JP2007239443A - Suck-out preventive injection method - Google Patents

Suck-out preventive injection method Download PDF

Info

Publication number
JP2007239443A
JP2007239443A JP2007026891A JP2007026891A JP2007239443A JP 2007239443 A JP2007239443 A JP 2007239443A JP 2007026891 A JP2007026891 A JP 2007026891A JP 2007026891 A JP2007026891 A JP 2007026891A JP 2007239443 A JP2007239443 A JP 2007239443A
Authority
JP
Japan
Prior art keywords
injection
plastic
ground
gel
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007026891A
Other languages
Japanese (ja)
Other versions
JP4662957B2 (en
Inventor
Shunsuke Shimada
俊介 島田
Yoshinori Oba
美紀 大場
Rei Terajima
麗 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2007026891A priority Critical patent/JP4662957B2/en
Publication of JP2007239443A publication Critical patent/JP2007239443A/en
Application granted granted Critical
Publication of JP4662957B2 publication Critical patent/JP4662957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To particularly quicken rising of strength, infiltrate into every part of an injection area, and improve suck-out resistance in a suck-out preventive injection method for use in reinforcement or cut-off of the soft ground, restoration of a building (righting the building) inclined by ground subsidence due to an earthquake, excavation work, or the like, backfilling of a tunnel or the like, filling of a cavity, consolidation under the water surface such as the sea bottom or underwater, or the like. <P>SOLUTION: Fluidized plastic gel is used as an injection material, and injection materials different in plasticity holding time are used in an initial stage of injection and a subsequent stage of injection. Further, a soil grain infiltrating type nonplastic injection material is injected in the ground in an injection area injected with plastic gel or every part of the injection area. Rising of strength is thereby quick, infiltration into every part of the injection area is attained, and suck-out resistance is improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は軟弱地盤の強化や止水、地震や掘削工事等による地盤沈下で傾斜した建造物の復元(ビル起こし)、トンネル等の裏込め、空洞の充填、海底、水中等の水面下での固結等(これらを総称して「裏込め」という)に用いられる吸出し防止注入工法に係り、特に、強度の立ち上がりが早く、注入領域の細部まで浸透し、吸出し抵抗を向上する裏込め注入材を用いた工法に関する。   The present invention strengthens soft ground, stops water, restores buildings inclined due to ground subsidence due to earthquakes or excavations, etc., backfills tunnels, fills cavities, seabed, underwater, etc. This is a suction-injection injection method used for consolidation (collectively referred to as “backfilling”), and in particular, a backfilling injection material that quickly rises in strength, penetrates into the details of the injection region, and improves the suction resistance. It relates to the construction method using

トンネル履工背面等に生じた空洞や、海や河川に面した護岸構造物は地盤の沈下、防水シートの破損によりできた空洞により裏込め土の吸出しが起こり、護岸構造物の強度が低下した。そこで、従来、護岸の裏込め土の吸出し防止工法としてセメント系懸濁型グラウトを注入し地盤を固化する方法、溶液型グラウトを注入する方法等がある。   Cavity generated on the back of tunnels, and seawalls facing the sea and rivers, due to ground subsidence and cavities created by damage to the waterproof sheet, sucked backfill soil and reduced the strength of the seawall structure. . Therefore, conventionally, there are a method for injecting cement-suspended grout to solidify the ground, a method for injecting solution-type grout, and the like as a method for preventing suction of the backfill soil on the revetment.

しかし、地盤の中の空洞は細部に入り組んでいる場合が多く、浸透性の低い懸濁型グラウト、あるいは瞬結性の溶液グラウト、あるいは瞬結性の懸濁型グラウト、あるいは可塑状注入材を用いても、それを瞬結させて流動性を失くしてしまう処方を用いたのでは細部まで浸透できず、固結厚さは薄くなり、微細な空洞ができてしまい、さらに海水が潮の干満によって出入りしているうちに固結層がはがれてしまい、新たな吸出しの原因になる可能性がある。   However, the cavities in the ground are often intricately detailed, and suspension grouting with low permeability, solution grouting with quick setting, suspension grouting with quick setting, or plastic injection Even if it is used, the formulation that loses its fluidity by instantaneously linking it cannot penetrate into details, the consolidation thickness becomes thin, fine cavities are formed, and the seawater becomes tide The consolidated layer may peel off while going in and out due to tidal periods, which may cause new sucking.

また、浸透性の高い溶液型グラウトを注入した場合、空洞の細部には充填されるものの、吸出しを受けている箇所の間隙水により希釈され、濃度が変化し均一に改良できず、強度が低い改良になってしまい長期的な改良になり得ない。   Also, when solution type grout with high permeability is injected, the details of the cavity are filled, but it is diluted with the pore water at the location receiving the suction, the concentration changes and cannot be improved uniformly, and the strength is low It becomes an improvement and cannot be a long-term improvement.

特開2003−105745号公報JP 2003-105745 A 特開平05−156252号公報JP 05-156252 A

そこで本発明者は、従来の問題として下記の点を解決することで本発明を完成した。
(1)護岸背面の背部の空洞細部まで填充すること。
(2)周囲地盤の間隙水により希釈されることが無いこと。
(3)空隙細部まで填充した充分厚い固結層を作り、固結注入材を土砂との接触面積を大きくすることにより、潮の干満に対して抵抗力の大きな固結層を作ること。
(4)固結後収縮し、亀裂や空洞を作ることの無い裏込土の吸出防止工法を開発すること。
Therefore, the present inventor completed the present invention by solving the following points as conventional problems.
(1) Fill the hollow details on the back of the back of the revetment.
(2) It shall not be diluted by pore water in the surrounding ground.
(3) Create a sufficiently thick consolidated layer that fills the void details, and increase the contact area of the consolidated injection material with the earth and sand to create a consolidated layer that is highly resistant to tides.
(4) To develop a method for preventing evacuation of backfill soil that shrinks after consolidation and does not create cracks or cavities.

可塑状グラウトは配合を調節することでゲル化した後、長時間の流動性を保ち、その後固結する。この、流動性のある可塑状ゲルは、水中でも周囲の水に希釈されることなく、気中と同様の流動性と固結を示す。また地盤注入後、後続の可塑状ゲルにて圧密することで前送の可塑状ゲルは脱水され高強度の固結体になる。本発明では地盤注入材として流動性のある可塑状ゲルの特徴に着目し、上記の課題を解決することができた。   The plastic grout is gelled by adjusting the blending, then maintains fluidity for a long time and then solidifies. This fluid plastic gel exhibits the same fluidity and solidification as in the air without being diluted in the surrounding water even in water. Further, after the ground injection, the plastic gel that has been fed forward is dehydrated by consolidation with the subsequent plastic gel, and becomes a high-strength solidified body. In the present invention, paying attention to the characteristics of a plastic gel having fluidity as a ground injection material, the above-mentioned problems have been solved.

本発明の請求項1の吸出し防止に地盤注入材として可塑状ゲルを用いる工法は、まず流動性のある可塑状ゲルを護岸の裏込め土の吸出し部に注入することで、不透水層を形成し吸出しを止める。このまま時間の経過とともに可塑状ゲルは固結するが、先送の可塑状ゲルが流動性を失わない間にさらに可塑状ゲルを圧入することで、先送の可塑状ゲルは、護岸破損部周辺の細かな空隙に入り隙間なく充填されることで新たな吸出しを防止し、亀裂や空洞を作りにくい。また、後続の可塑状ゲルの圧密により先送の可塑状ゲルは脱水され水粉体比の高い配合に近くなるため、高い強度の固結体を形成することができる。   The construction method using a plastic gel as a ground injecting material to prevent suction according to claim 1 of the present invention first forms a water-impermeable layer by injecting a fluid plastic gel into the suction part of the backfill soil of the revetment. Stop sucking. The plastic gel solidifies as time passes, but the pre-plastic plastic gel is pressed around while the pre-plastic plastic gel does not lose its fluidity. It is difficult to create cracks and cavities by entering new fine gaps and filling without gaps to prevent new suction. Further, since the plastic gel that has been fed forward is dehydrated due to the compaction of the subsequent plastic gel and becomes close to a blend having a high water-powder ratio, a high-strength consolidated body can be formed.

