JP2007191920A - Method for mixing/agitating/injecting a plurality of fluids - Google Patents

Method for mixing/agitating/injecting a plurality of fluids Download PDF

Info

Publication number
JP2007191920A
JP2007191920A JP2006011021A JP2006011021A JP2007191920A JP 2007191920 A JP2007191920 A JP 2007191920A JP 2006011021 A JP2006011021 A JP 2006011021A JP 2006011021 A JP2006011021 A JP 2006011021A JP 2007191920 A JP2007191920 A JP 2007191920A
Authority
JP
Japan
Prior art keywords
liquid
stirring
fluid
mixing
fluids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006011021A
Other languages
Japanese (ja)
Inventor
Saburo Ishii
三郎 石井
Yasuhiro Nagaoka
廉浩 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tachibana Material Co Ltd
Original Assignee
Tachibana Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tachibana Material Co Ltd filed Critical Tachibana Material Co Ltd
Priority to JP2006011021A priority Critical patent/JP2007191920A/en
Publication of JP2007191920A publication Critical patent/JP2007191920A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for mixing/agitating/injecting a plurality of fluids capable of continuously carrying out mixing/agitation/injection within a continuous line while carrying out mixing and agitation corresponding to various kinds of prescriptions by combining a plurality of suction pumps, flow regulators and an agitating injection pump. <P>SOLUTION: The device for mixing/agitating/injecting the plurality of fluids is constituted to suck the plurality of fluids by the suction pumps 1, 5, to regulate the respective flow rates by the flow regulators to force-feed the fluids to the agitating injection pump 3, to agitate and mix the plurality of fluids at a required mixing rate by the agitating injection pump 3 and then to force-feed an agitated and mixed fluid in a one-liquid state from the agitating injection pump 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、複数流動体を調合・攪拌・注入する一体型の装置に係り、特に、軟弱地盤内の大間隙や空洞、岩盤等の硬質地盤内の破砕帯やクラック(隙間)、地盤と構造物の境界面の空洞(トンネル等の裏込も含む)及び地盤の弱い所(地盤注入工法の前処理として注入する)や注入管設置時に発生した隙間に充填する非流動性の可塑状グラウト等を注入するのに好適な複数流動体の調合・攪拌・注入装置に関するものである。 The present invention relates to an integrated apparatus for preparing, stirring and injecting a plurality of fluids, and in particular, large gaps and cavities in soft ground, crush zones and cracks (gap) in hard ground such as rock, ground and structure Non-flowable plastic grout that fills the gaps created at the time of installation of injection pipes and cavities on the boundary surface of objects (including the back of tunnels, etc.) and weak grounds (injected as pretreatment for ground injection) The present invention relates to a multiple fluid preparation / stirring / injection apparatus suitable for injecting a liquid.

従来、大きな空洞や隙間などに充填するグラウトとして、一液性のモルタル(主成分セメント)が使用されている。 Conventionally, one-component mortar (main component cement) has been used as a grout for filling large cavities and gaps.

このモルタルには、空洞の大きさや施工性(圧送距離や注入条件)、グラウトの特性(強度等)からセメントに加える骨材(又は増量材)として、砂、一次鉱物微粉末(岩石、石英、石灰、ドロマイト等)、粘土鉱物(ベントナイト、陶土等)や現場発生土(シルト、粘土分)等が用いられ、これらの骨材の1種又は2種以上を組合わせて用いており、さらに起泡剤(エアモルタル)、分散剤、遅延剤、早期強度発現材等を目的に合わせて添加して調合されている。 This mortar contains sand, primary mineral fine powder (rock, quartz, etc.) as an aggregate (or filler) added to cement due to the size of the cavity, workability (pumping distance and injection conditions), and grout characteristics (strength, etc.). Lime, dolomite, etc.), clay minerals (bentonite, porcelain clay, etc.) and on-site generated soil (silt, clay) etc. are used, and one or more of these aggregates are used in combination. A foaming agent (air mortar), a dispersing agent, a retarder, an early-strength developing material, and the like are added according to the purpose.

上記従来のモルタルの注入は、すべて一液性(調合槽で一度にモルタルを調合して、一台のポンプで注入する方法)で行われているため、注入するモルタルはポンプで圧送するのに十分な流動性を保つ必要があり、その結果どうしてもブリージング(余剰水)が発生し、またセメントが硬化するには長時間(2〜3時間)を要することから、長時間この流動状を保ったままの状態に置かれることになる。 All of the conventional mortar injections are one-part (a method in which mortar is prepared at once in a preparation tank and then injected with a single pump). Sufficient fluidity must be maintained, resulting in breathing (excess water), and it takes a long time (2 to 3 hours) to harden the cement. Will be left untouched.

このため、注入されたモルタル(グラウト)は、充填された後にブリージングを起こして体積が減少し、さらに流動状であるために材料分離を起こして均一な強度が得られないという問題がある。 For this reason, the injected mortar (grout) causes breathing after filling, and its volume is reduced. Further, since it is in a fluid state, there is a problem that uniform strength cannot be obtained due to material separation.

また、注入個所に地下水がある場合にはグラウト材が水に希釈されて流失するという問題があり、さらに注入時点で流動状であるために不必要な遠方まで逸走し易く、目的の空洞に確実に充填することが出来ないという致命的な問題点を包含している。 In addition, when there is groundwater at the injection site, there is a problem that the grout material is diluted with water and washed away. It includes a fatal problem that it cannot be filled.

