JP2009173924A - Grouting agent and grouting method - Google Patents

Grouting agent and grouting method Download PDF

Info

Publication number
JP2009173924A
JP2009173924A JP2008333687A JP2008333687A JP2009173924A JP 2009173924 A JP2009173924 A JP 2009173924A JP 2008333687 A JP2008333687 A JP 2008333687A JP 2008333687 A JP2008333687 A JP 2008333687A JP 2009173924 A JP2009173924 A JP 2009173924A
Authority
JP
Japan
Prior art keywords
ground
silica
water
injecting
agent according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008333687A
Other languages
Japanese (ja)
Other versions
JP5578642B2 (en
Inventor
Shunsuke Shimada
俊介 島田
Tadao Koyama
忠雄 小山
Rei Terajima
麗 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Denka Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd, Denki Kagaku Kogyo KK filed Critical Kyokado Engineering Co Ltd
Priority to JP2008333687A priority Critical patent/JP5578642B2/en
Publication of JP2009173924A publication Critical patent/JP2009173924A/en
Application granted granted Critical
Publication of JP5578642B2 publication Critical patent/JP5578642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Sealing Material Composition (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grouting agent and a grouting method capable of providing high durability against high seepage pressure, in particular, in grouting for a rock bed having a crack, and capable of obtaining high permeability and a high water cut-off effect. <P>SOLUTION: This grouting agent of injecting a silica grout into the ground contains, as a main material, a compound silica colloid containing a silica colloid and a fine particular spherical silica in the silica grout. The ground is consolidated by injecting the grouting agent, and a strength is held over a long period, by this grouting method. Water cut-off performance and the strength are held over a long period under the seepage pressure in an underground, by injecting the grouting agent, in the grouting method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地盤注入剤および地盤注入工法に関し、詳しくは、高浸透水圧に対して優れた耐久性を有し、高い浸透性および止水効果が得られる複合シリカコロイドを主材とする地盤注入剤および地盤注入工法に関する。特に、高浸透水圧下の亀裂のある岩盤の止水や岩盤掘削によって形成された空洞周辺部の止水において、岩盤の亀裂へのゲルの充填性に優れ、かつ、高浸透水圧が作用してもゲルが押し出されることなく長期止水性を維持することができる地盤注入工法にかかわるものであって、上記効果を得られるものである。   The present invention relates to a ground injecting agent and a ground injecting method, and more particularly, a ground injecting mainly composed of a composite silica colloid that has excellent durability against high osmotic water pressure and provides high permeability and water stopping effect. The agent and ground injection method. In particular, in the water stop around the cavity formed by rock breakage and rock excavation under high osmotic water pressure, the gel is excellent in the rock filling and the high osmotic water pressure works. The present invention is also related to a ground injection method capable of maintaining a long-term water-stopping property without extruding the gel, and the above-mentioned effects can be obtained.

近年、ダム、地下ダム、トンネル等の岩盤亀裂注入はもとより、放射性廃棄物の地下空洞内の封じ込め、LPG等の地空洞内の貯溜等において岩盤の微細な亀裂の充填が重要な国家的課題になっている。   In recent years, filling rock cracks in dams, subsurface dams, tunnels, etc., as well as containment of radioactive waste in underground cavities and storage in underground cavities such as LPG, has become an important national issue. It has become.

また、高浸透水圧下におけるトンネル掘削工事、大深度地下開発、あるいはダムや地下ダムの止水層の構築、また、近年は放射性廃棄物の岩盤空洞封じ込め、液化プロパンガスの岩盤空洞貯溜のための水封式地下岩盤タンク等の構築における、グラウト注入での強度と止水効果に優れた地盤注入が求められている。特に、高水圧下における掘削工事や大深度地下開発が長期間にわたる場合、あるいは岩盤空洞の構築や空洞周辺の止水層の形成においては、特に岩盤の微細な亀裂に広範囲にゲル化物を充填して、長期の止水性および長期の強度耐久性が要求されている。これらの問題が解決されれば、被圧下における掘削工事の安全性のみならず、また、止水層の形成、有害物の周辺への漏出、外部から空洞への浸透を防ぎ、周辺地盤の地下水位の低下や地盤変異が抑えられ、さらに、本設後の漏水等の補修費が低減される。   Also for tunnel excavation under high osmotic water pressure, deep underground development, or construction of a dam or underground dam water stop layer, and in recent years for containment of radioactive waste in rock cavities and storage of liquefied propane gas in rock cavities In the construction of water-sealed underground bedrock tanks, etc., ground injection with excellent strength and water-stopping effect in grouting is required. In particular, when excavation work or deep underground development under high water pressure takes a long time, or when building a rock cavity or forming a still water layer around the cavity, the gel cracks are filled with a wide range of gelled materials. Therefore, long-term water-stop and long-term strength durability are required. If these problems are resolved, not only the safety of excavation work under pressure, but also the prevention of the formation of a water-stopping layer, leakage of harmful substances to the surroundings, penetration of the cavity from the outside, groundwater in the surrounding ground Drop and ground deformation are suppressed, and repair costs such as water leakage after installation are reduced.

従来、一般に軟弱砂地盤等の地盤改良に用いられるグラウトとして、水ガラスを原料とした種々の溶液型シリカグラウトが知られている。例えば、水ガラス系アルカリ性グラウト、酸性シリカゾルを主成分としたグラウト、水ガラスを陽イオン交換樹脂またはイオン交換膜で処理して得られる活性シリカを主成分としたグラウト、活性シリカを濃縮増粒してpHが9〜10の弱アルカリ性で安定したシリカコロイド等である(特許文献1および2)。   Conventionally, various solution-type silica grouts using water glass as a raw material are known as grouts generally used for ground improvement such as soft sand ground. For example, water glass alkaline grout, grout based on acidic silica sol, grout based on active silica obtained by treating water glass with a cation exchange resin or ion exchange membrane, and active silica are concentrated and granulated. And a weakly alkaline and stable silica colloid having a pH of 9 to 10 (Patent Documents 1 and 2).

しかし、高浸透水圧下の砂地盤の注入や岩盤注入においては、上述の溶液型シリカグラウトでは、注入後土粒子間のゲル、または岩盤の亀裂中のシリカゲルが水圧で押し出されてしまい、止水性や長期耐久性が低減する。このため、溶液型シリカグラウトに代えて、セメント系の懸濁型注入剤が用いられているが、懸濁型注入剤では粒子径が大きく、透水性の小さい地盤、あるいは微細な亀裂を持つ岩盤には不向きであった。特に、高浸透水圧下の亀裂を有する岩盤注入の場合、注入液は岩盤そのものには浸透せず亀裂の中のみに填充してゲル化することになるため、ゲルの収縮やブリージングやシリカの溶脱があると止水効果が不充分となり耐久性が期待できない。また、粘性が大きかったり、粒子径が大きかったりして浸透性が悪くて大きな空隙にのみにしか填充しない場合、あるいは固結距離が短い場合ゲルの強度が低かったり、収縮したりするとゲルが水圧で押し出されてしまう。   However, in the injection of sand ground or rock mass under high osmotic water pressure, in the above-mentioned solution type silica grout, the gel between the soil particles or silica gel in the crack of the rock mass is pushed out by water pressure after injection, and the water stopping And long-term durability is reduced. For this reason, cement-based suspension-type injections are used instead of solution-type silica grout, but suspension-type injections have large particle diameters, low water permeability, or rocks with fine cracks. It was unsuitable for. In particular, in the case of rock injection with cracks under high osmotic water pressure, the injected solution does not penetrate into the rock itself, but only fills in the cracks and gels, so gel shrinkage, breathing, and silica leaching. If there is, the water stop effect is insufficient and durability cannot be expected. In addition, when the viscosity is large, the particle size is large and the permeability is poor and only the large voids are filled, or when the consolidation distance is short, the gel strength is reduced or the gel shrinks when the gel shrinks. Will be pushed out.

