上部の値がフローコーンの内径 8.0
cmに対して、若干小さいのは、グラウトの自重による影
響である。
The upper value is the inner diameter of the flow cone 8.0
Slightly smaller than cm is the effect of the weight of the grout.

【0051】すなわち、ベントナイトの膨張液B液は、
A液中のセメント等の硬化発現材から溶解したアルカリ
性のカルシウムイオン(陽イオン)などの電解質イオン
が、ベントナイト粒子(陰に帯電)表面に吸着され電気
化学的作用(荷電置換)により一種のゲル化反応(グラ
ウト中の水分を包含)を起こし、急激(瞬時に近い短時
分)に粘性が増大して流動性を失い、非流動性の可塑状
グラウトに変質させることになる。
That is, the expansion liquid B of bentonite is
Electrolyte ions such as alkaline calcium ions (cations) dissolved from a material such as cement in solution A are adsorbed on the surface of the bentonite particles (negatively charged) and a kind of gel is formed by electrochemical action (charge substitution). This causes a chemical reaction (including moisture in the grout), rapidly increasing the viscosity (short time near instantaneous), losing fluidity, and transforming into non-flowable plastic grout.

【0052】「実験−3」"Experiment-3"

【0053】本発明のグラウトが、空洞にどのように充
填するかをみるため、次のような実験も行った。
In order to see how the grout of the present invention fills the cavities, the following experiment was also performed.

【0054】実験装置は組立式の鉄製の巾40cm、長さ 1
20cm、高さ80cmの容器(一面は透明なアクリル板)の一
方の側面の下部に注入口、他方の側面上部に排出口を設
けている。
The experimental device is a prefabricated iron made of 40 cm wide and 1 cm long.
A 20 cm, 80 cm high container (one side is a transparent acrylic plate) has an inlet at the bottom of one side and an outlet at the top of the other side.

【0055】一方、別々のモルタルミキサー(200 リットル
用)にA液とB液を別々に調合し、2台のグラウトポン
プをそれぞれのミキサーに注入ホースで接続し、別々の
ポンプから出たグラウトは注入ホースの注入孔の手前で
合流混合して容器に注入されるような装置になってい
る。
On the other hand, the liquid A and the liquid B are separately prepared in separate mortar mixers (for 200 liters), and two grout pumps are connected to the respective mixers with injection hoses. The device is such that it is merged and mixed before the injection hole of the injection hose and injected into the container.

【0056】「比較例−1」"Comparative Example-1"

【0057】空の注入容器(水のない空洞を想定)に、
実施例8の配合のA液(従来のモルタルに相当)を調合
し、1台の注入ポンプで毎分40リットルで計 200リットル注入し
たところ、グラウトは、注入容器全体にわたっており、
その傾斜角度は約 5度で充填された。
In an empty filling container (assuming a cavity without water)
Solution A (corresponding to a conventional mortar) having the composition of Example 8 was prepared, and a total of 200 liters was injected at a rate of 40 liters per minute by one injection pump.
The filling angle was about 5 degrees.

【0058】その注入し、固結されたグラウト量は約 1
95リットルであった。
The amount of grout injected and consolidated is about 1
It was 95 liters.

【0059】固結後、脱粋してグラウトの固結状態をみ
たところ、骨材(ミクロサンド)が下部に幾分多くて上
部には幾分少なく、材料分離していることが判った。
After consolidation, the extruded grout was examined for the consolidation state of the grout. As a result, it was found that the aggregate (microsand) was somewhat larger in the lower part and somewhat smaller in the upper part, and the material was separated.

【0060】また、同様の条件で実施例9のA液を注入
したところ、グラウトは全域にわたって傾斜角度約 4度
で充填されており、また骨材は実施例8よりも材料分離
が少なかった。
Further, when the solution A of Example 9 was injected under the same conditions, the grout was filled at an inclination angle of about 4 degrees over the entire area, and the material separation of the aggregate was smaller than that of Example 8.

【0061】次に、水を入れた注入容器(地下水下の空
洞を想定)に、前記の実施例8と同じ条件でA液を注入
したところ、水に接したグラウトは希釈されないから注
入容器全体にわたって平らに充填されていた。
Next, when the liquid A was injected into the injection container filled with water (assuming a cavity under the groundwater) under the same conditions as in Example 8, the grout in contact with the water was not diluted. Was filled flat.

【0062】その注入された固結量は約 190リットルであっ
たが、その上部約15%は水に希釈されており、実用的な
強度(水道ホースの水圧で破れる程度の強度)はなかっ
た。
The amount of caking injected was about 190 liters, but about 15% of the upper part was diluted with water, and there was no practical strength (strength enough to be broken by the water pressure of the water hose). .