本発明の請求項2は、吸出し作用による護岸の吸出し部の空隙がまだ小さい場合は可塑状保持時間の異なる注入材を併用する方法に係り、注入初期段階とその後の注入段階において、注入初期段階における可塑状ゲルは、後続して注入される可塑状ゲルよりも可塑状保持時間が長い注入材を用い、先行して注入された可塑状保持時間の長い可塑状ゲルを、後続して注入される可塑状保持時間の短い可塑状ゲルが粗い空隙まで挿し込むことによって吸出し抵抗を向上することに適し、吸出し部の空隙が大きくなっている場合は、初期段階に可塑状保持時間が短い注入材で大きな空隙を充填し、続いて可塑状保持時間の長い注入液を填充して、小さな空隙を填充して土粒子との接触面積の大きな厚い固結層を形成するのに適した吸出し防止注入工法を提供する。   Claim 2 of the present invention relates to a method of using an injection material having a different plastic holding time when the gap of the suction portion of the revetment due to the suction action is still small, in the initial injection stage and the subsequent injection stage, the initial injection stage The plastic gel is injected with a plastic material that has a longer plastic holding time than the plastic gel that is subsequently injected, and the plastic gel that has been previously injected with a longer plastic holding time is subsequently injected. Suitable for improving suction resistance by inserting a plastic gel with a short plastic holding time into a rough gap, and when the gap in the suction section is large, an injection material with a short plastic holding time in the initial stage With a large void, and then filled with an injection solution with a long plastic retention time, a small void is filled to form a thick consolidated layer with a large contact area with soil particles. Construction method I will provide a.

そのため、注入初期段階において後続する可塑状ゲルよりも可塑状保持時間が長い注入材を用い、後続の注入材は先の注入材を地盤中に押し込み注入することで、先の注入材は地盤中の微細な空洞まで浸透することができ、且つ、さらに後続の注入材により圧送される為、脱水され、その結果水粉体比が高くなり地盤中で高強度の改良体となる。   Therefore, in the initial stage of injection, an injection material having a plastic holding time longer than that of the subsequent plastic gel is used, and the subsequent injection material is injected by pushing the previous injection material into the ground. Can be penetrated into the fine cavities, and since it is pumped by the subsequent injection material, it is dehydrated. As a result, the water-to-powder ratio is increased, resulting in a high strength improvement in the ground.

また、本発明における可塑状保持時間の異なる固結材を用いることにより、可塑状保持時間の長い固結材で注入管周りの空隙を填充するシール効果、土粒子間や地盤中の亀裂、吸出しによる護岸の破損部分や弱い部分に注入して強化するための一次注入材としての効果があり、可塑状保持時間の短い注入材は、圧入し一次注入材を後から押し込むことで地盤中細部まで浸透させ、且つ脱水し水粉体比を上げ強度を上げる効果が得られる。また、周辺地盤を圧密により高強度に改良することができ、改良地盤の吸出しを防止することができる。   In addition, by using a consolidation material having a different plastic retention time in the present invention, a sealing effect that fills the voids around the injection tube with a consolidation material having a long plastic retention time, cracks between soil particles and in the ground, and suction It is effective as a primary injection material to inject and strengthen the breakage or weak part of the revetment due to sewage, and the injection material with a short plastic holding time can be pressed into the ground and pushed into the ground to the details in the ground. The effect of permeating and dehydrating to increase the water powder ratio and increase the strength can be obtained. In addition, the surrounding ground can be improved with high strength by compaction, and suction of the improved ground can be prevented.

また、本発明では加圧すれば流動し、加圧を静止すればゲル化し、地下水等の間隙水により希釈されることは無い為、従来では初期注入材の固結を待ってから2次注入を行っていたが、初期注入と2次注入を続けて行うことができ、また、周辺の水質を悪化させないという利点がある。   Further, in the present invention, if it is pressurized, it will flow, and if the pressure is stopped, it will gel, and it will not be diluted with pore water such as groundwater. However, there is an advantage that the initial injection and the secondary injection can be performed continuously, and the surrounding water quality is not deteriorated.

本発明の注入材として使用できる流動性可塑状ゲルとは、懸濁液と可塑剤を混合することにより形成され、加圧すると流動性を呈し、静止すれば非流動性を呈する注入材を言う。地盤中における可塑状ゲルの流動特性を示す指標として「流動性を示すフロー」と「スランプ値」、「可塑状ゲルによるゲル化時間」、「可塑状保持時間」、「非可塑状になる固化時間」に着目した。   The fluid plastic gel that can be used as the injection material of the present invention is an injection material that is formed by mixing a suspension and a plasticizer, exhibits fluidity when pressurized, and exhibits non-fluidity when stationary. . "Flow indicating fluidity" and "slump value", "gelation time with plastic gel", "plasticity retention time", "solidification to become nonplasticized" as indicators of the flow characteristics of plastic gel in the ground Focused on “time”.

このうちゲル化時間とは配合後テーブルフローが20cmになる時間とし、可塑状保持時間とはゲル化後外力を加えても流動しなくなる時間即ち貫入抵抗値が0.01MN/m2を超えた時点迄の時間としてそれを硬化時間とした。 Of these, the gelation time is the time when the table flow is 20 cm after blending, and the plasticity retention time is the time when the gel does not flow even when external force is applied after gelation, that is, when the penetration resistance value exceeds 0.01 MN / m 2. This was taken as the curing time.

この種の可塑性注入材として、従来、硬化発現材としてセメント懸濁液やセメントベントナイト懸濁液、或はスラグに消石灰を加えた懸濁液に、可塑剤として水ガラスやアルミニウム塩、粘土鉱物、高分子材等を合流したものを使用することができる。必要に応じて、骨材、添加剤(エア発生剤、分散剤、遅延剤、強度促進剤、増粘剤等)を配合する。   As a plastic injection material of this type, conventionally, a cement suspension or cement bentonite suspension as a curing agent, or a suspension obtained by adding slaked lime to a slag, water glass, aluminum salt, clay mineral, A material in which polymer materials or the like are merged can be used. Aggregates and additives (air generating agent, dispersant, retarder, strength promoter, thickener, etc.) are blended as necessary.

特に、フライアッシュを主剤とした可塑性グラウトを用いた場合、地盤に注入する前、或は注入後の地盤中において大きなテーブルフロー又はシリンダーフロー、すなわち20cm以上30cm未満、スランプが15〜26cmといった流動性がある配合を用いても、地盤中に圧入することにより脱水を伴い、注入前のフローが30cm以上でも、あるいはスランプが26cm以上でも地盤中で可塑状ゲルになり、かつ可塑性保持時間が充分にある可塑状ゲルを形成し、充分大きな塊状ゲル化物に成長できる点にある。   In particular, when using plastic grout with fly ash as the main ingredient, large table flow or cylinder flow before injection into the ground or in the ground after injection, that is, fluidity such as 20 cm or more and less than 30 cm, slump 15 to 26 cm. Even if a certain composition is used, it is dehydrated by press-fitting into the ground, and even if the flow before injection is 30 cm or more, or even if the slump is 26 cm or more, it becomes a plastic gel in the ground, and the plastic holding time is sufficient. A plastic gel can be formed and grown into a sufficiently large lump gel.

地盤中で塊状に固結するには、加圧することにより流動できるものの、土粒子間には浸透せずかつ脈状に割裂しない程度の可塑状ゲルを形成する地盤注入材であって、テーブルフローで表わすと12cm以上30cm未満、好ましくは15cm〜28cm、スランプでは5cmより大きく、好ましくは10〜28cm、シリンダーによるフローでは8cmより大きく28cm未満、好ましくは9〜26cmの範囲を示す地盤注入材であることが好ましい。又、地盤中にて加圧脱水による可塑状ゲルの形成を考慮して注入前に可塑状ゲルになっているもの、或いは水粉体比が30%以内減少で可塑状ゲル(テーブルフローでほぼ20cm)になる場合であることが好ましい。   In order to consolidate in the ground, it is a ground injection material that forms a plastic gel that can flow by pressurization but does not penetrate between soil particles and does not split into veins. Is a ground injection material showing a range of 12 cm or more and less than 30 cm, preferably 15 cm to 28 cm, slump greater than 5 cm, preferably 10 to 28 cm, and cylinder flow greater than 8 cm and less than 28 cm, preferably 9 to 26 cm. It is preferable. In addition, in consideration of the formation of a plastic gel by pressure dehydration in the ground, it is a plastic gel before injection, or the water-to-powder ratio is reduced within 30% and the plastic gel 20 cm) is preferable.