そこで、このような点を改良した技術として、超微粒子セメントを用いたり、あるいは特許文献3のようにシリカグラウトが6〜50nmの粒径のシリカコロイドと微粒子セメントを有効成分として含有してなり、これにより、前記シリカグラウトによる固結地盤が浸透水圧下であっても、長期に亘り止水性と強度を保持する地盤注入工法が、本出願人により開示されている。
特許第3205900号公報 特開2004−35584号公報 特開2006−226014号公報
Therefore, as a technique for improving such points, ultrafine particle cement is used, or as disclosed in Patent Document 3, silica grout contains silica colloid having a particle diameter of 6 to 50 nm and fine particle cement as active ingredients, Thereby, even if the solid ground by the said silica grout is under osmotic water pressure, the ground injection construction method which keeps water-stop and intensity | strength for a long term is disclosed by this applicant.
Japanese Patent No. 3205900 JP 2004-35584 A JP 2006-226014 A

しかしながら、上記特許文献3記載の方法は、長期に亘り止水性と強度を保持することはできるものの、高浸透水圧に対しては、なお十分ではなく、今日、より優れた耐久性、浸透性および止水効果が求められている。   However, although the method described in Patent Document 3 can maintain water-stopping strength and strength over a long period of time, it is still not sufficient for high osmotic water pressure, and today it has better durability, permeability and There is a need for a water stop effect.

そこで本発明の目的は、上記従来技術における問題を解消して、高浸透水圧に対して、
特に亀裂を有する岩盤注入において、優れた耐久性を有し、高い浸透性および止水効果が
得られる地盤注入剤および地盤注入工法を提供することにある。
Therefore, the object of the present invention is to solve the above-mentioned problems in the prior art, and against high osmotic water pressure,
In particular, it is an object of the present invention to provide a ground injection agent and a ground injection construction method which have excellent durability and can provide high permeability and water stopping effect in rock injection with cracks.

本発明者は、前記課題を解決するために鋭意検討した結果、上記課題を解決するには、以下の要件(1)および(2)を必要とすることを見出した。   As a result of intensive studies to solve the above problems, the present inventor has found that the following requirements (1) and (2) are required to solve the above problems.

(1)超粒子セメントは平均粒経が約5〜10μmであって、これでは微細な岩盤の亀裂を填充することは不可能である。高水圧下の岩盤亀裂の止水はもっと粒径が小さいことが必要である。 (1) The average particle size of ultra-particle cement is about 5 to 10 μm, and it is impossible to fill fine cracks in the rock. The water stoppage of rock cracks under high water pressure needs to have a smaller particle size.

(2)シリカコロイドは通常6〜50nmの粒経の範囲にあり、浸透性にすぐれているがそれ単独では岩盤中の亀裂にゲルのみを填充した場合、高水圧下ではゲルの強度が不充分となる。このため、超微粒子セメントをシリカコロイド液に混合して注入する方法があるが、この場合セメントがシリカコロイドと直ちに反応して浸透性が悪くなる。また、超微粒子セメント自体がブリージンしてしまい、あるいは亀裂表面でフィルタリングし、微細な亀裂に浸透しない。したがって、シリカコロイドに加えて強度を上げるためには微粒子セメントよりも粒径が小さく、シリカコロイドよりも粒径が大きく、かつ、それ自体反応性がなく、シリカコロイドと直ちに反応しない材料であることが好ましい。 (2) Silica colloid is usually in the particle size range of 6-50 nm and has excellent permeability, but when it alone is used, only the gel is filled in the cracks in the rock, and the gel strength is insufficient under high water pressure. It becomes. For this reason, there is a method in which ultrafine cement is mixed and injected into a silica colloid solution. In this case, the cement immediately reacts with the silica colloid, resulting in poor permeability. In addition, the ultrafine cement itself is brijinned or filtered on the crack surface and does not penetrate into the fine cracks. Therefore, in order to increase the strength in addition to the silica colloid, the particle size should be smaller than that of the fine particle cement, larger than that of the silica colloid, not reactive itself, and not react immediately with the silica colloid. Is preferred.

平均粒径および比表面積が異なるシリカを含有する複合シリカコロイドを用いることにより、高浸透水圧に対して優れた耐久性を有し、高い浸透性および止水効果が得られることを見出して、本発明を完成するに至った。   By using a composite silica colloid containing silica with different average particle sizes and specific surface areas, it was found that it has excellent durability against high osmotic water pressure, and high permeability and water-stopping effect can be obtained. The invention has been completed.

本発明は、シリカコロイドに微粒子球状シリカを加えてなる複合シリカコロイドであって、該微粒子球状シリカはシリカコロイドよりも粒径が大きく、超微粒子セメントよりも粒径が小さくそれ自体では反応性がなく、また、純粋なシリカ粒子であるシリカコロイドとも直ちに反応せずシリカコロイドに加えて微粒子の骨材としての効果があると共に、時間が経てばシリカコロイドと互いのシリカ表面のシラノール基(−OH)同志が結合して、大きなコロイド粒子に成長して大きなコロイド間に小さなコロイドが填充されてお互いにシラノール基が反応して一体となった強固なシリカゲルを形成することを見出し、上記課題を解決して本発明を完成が完成されたものである。   The present invention is a composite silica colloid obtained by adding fine particle spherical silica to a silica colloid, and the fine particle spherical silica has a particle size larger than that of the silica colloid, smaller than that of the ultrafine particle cement, and itself has reactivity. In addition, the silica colloid which is pure silica particles does not react immediately and has an effect as an aggregate of fine particles in addition to the silica colloid, and the silanol groups (—OH) of the silica colloid and each silica surface with time. ) Combining with each other, we found that large colloidal particles were grown and filled with small colloids between the large colloids, and the silanol groups reacted with each other to form a solid silica gel. Thus, the present invention has been completed.

すなわち、本発明の地盤注入剤は、シリカグラウトを地盤中に注入する地盤注入剤であって、該シリカグラウトがシリカコロイドと微粒子球状シリカを含有する複合シリカコロイドを主材とすることを特徴とするものである。   That is, the ground injecting agent of the present invention is a ground injecting agent for injecting silica grout into the ground, wherein the silica grout is mainly composed of a composite silica colloid containing silica colloid and fine-particle spherical silica. To do.

また、本発明の地盤注入工法は、前記地盤注入剤を注入することで地盤を固結し、長期にわたり強度を持つことを特徴とするものである。   Further, the ground injection method of the present invention is characterized in that the ground is consolidated by injecting the ground injection agent and has strength over a long period of time.

さらに、本発明の他の地盤注入工法は、前記地盤注入剤を注入することで、地下における浸透水圧下において長期にわたり止水性と強度を持つことを特徴とするものである。   Furthermore, another ground injection method of the present invention is characterized in that the ground injection agent is injected so that it has water-stopping and strength for a long time under osmotic water pressure in the underground.