【0063】固結後、脱粋してグラウトの固結状態をみ
たところ、骨材は下部に多くて上部に少なく、明らかに
材料分離を起こして強度が不均一であることが判った。
After consolidation, the consolidation state of the grout was excerpted, and it was found that the aggregate was large in the lower part and small in the upper part.

【0064】一方、水も入れた容器に、上記実施例9の
A液も注入したところ、水に接したグラウトは希釈され
て材料分離が激しく、骨材及びセメントは下部に沈殿
し、気泡は分離して水面に浮上する現象がみられた。
On the other hand, when the solution A of Example 9 was also poured into the container containing water, the grout in contact with the water was diluted and the material was severely separated. Aggregate and cement precipitated at the bottom, and bubbles were formed. The phenomenon of separation and floating on the water surface was observed.

【0065】また、グラウトは容器全体にわたって充填
されていた。
The grout was filled over the entire container.

【0066】その注入された固結量は、約180 リットルであ
ったが、その上部約30%は、水に希釈されており、実用
的な強度はなかった。
The amount of caking injected was about 180 liters, but about 30% of the upper part was diluted with water and had no practical strength.

【0067】以上の実験から、従来の一液性のモルタル
は流動性であるため、加圧すれば不必要に遠方まで限り
なく逸走し、目的の箇所に充填することは出来ない。
From the above experiments, since the conventional one-part mortar is fluid, if it is pressurized, it will run unnecessarily far away as far as possible and cannot be filled at the intended location.

【0068】また、地下水が存在する空洞では、グラウ
トは水に接すると希釈され、材料分離(強度の不均一)
を起こし、歩留(注入量)が悪くなることが確認され
た。
In a cavity where groundwater is present, grout is diluted when it comes into contact with water, and the material is separated (uneven strength).
It was confirmed that the yield (injection amount) deteriorated.

【0069】「実施例」[Example]

【0070】空の注入容器に、実施例8の配合のA液と
B液を別々にモルタルミキサーで調合し、2台の注入ポ
ンプで毎分20リットルづつ(計40 リットル)で200リットル注入した
ところ、グラウトはムクムクした状態で充填され、先に
注入されたグラウトは、後で注入されたグラウトによっ
て押し出され、注入付近を中心とした山形城になり、そ
の傾斜角度は約35度であった。
Solution A and Solution B of the formulation of Example 8 were separately mixed into an empty injection container by using a mortar mixer, and 200 liters were injected at a rate of 20 liters per minute (total 40 liters) using two injection pumps. However, the grout was filled in a state of being filled, the grout injected earlier was pushed out by the grout injected later, and it became a Yamagata castle centered around the injection, the inclination angle was about 35 degrees .

【0071】また、注入されたグラウト量は、ほぼ200リ
ットル(注入量と同じ)であった。
The amount of grout injected was almost 200 liters (the same as the injected amount).

【0072】固結後、脱粋してグラウトの固結状態をみ
たところ、骨材やセメントの材料分離は全くなく、強度
も均一であった。
After solidification, the solidified state of the grout was excerpted. As a result, there was no material separation of aggregate or cement and the strength was uniform.

【0073】また、実施例8と同様の条件で実施例9の
配合を注入したところ、グラウトは、注入孔付近を中心
とした山形状になり、その傾斜角度もほぼ同じであっ
た。
When the composition of Example 9 was injected under the same conditions as in Example 8, the grout had a mountain shape centered around the injection hole, and the inclination angles were almost the same.

【0074】固結後、脱粋してグラウトの固結状態をみ
たところ、エアと材料(骨材及びセメント)が分離する
ことなく均一であり、固結強度もばらつきがなかった。
After consolidation, the grout was excerpted and the consolidation state of the grout was observed. As a result, the air and the materials (aggregate and cement) were uniform without separation, and the consolidation strength did not vary.

【0075】次に、水を入れた注入容器に前記の実施例
8と同じ条件で注入したところ、水に接したグラウトの
表面のごとく一部は希釈されたが、空の容器の注入と同
様に山形状になり、その傾斜角度及び固結グラウト量も
ほぼ同じであった。
Next, when a grout was poured into a grouting vessel filled with water under the same conditions as in Example 8, a part of the grout was in contact with the water, such as the surface of the grout. The inclination angle and the amount of consolidation grout were almost the same.

【0076】固結後、脱粋してグラウトの固結状態をみ
たところ、表面のごく一部を除いて、骨材やセメントの
材料分離はなく、強度も均一であった。
After solidification, the solidified state of the grout was excerpted. Except for a very small part of the surface, there was no material separation of aggregate or cement and the strength was uniform.