可塑状ゲルによる吸出し防止工法には以下の条件が好ましい。
硬化発現材比 C/F+C×100(%)
1重量%以上50重量%未満、好ましくは1〜40重量%、更に好ましくは1〜20重量%、
水紛体比 W/F+C×100(%)
20〜200重量%、好ましくは20〜100重量%、更に好ましくは20〜50重量%、
アルミニウム比 アルミニウム/F+C×100(%)
Al23換算で0.01〜0.52%、
水ガラス
シリカ分で0〜7.0重量%、
スランプ(cm)
注入時のスランプが5cm以上、好ましくは約5〜28cm、更に好ましくは10〜28cm
フロー(cm)、
注入時のテーブルフローが12cm以上30cm未満、好ましくは約15〜28cm、
注入時のシリンダーフローが8cm〜28cm未満、好ましくは約9〜26cm、
ブリージング
10%以下、好ましくは5%以下、
可塑状ゲル或は水粉体比が30%以内の減少で可塑状ゲルすなわちテーブルフローが20cm以内になる配合を用いる。
The following conditions are preferable for the suction prevention method using a plastic gel.
Curing expression ratio C / F + C × 100 (%)
1 to 50% by weight, preferably 1 to 40% by weight, more preferably 1 to 20% by weight,
Water powder ratio W / F + C × 100 (%)
20 to 200% by weight, preferably 20 to 100% by weight, more preferably 20 to 50% by weight,
Aluminum ratio Aluminum / F + C × 100 (%)
0.01 to 0.52% in terms of Al 2 O 3 ,
Water glass 0-7.0% by weight with silica content,
Slump (cm)
Slump at the time of injection is 5 cm or more, preferably about 5 to 28 cm, more preferably 10 to 28 cm
Flow (cm),
The table flow during injection is 12 cm or more and less than 30 cm, preferably about 15 to 28 cm,
Cylinder flow at the time of injection is 8 cm to less than 28 cm, preferably about 9 to 26 cm,
breathing
10% or less, preferably 5% or less,
Use a plastic gel or a blend that reduces the water powder ratio by 30% or less, that is, a plastic gel or table flow within 20 cm.

また、初期の注入材として、あるいは可塑状グラウトを注入後の微細な空隙に注入するための注入材として浸透型懸濁グラウトが使用できる。   Further, an osmotic suspension grout can be used as an initial injection material or an injection material for injecting a plastic grout into a fine void after injection.

本発明では懸濁グラウトであれば使用できるが、長いゲル化時間で高強度を得、かつ浸透性に優れている必要がある。   In the present invention, any suspension grout can be used, but it is necessary to obtain a high strength with a long gelation time and to have excellent permeability.

例としてシリカ化合物と、アルミン酸アルカリ金属塩溶液と、多価金属化合物とからなるものを用い、特に該アルミン酸アルカリ金属塩溶液は〔Me2O〕/〔Al23〕の値が2.8以上となるように調製することで、これにアルカリ土類金属等の多価金属化合物を混合すると長いゲル化時間が可能で、しかも強度に優れた注入材が得られることが知られている(特許文献2:特開平05−156252号参照)。ここで、Meはアルカリ金属で、〔Me2 O〕はアルミン酸アルカリ金属塩溶液とシリカ化合物中のMe2Oの合計モル濃度、〔Al23〕アルミン酸アルカリ金属塩溶液中のAl23 のモル濃度をそれぞれ表す。 As an example, a silica compound, an alkali metal aluminate salt solution, and a polyvalent metal compound are used. In particular, the alkali metal aluminate salt solution has a value of [Me 2 O] / [Al 2 O 3 ] of 2 It is known that by mixing with a polyvalent metal compound such as an alkaline earth metal, an injection material having a long gelation time and excellent strength can be obtained. (See Patent Document 2: Japanese Patent Laid-Open No. 05-156252). Here, Me represents an alkali metal, [Me 2 O] is the total molar concentration of Me 2 O of aluminate alkali metal salt solution and the silica compound, [Al 2 O 3] Al 2 aluminate alkali metal salt solution Each represents the molar concentration of O 3 .

また、アルミン酸ソーダに代えてアルミン酸カリウムを使用しても当然同様である。シリカ化合物として珪酸のアルカリ金属塩である水ガラスを使用した場合の〔Me2 O〕は、アルミン酸アルカリ金属塩溶液と水ガラスの両者から由来したMe2 Oのモル濃度に相当する。シリカ化合物として、水ガラスの他にスラグ、シリカフューム、フライアッシュ、ホワイトカーボン、珪華、白土類等が挙げられ、Me2Oを含有していない場合は当然、アルミン酸アルカリ金属溶液自体における〔Me2O〕/〔Al23〕の値となる。 Of course, the same applies when potassium aluminate is used instead of sodium aluminate. [Me 2 O] when water glass, which is an alkali metal salt of silicic acid, is used as the silica compound corresponds to the molar concentration of Me 2 O derived from both the alkali metal aluminate solution and the water glass. Examples of the silica compound include slag, silica fume, fly ash, white carbon, sinter, white clay and the like in addition to water glass. When Me 2 O is not contained, it is natural that [Me] in the alkali metal aluminate solution itself. 2 O] / [Al 2 O 3 ].

多価金属化合物としては、炭酸カルシウム、塩化カルシウム、水酸化カルシウム、硫酸カルシウム、酸化カルシウム等のカルシウム化合物、及びカルシウムに代えてマグネシウム化合物、その他硫酸鉄、塩化鉄、鉄ミョウバン、硫酸銅等があげられる。以上のうちアルカリ土類金属の水酸化物、酸化物、炭酸塩等の難溶性アルカリ土類金属化合物が特に長いゲル化時間で高強度を得るのに適している。   Examples of polyvalent metal compounds include calcium compounds such as calcium carbonate, calcium chloride, calcium hydroxide, calcium sulfate, and calcium oxide, and magnesium compounds in place of calcium, other iron sulfate, iron chloride, iron alum, copper sulfate, and the like. It is done. Of the above, sparingly soluble alkaline earth metal compounds such as alkaline earth metal hydroxides, oxides and carbonates are particularly suitable for obtaining high strength in a long gel time.


[可塑性グラウトとしての要因と条件]
(1)硬化発現材比
グラウトに含まれる粉体、つまりフライアッシュとセメントの含有量に対するセメントの含有量:
セメント(硬化発現材)重量/{フライアッシュ(シリカ系非硬化性粉状体)重量+セメント(硬化発現材)重量}×100[%]
セメントは硬化発現材であり、かつフライアッシュの可塑材という事も出来る。フライアッシュはセメントと混合することによりポゾラン反応を起こし固結強度を得る。しかし、硬化発現材比を大きくすることにつれ、可塑状グラウトとしての特性が低下する。即ち、沈殿してブリージングが大きくなり、沈殿したものは流動しにくく可塑状ゲルになり難いため、硬化発現材比は50%未満とするが、その好ましい範囲は硫酸バンド(ゲル化促進剤)を添加しない場合1〜20%、好ましくは1〜15%、さらに好ましくは1〜10%である。また、硫酸バンドを添加する場合は2〜40%、好ましくは2〜20%である。

[Factors and conditions as plastic grout]
(1) Hardening material ratio Cement content with respect to powder contained in grout, that is, fly ash and cement content:
Cement (hardening expression material) weight / {fly ash (silica-based non-curable powder) weight + cement (hardening expression material) weight} × 100 [%]
Cement is a material that develops hardening and can also be called fly ash plasticizer. When fly ash is mixed with cement, it causes a pozzolanic reaction to obtain consolidated strength. However, as the ratio of the cured material is increased, the characteristics as a plastic grout deteriorate. That is, precipitation increases the breathing, and the precipitated material is difficult to flow and hardly forms a plastic gel. Therefore, the ratio of the cured material is less than 50%, but the preferred range is a sulfate band (gelling accelerator). When not added, it is 1 to 20%, preferably 1 to 15%, more preferably 1 to 10%. Moreover, when adding a sulfuric acid band, it is 2 to 40%, Preferably it is 2 to 20%.