さらにまた、本発明の他の地盤注入工法は、地盤が透水圧下の亀裂を有する岩盤を主とする地盤に対し、該岩盤に前記地盤注入剤を注入し、亀裂をゲルで充填し、浸透水圧下でも、ゲルが押し出されることなく長期の止水性を持つことを特徴とするものである。   Furthermore, in another ground injection method of the present invention, the ground is mainly composed of a rock having cracks under hydraulic pressure, the ground injection agent is injected into the rock, the cracks are filled with gel, Even under, the gel is characterized by having a long-term water-stopping property without being extruded.

さらにまた、本発明の他の地盤注入工法は、前記地盤注入剤を注入することにより、浸透水下における岩盤内に廃棄物を封じ込め、あるいはガスや液体燃料を貯蔵する空洞の止水層を形成することを特徴とするものである。   Furthermore, in another ground injection method of the present invention, by injecting the ground injecting agent, a waste water is contained in the bedrock under infiltrated water, or a hollow water-stopping layer for storing gas or liquid fuel is formed. It is characterized by doing.

本発明により、高浸透水圧に対して、特に亀裂を有する岩盤注入において、優れた耐久性を有し、高い浸透性および止水効果が得られる地盤注入剤および地盤注入工法を提供することが可能となった。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a ground injecting agent and a ground injecting construction method that have excellent durability, and have high permeability and water stopping effect, particularly in rock infusion with cracks against high osmotic water pressure. It became.

以下、本発明の実施の形態につき具体的に説明する。
本発明に用いられるシリカコロイドは、活性シリカを濃縮増粒して弱アルカリ性に安定させてなるコロイドである。また、水ガラス、あるいは水ガラスと酸を混合してなる酸性水ガラスをイオン交換樹脂やイオン交換膜で処理して得られる活性シリカの重合体である活性シリカコロイド、この活性シリカコロイドに水ガラス、酸あるいは塩を加えてなるシリカコロイド等である。本発明の主材である複合シリカコロイドは、上記シリカコロイドに、平均粒径が0.10〜1.0μmで比表面積が5〜40m/gである微粒子球状シリカを含有する。弱酸性に調整された微粒子球状シリカを用い、コロイダルシリカが弱アルカリ性である場合、それらを混合することによりPHが中性化しゲル化することもできる。さらに、本発明に用いられる複合シリカコロイドは、水ガラスや、酸や、塩や金属イオン封鎖材等を混合したものでもよい。
Hereinafter, embodiments of the present invention will be specifically described.
The silica colloid used in the present invention is a colloid obtained by concentrating and increasing the active silica to make it weakly alkaline. Further, active silica colloid which is a polymer of active silica obtained by treating water glass or acidic water glass obtained by mixing water glass and acid with an ion exchange resin or an ion exchange membrane, and water glass on the active silica colloid. In addition, silica colloid obtained by adding acid or salt. The composite silica colloid which is the main material of the present invention contains fine particle spherical silica having an average particle diameter of 0.10 to 1.0 μm and a specific surface area of 5 to 40 m 2 / g in the silica colloid. When fine spherical silica adjusted to be weakly acidic is used and colloidal silica is weakly alkaline, PH can be neutralized and gelled by mixing them. Further, the composite silica colloid used in the present invention may be a mixture of water glass, acid, salt, sequestering material and the like.

本発明に用いられる複合シリカコロイドを構成する微粒子球状シリカは、所望の効果が得られれば特に限定されないが、平均粒径が0.10〜1.0μmで比表面積が5〜40m/gであることが好ましい。かかる微粒子球状シリカとしては、この条件を満たすものであれば限定されないが、例えば、可燃ガスと助燃ガスとによって形成される高温火炎中にシリカ質原料粉末を噴射して溶融球状化し、冷却しながら球状シリカ粉末を捕集する方法において、炉体から捕集器までのガス湿度の露点を30〜75℃に維持し、これによって最適なシラノール基濃度を有する球状シリカ粉末を製造し、さらに分級処理によって、流動性の助長効果に優れた平均粒子径と比表面積とを有する微細球状シリカ粉末を捕集する方法で得られる。 The fine particle spherical silica constituting the composite silica colloid used in the present invention is not particularly limited as long as a desired effect is obtained, but the average particle size is 0.10 to 1.0 μm and the specific surface area is 5 to 40 m 2 / g. Preferably there is. Such fine-particle spherical silica is not limited as long as this condition is satisfied. For example, while siliceous raw material powder is injected into a high-temperature flame formed by a combustible gas and an auxiliary combustion gas, In the method of collecting the spherical silica powder, the dew point of the gas humidity from the furnace body to the collector is maintained at 30 to 75 ° C., thereby producing the spherical silica powder having the optimum silanol group concentration, and further classification treatment Thus, a fine spherical silica powder having an average particle diameter and a specific surface area excellent in fluidity promoting effect can be obtained by a method of collecting.

また、かかる微粒子球状シリカは、球形度の平均値が0.90以上、特に0.95以上であることが好ましい。球形度は、走査型電子顕微鏡(日本電子社製「JSM−T200型」)と画像解析装置(日本アビオニクス社製)を用いて測定することができる。例えば、先ず、粉末のSEM写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の球形度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π) となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)として算出することができるので、任意の粒子200個の平均値を粉末の球形度として求めることができる。 Further, such fine-particle spherical silica preferably has an average value of sphericity of 0.90 or more, particularly 0.95 or more. The sphericity can be measured using a scanning electron microscope (“JSM-T200 type” manufactured by JEOL Ltd.) and an image analyzer (manufactured by Nippon Avionics Co., Ltd.). For example, first, the projected area (A) and the perimeter (PM) of particles are measured from an SEM photograph of powder. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Can be calculated as sphericity = A / B = A × 4π / (PM) 2 , and therefore an average value of 200 arbitrary particles can be obtained as the sphericity of the powder.

さらに、微粒子球状シリカの非晶質化率は、95%以上特に98%以上であることが好ましい。非晶質化率は、粉末X線回折装置(例えば、RIGAKU社製「Mini Flex」)を用い、CuKα線の2θが26°〜27.5°の範囲において試料のX線回折分析を行い、特定回折ピークの強度比から測定することができる。   Furthermore, the amorphization rate of the fine-particle spherical silica is preferably 95% or more, particularly 98% or more. The amorphization rate is determined by performing X-ray diffraction analysis of a sample using a powder X-ray diffractometer (for example, “Mini Flex” manufactured by RIGAKU) in the range of 2θ of CuKα ray of 26 ° to 27.5 °, It can be measured from the intensity ratio of the specific diffraction peak.

さらにまた、微粒子球状シリカのシラノール基濃度が0.5〜5.0個/nmであることが好ましい。シラノール基濃度は、カールフィッシャ法によってそれぞれ測定することができる。 Furthermore, the silanol group concentration of the fine spherical silica is preferably 0.5 to 5.0 / nm 2 . The silanol group concentration can be measured by the Karl Fischer method.

かかる微粒子球状シリカとしては、例えば、電気化学工業(株)社製のSFP−30M等が挙げられる。   Examples of the fine particle spherical silica include SFP-30M manufactured by Denki Kagaku Kogyo Co., Ltd.