このような問題を解決するには、モルタルがブリージングや材料分離を起こさず、所定の空洞に確実に充填できる技術として、特許文献1に示す技術が提案されている。 In order to solve such a problem, a technique shown in Patent Document 1 has been proposed as a technique that can reliably fill a predetermined cavity without causing breathing or material separation of the mortar.

特許第3514614号公報Japanese Patent No. 3514614

この技術は、地盤、構造物、あるいは地盤と構造物の境界面などの空洞や隙間に充填するグラウト材であって、硬化発現材を主成分とした流動性のモルタルにモンモリロナイト粘土鉱物を含有した流動性の膨潤液を加えることにより、前記、膨潤液をゲル化させて非流動性の可塑状に変質させるようにした可塑状グラウト注入工法である。   This technology is a grout material that fills cavities and gaps in the ground, structures, or the interface between the ground and the structure, and contains montmorillonite clay mineral in a fluid mortar mainly composed of hardened material. This is a plastic grout injection method in which the swelling liquid is gelled and transformed into a non-flowable plastic by adding a fluid swelling liquid.

即ち、上記従来技術は、セメント等の硬化発現材を主成分とし、これに種々の骨材や添加剤を加えた流動性のモルタルに、モンモリロナイト粘土鉱物(その代表的な鉱物はベントナイトであるため、以下単にベントナイトという)を含有した流動性の膨潤液を加えることにより、硬化発現材から溶解したアルカリ性のカルシウムイオン(陽イオン)等の電解質イオンがベントナイト粒子(陰に帯電)表面に吸着され、電気化学的作用(荷電置換)により、ベントナイトの膨潤液は一種のゲル化反応を起こし、急激(瞬時に近い短時分)に粘性が増大して流動性を失い、非流動性の可塑状グラウトに変質する。 In other words, the above-mentioned conventional technology is mainly composed of a hardened material such as cement, and a flowable mortar in which various aggregates and additives are added to montmorillonite clay mineral (a typical mineral is bentonite. By adding a fluid swelling liquid containing hereafter, bentonite), electrolyte ions such as alkaline calcium ions (cations) dissolved from the cured material are adsorbed on the surface of bentonite particles (negatively charged), Due to the electrochemical action (charge substitution), the bentonite swelling liquid undergoes a kind of gelation reaction, and its viscosity rapidly increases (short time, close to the moment) and loses its fluidity, resulting in a non-flowable plastic grout. It changes to.

その結果、このグラウト材はブリージング、材料分離、水の希釈及び体積の収縮も防止されることになると共に、不必要な遠方までの逸走が防止されて目的の空洞に確実に充填され、限定注入が可能となる。 As a result, this grout material also prevents breathing, material separation, water dilution and volume shrinkage, and prevents unnecessary faraway escapes to ensure that the desired cavity is filled and limited injection. Is possible.

なお、ベントナイトは、主成分がモンモリロナイト粘土鉱物で、その性質は水に接すると著しく膨潤及び分散し、コロイド(粒径0.001〜0.01ミクロン)になって著しく粘性も増大する。 Bentonite is a montmorillonite clay mineral as a main component, and its property is that it swells and disperses remarkably when it comes into contact with water, and it becomes a colloid (particle size 0.001 to 0.01 micron) and the viscosity increases remarkably.

このため、ベントナイトは膨潤能力が大きいほど、セメントなどのアルカリ性も示す硬化発現材によるゲル化能力が大きくなり、可塑状に変質する効果も大となる。 For this reason, the greater the swelling ability of bentonite, the greater the gelling ability of the hardening-expressing material that also exhibits alkalinity, such as cement, and the greater the effect of transforming into a plastic state.

一液性の流動性のモルタル(A液)に膨潤したベントナイト液(B液)を加えて、非流動性の可塑状グラウトに変質(可塑状グラウトの強弱)させるには、A液中の水分や硬化発現材、骨材及び添加剤の種類や量、またベントナイト(B液)の種類や量及びその膨潤度に影響される。 To add a swollen bentonite liquid (B liquid) to a one-part fluid mortar (A liquid) and transform it into a non-flowable plastic grout (the strength of the plastic grout), the water in the A liquid It is influenced by the type and amount of the hardening developing material, the aggregate and the additive, the type and amount of bentonite (Liquid B), and the degree of swelling.

このなかでも特に影響を及ぼすものは、第1にベントナイトの膨潤度及びその量であり、第2にグラウト中(A+B液)に含まれる水分量である。 Among these, what particularly affects the first is the degree of swelling and the amount of bentonite, and the second is the amount of water contained in the grout (A + B solution).

以上のことから、A、B液の条件によって非流動性の可塑状グラウトに変質できるかどうかが大きく異なるため、ベントナイトの含有量の多少によって変質条件を特定することはできない、という問題を有していた。 From the above, since whether or not it can be transformed into a non-flowable plastic grout varies greatly depending on the conditions of the A and B liquids, there is a problem that the alteration conditions cannot be specified depending on the content of bentonite. It was.

なお、この明細書で可塑状グラウトとは、非流動体でそれ自身流動性はないが、物理的作用(たとえば加圧、あるいは加重など)を与えると容易に流動化する性質をいう。 In this specification, the plastic grout is a non-fluid material that does not flow by itself, but easily fluidizes when a physical action (for example, pressurization or weighting) is applied.

