JP2008063794A - Method of treating soil or building skeleton - Google Patents

Method of treating soil or building skeleton Download PDF

Info

Publication number
JP2008063794A
JP2008063794A JP2006241860A JP2006241860A JP2008063794A JP 2008063794 A JP2008063794 A JP 2008063794A JP 2006241860 A JP2006241860 A JP 2006241860A JP 2006241860 A JP2006241860 A JP 2006241860A JP 2008063794 A JP2008063794 A JP 2008063794A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
soil
ground
polyvalent metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006241860A
Other languages
Japanese (ja)
Inventor
Shunsuke Shimada
俊介 島田
Rei Terajima
麗 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2006241860A priority Critical patent/JP2008063794A/en
Publication of JP2008063794A publication Critical patent/JP2008063794A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of treating soil or a building skeleton by using a composition containing carbon dioxide gas, the composition being easily infiltrated into the ground, being proof against degradation of the water permeability in the ground even if consolidated, and rarely affecting the circumferential environment. <P>SOLUTION: According to the method, the composition containing a polyvalent metallic compound and carbon dioxide gas as active ingredients is made to permeate or filled into the ground to form an insoluble salt. Then carbon dioxide gas is injected to an upstream side of a solution feeding pipe line 5 through a low-pressure carbon dioxide gas force-feeding pipe line 14, from a low-pressure carbon dioxide gas container 8-1, via a solenoid valve 10-1, a negatively pressurizing valve 11-1, and a carbon dioxide gas spray nozzle 15, to a polyvalent metallic compound aqueous solution (A solution) tank 1-1, and the other composition aqueous solution (B solution) tank 1-2. Alternatively, the polyvalent metallic compound aqueous solution and the carbon dioxide gas are sufficiently mixed together by a gas-liquid mixing device 2, followed by feeding the polyvalent metallic compound aqueous solution to which the carbon dioxide gas is absorbed by a filling pump 3, via the solution feeding pipe line 5 to a filling pipe 7. Further alternatively, the carbon dioxide gas is injected through a high-pressure carbon dioxide gas force-feeding pipe line 12, from a high-pressure carbon dioxide gas container 8-2, via a solenoid valve 10-2, a negatively pressurizing valve 11-2, and a carbon dioxide gas spray nozzle 13, to the feeding pipe 7 or the ground 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地盤改良あるいは排出土や産業廃棄物や有害物を含む土等の固結といった土の処理方法及びコンクリート構造物等の建造物の劣化部や亀裂部等を補修する建造物躯体の処理方法に関する。ここで、構造物躯体とはコンクリート構造物のみならず、石積やブロック積構造物等も含む。   The present invention relates to a soil treatment method such as ground improvement or consolidation of soil containing discharged soil, industrial waste, or harmful substances, and a building case for repairing a deteriorated part or a crack part of a building such as a concrete structure. It relates to the processing method. Here, the structure housing includes not only a concrete structure but also a stone structure or a block structure.

土を固結し地盤を改良するに際して、従来、主成分が水ガラスあるいはセメント系の注入材が多く用いられている。これらの注入材は、いずれも強アルカリあるいは強酸を使用する場合が多く、このため、取り扱いに注意が要求され、また、地盤中の地下水がアルカリや酸によって汚染される危険があり、環境上からも好ましいものではない。さらに、セメント系注入材の場合、地盤への浸透性に限界があった。   Conventionally, when the soil is consolidated and the ground is improved, an injection material whose main component is water glass or cement is often used. These injection materials often use strong alkalis or strong acids. Therefore, handling is required, and groundwater in the ground may be contaminated with alkalis or acids. Is also not preferable. Furthermore, in the case of cement-based injection material, there was a limit to the permeability to the ground.