本発明の複合シリカコロイドを主材とする地盤注入剤は、上記シリカコロイドを、1〜50質量%含有することが好ましく、微粒子球状シリカを1〜50質量%含有することによって、高浸透水圧に対する優れた耐久性等の本発明の所望の効果を良好に得ることができる。シリカコロイドは現在、30〜50%の濃度のものが地盤注入剤に使用されており、それ以上の濃度ではコロイド同士が吸着し部分的にゲル化してしまうため、均一なゲルを得ることができない。また、地盤注入剤に微粒子球状シリカの添加量が50質量%より多くなると粘性が高くなり、浸透しにくくなる。   The ground injecting agent containing the composite silica colloid of the present invention as a main material preferably contains 1 to 50% by mass of the silica colloid, and contains 1 to 50% by mass of fine-particle spherical silica, thereby preventing high osmotic water pressure. The desired effects of the present invention such as excellent durability can be obtained satisfactorily. Currently, silica colloids with a concentration of 30 to 50% are used for ground injection, and at higher concentrations, colloids adsorb and partially gel, making it impossible to obtain a uniform gel. . Moreover, when the addition amount of the fine particle spherical silica is more than 50% by mass in the ground injection agent, the viscosity becomes high and the penetration becomes difficult.

また、本発明の地盤注入剤は、さらに水ガラスを1〜20質量%含有することもできる。水ガラスはシラノール基を多く含み、反応性が早いため、初期の強度発現が早い。しかし、コロイダルシリカに比べNaを多く含み、ゲル化後、ゲル化物の収縮が起こるため、上記の量にとどめる必要がある。   Moreover, the ground injection agent of this invention can also contain 1-20 mass% of water glass further. Water glass contains many silanol groups and has high reactivity, so that the initial strength development is fast. However, since it contains more Na than colloidal silica and gelation occurs after gelation, it is necessary to keep the above amount.

水ガラスを加える場合には、水ガラスと酸を混合して酸性水ガラスとして加えるか、あるいは水ガラスと酸を含む酸性複合シリカコロイドとすることによって、酸性水ガラスの1nm以下の小さなコロイドが加わった複合シリカコロイドが形成される。従って、3つの異なる粒径からなる複合シリカコロイドが形成される。   When water glass is added, water glass and acid are mixed and added as acidic water glass, or by forming an acidic composite silica colloid containing water glass and acid, a small colloid of 1 nm or less of acidic water glass is added. Composite silica colloids are formed. Accordingly, a composite silica colloid composed of three different particle sizes is formed.

本発明では、粒径が大きいシリカは、シリカ濃度の高い割には強度が低く、かつ、強度発現が遅いが、高浸透水圧下でも長期間の耐水圧効果を有する。一方、粒径が小さいシリカは、シリカ濃度が薄くても強度発現と固結性に優れる。また、本発明は、これらの混合物からなる複合シリカコロイドであるため、特に、高浸透水圧下において、初期のうちに優れた止水性と強固な固結効果を確実に達成することができる。このため、本発明では、セメントを配合せずに、所望の効果を得ることができる。   In the present invention, silica having a large particle size is low in strength for a high silica concentration and slow in onset of strength, but has a long-term water pressure resistance effect even under high osmotic water pressure. On the other hand, silica having a small particle size is excellent in strength development and cohesion even if the silica concentration is low. Moreover, since this invention is a composite silica colloid which consists of these mixtures, it can achieve reliably the water-stopping property and the firm consolidation effect which were excellent in the initial stage especially under high osmotic water pressure. For this reason, in this invention, a desired effect can be acquired, without mix | blending cement.

本発明にかかる上述の複合シリカコロイドは、反応性が高く、これをアルカリ性を呈する微粒子の懸濁液が注入された地盤に注入しても、アルカリ性の影響を受けにくく、高水圧下において、大きな固結性と止水性を同時に発現する。特に、本発明にかかる複合シリカコロイドは高浸透水圧下の岩盤亀裂注入に用いて、長期耐久性に優れた止水性と強固な固結性を達成し、注入対象地盤を確実に固結止水する。   The above-mentioned composite silica colloid according to the present invention has high reactivity, and even when injected into the ground into which a suspension of fine particles exhibiting alkalinity is injected, it is not easily affected by alkalinity and is large under high water pressure. Consolidation and water-stopping properties are expressed simultaneously. In particular, the composite silica colloid according to the present invention is used for rock rock crack injection under high osmotic water pressure, achieves a water-stopping property and a strong caking property with excellent long-term durability, and ensures that the ground to be injected is solidified water. To do.

また、本発明におけるシリカコロイドは、液状のアルカリ金属シリカ塩水溶液(水ガラス)からアルカリ金属イオンのほとんどを除去して得られるものであって、例えば、ゼオライト系陽イオン交換体、アンモニウム系イオン交換体のイオン交換樹脂に水ガラスを通過させ、生成したシリカコロイドを80℃〜90℃の温度でさらに水ガラスに加え、再び前記イオン交換樹脂に通過してイオン交換を行って得られるものであり、比較的純粋な(希薄な)シリカコロイド(活性シリカコロイド)が得られる。   The silica colloid in the present invention is obtained by removing most of alkali metal ions from a liquid alkali metal silica salt aqueous solution (water glass). For example, a zeolite cation exchanger, an ammonium ion exchange It is obtained by passing water glass through the body ion exchange resin, adding the generated silica colloid to the water glass at a temperature of 80 ° C. to 90 ° C., and passing again through the ion exchange resin for ion exchange. A relatively pure (dilute) silica colloid (active silica colloid) is obtained.

さらに、純粋なシリカコロイドを得るには、前述の希薄なシリカコロイドを微アルカリ性に調製し、これにさらに前述のシリカコロイドを加えながら蒸発し、安定化と濃縮を同時に行う方法、あるいはイオン交換後の活性シリカコロイドを適当なアルカリの下に加熱し、これにさらに活性シリカコロイドを加えて安定化する方法が用いられる。   Furthermore, in order to obtain a pure silica colloid, the above-mentioned dilute silica colloid is prepared to be slightly alkaline, and the silica colloid is further added to the above-mentioned silica colloid to evaporate to stabilize and concentrate simultaneously, or after ion exchange. A method is used in which the active silica colloid is heated under an appropriate alkali, and the active silica colloid is further added thereto for stabilization.

本発明におけるシリカコロイド溶液は、Naイオンがほとんど分離除去されているため、通常pHが10以下の弱アルカリ性を示しており、NaOは0.2%〜4%の範囲にある。NaOは4%以上になるとシリカコロイドは溶けてしまい、ケイ酸塩の水溶液となってしまう。一方、NaOが0.2%以下になるとシリカコロイドは安定して存在し得ず、凝集してしまう。すなわち、NaOが0.2%〜4%の範囲で、Naイオンがシリカコロイドの表面に分布して安定したコロイド状に保ち得る。 Since the colloidal silica solution in the present invention is almost completely free of Na ions, it usually exhibits weak alkalinity with a pH of 10 or less, and Na 2 O is in the range of 0.2% to 4%. When Na 2 O becomes 4% or more, the silica colloid dissolves and becomes an aqueous solution of silicate. On the other hand, when the Na 2 O content is 0.2% or less, the silica colloid cannot exist stably and aggregates. That is, when Na 2 O is in the range of 0.2% to 4%, Na ions can be distributed on the surface of the silica colloid and kept in a stable colloidal state.

このようにして調製されたシリカコロイドは、ほとんど中性に近く、かつ、半永久的に安定しており、これを注入液として用いる場合、工場から現場への搬入ならびに注入操作の際にゲル化する心配がない。このシリカのコロイド溶液をそのまま地盤中に注入してもそれ自体実用時間内にゲル化することはないので実用上の固結効果は得られない。   The silica colloid prepared in this way is almost neutral and semi-permanently stable, and when it is used as an infusion solution, it is gelled during delivery from the factory to the site and during the infusion operation. There is no worry. Even if this colloidal solution of silica is poured into the ground as it is, it does not gel within a practical time itself, so a practical consolidation effect cannot be obtained.