この発明は、かかる現状に鑑み創案されたものであって、その目的とするところは、複数の吸引ポンプと流量調整装置と攪拌注入ポンプとを組み合わせることにより、各種の処方に合った混合攪拌を行いながら連続したライン中で調合・攪拌・注入を連続して行うことができる複数流動体の調合・攪拌・注入装置を提供しようとするものである。 The present invention was devised in view of the present situation, and the object of the present invention is to mix and agitate to various prescriptions by combining a plurality of suction pumps, flow control devices and agitation injection pumps. An object of the present invention is to provide a multi-fluid mixing / stirring / injecting apparatus capable of continuously performing mixing / stirring / injection in a continuous line.

上記目的を達成するため、請求項1に記載の複数流動体の調合・攪拌・注入装置は、複前記攪拌混合された流動体は、地盤、構造物及び地盤と構造物の境界面の空洞や隙間に注入されるグラウト材であり、該グラウト材を構成する複数の流動体は、硬化発現材を主成分とした流動性のモルタルと、モンモリロナイト粘土鉱物を含有した流動性の膨潤液と、で構成され、該モルタルと膨潤液は、別々の吸引ポンプで吸引されて、各モルタルと膨潤液の流路に介設された流量制御装置を介してその流量を調整されて攪拌注入ポンプまで圧送され、該攪拌注入ポンプで所要の調合率で調合攪拌混合された後、ゲル化させて非流動性の可塑状に変質させたグラウト材を注入口付近まで1液状態で圧送することを特徴とすることを特徴とする。   In order to achieve the above object, the multiple fluid mixing / stirring / injecting apparatus according to claim 1 is characterized in that the mixed fluid is mixed with a ground, a structure, a cavity at a boundary between the ground and the structure, The grout material to be injected into the gap, and the plurality of fluids constituting the grout material include a fluid mortar mainly composed of a hardening developing material and a fluid swelling liquid containing a montmorillonite clay mineral. The mortar and the swelling liquid are sucked by separate suction pumps, and their flow rates are adjusted via a flow rate control device provided in the flow paths of the mortar and the swelling liquid, and are pumped to the stirring injection pump. The grout material that has been mixed with stirring and mixed at the required mixing ratio by the stirring injection pump and then gelled and transformed into a non-flowable plastic is pumped in a single liquid state to the vicinity of the injection port. It is characterized by that.

また、請求項2に記載の複数流動体の調合・攪拌・注入装置は、請求項1の発明の好適な実施例であり、前記攪拌混合された流動体は、地盤、構造物及び地盤と構造物の境界面の空洞や隙間に注入されるグラウト材であり、該グラウト材を構成する複数の流動体は、硬化発現材を主成分とした流動性のモルタルと、モンモリロナイト粘土鉱物を含有した流動性の膨潤液と、で構成され、該モルタルと膨潤液は、別々の吸引ポンプで吸引されて、各モルタルと膨潤液の流路に介設された流量制御装置を介してその流量を調整されて攪拌注入ポンプまで圧送され、該攪拌注入ポンプで所要の調合率で調合攪拌混合された後、ゲル化させて非流動性の可塑状に変質させたグラウト材を注入口付近まで1液状態で圧送することを特徴とする。 Further, the multiple fluid preparation / stirring / injection device according to claim 2 is a preferred embodiment of the invention of claim 1, and the stirred and mixed fluid is a ground, a structure, a ground and a structure. It is a grout material that is injected into cavities and gaps in the boundary surface of objects, and the plurality of fluids constituting the grout material are fluid mortars mainly composed of hardened materials and fluids containing montmorillonite clay minerals. The mortar and the swelling liquid are sucked by separate suction pumps, and the flow rates thereof are adjusted via flow rate control devices provided in the flow paths of the mortar and the swelling liquid. The mixture is pumped to the stirring injection pump, mixed and mixed at the required mixing ratio by the stirring injection pump, and then the grout material that has been gelled and transformed into a non-flowable plastic is in a one-liquid state up to the vicinity of the injection port. It is characterized by pumping.

さらに、請求項3に記載の発明は、請求項1または請求項2のいずれかに記載の複数流動体の調合・攪拌・注入装置を技術的前提とし、一の液を可塑状に変化させる他の液材料には、珪酸ナトリウム、硫酸アルミニウム、エトリンガイトを生成するスラリー等の無機材料が存在することを特徴とする。 Furthermore, the invention described in claim 3 is based on the technical premise of the multi-fluid mixing / stirring / injecting device described in claim 1 or 2, and changes one liquid into a plastic form. The liquid material is characterized by the presence of an inorganic material such as sodium silicate, aluminum sulfate, slurry for producing ettringite.