(2)水粉体比
グラウト中の粉体に対する水の含有量:
水重量/{フライアッシュ(シリカ系非硬化性粉状体)重量+セメント(硬化発現材)重量}×100[%]
この値が小さいと可塑状になりやすい。即ち配合後可塑状ゲルになる時間が短くなり、かつフロー値が小さくなる。しかし、水粉体比が小さ過ぎると作業性を損なうため、その範囲は20〜200%、好ましくは20〜100%、更に好ましくは20〜50%(重量比)とする。しかし、水ガラスを促進剤として用いる場合は、水粉体比は大きくとることができる。その他、混合条件、環境、また材料により、グラウトの性状は異なってくるため、後に示すブリージング率、フロー値、強度の測定が重要となる。
(2) Water powder ratio Water content with respect to the powder in the grout:
Water weight / {fly ash (silica-based non-curable powder) weight + cement (curing material) weight} × 100 [%]
When this value is small, it tends to be plastic. That is, the time for forming a plastic gel after blending is shortened, and the flow value is decreased. However, if the water powder ratio is too small, workability is impaired, so the range is 20 to 200%, preferably 20 to 100%, more preferably 20 to 50% (weight ratio). However, when water glass is used as an accelerator, the water powder ratio can be increased. In addition, since the properties of the grout differ depending on the mixing conditions, environment, and materials, the measurement of the breathing rate, flow value, and strength described later is important.

(3)硫酸バンド添加量
グラウト中の粉体に対する硫酸バンドの添加量:
硫酸バンド重量/{フライアッシュ{シリカ系非硬化性粉状体}重量+セメント(硬化発現材)重量)×100[%]
硫酸バンドはゲル化促進剤であり、フライアッシュとセメントの流動性ある状態の中に添加すると、ゲル化を促進させ、可塑状ゲルになる時間を早める。ただし、硫酸バンドには固結強度を低下させる作用もあるので、その添加量は2.0%以下、好ましくは0.1〜1.0%とする。
(3) Amount of sulfate band added Amount of sulfate band added to the powder in the grout:
Sulfuric acid band weight / {fly ash {silica-based non-curing powder} weight + cement (curing material) weight) × 100 [%]
The sulfuric acid band is a gelation accelerator, and when added to the fluid state of fly ash and cement, it promotes gelation and accelerates the time to become a plastic gel. However, since the sulfuric acid band also has the effect of reducing the consolidation strength, its addition amount is 2.0% or less, preferably 0.1 to 1.0%.

(4)ゲルタイム
ここでは一般的な水ガラス系グラウトにみられるような固化状となる化学的ゲル化を意味するのではなく、配合後、自重による流動性がなくなり、力を加えると流動する可塑状ゲルとなるまでの物理的ゲル化時間をゲルタイムと表現する。一般の水ガラスを主材とするグラウトと違って、明確なゲル化時間を示すことはできない。よってフロー値を用いてその値が20cm以下になった時をゲル化とみなし、これをゲルタイムとした。
(4) Gel time Here, it does not mean chemical gelation that is solidified like that found in common water glass grouts, but it loses its fluidity due to its own weight after compounding, and plastic that flows when force is applied. The physical gelation time until it becomes a gel is expressed as gel time. Unlike a grout made from a common water glass, it cannot show a clear gelation time. Therefore, when the flow value was 20 cm or less using the flow value, it was regarded as gelation, and this was defined as gel time.

(5)可塑状保持時間
アスファルト針入度試験方法JIS K 2530-1961に準じて総質量230g、先端角度15度、36mmの貫入コーンを用いて静的貫入抵抗を測定し、貫入抵抗値が0.01MN/m2を越えた時非可塑状ゲルとなって固結または硬化とみなし、ゲル化から固結に至るまでの時間を可塑状保持時間とした。
(5) Plasticity retention time Asphalt penetration test method Static penetration resistance was measured using a penetration cone with a total mass of 230 g, tip angle of 15 degrees, and 36 mm according to JIS K 2530-1961. When it exceeded MN / m 2 , it became a non-plastic gel and was regarded as consolidated or cured, and the time from gelation to consolidation was defined as the plastic retention time.

(6)ブリージング率
配合後、グラウトを充分に混合させ、次いで、200mlメスシリンダにグラウトを入れて静止密閉し、1時間経過後にブリージング水量(上ずみ液)を測定し、次式よりブリージング率を求める。
(ブリージング水量/メスシリンダ容量)×100[%]
ここでは、1時間経過後のブリージング率を示す。1時間経過後のブリージング率が10%以上の配合では、注入液が分離しやすく、脈状または亀裂状に注入されやすい。その後、時間が経過すると更にブリージング率が増大するので、従って1時間経過のブリージング率は10%以下、好ましくは5%以内の配合が好ましい。
(6) Breathing rate After blending, mix the grout thoroughly, then place the grout in a 200 ml graduated cylinder and seal it statically. Ask.
(Breathing water volume / measuring cylinder capacity) x 100 [%]
Here, the breathing rate after 1 hour has elapsed is shown. When the blending rate is 10% or more after 1 hour, the injected solution is easily separated and is easily injected in the form of veins or cracks. Thereafter, the breathing rate further increases as time elapses. Therefore, the blending rate after 1 hour is preferably 10% or less, preferably within 5%.

(7)フロー値
フロー試験(JIS R 5201テーブルフロー)に基づき、グラウトに15秒間に15回の落下運動を与え、その広がりを測定した。可塑状グラウトとしては約18〜19cmが適しているとされているが、本発明ではフロー値が20cm以下になる時点で自重による流動性がなくなったものとして、ゲルタイムとした。本発明における流動性注入材は、地盤中に注入して加圧脱水によって水粉体比が低下して、テーブルフローが20cm以下に至る配合が用いられる。
(7) Flow value Based on a flow test (JIS R 5201 table flow), the grout was subjected to 15 drop motions in 15 seconds, and the spread was measured. About 18-19 cm is said to be suitable as the plastic grout, but in the present invention, the fluidity due to its own weight disappeared when the flow value became 20 cm or less, and the gel time was used. The flowable injecting material in the present invention is used in such a composition that the water-to-powder ratio is lowered by pressure dehydration by pouring into the ground and the table flow reaches 20 cm or less.

また、シリンダーによるフローは、高さ8cm、直径8cmの円筒にグラウトを詰め、円筒を取り除いたときのグラウトの広がりを測定するものである。その場合の適切な範囲はおよそ8〜18cmであり、さらにシリンダーを取り除いた後にテーブルフローと同様の15回の落下運動を与えた場合はおおよそ13〜22cmである。上述のテーブルフローよりも簡易に測定できるため現場などで用いられることが多いが、簡易であるため人為的な誤差が生じる可能性がある。図8にテーブルフローとシリンダーフローのおおよその関係を示す。
このような水粉体比が大きな配合でも脱水によって地盤中で水粉体比が20%以下になり可塑状ゲルから非可塑状ゲルを経て固化する。
The flow by the cylinder is to measure the spread of the grout when a cylinder having a height of 8 cm and a diameter of 8 cm is filled with the grout and the cylinder is removed. An appropriate range in that case is approximately 8 to 18 cm, and approximately 15 to 22 cm when a drop motion of 15 times similar to the table flow is given after removing the cylinder. Since it can be measured more easily than the above table flow, it is often used in the field. However, since it is simple, an artificial error may occur. FIG. 8 shows an approximate relationship between the table flow and the cylinder flow.
Even with such a high water powder ratio, the water powder ratio becomes 20% or less in the ground due to dehydration, and solidifies from a plastic gel through a non-plastic gel.

(8)初期粘性
B形粘度形を用いて、配合直後の配合液の粘度を計測した。混合直後は流動性があるため計測できたが、ゲル化すると100000cps以上となり、測定不可となる。
(8) Initial viscosity
Using the B-type viscosity form, the viscosity of the blended liquid immediately after blending was measured. Immediately after mixing, measurement was possible due to the fluidity, but when gelled, it becomes 100,000 cps or more, and measurement is impossible.

(9)一軸圧縮強度
配合後、充分に混合したグラウトを直径5cm、高さ10cmのモールドに詰め、静止した状態で1日養生し、一軸圧縮強度を測定した。
(9) Uniaxial compressive strength After blending, a well-mixed grout was packed in a mold having a diameter of 5 cm and a height of 10 cm, and cured for one day in a stationary state, and the uniaxial compressive strength was measured.

本発明の請求項3の可塑状グラウトを注入後の微細な空隙に注入するための注入材として土粒子浸透型の非可塑状グラウトが使用できる。   As the injection material for injecting the plastic grout according to claim 3 of the present invention into the fine voids after the injection, a soil particle permeation type non-plastic grout can be used.

本発明における土粒子浸透型の非可塑状グラウトは、懸濁型、溶液型のどちらでも使用できるが、長いゲル化時間で高強度を得、かつ浸透性に優れている必要がある。   The soil particle permeation type non-plastic grout in the present invention can be either a suspension type or a solution type, but it is necessary to obtain high strength with a long gelation time and to have excellent permeability.