しかし、このシリカコロイドに上記超微粒子球状シリカを加えた複合シリカコロイド溶液に酸やNaClやKCl等一価のアルカリ金属塩や、Al、Ca、Mg等の多価金属塩やこれらの水酸化物やその他の塩等のゲル化材を加えて混合物として地盤中に注入すると、本発明の複合シリカのコロイドシリカ溶液は地盤中で前記ゲル化材により不安定化されたコロイド粒子同士が結合し、強固な固結体を形成して地盤を固結する。さらに、このシリカコロイドに活性シリカや水ガラスを加えたり、さらにリン酸、硫酸、その他の酸や塩や金属イオン封鎖剤を加えてもよい。本発明において、複合シリカコロイドは、酸や塩のいずれか、あるいは併用することによりpHをアルカリ性または酸性に調整してゲル化時間を調整できる。金属イオン封鎖剤はキレート効果を有し、地下水に岩盤から溶解する金属イオンや岩盤の亀裂から溶出する金属イオンを不動態化する。地下水に存在する金属イオンとして、Ca2+、Mg2+、鉄イオン等が挙げられ、リン酸、リン酸系化合物をはじめとする金属イオン封鎖剤、キレート剤等はシリカと共に地中の金属イオンをマスキング作用によって被覆膜を形成し、地下水の微量金属や貝殻などのカルシウムやマグネシウム分と反応して不溶性あるいは難溶性の化合物をつくるものと推測される。このため地盤中のCa、Mgによって複合シリカコロイドの浸透が阻害されない効果を生ずる。 However, a monovalent alkali metal salt such as acid, NaCl or KCl, a polyvalent metal salt such as Al, Ca or Mg, or a hydroxide thereof is added to the composite silica colloid solution obtained by adding the ultrafine spherical silica to the silica colloid. When a gel material such as salt or other salt is added and injected into the ground as a mixture, the colloidal silica solution of the composite silica of the present invention combines the colloidal particles destabilized by the gel material in the ground, Form a solid consolidated body to consolidate the ground. Further, active silica or water glass may be added to the silica colloid, and phosphoric acid, sulfuric acid, other acids and salts, and sequestering agents may be added. In the present invention, the composite silica colloid can adjust the gelation time by adjusting the pH to be alkaline or acidic by using either an acid or a salt, or a combination thereof. The sequestering agent has a chelating effect and passivates metal ions dissolved in the groundwater from the rock mass and metal ions eluted from the crack in the rock mass. Examples of metal ions present in groundwater include Ca 2+ , Mg 2+ and iron ions. Metal ion sequestering agents such as phosphoric acid and phosphate compounds, chelating agents, etc. mask metal ions in the ground together with silica. It is presumed that a coating film is formed by the action and reacts with calcium and magnesium components such as trace metals in groundwater and shells to form insoluble or hardly soluble compounds. For this reason, an effect is obtained in which the penetration of the composite silica colloid is not inhibited by Ca and Mg in the ground.

さらに、本発明において、金属イオン封鎖剤は、リン酸やヘキサメタリン酸ソーダ等のリン酸化合物が優れているが、それ以外のリン酸化合物以外の金属イオン封鎖剤を使用し、金属イオンのマスキングを期待せしめることもできる。このような金属封鎖剤としてテトラポリリン酸塩、ヘキサメタリン酸塩(特にナトリウム塩が良い)、トリポリリン酸塩、ピロリン酸塩、酸性ヘキサメタリン酸塩、酸性ピロリン酸塩等の縮合リン酸塩類、エチレンジアミン四酢酸(EDTA)、ニトリロトリ酢酸、グルコン酸、酒石酸またはこれらの塩類等を挙げることができる。   Furthermore, in the present invention, the sequestering agent is excellent in phosphoric acid compounds such as phosphoric acid and sodium hexametaphosphate, but other sequestering agents other than phosphoric acid compounds are used to mask the metal ions. It can also be expected. Such sequestering agents include tetrapolyphosphates, hexametaphosphates (especially sodium salts are good), tripolyphosphates, pyrophosphates, acidic hexametaphosphates, acidic pyrophosphates and other condensed phosphates, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid, gluconic acid, tartaric acid or their salts.

本発明においては、上述のシリカコロイドを有効成分とする地盤注入剤と、懸濁型注入剤とを併用して地盤中に注入することができる。この懸濁型注入剤としては、微粒子セメントや微粒子スラグあるいはこれらの混合物を有効成分とする注入剤等がある。これらの懸濁溶液をあらかじめ地盤に注入して、粗い割れ目を充填しておくことにより、地下における浸透水圧下であっても、長期に亘り止水性と強度を保持し、地盤を改良することができる。   In the present invention, it is possible to inject into the ground using a combination of a ground injection containing the above-described silica colloid as an active ingredient and a suspension type injection. Examples of the suspension type injection include an injection containing fine particle cement, fine particle slag, or a mixture thereof as an active ingredient. By injecting these suspensions into the ground in advance and filling the rough cracks, even under osmotic water pressure in the underground, the water stoppage and strength can be maintained for a long time, and the ground can be improved. it can.

上記において、あらかじめ微粒子スラグを有効成分とする懸濁型注入剤を地盤中に注入し、次いで、この注入された地盤に本発明の複合シリカコロイドを主材とする地盤注入剤を注入し、地盤中で併用することもできる。また、該地盤注入剤を注入の後、該懸濁型注入剤グラウトを注入する。該懸濁型注入剤と該地盤注入剤を交互に複数回にわたり注入する、等により両者を地盤中で併用することもできる。   In the above, a suspension type injection containing fine particle slag as an active ingredient is injected into the ground in advance, and then a ground injection containing the composite silica colloid of the present invention as a main material is injected into the injected ground. Can be used in combination. Moreover, after inject | pouring this ground injection, this suspension type injection grout is inject | poured. Both the suspension-type injection and the ground injection can be used in combination in the ground by alternately injecting the suspension-type injection and the ground injection in a plurality of times.

本発明の地盤注入工法は、地盤を固結する地盤注入工法において、上記地盤注入剤を用いることを特徴とするものである。   The ground injection method of the present invention is characterized by using the above-mentioned ground injection agent in the ground injection method for consolidating the ground.

一般に、大深度地下開発は、用地取得費が不要であり、さらに、既存構造物に左右されずに開発できるという経済面・計画面でのメリットが大きいため、シールド技術を活用した様々な構造物の開発が見込まれている。とりわけ、長距離かつ多方向への建設が不可欠となるライフラインには40m〜100m下の大深度地下が最適とみられており、当面、電力・ガス用のライフラインの建設が先行すると予想される。   In general, deep underground development does not require land acquisition costs, and furthermore, because it has great economic and planning advantages that it can be developed without being affected by existing structures, various structures utilizing shield technology Development is expected. Especially for long-distance and multi-directional lifelines, a deep underground underground of 40m to 100m is considered optimal, and for the time being, construction of lifelines for electric power and gas is expected to take precedence. .