請求項1に記載の発明は、前記攪拌混合された流動体は、地盤、構造物及び地盤と構造物の境界面の空洞や隙間に注入されるグラウト材であり、該グラウト材を構成する複数の流動体は、硬化発現材を主成分とした流動性のモルタルと、モンモリロナイト粘土鉱物を含有した流動性の膨潤液と、で構成され、該モルタルと膨潤液は、別々の吸引ポンプで吸引されて、各モルタルと膨潤液の流路に介設された流量制御装置を介してその流量を調整されて攪拌注入ポンプまで圧送され、該攪拌注入ポンプで所要の調合率で調合攪拌混合された後、ゲル化させて非流動性の可塑状に変質させたグラウト材を注入口付近まで1液状態で圧送することを特徴とするように構成したので、夫々の流動体の混合比率が大きく相違し、混合の精度が求められる場合や、複数の流動体の粘度が高く混合しにくい場合、また、複数の流動体の粘度が高く混合しにくく注入しずらい場合や、さらに2液以上の調合が必要な複雑な調合処方が必要な場合であっても、各種の処方に合った調合・攪拌を行いながら連続したライン中で調合・攪拌・注入を連続して行うことができる。   The invention according to claim 1 is that the agitated and mixed fluid is a ground material, a structure, and a grout material that is injected into a cavity or a gap in a boundary surface between the ground and the structure, and a plurality of the grout materials The fluid is composed of a fluid mortar mainly composed of a hardened material and a fluid swelling liquid containing montmorillonite clay mineral. The mortar and the swelling liquid are sucked by separate suction pumps. The flow rate of the mortar and the swelling liquid is adjusted through a flow rate control device, and the flow rate is adjusted and pumped to the stirring injection pump. The composition is characterized in that the grout material that has been gelled and transformed into a non-flowable plastic is pumped in one liquid state to the vicinity of the inlet, so the mixing ratio of each fluid is greatly different. , Mixing accuracy is required If the viscosity of a plurality of fluids is high and difficult to mix, the viscosity of a plurality of fluids is high and difficult to mix, and it is difficult to inject, or a complicated formulation requiring two or more liquid preparations is required. Even when necessary, preparation, stirring, and injection can be continuously performed in a continuous line while preparing and stirring for various prescriptions.

また、請求項2に記載の発明は、流動性のモルタルに、流動性のベントナイト膨潤液を加えて膨潤液をゲル化させ、非流動性の可塑状グラウトに変質させることにより、ブリージング、材料分離及び水の希釈を防止し、さらに不必要な遠方までの逸走を防止し、空洞に確実に充填できる。   Further, the invention according to claim 2 is characterized by adding a flowable bentonite swelling liquid to a flowable mortar to gel the swelling liquid and transforming it into a non-flowable plastic grout, thereby allowing breathing and material separation. In addition, it is possible to prevent the dilution of water and to prevent unnecessary escape, and to fill the cavity surely.

即ち、請求項2に記載の発明にあっては、硬化発現材を主成分とし、これに種々の骨材や添加剤を加えた一液性の流動性モルタルに、モンモリロナイト粘土鉱物を含有した流動性の膨潤液を加えることにより、ベントナイトの膨潤液は、セメント等の硬化発現材から溶解したアルカリ性のカルシウムイオン(陽イオン)などの電解質イオンが、ベントナイト粒子(陰に帯電)表面に吸着されて電気化学的作用(荷電置換)により、一種のゲル化反応を起こして急激(瞬時に近い短時分)に粘性が増大し、流動性を失って非流動性の可塑状グラウトに変質し、ブリージング、材料分離及び水の希釈も防止すると共に、不必要に遠方まで逸走することを防止し、1液の状態で目的の空洞に確実に充填できる。 That is, in the invention described in claim 2, a fluid containing montmorillonite clay mineral in a one-part fluid mortar in which a hardening developing material is a main component and various aggregates and additives are added thereto. By adding a water-soluble swelling liquid, the bentonite swelling liquid is such that electrolyte ions such as alkaline calcium ions (cations) dissolved from a hardening developing material such as cement are adsorbed on the surface of bentonite particles (negatively charged). Due to electrochemical action (charge substitution), a kind of gelation reaction occurs, the viscosity increases rapidly (short time), loses fluidity, changes to non-flowable plastic grout, and breathing In addition, while preventing material separation and dilution of water, it is possible to prevent unnecessary escape and to fill the target cavity in a single liquid state.

その結果、この非流動性の可塑状グラウトは、限定注入としても非常に有効である。尚、本発明の他の液に用いる膨潤液は、モンモリロナイト粘土鉱物を主成分としたもので、代表的なものとしてベントナイトをあげることができるが、その他、一の液を可塑状に変化させる他の液材料としては、珪酸ナトリウム、硫酸アルミニウム、エトリンガイトを生成するスラリー等の無機材料が存在する。 As a result, this non-flowable plastic grout is very effective as limited injection. In addition, the swelling liquid used for the other liquid of the present invention is mainly composed of montmorillonite clay mineral, and typical examples thereof include bentonite. As the liquid material, there are inorganic materials such as sodium silicate, aluminum sulfate, slurry for producing ettringite and the like.

以下、添付図面に基づきこの発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、この発明の一実施例に係る複数流動体を、A液とB液とした場合の調合・攪拌・注入装置の概略的な構成を示す説明図である。 FIG. 1 is an explanatory diagram showing a schematic configuration of a blending / stirring / injecting apparatus when a plurality of fluids according to an embodiment of the present invention are liquid A and liquid B. FIG.

図中に記載されているように、A液は、サンクションホース2を介してA液調合注入ポンプ1で吸引されて攪拌注入ポンプ3へと注入され、B液はサンクションホース4を介してB液調合注入ポンプ5で吸引されてB液を攪拌注入ポンプ3へと夫々独立して注入される。従って、各ポンプ1,5の中途に介設された流量調整装置6,7を介して流量を調整することで、各種の処方に合った混合攪拌を行うことができる。尚、A液調合注入ポンプ1とB液調合注入ポンプ5としては、公知のチューブ式ポンプを用いることができ、また、流量調整装置6,7も公知の電磁バルブ等を用いた公知の流量調整装置(電磁流量計等)を用いることができる。 As shown in the figure, the A liquid is sucked by the A liquid blending injection pump 1 through the suction hose 2 and injected into the stirring injection pump 3, and the B liquid is supplied through the suction hose 4. The liquid B is sucked by the blending injection pump 5 and injected independently into the stirring injection pump 3. Therefore, mixing and stirring suitable for various prescriptions can be performed by adjusting the flow rate through the flow rate adjusting devices 6 and 7 interposed in the middle of the pumps 1 and 5. In addition, as the A liquid preparation and injection pump 1 and the B liquid preparation and injection pump 5, a known tube type pump can be used, and the flow rate adjusting devices 6 and 7 are also known flow rate adjustments using known electromagnetic valves. A device (such as an electromagnetic flow meter) can be used.