【0077】また、実施例8と同様の条件で実施例9の
配合を水を入れた容器に注入したところ、水に接したグ
ラウトの表面のごく一部(1〜2%)は希釈され、微量
の気泡は水面に浮上したが、全体として固結状態におい
て材料分離はなく、均一強度が確認できた。
When the composition of Example 9 was poured into a container filled with water under the same conditions as in Example 8, only a small part (1-2%) of the surface of the grout in contact with water was diluted, Although a small amount of bubbles floated on the water surface, there was no material separation in the consolidated state as a whole, and uniform strength was confirmed.

【0078】以上のように、流動性のモルタル(A液)
に、同じく流動性のベントナイトの膨張液(B液)も加
えて得られた非流動性の可塑状グラウトを空洞に注入す
れば、ブリージングがないために、全量注入孔を中心と
した限定範囲に充填することができた。
As described above, the fluid mortar (solution A)
In addition, if a non-flowable plastic grout obtained by adding a flowable bentonite swelling liquid (solution B) is injected into the cavity, there is no breathing. Could be filled.

【0079】特に、地下水の存在する空洞においても、
水に希釈されることなく、材料分離を起こすことなく、
均一な強度が得られた。
In particular, even in a cavity where groundwater exists,
Without being diluted in water, without causing material separation,
Uniform strength was obtained.

【0080】[0080]

【発明の効果】以上の通り本発明のグラウト材及びグラ
ウト注入工法によれば、ブリージング、材料分離及び水
の希釈を防止し、均一な強度が得られると共に、不必要
に遠方まで逸走することを防止し、目的の空洞に確実に
充填できる。
As described above, according to the grout material and grout injection method of the present invention, it is possible to prevent bleeding, material separation and dilution of water, to obtain uniform strength, and to run unnecessarily far away. And ensure that the desired cavity is filled.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】地盤、構造物及び地盤と構造物の境界面の
空洞や隙間を充填するグラウト材において、硬化発現材
を主成分とした流動性のモルタルに、モンモリロナイト
粘土鉱物を混入した流動性の膨潤液を加えることによ
り、前記膨潤液をゲル化させて非流動性の可塑状に変質
させてなることを特徴とする可塑状グラウト材。
1. A grout material for filling cavities and gaps at the ground, a structure, and a boundary surface between the ground and the structure, wherein a montmorillonite clay mineral is mixed with a flowable mortar containing a hardening material as a main component. A plastic grout material characterized in that the swelling liquid is gelled by adding the swelling liquid of (1) to transform into a non-flowable plastic state.
【請求項2】地盤、構造物及び地盤と構造物の境界面の
空洞や隙間にグラウト材を注入充填するグラウト注入工
法において、硬化発現材を主成分とした流動性のモルタ
ルをA液とし、これにモンモリロナイト粘度鉱物を混入
した流動性の膨潤液をB液とし、それぞれ別々のポンプ
で圧送し、注入口付近で前記A液とB液を合流混合する
ことにより、前記B液の膨潤液をゲル化させて非流動性
の可塑状に変質させたグラウト材を注入することを特徴
とするグラウト注入工法。
2. A grouting method in which a grout material is injected and filled into the ground, the structure, and the voids and gaps at the boundary surface between the ground and the structure, wherein a fluid mortar mainly containing a hardening material is used as an A liquid, The fluid swelling liquid mixed with the montmorillonite viscous mineral is used as the liquid B, pumped by separate pumps, and the liquid A and the liquid B are mixed and mixed near the injection port, whereby the liquid B is swollen. A grout injection method characterized by injecting a grout material which has been gelled and transformed into a non-flowable plastic state.
JP29161297A 1997-10-07 1997-10-07 Grout material and grouting method Expired - Lifetime JP3514614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29161297A JP3514614B2 (en) 1997-10-07 1997-10-07 Grout material and grouting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29161297A JP3514614B2 (en) 1997-10-07 1997-10-07 Grout material and grouting method

Publications (2)

Publication Number Publication Date
JPH11124574A true JPH11124574A (en) 1999-05-11
JP3514614B2 JP3514614B2 (en) 2004-03-31

Family

ID=17771212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29161297A Expired - Lifetime JP3514614B2 (en) 1997-10-07 1997-10-07 Grout material and grouting method

Country Status (1)