セメント、セメントベントナイト、スラグ等を混合した懸濁グラウト、もしくは/さらに、溶液型シリカ固結材を用いた水ガラス系注入材でもよいが、当然、耐久性の優れた固結材が好ましく、水ガラスからイオン交換樹脂またはイオン交換膜により脱アルカリ処理、または酸による中和処理によって得られた水溶性シリカ化合物を主成分とする注入材が好ましい。このような水溶性シリカ化合物を主成分とする注入材としては、コロイダルシリカ系注入材(コロイダルシリカに無機塩等の硬化剤を添加してゲル化させる注入材)、活性シリカ系注入材(活性シリカまたは弱アルカリ性シリカにpH調整材および必要に応じて無機塩類を添加してゲル化させる注入材)、およびシリカゾル系注入材(弱アルカリ性〜中性、酸性)が好ましい。なお、コロイダルシリカ系注入材の場合には、少量の酸類を添加して固結体のpHを下げた方がより耐久性が良好となる。   Suspended grout mixed with cement, cement bentonite, slag, etc., and / or water glass-based injection material using solution-type silica consolidated material may be used. An injection material mainly composed of a water-soluble silica compound obtained from glass by dealkalization treatment with an ion exchange resin or an ion exchange membrane or neutralization treatment with an acid is preferred. As an injection material mainly composed of such a water-soluble silica compound, a colloidal silica injection material (an injection material in which a curing agent such as an inorganic salt is added to colloidal silica to be gelled), an active silica injection material (active A pH adjusting material and an injection material in which an inorganic salt is added to gel if necessary, and a silica sol-based injection material (weak alkaline to neutral, acidic) are preferable. In the case of a colloidal silica-based injection material, the durability becomes better when the pH of the solidified body is lowered by adding a small amount of acids.

他方、酸性シリカゾルの場合、あるいはコロイダルシリカ、活性シリカ系でも同様であるが、弱アルカリ性懸濁型注入材のpHの影響によりゲル化時間が大幅に短縮することがあるので、酸性シリカゾルに燐酸化合物および/または金属封鎖剤を含有させたものを用いるのが望ましい。このような化合物としては、燐酸、燐酸1ソーダ、燐酸2ソーダ、燐酸3ソーダ、ピロ燐酸ソーダ、酸性ピロ燐酸ソーダ、トリポリ燐酸ソーダ、テトラポリ燐酸ソーダ、ヘキサメタ燐酸ソーダ、酸性メタ燐酸ソーダ等が挙げられる。   On the other hand, in the case of acidic silica sol, or colloidal silica or activated silica, the gelation time may be greatly shortened due to the influence of the pH of the weak alkaline suspension injection material. It is desirable to use a material containing a metal sequestering agent. Examples of such compounds include phosphoric acid, phosphoric acid 1 soda, phosphoric acid 2 soda, phosphoric acid 3 soda, pyrophosphoric acid soda, acidic pyrophosphoric acid soda, tripolyphosphoric acid soda, tetrapolyphosphoric acid soda, hexametaphosphoric acid soda, and acidic metaphosphoric acid soda. .

以下に本発明に用いる流動性可塑状グラウトを実施例で詳述する。   The flowable plastic grout used in the present invention will be described in detail in the following examples.

使用材料
(1)フライアッシュ
火力発電所より排出される石炭灰:FA、シリカ系非硬化性粉状体、
密度1.9〜2.3g/cm3、粒度分布0.1mm以下が90%以上。
(2)セメント
普通ポルトランドセメント:PC、硬化発現材。
Materials used (1) Fly ash Coal ash discharged from thermal power plants: FA, silica-based non-curable powder,
A density of 1.9 to 2.3 g / cm 3 and a particle size distribution of 0.1 mm or less is 90% or more.
(2) Cement Ordinary Portland cement: PC, hardened material.

〔配合例1〜3〕
フライアッシュ、セメント、水を練り混ぜる。フライアッシュとセメントの配合量は同様にして水の配合量のみを変化させた。このようにして得られた配合例1〜3の地盤注入材の調整条件および物性値を下記の表1に示す。
[Formulation Examples 1 to 3]
Mix fly ash, cement and water. The blending amount of fly ash and cement was similarly changed only in the blending amount of water. Table 1 below shows the adjustment conditions and physical property values of the ground injection materials of Formulation Examples 1 to 3 thus obtained.

Figure 2007239443
Figure 2007239443

表1において、ゲル化時間とは、配合後、可塑状ゲルを呈するまでの時間を言い、テーブルフローがほぼ20cmとなった時点をゲル化時間とする。又、可塑性保持時間とは、静止しておけばゲル状を保持するが、力を加えると流動する状態を呈している時間を言う。配合例3に示すように水粉体比が小さくなると配合液は直ちに可塑状となる。よって配合例1,2のように配合直後は流動性のある懸濁液も地盤中に注入される過程で脱水され、配合例3に示す可塑状ゲルとなる。   In Table 1, the gelation time refers to the time until the plastic gel is formed after blending, and the time when the table flow becomes approximately 20 cm is defined as the gelation time. The plastic holding time refers to the time during which a gel-like state is maintained if it is stationary but is in a state of flowing when a force is applied. As shown in Formulation Example 3, when the water powder ratio decreases, the blended liquid immediately becomes plastic. Therefore, immediately after blending as in blending examples 1 and 2, a fluid suspension is dehydrated in the process of being poured into the ground, and the plastic gel shown in blending example 3 is obtained.

表1に示すように同一の硬化発現材比8.05%で水粉体比が35%の配合1、水粉体比が30%の配合2は、配合後、可塑状ゲルになる迄のゲル化時間はそれぞれ480分とか300分を要する。水粉体比が25%になるとゲル化時間は2分になる。この事は配合時、地盤中に注入される前迄は可塑状に到っていない注入材が地盤中においては、脱水によって水紛体比が35%から30%(脱水率約15%)さらに25%(脱水率30%)に低下するにつれてゲルタイムが2分迄減少し可塑状ゲルとなり塊状体を形成する。しかも、ゲル化時では可塑状保持時間は7.5時間であるから塊状ゲルは拡大しブリージングが小さく、粘性が増大して拡散し難くなり固化物は大きな強度となる。   As shown in Table 1, Formulation 1 with the same cured material ratio of 8.05% and a water powder ratio of 35% and Formulation 2 with a water powder ratio of 30% are gelated until a plastic gel is formed after blending. Each time takes 480 or 300 minutes. When the water powder ratio is 25%, the gelation time is 2 minutes. This means that at the time of compounding, when the injection material that has not reached the plastic state before being injected into the ground is mixed in the ground, the water body ratio is 35% to 30% (dehydration rate is about 15%) and 25 % (Dehydration rate 30%), the gel time decreases to 2 minutes and becomes a plastic gel to form a lump. In addition, since the plastic state retention time is 7.5 hours at the time of gelation, the bulk gel expands, the breathing is small, the viscosity increases and it becomes difficult to diffuse, and the solidified product has high strength.

このような特性は従来知られていなかった。即ち、流動性注入材は地盤中に圧入されてから水粉体比が35%〜25%迄脱水する迄はゲル化に到らず、25%(脱水率約30%)になって、2分後には、可塑状ゲルを形成し、その時点での可塑状保持時間は7.5時間であって、圧入が続くにつれゲル状のまま大きく生成し更に脱水或は硬化現象の進行に伴い、非流動性ゲルとなり固化する。   Such characteristics have not been known so far. That is, the flowable injection material does not reach gelation until the water powder ratio is dehydrated from 35% to 25% after being pressed into the ground, and becomes 25% (dehydration rate of about 30%). After a minute, a plastic gel is formed, and the plastic retention time at that time is 7.5 hours. As the press-fitting continues, the gel remains large, and as the dehydration or curing phenomenon progresses, it does not flow. It becomes a gel and solidifies.

従って、このように注入時点で可塑状を呈していなくても地盤中の脱水によって可塑状になり得る。このような流動性注入液の注入においては配合液を一液のまま注入しても、紛状体注入液をA液としアルミニウム水ガラス等のゲル化促進材をB液とし合流注入しようと、或はA液を可塑状ゲルとし、B液を水ガラス等のゲル化促進剤としようとその手段は問わないで施工する事が出来る。   Therefore, even if it does not exhibit plasticity at the time of injection, it can become plastic by dehydration in the ground. In injecting such a fluid injection solution, even if the compounding solution is injected as a single solution, the powder injection solution is A solution and gelation promoting material such as aluminum water glass is used as B solution. Alternatively, the liquid A can be applied to any plastic gel and the liquid B can be used as a gelation accelerator such as water glass regardless of the means.