攪拌注入ポンプ3は、各ポンプ1,5から送られてきたA液とB液を混合攪拌した後、1液の状態で注入口まで圧送する。この攪拌注入ポンプ3は、攪拌混合の程度をA液とB液の各ポンプ1,5からの圧送量に応じて攪拌速度を可変して過度な攪拌混合や攪拌不足を防止し、材料に適した混合状態を作り出すことができるように構成されている。勿論、攪拌混合された1液状となった流動体を注入口まで圧送する注入圧を確保することができる機能を有して構成されている。また、この攪拌注入ポンプ3は、複数の流動体の最大総量が通過し攪拌することで圧力的に負荷を生じないように構成されている。尚、攪拌注入ポンプの入り口付近には、圧力発信機8が配設されており、攪拌注入ポンプ3へと流入するA液・B液の流圧が監視可能に構成されている。 The stirring and injection pump 3 mixes and stirs the liquid A and the liquid B sent from the pumps 1 and 5 and then pumps them to the injection port in the state of one liquid. This agitating / injecting pump 3 is suitable for materials by varying the agitation speed according to the pumping amount of the A liquid and B liquid from the pumps 1 and 5 to prevent excessive agitation mixing and insufficient agitation. It is configured to create a mixed state. Of course, it has the function which can ensure the injection | pouring pressure which pumps the fluid which became 1 liquid by stirring and mixing to an injection port. In addition, the agitation pump 3 is configured so as not to cause a pressure load when the maximum total amount of the plurality of fluids passes through and is agitated. A pressure transmitter 8 is disposed near the entrance of the stirring / injecting pump, and is configured to be able to monitor the fluid pressure of the A and B liquids flowing into the stirring / injecting pump 3.

次に、上記装置で可塑状グラウトの施工を行う場合について説明すると、A液を硬化発現材を主成分とした流動性のモルタルし、ベントナイトを含有した流動性の膨潤液をB液とし、それぞれ別々のポンプ1,5で圧送し、これらのポンプ1,5の中途部に介設された流量調整装置6,7で流量を調整して攪拌注入ポンプ3へと搬入し、該攪拌注入ポンプ3でA、B液を合流混合することにより、前記B液の膨潤液をゲル化させ、非流動性の可塑状に変質させた1液のグラウトを注入する。 Next, the case where the plastic grout is applied with the above apparatus will be described. The liquid A is a fluid mortar mainly composed of a hardening developing material, and the fluid swelling liquid containing bentonite is a liquid B. Pumped by separate pumps 1, 5, the flow rate is adjusted by flow rate adjusting devices 6, 7 interposed in the middle of these pumps 1, 5, carried into the stirring injection pump 3, and the stirring injection pump 3 Then, the swollen liquid of the liquid B is gelled by injecting and mixing the liquids A and B, and one liquid grout that has been transformed into a non-flowable plastic is injected.

本実施例のA液(モルタル)に用いる硬化発現材は、難溶性アルカリ物質で、水と混ぜると硬化するもので、代表的なものでは、セメント、セメントとスラグ、スラグと石灰(消石灰、生石灰)等もあげることができる。 The curing expression material used for the liquid A (mortar) of this example is a hardly soluble alkaline substance, which is cured when mixed with water. Typical examples are cement, cement and slag, slag and lime (slaked lime, quick lime). ) Etc.

また、本実施例のA液に加える骨材(又は増量材)として、砂、フライアッシュ、石灰、一次鉱物微粉末(岩石、石英、石灰石、ドロマイトなど)、粘土鉱物(ベントナイト、陶土等)や、現場発生土(シルト、粘土分を含んだ土及びシールド泥水など)等をあげることができ、また、これらの骨材の一種又は二種以上を組合わせることができる。 Further, as aggregate (or extender) to be added to the liquid A of this example, sand, fly ash, lime, primary mineral fine powder (rock, quartz, limestone, dolomite, etc.), clay mineral (bentonite, porcelain earth, etc.) , Soil generated on the site (silt, clay-containing soil, shield mud, etc.) and the like, and one or more of these aggregates can be combined.

さらに従来のモルタルに添加している発泡剤(起泡剤等)、分散剤、遅延剤、早期強度発現材等を目的に合わせて、添加することができる。 Furthermore, the foaming agent (foaming agent etc.), the dispersing agent, the retarder, the early strength developing material, etc. which are added to the conventional mortar can be added according to the purpose.

また、本実施例のB液に用いる膨潤液は、モンモリロナイト粘土鉱物を主成分としたもので、代表的なものとしてベントナイトをあげることができる。その他、A液を可塑状に変化させるB液材料としては、珪酸ナトリウム、硫酸アルミニウム、エトリンガイトを生成するスラリー等の無機材料が存在する。 Moreover, the swelling liquid used for B liquid of a present Example has a montmorillonite clay mineral as a main component, and can mention a bentonite as a typical thing. In addition, as the B liquid material for changing the A liquid into a plastic form, there are inorganic materials such as sodium silicate, aluminum sulfate, and a slurry for producing ettringite.