Country Link
JP (1) JP3514614B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064648A (en) * 1999-08-27 2001-03-13 Sumitomo Osaka Cement Co Ltd Plastic grouting material
JP2001302324A (en) * 2000-04-17 2001-10-31 Sumitomo Osaka Cement Co Ltd Plastic grout
KR100552363B1 (en) * 2000-04-04 2006-02-20 유겐가이샤 시모다기쥬쯔겐뀨죠 Plastic Type Grout Injection Method
WO2006129884A1 (en) * 2005-06-02 2006-12-07 Kyokado Engineering Co., Ltd. Plastic gel grout and method of ground reinforcement
KR100699430B1 (en) 2004-09-22 2007-03-27 주식회사 제일종합통상 The foundation improvement method of construction using high-pressure grout material injection equipment and this
JP2007077794A (en) * 2005-08-16 2007-03-29 Kyokado Eng Co Ltd Plastic gel grout, ground reinforcing method, ground injection control method, and injection control device
JP2009249543A (en) * 2008-04-08 2009-10-29 East Japan Railway Co Subgrade filling material
WO2013065229A1 (en) * 2011-11-04 2013-05-10 Jfeスチール株式会社 Filling material and ground-repairing method
JP5916933B1 (en) * 2015-10-16 2016-05-11 株式会社大阪防水建設社 Two-component plastic grout material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064648A (en) * 1999-08-27 2001-03-13 Sumitomo Osaka Cement Co Ltd Plastic grouting material
KR100552363B1 (en) * 2000-04-04 2006-02-20 유겐가이샤 시모다기쥬쯔겐뀨죠 Plastic Type Grout Injection Method
JP2001302324A (en) * 2000-04-17 2001-10-31 Sumitomo Osaka Cement Co Ltd Plastic grout
KR100699430B1 (en) 2004-09-22 2007-03-27 주식회사 제일종합통상 The foundation improvement method of construction using high-pressure grout material injection equipment and this
US8596924B2 (en) 2005-06-02 2013-12-03 Kyokado Engineering Co., Ltd. Method for strengthening a ground
WO2006129884A1 (en) * 2005-06-02 2006-12-07 Kyokado Engineering Co., Ltd. Plastic gel grout and method of ground reinforcement
JP2007009194A (en) * 2005-06-02 2007-01-18 Kyokado Eng Co Ltd Plastic gel grout and method of ground reinforcement and method and device for management of introducing pressure into ground
JPWO2006129884A1 (en) * 2005-06-02 2009-01-08 強化土エンジニヤリング株式会社 Plastic gel injection material and ground reinforcement method
JP2007077794A (en) * 2005-08-16 2007-03-29 Kyokado Eng Co Ltd Plastic gel grout, ground reinforcing method, ground injection control method, and injection control device
JP4689555B2 (en) * 2005-08-16 2011-05-25 強化土エンジニヤリング株式会社 Ground strengthening method
JP2009249543A (en) * 2008-04-08 2009-10-29 East Japan Railway Co Subgrade filling material
WO2013065229A1 (en) * 2011-11-04 2013-05-10 Jfeスチール株式会社 Filling material and ground-repairing method
JPWO2013065229A1 (en) * 2011-11-04 2015-04-02 Jfeスチール株式会社 Repair method for filling material and ground
JP5916933B1 (en) * 2015-10-16 2016-05-11 株式会社大阪防水建設社 Two-component plastic grout material
JP2017075267A (en) * 2015-10-16 2017-04-20 株式会社大阪防水建設社 Two-pack type plasticity grout material

Also Published As

Publication number Publication date
JP3514614B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
WO2006129884A1 (en) Plastic gel grout and method of ground reinforcement
KR100766626B1 (en) Grout material
CA1315563C (en) Tunnel grouting method and apparatus
JP2006257281A (en) Plastic grouting material, method of toughening ground and method and device for controlling grouting to ground
KR100699430B1 (en) The foundation improvement method of construction using high-pressure grout material injection equipment and this
JP5390060B2 (en) Ground strengthening method
JPH11124574A (en) Grout and grouting work
JP3561136B2 (en) Grout injection method
JP3600502B2 (en) Plastic grouting method
JP2000054794A (en) Filling method for cavity part and grout used therefor
JP4506024B2 (en) Manufacturing method of backfill grout material
JP4059335B2 (en) Void filling grout material
JP4264234B2 (en) Two-component filler for underground bonding
JPS6224474B2 (en)
JPH024634B2 (en)
JP3515014B2 (en) Filling method for cavity
JP2003278144A (en) Impregnation method
KR20090040522A (en) Inserting material for tunnel cavity using discarded concrete micro-sized powder and testing device
JP2007191920A (en) Method for mixing/agitating/injecting a plurality of fluids
JPH0554519B2 (en)
JP2020023852A (en) Method for injecting hardening grout into ground beneath groundwater
JP3618275B2 (en) Grout injection method and grout injection material
JPS5818342B2 (en) Poor mix concrete for pumping
JP3269687B2 (en) Backfill injection method
JP2001073355A (en) Injection method for grout regarding cement and bentonite as main material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term