日本道路公団「矢板工法トンネルの背面空洞注入工 設計・施工指針」により、本発明の性能評価を行った。このときの配合は実施例1の表1における配合2,3である。   The performance evaluation of the present invention was carried out according to the Japan Highway Public Corporation "Guideline for the design and construction of the back cavity of the Yaita method tunnel". The blending at this time is blending 2 and 3 in Table 1 of Example 1.

1.充填性試験:空洞部分への限定注入性の評価を行った。 1. Fillability test: Evaluation of limited injection property into the cavity was performed.

(a)試験装置
試験装置を図1に示す。
高さ300mm、幅300mm、長さ4000mmの排水溝底部に、所定の傾斜を付けて、モルタルを打設し硬化させる。
硬化した排水溝(容器)の下端には、高さ100mm程度のコンクリートブロックを4箇所、上端には100mm程度の角材(木材)を4箇所及びH型鋼を2箇所固定する。
表面には、充填状況等が確認できるように、透明のアクリル板を固定する。なお、注入圧力によるアクリル板の浮き上がり防止として、適当な間隔で鋼材にて固定を行う。
上記で製作された容器内には、注入口と注入口から2mの位置の計2箇所に、圧力ゲージを設置する。
(A) Test equipment Fig. 1 shows the test equipment.
A mortar is placed and cured with a predetermined inclination on the bottom of a drainage groove having a height of 300 mm, a width of 300 mm, and a length of 4000 mm.
At the lower end of the hardened drainage ditch (container), four concrete blocks with a height of about 100 mm, four corners (wood) with a height of about 100 mm and two H-shaped steels are fixed at the upper end.
A transparent acrylic plate is fixed on the surface so that the filling state and the like can be confirmed. In order to prevent the acrylic plate from being lifted by the injection pressure, the steel plate is fixed at an appropriate interval.
In the container manufactured above, pressure gauges will be installed at two locations, 2m from the injection port.

(b)試験方法
試験装置内に注入材を注入する。
注入材の注入流量(注入ホースからの吐出量)は30l/minとする。
アクリル板から充填状況を確認する。
圧力ゲージにて、注入時の圧力を計測する。
注入は、先端部の吐出口から、試料が流出した時点で終了とする。
注入開始時点から約2時間経過後に、容器を解体して充填状況の確認を行う。このとき、容器内の上端・下端に設置した、角材やH型鋼等の周辺にかけて、注入材が隙間なく密実に充填がなされているか詳細に観察して記録する。
注入材として、本発明の比較として、可塑状保持時間11時間の「配合2」、可塑状保持時間7.5時間の「配合3」をそれぞれ単独で注入した場合と、本発明の実施例として、初期の注入に「配合2」を注入後、「配合3」を注入した場合を行った。
(B) Test method An injection material is injected into the test apparatus.
The injection flow rate of the injection material (discharge amount from the injection hose) is 30 l / min.
Check the filling status from the acrylic board.
The pressure at the time of injection is measured with a pressure gauge.
The injection is terminated when the sample flows out from the discharge port at the tip.
After about 2 hours from the start of injection, disassemble the container and check the filling status. At this time, it is observed and recorded in detail whether or not the injected material is densely filled without gaps around the periphery of the square bar, H-shaped steel, etc. installed at the upper and lower ends in the container.
As an injecting material, as a comparison with the present invention, “Formulation 2” with a plastic holding time of 11 hours and “Formulation 3” with a plastic holding time of 7.5 hours were individually injected, and as an example of the present invention In the initial injection, “Formulation 2” was injected and then “Formulation 3” was injected.

(c)結果
本発明の可塑状保持時間の長い配合2を先に注入し、その後可塑状保持時間の短い配合3を注入した結果、及び、本発明の比較として配合2、配合3単独で注入した試験結果を表2に示す。
(C) Results The result of injecting compound 2 with a long plastic holding time of the present invention first, and then injecting compound 3 with a short plastic holding time, and injecting compound 2 and compound 3 alone as a comparison of the present invention Table 2 shows the test results.

Figure 2007239443
Figure 2007239443

配合2においては、可塑状保持時間が長く流動性が高いため角材やH鋼の細部まで隙間無く充填することができた。配合3においては、H鋼周辺に大きな空洞ができ、角材やコンクリートブロックの周辺に空洞ができた。
配合2を注入後、配合3を注入した場合は角材、コンクリートブロック、H鋼周辺においても隙間無く充填することができた。
In Formula 2, since the plastic holding time was long and the fluidity was high, the details of the square and H steel could be filled without any gaps. In compound 3, large cavities were formed around H steel, and cavities were formed around square bars and concrete blocks.
When compound 3 was injected after compound 2 was injected, it could be filled without gaps in the vicinity of square bars, concrete blocks, and H steel.

2.非逸走性試験:亀裂・覆工のクラックなどへ流動・流出の性能評価を行った。 2. Non-runaway test: The flow / outflow performance of cracks and lining cracks was evaluated.

(a)試験装置
試験装置を図2に示す。
木枠、木板、透明アクリル板を加工し、所定の容器を作製する。
隙間への逸走状況(注入材の進入深さ)を確認できるように、容器の表側には透明のアクリル板を設置する。
容器の片側には、長さ400mm程度のシュート状の投入口を作製する。
容器の下部には、1、3、5、7、10mmの隙間を発砲スチロールにて作製する。
(A) Test apparatus A test apparatus is shown in FIG.
A wooden frame, a wooden board, and a transparent acrylic board are processed, and a predetermined container is produced.
A transparent acrylic plate is installed on the front side of the container so that the condition of escape to the gap (injection depth of the injected material) can be confirmed.
A chute-shaped inlet having a length of about 400 mm is prepared on one side of the container.
In the lower part of the container, gaps of 1, 3, 5, 7, 10 mm are made with foamed polystyrene.

(b)試験方法
試験装置内に注入材を流し込む。ただし、注入材は直接入れず、容器片側のシュートにて1クッションおいて流し込むものとする。
注入材の吐出量は30l/minの速度とする。
注入は、発砲スチロール天端から、高さ300mmに達した時点で終了とする。
各隙間に入りこんだ(進入した)注入材の深さを10min、30min、60minで計測する。
注入材として「配合2」「配合3」をそれぞれ使用し、それぞれの性能評価を行った。
(B) Test method The pouring material is poured into the test apparatus. However, the injection material should not be poured directly, but should be poured in one cushion with a chute on one side of the container.
The discharge rate of the injection material is 30 l / min.
The injection ends when the height reaches 300 mm from the top of the foamed polystyrene.
Measure the depth of the injected material that has entered (entered) each gap at 10 min, 30 min, and 60 min.
“Ingredient 2” and “Ingredient 3” were used as injection materials, respectively, and performance evaluations were performed.

(c)結果
配合2、配合3における非逸走性試験の結果をそれぞれ表-3、4に示す。
(C) Results Tables 3 and 4 show the results of the non-runaway test in Formulation 2 and Formulation 3, respectively.

Figure 2007239443
Figure 2007239443

Figure 2007239443
Figure 2007239443

3.水分離抵抗性試験:水に対する分離抵抗性、及び、周囲の水のpHを測定した。 3. Water separation resistance test: The separation resistance to water and the pH of surrounding water were measured.

(a)試験装置
試験装置を図3に示す。
長さ約450mm程度、幅300mm程度、高さ300mm程度の水槽に26lの水を張る。使用水はpHが7〜8程度の水道水とする。
水槽の中に、pH計を取り付ける。この時、pH計の設置位置は、水面から10cmとする。
濁度は、水面から10cmの位置よりスポイトでサンプリングし、分光光度計により波長800mmでの光透過率を測定する。
(A) Test equipment Fig. 3 shows the test equipment.
26 l of water is put in a water tank of about 450 mm in length, about 300 mm in width, and about 300 mm in height. The water used is tap water with a pH of about 7-8.
Install a pH meter in the aquarium. At this time, the installation position of the pH meter is 10 cm from the water surface.
The turbidity is sampled with a dropper from a position 10 cm from the water surface, and the light transmittance at a wavelength of 800 mm is measured with a spectrophotometer.