構造物内の空間や構造物と地盤の境界面の空洞(トンネルの裏込等含む)の注入では、目的の箇所に設けたグラウトホールの手前まで攪拌注入ポンプ3で圧送されてきた流動性のA液とB液の混合1液(グラウト)を注入する。 In the injection of the space in the structure and the cavity at the boundary between the structure and the ground (including the back of the tunnel, etc.), the fluidity that has been pumped by the stirring injection pump 3 to the front of the grout hole provided at the target location. 1 liquid (grouting) of liquid A and liquid B is injected.

地盤内の空洞や大きな隙間の注入では、目的の箇所までボーリングなどで穿孔し、注入管を設けて注入する。 In the injection of cavities or large gaps in the ground, drilling is performed to the target location by boring, etc., and an injection tube is provided for injection.

また、地盤注入工法に用いる場合は、その注入工法の注入管を利用して注入することになる。 Moreover, when using for a ground injection construction method, it will inject | pour using the injection pipe of the injection construction method.

尚、上記実施例ではA液とB液を混合攪拌する場合を例にとり説明したが、この発明にあってはこれに限定されるものではなく、2液以上の複数液を調合・攪拌・注入することも可能であり、この場合には、夫々の液を独立した調合注入ポンプで吸引して流量調整装置で流量を調整した後、攪拌混合ポンプで混合攪拌することで、各種の処方に合った調合攪拌を行いながら、連続したライン中で調合・混合攪拌・注入を連続して行うことができる。また、簡易な装置システムとして夫々の液を独立した調合注入ポンプを圧力変化による定量性能が高いチューブ式のポンプ等を使用した場合には、流量調節装置を用いずに吸引量を流量計で確認しインバーター制御にて流量を調整した後、前記同様に使用することも可能である。 In the above embodiment, the case where the liquid A and the liquid B are mixed and stirred is described as an example. However, the present invention is not limited to this, and a plurality of liquids of two or more liquids are prepared, stirred and injected. In this case, each liquid is sucked with an independent preparation and injection pump, the flow rate is adjusted with a flow rate adjusting device, and then mixed and stirred with a stirring and mixing pump to meet various prescriptions. While mixing and stirring, preparation, mixing and injection can be continuously performed in a continuous line. In addition, when a simple pumping system is used for each compounding and injection pump that is independent of each liquid and a tube type pump with high quantitative performance due to pressure change is used, the suction volume is checked with a flow meter without using a flow controller. After adjusting the flow rate by inverter control, it can be used in the same manner as described above.

〔実験例〕
〔装置仕様〕
型式 能力 動力
A液ポンプ1 チューブ式ポンプ KB−85 50〜250L/min 15KW
B液ポンプ2 チューブ式ポンプ KB−50 10〜60L/min 11KW
電磁流量計6,7 口径2B
攪拌注入ポンプ3
スラリーポンプ DMG−37型 30m3/min 3.7KW
吐出圧0.5MPa(MAX)
回転数3000rpm/min 50Hz
[Experimental example]
[Device specifications]
Model Capability Power A Liquid pump 1 Tube pump KB-85 50-250L / min 15KW
B liquid pump 2 Tube type pump KB-50 10-60L / min 11KW
Electromagnetic flowmeter 6,7 Diameter 2B
Stirring injection pump 3
Slurry pump DMG-37 type 30m3 / min 3.7KW
Discharge pressure 0.5MPa (MAX)
Rotation speed 3000rpm / min 50Hz

〔実験方法〕
A液とB液のポンプ同タイプを2台と電磁流量計2台、攪拌注入ポンプを1台使用し、各ポンプにはインバータを搭載した制御盤を仕様した。
攪拌注入ポンプを常に同量の流量に設定し、合計量が表1の任意の注入流量になるように設定した。
〔experimental method〕
Two A liquid and B liquid pumps of the same type, two electromagnetic flowmeters, and one stirring injection pump were used, and each pump was equipped with a control panel equipped with an inverter.
The stirring injection pump was always set to the same flow rate, and the total amount was set to the arbitrary injection flow rate shown in Table 1.

Figure 2007191920
Figure 2007191920

攪拌注入ポンプをインバータを使用して任意のヘルツに設定し、インペラーの回転数を表2の任意の回転数に調整した。   The stirring injection pump was set to an arbitrary hertz using an inverter, and the rotation speed of the impeller was adjusted to the arbitrary rotation speed shown in Table 2.

Figure 2007191920
Figure 2007191920

攪拌性能の確認は、A液とB液の比重を計算し、実験で採取した試料の比重の設計範囲内の値であることを確認し、攪拌効果をテーブルフロー(静止状態,15打設時)と水中投入時のpHを測定して判断した。尚、上記比重測定は、サンクションホース2,4口から採取した試料をすり切りの1L升に入れ、1Lの試料重量を測定する。また、フロー値の測定は、上記ホース口から採取した試料を、直径80mmの円筒容器に入れ、引き上げた時の広がりの最大値と最小値を測定する。また、15打上下させ広がりを測定した。さらに、水中不分離測定は、上記ホース口から採取した試料を水中に投入し、水のpH値の変化を測定し希釈強さを測定した。
圧力発信機8で、攪拌注入ポンプ3の静止時と注入時の圧力値の変化を測定した。
これらの配合例を表3に、また試験結果を表4に示す。
To confirm the stirring performance, calculate the specific gravity of liquid A and liquid B, confirm that the specific gravity of the sample collected in the experiment is within the design range, and check the stirring effect with the table flow (stationary, 15 placements) ) And the pH at the time of charging in water. In the specific gravity measurement, a sample collected from the suction hose 2 and 4 is put into a 1 L piece of ground material, and a 1 L sample weight is measured. The flow value is measured by measuring the maximum value and the minimum value of the spread when the sample collected from the hose port is put into a cylindrical container having a diameter of 80 mm and pulled up. Further, the spread was measured by flicking up and down 15 times. Furthermore, in water non-separation measurement, the sample collected from the hose port was poured into water, the change in the pH value of water was measured, and the dilution strength was measured.
With the pressure transmitter 8, the change of the pressure value at the time of stationary and injection | pouring of the stirring injection pump 3 was measured.
These blending examples are shown in Table 3, and the test results are shown in Table 4.