また、数100mから1000m級の大深度のたて坑を掘削して、大空洞を形成し、そこに放射性廃棄物を封じこみ、或いはLPGを貯蔵することができる。この場合の高水圧にも耐える止水層を形成して、かつ空洞を保持する強度と止水性を維持できる。   In addition, it is possible to excavate a deep pit with a depth of several hundreds to 1000 meters to form a large cavity, in which radioactive waste is enclosed, or LPG can be stored. In this case, it is possible to form a water-stopping layer that can withstand the high water pressure, and to maintain the strength and water-stopping ability to hold the cavity.

さらに、海底トンネルや火山堆積物中のトンネル掘削には100m〜200mの水圧に相当する被圧水下の掘削工事になることもある。これらは掘削工事に長期間かかるのみならず、工事完成後も高い水圧下にあり、高浸透圧水がトンネル内部に漏水する可能性がある。そこで、高被圧水下のトンネル掘削工事や大深度地下開発を目的とした恒久的地盤改良の際、掘削地盤には大きな土圧と水圧がかかり、かつ掘削工事は長期に及ぶため、できるだけ地盤を均一に高強度化してかつ長期にわたって止水効果と固結効果も得られることが必要である。また、耐久性に優れていることは注入後掘削工事までの長期化にも耐えることと工事完成後のメンテナンス、充填周辺地下水の低下を防ぐためにも必要である。本発明の地盤注入剤および地盤注入工法は、このような用途に使用される。   Further, tunnel excavation in submarine tunnels and volcanic deposits may involve excavation work under pressurized water corresponding to a water pressure of 100 m to 200 m. These do not only take a long time for excavation work, but are also under high water pressure after completion of construction, and high osmotic pressure water may leak into the tunnel. Therefore, tunnel excavation under high pressure water and permanent ground improvement for the purpose of deep underground development are subject to large earth pressure and water pressure on the excavation ground, and the excavation work takes a long time. It is necessary to increase the strength uniformly and to obtain a water stop effect and a consolidation effect over a long period of time. In addition, having excellent durability is also necessary to withstand the prolonged period from injection to excavation work, maintenance after the work is completed, and prevention of groundwater from filling. The ground injection agent and ground injection method of the present invention are used for such applications.

以下、本発明を実施例によって陳述するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is described by an Example, this invention is not limited to these Examples.

(実験−1)
本発明が浸透水圧下にて強度と固結強度の長期耐久性の効果を確かめるために一例として本発明の複合シリカコロイドを浸透水圧下にて養生したものの強度変化を観察した。
(Experiment-1)
In order to confirm the effect of the present invention on the long-term durability of strength and consolidated strength under osmotic water pressure, the strength change of the composite silica colloid of the present invention cured under osmotic water pressure was observed as an example.

使用材料
1.砂
6,7号混合珪砂を使用。砂の密度(ρs)は2.667g/cm
2.注入剤:下記表1(注入液1000L当たりの配合)のものを使用した。
Materials used 1. Sand 6 and 7 mixed silica sand is used. The density (ρs) of sand is 2.667 g / cm 2
2. Injection agent: The following Table 1 (formulation per 1000 L of injection solution) was used.

3.注入供試体
内径5cm×高さ10cm 透明アクリルモールド使用
3. Injection specimen Internal diameter 5cm x Height 10cm Using clear acrylic mold

実験方法
コロイダルシリカを30質量%含むシリカコロイドに、微粒子球状シリカ、水ガラスと塩化カリウムを反応させ、透明アクリル円筒モールドに砂の密度が1.5g/cmとなるように砂をいれ、注入方式で作製した。
Experimental Method Silica colloid containing 30% by mass of colloidal silica is reacted with fine spherical silica, water glass and potassium chloride, and sand is poured into a transparent acrylic cylindrical mold so that the density of sand is 1.5 g / cm 3. It was produced by the method.

その後、2日間20℃の室内養生をした。養生後供試体をアクリルモールドから外し、浸透水養生のできるモールドの中央に置きその周りにはベントナイトを隙間や空洞がないように詰めた。これによって供試体以外からの浸透水を完全に遮断できた。モールドを組み立てた後、図1および2に示す養生水槽に設置した。この水槽は浸透水圧がかけられるようになっており、浸透水圧は注入供試体の下方から作用させた。水圧は動水勾配が10となるようにした。また、同様に作成した供試体を静水圧下にて養生し、比較した。   Thereafter, room curing at 20 ° C. was performed for 2 days. After curing, the specimen was removed from the acrylic mold and placed in the center of the mold capable of osmotic water curing, and bentonite was packed around it so that there were no gaps or cavities. As a result, the permeated water from other than the specimen was completely blocked. After assembling the mold, it was installed in the curing water tank shown in FIGS. This water tank was adapted to be subjected to osmotic water pressure, and the osmotic water pressure was applied from below the injection specimen. The water pressure was adjusted so that the dynamic water gradient was 10. In addition, specimens prepared in the same manner were cured and compared under hydrostatic pressure.

また、別の実験より55℃、65℃養生強度の促進倍率は標準養生20℃に対し約30倍、約50倍が得られることが判っていることから、促進養生を行った。養生温度は20℃、55℃、65℃の3通りであった。   Further, from another experiment, it was found that the acceleration rate of the curing strength at 55 ° C. and 65 ° C. was about 30 times and about 50 times the standard curing temperature of 20 ° C. Therefore, the accelerated curing was performed. There were three curing temperatures of 20 ° C, 55 ° C, and 65 ° C.

供試体を静水圧下にて養生させたものと、水中にて水圧は動水勾配10をかけ、長期養生させたものの強度変化を測定した。結果を図3および4に示す。   Changes in strength were measured for specimens cured under hydrostatic pressure and those subjected to hydrostatic gradient 10 in water for a long term. The results are shown in FIGS.

これより、微粒子球状シリカを配合したもの(実施例1、2、3)は、微粒子球状シリカを配合しないもの(比較例1、2)に比べて強度が大きいことがわかる。また、長期間浸透水圧の影響を受けず、静水圧状態と同じ強度増加を得ることができることがわかった。尚、比較例2では静水養生で0.5MN/cmを示し、その後強度増加がないので以後のテストは割合した。この測定値より、注入改良範囲が10mの場合、100mの水頭(H)が作用した状態で、少なくとも30日において強度が発現し、その後も浸透水圧の影響を受けず静水圧状態と同じ強度増加を得ることが推測できた。 From this, it can be seen that those containing fine spherical silica (Examples 1, 2 and 3) have higher strength than those containing no fine spherical silica (Comparative Examples 1 and 2). It was also found that the same increase in strength as in the hydrostatic pressure state can be obtained without being affected by the osmotic water pressure for a long time. In Comparative Example 2, the hydrostatic curing showed 0.5 MN / cm 2 , and thereafter there was no increase in strength. From this measured value, when the injection improvement range is 10 m, the strength develops at least 30 days in the state where the water head (H) of 100 m acts, and thereafter the same strength increase as the hydrostatic pressure state is not affected by the osmotic water pressure. I was able to guess.

(実験−2)
実験−1の実施例1の体積変化を測定した。ホモゲルの体積変化試験は,メスフラスコ法により実施した。栓付200mLメスフラスコに注入剤100mLを入れ,24時間静置しゲル化させる。イオン交換水を標線まで入れ,室温20℃で養生した.養生日数0、7、14、28日経過時にゲルの体積を測定し,変化を観察した.なお,ホモゲルの体積変化率(%)は次式により算出した。
(Experiment-2)
The volume change of Example 1 of Experiment-1 was measured. The volume change test of the homogel was carried out by the volumetric flask method. Place 100 mL of the injection into a 200 mL volumetric flask with a stopper, and let stand for 24 hours to gel. Ion-exchanged water was added up to the marked line and cured at room temperature 20 ° C. The gel volume was measured at 0, 7, 14, and 28 days after curing, and changes were observed. The volume change rate (%) of the homogel was calculated by the following formula.