(b)試験方法
直径80mm、高さ80mm(JHS規格)のフローコーンに注入材を注ぐ。
水槽内にフローコーンを入れ、素早くフローコーンを除去する。この時、振動等の衝撃を与えず初期の濁り等はできるだけ発生しないようにするものとする。
注入材を水槽に投入する前、投入直後、及び10min、30min、60min経過後の各々のpHと濁度を測定する。
各時間経過別の濁り具合を観察する。
(B) Test method The pouring material is poured into a flow cone having a diameter of 80 mm and a height of 80 mm (JHS standard).
Place the flow cone in the aquarium and quickly remove the flow cone. At this time, initial turbidity and the like are not generated as much as possible without giving an impact such as vibration.
Measure the pH and turbidity of the injected material before, immediately after, and after 10 min, 30 min and 60 min.
Observe the turbidity of each time course.

(c)結果
経過時間あたりのpHの変化を図4、濁度の変化を図5に示す。
図より、pH及び濁度の変化が殆ど見られないことより、可塑状ゲルの周辺の地盤の間隙水や海水等に与える影響が極めて小さいことがわかった。
(C) Results FIG. 4 shows the change in pH per elapsed time, and FIG. 5 shows the change in turbidity.
From the figure, it was found that since the change in pH and turbidity was hardly seen, the influence on the pore water, seawater, etc. of the ground around the plastic gel was extremely small.

4.非収縮性試験:注入材の収縮性を評価した。 4). Non-shrinkage test: The shrinkage of the injected material was evaluated.

(a)試験装置
試験装置を図6に示す。
Φ300mm、高さ1,000mmの硬質塩化ビニール管に下端に注入材の漏れが生じないように平板をとりつけた容器を作製する。
(A) Test apparatus A test apparatus is shown in FIG.
Prepare a container with a flat plate attached to the bottom of a rigid PVC pipe with a diameter of 300mm and a height of 1,000mm so that no leakage of the injected material occurs at the lower end.

(b)試験方法
容器に注入材を入れる。
注入材の水分発散防止の為にキャッピングを行い、15〜25度の室内にて養生を行う。
28日経過後の収縮量を計測する。
注入材として「配合2」「配合3」について行った。
(B) Test method An injection material is put into a container.
Capping is performed to prevent water from spreading from the injected material, and curing is performed in a room at 15 to 25 degrees.
Measure the amount of contraction after 28 days.
As the injection material, “Formulation 2” and “Formulation 3” were performed.

(c)結果
「配合2」収縮量5mm、「配合3」では収縮量4mmだった。
(C) Results The “composition 2” shrinkage amount was 5 mm, and the “composition 3” shrinkage amount was 4 mm.

施工例として、既設護岸において潮位の干満により吸出し防止の欠損部からの護岸背面土砂の吸出し現象が生じ、これに伴う護岸の沈下及び傾斜、さらに道路面の陥没現象が生じた場合の裏込土の吸出防止工法を図7に示す。吸出し防止シート破損部分の背面の地盤に防砂シートに沿って注入管を設置し、まず可塑状保持時間の長いグラウトを一次注入し浸透させ欠損部分の修復を行った。   As an example of construction, backfill soil in the case where the evacuation of the back of the revetment from the deficient portion of the revetment occurs due to the tidal level of the existing revetment, and the subsidence and inclination of the revetment and the depression of the road surface occur. FIG. 7 shows the suction prevention method. An injection tube was installed along the sand-proof sheet on the ground behind the damaged portion of the suction prevention sheet. First, a grout having a long plastic holding time was injected and penetrated to repair the defective portion.

工事において、シートの欠損部分に一次注入材として可塑状ゲルを注入し、シート欠損部を粗く塞ぐことで、後続の注入材の海水等の周辺の流動水による希釈を防ぐ事ができ、従来の流動水による注入薬液の濃度低下を防ぐ事ができた。   In the construction, by injecting a plastic gel as the primary injection material into the defective part of the sheet and roughly closing the defective part of the sheet, it is possible to prevent dilution of the subsequent injection material by surrounding water such as seawater. It was possible to prevent the concentration of the injected drug solution from being lowered by the flowing water.

このとき、可塑状ゲルは、瞬結配合を用いると、地盤中で加圧脱水され、急速に固結され、粗い部分や置石の表面しか固結しないため、水流や地下水の上下で容易に破損してしまい、裏込により浸透型シリカ液で固めてもその強度が弱いため、地下水で自由空隙側に洗い出されて吸出し防止効果を得られない。しかし、流動性可塑状グラウトを用いることにより可塑状保持時間中は徐々に塊状ゲルの範囲を広げ、また、後続の可塑状ゲルにより圧送することで脱水を伴い、流動水の多い地盤でも水粉体比を低下することができ、ゲル化時間の短縮、可塑状保持時間の低下、により非可塑状を経て固化するため、空隙を強固に埋めることができた。   At this time, the plastic gel is dehydrated under pressure in the ground using a quick-blending compound, and quickly solidifies, so that only the rough part and the surface of the stone are consolidated, so it easily breaks above and below the water flow and groundwater. Therefore, even if it is hardened with osmotic silica liquid by backfilling, its strength is weak, so that it is washed out to the free void side with groundwater and the sucking prevention effect cannot be obtained. However, by using a fluid plastic grout, the range of the bulk gel is gradually expanded during the plastic retention time, and dehydration is caused by pumping with the subsequent plastic gel. The body ratio can be reduced, and since the gelation time is shortened and the plasticity retention time is reduced, the body is solidified through non-plasticity, so that the voids can be filled firmly.

その後、周辺の地盤を浸透性の懸濁型グラウトを注入することで、土粒子間へ浸透し周辺地盤も強固に固めることができた。   After that, by injecting permeable suspension grout into the surrounding ground, it was able to penetrate between the soil particles and solidify the surrounding ground firmly.

上述の本発明は注入材として流動性可塑状ゲルを用い、かつ、注入初期段階とその後の注入段階で可塑状保持時間の異なる注入材を用い、さらに、可塑状ゲルを注入した注入領域または注入領域の細部に土粒子間浸透型の非可塑状注入材を注入することにより、強度の立ち上がりが早く、注入領域の細部まで浸透し、吸出し抵抗を向上する。したがって、本発明は吸出し防止注入技術分野において、利用可能性が高い。   The above-mentioned present invention uses a flowable plastic gel as an injection material, and uses an injection material having different plastic holding times in the initial injection stage and the subsequent injection stage, and further, an injection region or injection into which the plastic gel is injected. By injecting the non-plastic injection material of the inter-soil particle penetration type into the details of the region, the strength rises quickly and penetrates into the details of the injection region to improve the suction resistance. Therefore, the present invention has high applicability in the field of injection prevention injection technology.

本発明における充填性試験の試験装置を示した図である。It is the figure which showed the testing apparatus of the filling property test in this invention. 本発明における非逸走性試験の試験装置を示した図である。It is the figure which showed the test device of the non-escape test in this invention. 本発明における水分離抵抗性試験の試験装置を示した図である。It is the figure which showed the testing apparatus of the water-separation resistance test in this invention. 本発明における水分離抵抗性試験のpHの変化を示した図である。It is the figure which showed the change of pH of the water-separation resistance test in this invention. 本発明における水分離抵抗性試験の濁度の変化を示した図である。It is the figure which showed the change of the turbidity of the water-separation resistance test in this invention. 本発明における非収縮性試験の試験装置を示した図である。It is the figure which showed the testing apparatus of the non-shrinkage test in this invention. 本発明における護岸の吸出し防止シート欠損部に裏込め土に流動性可塑状ゲル、二次注入材を注入する工法を示した図である。It is the figure which showed the construction method which inject | pours fluid plastic-like gel and secondary injection material to backfill soil in the suction prevention sheet | seat defect | deletion part of the revetment in this invention. テーブルフローとシリンダーフローの関係を表したグラフである。It is a graph showing the relationship between a table flow and a cylinder flow.