Figure 2007191920
Figure 2007191920

Figure 2007191920
Figure 2007191920

以上の試験結果からも明らかなように、使用した攪拌注入ポンプ3の口径は2Bであり、比重はすべて予想値範囲であり、A液・B液が等量混合されていることが分かった。また、流量により攪拌注入ポンプの必要インペラーの回転数が材料の混合効果に影響を及ぼすことが分かった。30L/minの少量から400L/minの大流量までの範囲で攪拌注入ポンプの回転数を制御することで、広範囲に適度な攪拌混合をすることが可能であることが証明された。流量が少量であれば、インペラーの回転数が大きすぎるとA液・B液に過剰な攪拌を与え、材料が再度分散することが分かった。さらにA液ポンプとB液ポンプの先に取り付けた圧力発信機8は、200L/minの流量で攪拌注入ポンプ3が静止時は常に0.3N/mmを示したが、50Hzの攪拌注入ポンプ3が起動時には0.03N/mm であった。 As is clear from the above test results, it was found that the diameter of the used stirring injection pump 3 was 2B, the specific gravity was all in the expected value range, and equal amounts of liquid A and liquid B were mixed. Moreover, it turned out that the rotation speed of the required impeller of the stirring injection pump affects the mixing effect of the material depending on the flow rate. It was proved that it is possible to carry out moderate stirring and mixing over a wide range by controlling the rotation speed of the stirring injection pump in a range from a small amount of 30 L / min to a large flow rate of 400 L / min. It was found that if the flow rate was small, excessive stirring of the liquid A and liquid B would cause excessive dispersion of the material if the impeller rotation speed was too large. Furthermore, the pressure transmitter 8 attached to the tip of the A liquid pump and the B liquid pump always showed 0.3 N / mm 2 at a flow rate of 200 L / min when the stirring injection pump 3 was stationary, but a 50 Hz stirring injection pump. 3 was 0.03 N / mm 2 at start-up.

この発明の一実施例に係る2液調合・攪拌・注入装置の概略的な構成を示す説明図である。It is explanatory drawing which shows schematic structure of the 2 liquid preparation / stirring / injection apparatus which concerns on one Example of this invention.

符号の説明Explanation of symbols

1 A液調合注入ポンプ
2,4 サンクションホース
3 攪拌注入ポンプ
5 B液調合注入ポンプ
6,7 流量調整装置
DESCRIPTION OF SYMBOLS 1 A liquid preparation injection pumps 2, 4 Suction hose 3 Stirring injection pump 5 B liquid preparation injection pumps 6, 7 Flow control device

Claims (3)

複数の流動体を夫々吸引ポンプで各流動体の流路に介設された流量制御装置を介して流量を調整して攪拌注入ポンプまで圧送し、該攪拌注入ポンプで複数の流動体を、所要の調合率で攪拌混合した後、該攪拌注入ポンプから調合攪拌混合された流動体を1液状態で圧送することを特徴とする複数流動体の調合・攪拌・注入装置。   A plurality of fluids are respectively pumped to a stirring injection pump by adjusting the flow rate with a suction pump via a flow rate control device provided in the flow path of each fluid, and the plurality of fluids are required by the stirring injection pump. A mixing / stirring / injecting device for a plurality of fluids, wherein the fluid prepared and mixed by stirring and pumping is pumped in a one-liquid state after being stirred and mixed at a mixing rate of 5%. 前記攪拌混合された流動体は、地盤、構造物及び地盤と構造物の境界面の空洞や隙間に注入されるグラウト材であり、該グラウト材を構成する複数の流動体は、硬化発現材を主成分とした流動性のモルタルと、モンモリロナイト粘土鉱物を含有した流動性の膨潤液と、で構成され、該モルタルと膨潤液は、別々の吸引ポンプで吸引されて、各モルタルと膨潤液の流路に介設された流量制御装置を介してその流量を調整されて攪拌注入ポンプまで圧送され、該攪拌注入ポンプで所要の調合率で調合攪拌混合された後、ゲル化させて非流動性の可塑状に変質させたグラウト材を注入口付近まで1液状態で圧送することを特徴とする複数流動体の調合・攪拌・注入装置。 The agitated and mixed fluid is a grout material that is injected into the ground, a structure, and a cavity or a gap in the boundary surface between the ground and the structure, and the plurality of fluids constituting the grout material include a hardening expression material. It consists of a fluid mortar containing the main component and a fluid swelling liquid containing montmorillonite clay mineral. The mortar and the swelling liquid are sucked by separate suction pumps, and the flow of each mortar and the swelling liquid. The flow rate is adjusted via a flow rate control device installed in the passage and is pumped to the stirring injection pump. After the mixing and mixing at the required mixing rate by the stirring injection pump, the mixture is gelled and non-flowable. A multi-fluid blending / stirring / injecting apparatus characterized in that a grout material transformed into a plastic state is pumped in a one-liquid state to the vicinity of an injection port. 一の液を可塑状に変化させる他の液材料には、珪酸ナトリウム、硫酸アルミニウム、エトリンガイトを生成するスラリー等の無機材料が存在することを特徴とする請求項1または請求項2のいずれかに記載の複数流動体の調合・攪拌・注入装置。   The other liquid material that changes one liquid into a plastic state includes an inorganic material such as sodium silicate, aluminum sulfate, or a slurry that produces ettringite, according to claim 1 or 2. The multiple fluid preparation, agitation, and injection device described.
JP2006011021A 2006-01-19 2006-01-19 Method for mixing/agitating/injecting a plurality of fluids Pending JP2007191920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011021A JP2007191920A (en) 2006-01-19 2006-01-19 Method for mixing/agitating/injecting a plurality of fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011021A JP2007191920A (en) 2006-01-19 2006-01-19 Method for mixing/agitating/injecting a plurality of fluids