結果を図5に示す。これより、実施例1の配合はゲルの収縮や膨張がないことより、亀裂中での収縮により通水が起こらないものと考えられる。   The results are shown in FIG. From this, it is considered that the blending of Example 1 does not cause water to flow due to shrinkage in the cracks, since the gel does not shrink or expand.

(実験−3)
図6に示す岩盤の割れ目を模した長さ50cmのスチール製パイプを用いて、注入剤の水圧に対する抵抗を測定した。パイプの孔径を1、3、5mmとし、表1の注入剤を3パイプの一方より注入し、室温にて28日間養生した。地盤深約500mに相当する水圧5MPaを装置側面よりゲル断面に掛け水圧への抵抗を測定した。結果を表2に示す。
(Experiment-3)
Using a steel pipe having a length of 50 cm simulating a rock fracture shown in FIG. 6, the resistance of the injectant to water pressure was measured. The hole diameter of the pipe was set to 1, 3, 5 mm, and the injection agent shown in Table 1 was injected from one of the three pipes and cured at room temperature for 28 days. A water pressure of 5 MPa corresponding to a ground depth of about 500 m was applied to the gel cross section from the side of the apparatus, and the resistance to the water pressure was measured. The results are shown in Table 2.

これより、以下のことが分かった。表1の配合の実施例1〜3において、1、3、5mmのそれぞれにおいて水に対する抵抗性を示し、水を止水した。これに対し、比較例1では1、3mmでは抵抗性を示したものの、5mmでは通水した。比較例2では全て通水した。比較例2は収縮がおこり、スチール板との間に隙間ができ、通水してしまったものと思われる。以上により、超微粒子球状シリカを含む複合シリカコロイドは水圧に対する抵抗力に優れていることが判った。   From this, the following was found. In Examples 1 to 3 of the composition shown in Table 1, resistance to water was exhibited in each of 1, 3, and 5 mm, and water was stopped. On the other hand, in Comparative Example 1, resistance was exhibited at 1 and 3 mm, but water was passed at 5 mm. In Comparative Example 2, all water was passed. In Comparative Example 2, it seems that the shrinkage occurred and a gap was formed between the steel plate and the water passed. From the above, it was found that the composite silica colloid containing ultrafine spherical silica was excellent in resistance to water pressure.

原油やLPガスの貯蔵方式に地下に掘った岩盤空洞内に封じ込める「水封式地下岩盤タンク方式」がある。水封式地下岩盤タンク方式は、岩盤タンクの位置を地下水位より深い位置に設け、周りにある地下水の持つ圧力が、タンク内の原油やLPガスの圧力より常に高くなる状態に保つ。このとき本発明の注入剤をタンク周辺の地盤や地盤の亀裂に注入し固結することで、本発明の地盤注入剤による長期の強度と止水性よりタンク内への止水をおこなうことができ、原油やガスの封じ込めを行うことができる。   There is a "water-sealed underground bedrock tank system" that contains oil and LP gas in a rock cavity dug underground. In the water-sealed underground bedrock tank system, the bedrock tank is located deeper than the groundwater level, and the pressure of the surrounding groundwater is always kept higher than the pressure of crude oil and LP gas in the tank. At this time, the injection of the present invention is injected into the ground around the tank and cracks in the ground, and solidified, so that the water can be stopped in the tank from the long-term strength and water stoppage by the ground injection of the present invention. , Can contain crude oil and gas.

養生水槽を示す図である。It is a figure which shows a curing water tank. 養生水槽の断面を示す図である。It is a figure which shows the cross section of a curing water tank. 静水圧下での強度変化を示す図である。It is a figure which shows the intensity | strength change under a hydrostatic pressure. 浸透水圧下の強度変化を示す図である。It is a figure which shows the intensity | strength change under osmotic water pressure. ホモゲルの体積変化を示す図である。It is a figure which shows the volume change of a homogel. 岩盤の割れ目を模したスチールパイプ装置を示す図である。It is a figure which shows the steel pipe apparatus which simulated the crack of the bedrock.

符号の説明Explanation of symbols

1 スチールパイプ
2 水圧
11 養生タンク
12 表面の水
13 モールド
14 ウォーターヒーター
15 試料
16 水圧
21 上蓋
22 砂利
23 ベントナイト
24 ゴム
25 注入供試
26 金網
27 下蓋
DESCRIPTION OF SYMBOLS 1 Steel pipe 2 Water pressure 11 Curing tank 12 Surface water 13 Mold 14 Water heater 15 Sample 16 Water pressure 21 Upper lid 22 Gravel 23 Bentonite 24 Rubber 25 Injection test 26 Wire mesh 27 Lower lid

Claims (9)

シリカグラウトを地盤中に注入する地盤注入剤であって、該シリカグラウトがシリカコロイドと微粒子球状シリカを含有する複合シリカコロイドを主材とすることを特徴とする地盤注入剤。   A ground injecting agent for injecting silica grout into the ground, wherein the silica grout is mainly composed of a composite silica colloid containing silica colloid and fine spherical silica. 前記微粒子球状シリカが平均粒径0.1〜1.0μmで、比表面積が5〜40m/gであり、1〜50質量%含有する請求項1記載の地盤注入剤。 The ground injection agent according to claim 1, wherein the fine-particle spherical silica has an average particle size of 0.1 to 1.0 µm, a specific surface area of 5 to 40 m 2 / g, and 1 to 50% by mass. 前記シリカコロイドが、粒径6〜50nmのコロイダルシリカを1〜50質量%含有する請求項1または2記載の地盤注入剤。   The ground injection agent according to claim 1 or 2, wherein the silica colloid contains 1 to 50 mass% of colloidal silica having a particle diameter of 6 to 50 nm. 水ガラスを1〜20質量%含有する請求項1〜3のうちいずれか一項記載の地盤注入剤。   The ground injection agent according to any one of claims 1 to 3, comprising 1 to 20% by mass of water glass. 塩、酸および金属イオン封鎖剤からなる群から選択される1種以上を含有する請求項1〜4のうちいずれか一項記載の地盤注入剤。   The ground injection agent as described in any one of Claims 1-4 containing 1 or more types selected from the group which consists of a salt, an acid, and a sequestering agent. 請求項1〜5のうちいずれか一項記載の地盤注入剤を注入することで地盤を固結し、長期にわたり強度を持つことを特徴とする地盤注入工法。   A ground injecting method characterized in that the ground is consolidated by injecting the ground injecting agent according to any one of claims 1 to 5 and has strength over a long period of time. 請求項1〜5のうちいずれか一項記載の地盤注入剤を注入することで、地下における浸透水圧下において長期にわたり止水性と強度を持つことを特徴とする地盤注入工法。   A ground injection construction method characterized by having a water stoppage and strength for a long time under osmotic water pressure in the underground by injecting the ground injection agent according to any one of claims 1 to 5. 地盤が透水圧下の亀裂を有する岩盤を主とする地盤に対し、該岩盤に請求項1〜5のうちいずれか一項記載の地盤注入剤を注入し、亀裂をゲルで充填し、浸透水圧下でも、ゲルが押し出されることなく長期の止水性を持つことを特徴とする地盤注入工法。   A ground injection agent according to any one of claims 1 to 5 is injected into the ground, wherein the ground is mainly a rock having cracks under hydraulic pressure, and the crack is filled with gel, However, the ground injection method is characterized by having a long-term water-stopping property without extruding the gel. 請求項1〜5のうちいずれか一項記載の地盤注入剤を注入することにより、浸透水下における岩盤内に廃棄物を封じ込め、あるいはガスや液体燃料を貯蔵する空洞の止水層を形成することを特徴とする地盤注入工法。   By injecting the ground injecting agent according to any one of claims 1 to 5, the waste is contained in the rock in the infiltrated water, or a hollow water-stopping layer for storing gas or liquid fuel is formed. This is a ground injection method.
JP2008333687A 2007-12-28 2008-12-26 Ground injection agent and ground injection method Active JP5578642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333687A JP5578642B2 (en) 2007-12-28 2008-12-26 Ground injection agent and ground injection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007340662 2007-12-28
JP2007340662 2007-12-28
JP2008333687A JP5578642B2 (en) 2007-12-28 2008-12-26 Ground injection agent and ground injection method