Claims (4)

地盤注入材を注入して吸出しを防止する吸出し防止注入工法であって、注入材として流動性可塑状ゲルを注入して吸出しを防止することを特徴とする吸出し防止注入工法。   An anti-suction injection method for preventing suction by injecting a ground injecting material, the method comprising injecting a fluid plastic gel as the injecting material to prevent suction. 地盤注入材を注入して吸出しを防止する吸出し防止注入工法であって、該地盤注入材として可塑状ゲルを用い、注入初期段階とその後の注入段階とで、可塑状保持時間の異なる注入材を用いることを特徴とする吸出し防止注入工法。   A suction prevention injection method for injecting ground injection material to prevent sucking, and using a plastic gel as the ground injection material, injection materials having different plastic holding times in an initial injection stage and a subsequent injection stage are used. A sucking prevention injection method characterized by using. 可塑状ゲルを注入した注入領域又は注入領域の細部に、土粒子間浸透型の非可塑状注入材を注入することを特徴とする請求項1または2記載の吸出し防止注入工法。   3. The sucking prevention injection method according to claim 1, wherein a non-plastic injection material of an inter-soil particle penetration type is injected into the injection region into which the plastic gel is injected or the details of the injection region. 該可塑状ゲル注入材は、圧入時のテーブルフローが12cm以上及び/又はスランプが5cmより大きく、及び/又はシリンダーによるフローが8cmより大きく、地盤中への圧入前又は圧入中に可塑状ゲルに至る注入材である請求項1、2または3記載の吸出し防止注入工法。
The plastic gel injection material has a table flow at the time of press-fitting of 12 cm or more and / or a slump of more than 5 cm, and / or a cylinder flow of more than 8 cm, and the plastic gel is injected into the plastic gel before or during press-fitting into the ground. 4. The suction-preventing injecting method according to claim 1, 2, or 3, which is an injecting material.
JP2007026891A 2006-02-08 2007-02-06 Suction prevention injection method Active JP4662957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026891A JP4662957B2 (en) 2006-02-08 2007-02-06 Suction prevention injection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006031101 2006-02-08
JP2007026891A JP4662957B2 (en) 2006-02-08 2007-02-06 Suction prevention injection method

Publications (2)

Publication Number Publication Date
JP2007239443A true JP2007239443A (en) 2007-09-20
JP4662957B2 JP4662957B2 (en) 2011-03-30

Family

ID=38585242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026891A Active JP4662957B2 (en) 2006-02-08 2007-02-06 Suction prevention injection method

Country Status (1)

Country Link
JP (1) JP4662957B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063843A (en) * 2006-09-08 2008-03-21 Toa Harbor Works Co Ltd Method for preventing suction of back filling soil
JP2013159775A (en) * 2012-02-09 2013-08-19 Nippon Chem Ind Co Ltd Gelling time-adjustable injection water stop material for ground pore
JP2016216327A (en) * 2015-05-26 2016-12-22 信越化学工業株式会社 Hydraulic composition
JP6106836B1 (en) * 2016-08-08 2017-04-05 強化土株式会社 Aging method for existing spray mortar slopes
JP2017141588A (en) * 2016-02-10 2017-08-17 五洋建設株式会社 Soil draw-out prevention structure and soil draw-out prevention method for revetment structure

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081879A (en) * 1996-09-04 1998-03-31 Chichibu Onoda Cement Corp Filling grout
JPH10237446A (en) * 1996-12-24 1998-09-08 Shimizu Corp Cavity filler
JPH1192760A (en) * 1997-09-17 1999-04-06 Sumitomo Osaka Cement Co Ltd Back-filling grout
JPH11310779A (en) * 1998-02-27 1999-11-09 Sumitomo Osaka Cement Co Ltd Plastic grout
JP2000054794A (en) * 1998-05-29 2000-02-22 East Japan Railway Co Filling method for cavity part and grout used therefor
JP2001225319A (en) * 2000-02-16 2001-08-21 Mitsui Constr Co Ltd Manufacturing device for civil engineering work material containing coal ash as main raw material
JP2002155277A (en) * 2000-11-22 2002-05-28 Sumitomo Osaka Cement Co Ltd One-part plastic grout
JP2002212558A (en) * 2001-01-12 2002-07-31 Shimoda Gijutsu Kenkyusho:Kk Grouting material for void filling
JP2003013437A (en) * 2001-06-28 2003-01-15 Port & Airport Research Institute Method for preventing draw-out of back-filling soil
JP2003105745A (en) * 2001-10-02 2003-04-09 Kyokado Eng Co Ltd Improvement work method of soft ground
JP2003213665A (en) * 2002-01-21 2003-07-30 Shimoda Gijutsu Kenkyusho:Kk Double composite injection method
JP2004211544A (en) * 2004-03-25 2004-07-29 Kyokado Eng Co Ltd Method of improving soft ground

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081879A (en) * 1996-09-04 1998-03-31 Chichibu Onoda Cement Corp Filling grout
JPH10237446A (en) * 1996-12-24 1998-09-08 Shimizu Corp Cavity filler
JPH1192760A (en) * 1997-09-17 1999-04-06 Sumitomo Osaka Cement Co Ltd Back-filling grout
JPH11310779A (en) * 1998-02-27 1999-11-09 Sumitomo Osaka Cement Co Ltd Plastic grout
JP2000054794A (en) * 1998-05-29 2000-02-22 East Japan Railway Co Filling method for cavity part and grout used therefor
JP2001225319A (en) * 2000-02-16 2001-08-21 Mitsui Constr Co Ltd Manufacturing device for civil engineering work material containing coal ash as main raw material
JP2002155277A (en) * 2000-11-22 2002-05-28 Sumitomo Osaka Cement Co Ltd One-part plastic grout
JP2002212558A (en) * 2001-01-12 2002-07-31 Shimoda Gijutsu Kenkyusho:Kk Grouting material for void filling
JP2003013437A (en) * 2001-06-28 2003-01-15 Port & Airport Research Institute Method for preventing draw-out of back-filling soil
JP2003105745A (en) * 2001-10-02 2003-04-09 Kyokado Eng Co Ltd Improvement work method of soft ground
JP2003213665A (en) * 2002-01-21 2003-07-30 Shimoda Gijutsu Kenkyusho:Kk Double composite injection method
JP2004211544A (en) * 2004-03-25 2004-07-29 Kyokado Eng Co Ltd Method of improving soft ground

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063843A (en) * 2006-09-08 2008-03-21 Toa Harbor Works Co Ltd Method for preventing suction of back filling soil
JP2013159775A (en) * 2012-02-09 2013-08-19 Nippon Chem Ind Co Ltd Gelling time-adjustable injection water stop material for ground pore
JP2016216327A (en) * 2015-05-26 2016-12-22 信越化学工業株式会社 Hydraulic composition
JP2017141588A (en) * 2016-02-10 2017-08-17 五洋建設株式会社 Soil draw-out prevention structure and soil draw-out prevention method for revetment structure
JP6106836B1 (en) * 2016-08-08 2017-04-05 強化土株式会社 Aging method for existing spray mortar slopes
JP2018024999A (en) * 2016-08-08 2018-02-15 強化土株式会社 Anti-aging measures of existing sprayed mortar slope

Also Published As

Publication number Publication date
JP4662957B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JPWO2006129884A1 (en) Plastic gel injection material and ground reinforcement method
JP4610581B2 (en) Ground strengthening method
JP4662957B2 (en) Suction prevention injection method
JP4689556B2 (en) Ground consolidation method using plastic gel injection material
CN114180930A (en) High-water-pressure ultra-large-diameter underwater shield tunnel double-liquid grouting slurry, process and application
JP2006257281A (en) Plastic grouting material, method of toughening ground and method and device for controlling grouting to ground
JP2006056909A (en) Plastic grout and grouting technique
KR101607062B1 (en) Grout for filling pore space in ground and Method for grouting using the same
JP5390060B2 (en) Ground strengthening method
JP4628378B2 (en) Ground strengthening method
JP4972661B2 (en) Ground injection method
JP2009173924A (en) Grouting agent and grouting method
JP2008223475A (en) Grouting method
JPH10168451A (en) Suspension grout and method for grouting and solidifying ground by using it
JP4976073B2 (en) Repair method for underground filler and earth structure
JP2007077794A (en) Plastic gel grout, ground reinforcing method, ground injection control method, and injection control device
JP5954351B2 (en) Artificial shallow ground or tidal flat and its repair method
JP6665129B2 (en) Premix composition used for ground strengthening compaction material, ground strengthening compaction material, method for producing the same, and ground strengthening method using the same
JP2007040096A (en) Ground reinforcing method, managing method of pressure injection into ground, and managing device used for pressure injection
CN111663579A (en) Plugging method for acrylic coagulation slurry in blind groove
JP6106836B1 (en) Aging method for existing spray mortar slopes
JP4242670B2 (en) Soil-stabilized soil and method for producing the same
JPS609171B2 (en) How to build a continuous water-stop wall
JP4940462B1 (en) Ground improvement method
JPH0825782B2 (en) Grout material for fixing underwater structure and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110104

R150 Certificate of patent or registration of utility model

Ref document number: 4662957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250