Publications (1)

Publication Number Publication Date
JP2007191920A true JP2007191920A (en) 2007-08-02

Family

ID=38447836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011021A Pending JP2007191920A (en) 2006-01-19 2006-01-19 Method for mixing/agitating/injecting a plurality of fluids

Country Status (1)

Country Link
JP (1) JP2007191920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106178A (en) * 2009-11-18 2011-06-02 Taisei Corp Method of filling void under water surface
JP2019137981A (en) * 2018-02-06 2019-08-22 東海旅客鉄道株式会社 Method for filling grout material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281088A (en) * 1995-04-13 1996-10-29 Ohbayashi Corp Kneading mixer
JPH10152833A (en) * 1996-11-25 1998-06-09 Mitsubishi Materials Corp Ground injection material injecting device
JPH1113053A (en) * 1997-06-23 1999-01-19 Toto Denki Kogyo Kk Grout ratio control device
JPH11193382A (en) * 1997-12-29 1999-07-21 Shimoda Gijutsu Kenkyusho:Kk Grout injection method
JPH11256158A (en) * 1998-03-11 1999-09-21 Daiyou Kiko Kogyo Kk Production of mud mortar and apparatus therefor
JP2004216258A (en) * 2003-01-14 2004-08-05 Hitachi Constr Mach Co Ltd Treatment system for oil-contaminated soil, treatment device and treatment method
JP2005120673A (en) * 2003-10-16 2005-05-12 Maeda Corp Multi-liquid simultaneous pouring system
JP2008057114A (en) * 2006-08-29 2008-03-13 Kfc Ltd Injection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281088A (en) * 1995-04-13 1996-10-29 Ohbayashi Corp Kneading mixer
JPH10152833A (en) * 1996-11-25 1998-06-09 Mitsubishi Materials Corp Ground injection material injecting device
JPH1113053A (en) * 1997-06-23 1999-01-19 Toto Denki Kogyo Kk Grout ratio control device
JPH11193382A (en) * 1997-12-29 1999-07-21 Shimoda Gijutsu Kenkyusho:Kk Grout injection method
JPH11256158A (en) * 1998-03-11 1999-09-21 Daiyou Kiko Kogyo Kk Production of mud mortar and apparatus therefor
JP2004216258A (en) * 2003-01-14 2004-08-05 Hitachi Constr Mach Co Ltd Treatment system for oil-contaminated soil, treatment device and treatment method
JP2005120673A (en) * 2003-10-16 2005-05-12 Maeda Corp Multi-liquid simultaneous pouring system
JP2008057114A (en) * 2006-08-29 2008-03-13 Kfc Ltd Injection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106178A (en) * 2009-11-18 2011-06-02 Taisei Corp Method of filling void under water surface
JP2019137981A (en) * 2018-02-06 2019-08-22 東海旅客鉄道株式会社 Method for filling grout material
JP7008524B2 (en) 2018-02-06 2022-01-25 東海旅客鉄道株式会社 How to inject grout material

Similar Documents

Publication Publication Date Title
Liu et al. Effects of cementitious grout components on rheological properties
JP2006257281A (en) Plastic grouting material, method of toughening ground and method and device for controlling grouting to ground
US4984933A (en) Grouting method and apparatus
JP3686888B2 (en) Gap filling material and gap filling method
JP5390060B2 (en) Ground strengthening method
JP3561136B2 (en) Grout injection method
JP2007231727A (en) Method of reinforcing ground
JP3600502B2 (en) Plastic grouting method
JP3514614B2 (en) Grout material and grouting method
JP4506024B2 (en) Manufacturing method of backfill grout material
JP2007191920A (en) Method for mixing/agitating/injecting a plurality of fluids
JP2000054794A (en) Filling method for cavity part and grout used therefor
JP2004244483A (en) Self-curing void filling material and void filling technique
JP6632018B1 (en) Tunnel waterproofing method, tunnel waterproofing system, and waterproofing material
JP2007040096A (en) Ground reinforcing method, managing method of pressure injection into ground, and managing device used for pressure injection
JP2014015756A (en) Underground cavity filling material and filling material manufacturing method
JP2011106178A (en) Method of filling void under water surface
Bruce et al. Glossary of grouting terminology
JP3515014B2 (en) Filling method for cavity
JP2012149480A (en) Soil cement method
JP3845629B2 (en) Grout
JP2003278144A (en) Impregnation method
JP2008057114A (en) Injection device
JP2001073355A (en) Injection method for grout regarding cement and bentonite as main material
KR20220069372A (en) Method for filling used pipe and underground cavity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110725