Publications (2)

Publication Number Publication Date
JP2009173924A true JP2009173924A (en) 2009-08-06
JP5578642B2 JP5578642B2 (en) 2014-08-27

Family

ID=41029343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333687A Active JP5578642B2 (en) 2007-12-28 2008-12-26 Ground injection agent and ground injection method

Country Status (1)

Country Link
JP (1) JP5578642B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196806A (en) * 2010-03-19 2011-10-06 Toda Constr Co Ltd Method of repairing crack in mortar or concrete at radioactive waste disposal plant
JP2011241572A (en) * 2010-05-17 2011-12-01 Kyokado Engineering Co Ltd Ground injection method
JP2011241674A (en) * 2011-03-07 2011-12-01 Kyokado Engineering Co Ltd Ground injection method
JP2013159775A (en) * 2012-02-09 2013-08-19 Nippon Chem Ind Co Ltd Gelling time-adjustable injection water stop material for ground pore
JP2014218541A (en) * 2013-05-01 2014-11-20 清水建設株式会社 Production method of solution type grout and production device of the same
CN107938649A (en) * 2017-11-29 2018-04-20 上海建工五建集团有限公司 A kind of solution cavity foundation reinforcement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283097B (en) * 2018-10-17 2021-11-23 山东大学 Visual variable-opening-degree crack grouting test device and method under static water and dynamic water conditions

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497929A (en) * 1990-08-13 1992-03-30 Nissan Chem Ind Ltd Water-soluble fine particle silica dispersed body for admixture for cement
JPH0586370A (en) * 1991-09-25 1993-04-06 Nippon Chem Ind Co Ltd Grout for ground and grouting work
JPH10102058A (en) * 1996-10-01 1998-04-21 Toko Kensetsu Kk Grout
JP2001003047A (en) * 1999-06-21 2001-01-09 Kyokado Eng Co Ltd Grouting consolidation material
JP2001031968A (en) * 1999-07-21 2001-02-06 Kyokado Eng Co Ltd Injection material for ground
JP2002194352A (en) * 2000-12-22 2002-07-10 Mitsubishi Rayon Co Ltd Agent solution for stabilizing ground and method for stabilizing ground with the same
JP2003041253A (en) * 2002-05-17 2003-02-13 Kyokado Eng Co Ltd Grouting material
JP2005320410A (en) * 2004-05-07 2005-11-17 Mitsubishi Rayon Co Ltd Chemical for ground stabilization
JP2006226014A (en) * 2005-02-18 2006-08-31 Kyokado Eng Co Ltd Grouting construction method
JP2008231769A (en) * 2007-03-20 2008-10-02 Hokkaido Univ Construction method and equipment for soil improvement

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497929A (en) * 1990-08-13 1992-03-30 Nissan Chem Ind Ltd Water-soluble fine particle silica dispersed body for admixture for cement
JPH0586370A (en) * 1991-09-25 1993-04-06 Nippon Chem Ind Co Ltd Grout for ground and grouting work
JPH10102058A (en) * 1996-10-01 1998-04-21 Toko Kensetsu Kk Grout
JP2001003047A (en) * 1999-06-21 2001-01-09 Kyokado Eng Co Ltd Grouting consolidation material
JP2001031968A (en) * 1999-07-21 2001-02-06 Kyokado Eng Co Ltd Injection material for ground
JP2002194352A (en) * 2000-12-22 2002-07-10 Mitsubishi Rayon Co Ltd Agent solution for stabilizing ground and method for stabilizing ground with the same
JP2003041253A (en) * 2002-05-17 2003-02-13 Kyokado Eng Co Ltd Grouting material
JP2005320410A (en) * 2004-05-07 2005-11-17 Mitsubishi Rayon Co Ltd Chemical for ground stabilization
JP2006226014A (en) * 2005-02-18 2006-08-31 Kyokado Eng Co Ltd Grouting construction method
JP2008231769A (en) * 2007-03-20 2008-10-02 Hokkaido Univ Construction method and equipment for soil improvement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196806A (en) * 2010-03-19 2011-10-06 Toda Constr Co Ltd Method of repairing crack in mortar or concrete at radioactive waste disposal plant
JP2011241572A (en) * 2010-05-17 2011-12-01 Kyokado Engineering Co Ltd Ground injection method
JP2011241674A (en) * 2011-03-07 2011-12-01 Kyokado Engineering Co Ltd Ground injection method
JP2013159775A (en) * 2012-02-09 2013-08-19 Nippon Chem Ind Co Ltd Gelling time-adjustable injection water stop material for ground pore
JP2014218541A (en) * 2013-05-01 2014-11-20 清水建設株式会社 Production method of solution type grout and production device of the same
CN107938649A (en) * 2017-11-29 2018-04-20 上海建工五建集团有限公司 A kind of solution cavity foundation reinforcement method

Also Published As

Publication number Publication date
JP5578642B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5578642B2 (en) Ground injection agent and ground injection method
JP4696200B2 (en) Ground injection method
KR101582246B1 (en) High strength grouting components which can prevent to leaching and construction methods.
EP0273445B1 (en) Chemical grout for ground injection and method for accretion
JP5015193B2 (en) Ground injection material and ground injection method
JP2008063794A (en) Method of treating soil or building skeleton
JP4955123B2 (en) Ground injection material and ground injection method
JPS5915478A (en) Water-stopping and/or pressure sealing agent for soil and/or structural material and use
JP2018028013A (en) Suspended grouting material
KR102302868B1 (en) Manufacturing method of eco-friendly grouting chemical liquid for all ground strata and construction method using the same
JP2006226014A (en) Grouting construction method
JP2008063495A (en) Method for treating soil or building skeleton
JP4662957B2 (en) Suction prevention injection method
JP5017592B2 (en) Ground injection material and ground injection method
JP6998025B1 (en) Silica grout and ground injection method using it
JPH04221116A (en) Grouting engineering method
JP2010116759A (en) Soil improving method
JP4940462B1 (en) Ground improvement method
JP6712828B1 (en) Ground injection material and ground injection method
JP2013029001A (en) Liquefaction prevention method
JP2008057191A (en) Soil improving method
JP4766532B1 (en) Ground injection method
JP7390081B1 (en) Ground injection method
JP3437084B2 (en) Injected material for ground consolidation and ground injection method using this injected material
JP7146202B1 (en) Ground grouting material and ground grouting method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140704

R150 Certificate of patent or registration of utility model

Ref document number: 5578642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250