さらに、コンクリート構造物等の構造物躯体の劣化部や亀裂部の補修に際して、従来、有機系あるいは無機系の塗料をこれら劣化部や亀裂部に塗布することにより、耐酸性、水密性、耐海水性を改良している。特に、コンクリートは酸と接触すると、中性化される。例えば、空気中の炭酸ガスによっても比較的短期間に中性化される。また、コンクリート躯体に鉄筋が内蔵されている場合には、鉄筋のさびによる膨脹のためにコンクリート構造物が破壊されてしまう。   Furthermore, when repairing deteriorated or cracked parts of a structural structure such as a concrete structure, conventionally, an organic or inorganic coating is applied to these deteriorated or cracked parts, thereby providing acid resistance, water tightness and seawater resistance. Improves sex. In particular, concrete is neutralized when in contact with acid. For example, it is neutralized in a relatively short time by carbon dioxide in the air. Moreover, when a reinforcing bar is built in the concrete frame, the concrete structure is destroyed due to expansion of the reinforcing bar due to rust.

以上の問題を解決する為に本出願人によって特許文献1(特開2004−067819号公報)記載の発明が出願されている。   In order to solve the above problems, the applicant has applied for an invention described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-067819).

特開2004−067819号公報JP 2004-067819 A 特公平07−057870号公報Japanese Patent Publication No. 07-057870

従来の水ガラス系注入材は、地盤中でシリカの含水ゲルを生成して止水性を向上させるものであるが、そのために水ガラスのシリカ分を高濃度にするとゲル化時間が短くなり広範囲を固結することが出来ず、又ゲル化時間を長くする為に反応材を少なくすると未反応水ガラスのアルカリによりシリカゲルが再溶出して耐久性が得られないという問題がある。   Conventional water glass-based injections are those that produce a water-containing gel of silica in the ground to improve water-stopping properties. If the reaction material is reduced in order to increase the gelation time, the silica gel is re-eluted by the alkali of the unreacted water glass and durability cannot be obtained.

また、水ガラスと塩化カルシウムを用いる注入材の場合には、これらの水溶液を混合すると、瞬時に、ほぼ全部がゲル化してしまうため、注入管の周辺しか固結できなかった。   In the case of an injection material using water glass and calcium chloride, when these aqueous solutions were mixed, almost all of them instantly gelled, so that only the periphery of the injection tube could be consolidated.

さらに、懸濁型注入材の場合には、高強度に固結するが、注入材の浸透距離に限界があり、地盤の改良範囲を広くすることができない。   Furthermore, in the case of a suspension-type injection material, it solidifies with high strength, but there is a limit to the penetration distance of the injection material, and the ground improvement range cannot be widened.

また、水ガラス系注入材で改良された地盤ではアルカリが強い為、地上の樹木等に影響を与える等の水質上の問題がある。   Moreover, since the ground improved with the water glass injection material is strong in alkali, there is a problem in water quality such as affecting the trees on the ground.

本発明者らによる上記特許文献1(特開2004−067819号公報)記載の発明は、注入材として、アルカリ土類金属化合物と炭酸や炭酸塩を用い、この注入液を土中に浸透させ又は注入し、又は土と混合し、あるいはこの注入液をコンクリート躯体に吹きつけ、浸透、塗布または注入して炭酸カルシウム等の不溶性塩を形成し、アルカリ汚染を生じることなく、水質汚染を生じることのない発明に関わるものである。   In the invention described in Patent Document 1 (Japanese Patent Laid-Open No. 2004-067819) by the present inventors, an alkaline earth metal compound and carbonic acid or carbonate are used as an injecting material, and this injecting solution is infiltrated into the soil or Injecting or mixing with soil, or spraying this injected solution on concrete frame to infiltrate, apply or inject to form insoluble salts such as calcium carbonate, causing water pollution without causing alkali pollution Not related to invention.

更に又、前記先願発明の目的は高強度に土を固結することはもちろん、広範囲に、かつ高強度に地盤をも改良し、さらに、均一地盤を改良しても、その透水性の程度を調整することができて地下水の流れを大きく変更させることがなく、しかも、コンクリートの比較的表面で緻密な層を形成し、さらにまた、コンクリート構造物の劣化部や亀裂部を補修して中性化を防止し、前述の公知技術に存する欠点を改良した土の固結方法及びコンクリート躯体の処理方法を提供することにあった。   Furthermore, the purpose of the invention of the prior application is not only to solidify the soil with high strength, but also to improve the ground over a wide range and with high strength. The flow of groundwater is not greatly changed, and a dense layer is formed on the surface of the concrete. In addition, the deterioration and cracks of the concrete structure are repaired. An object of the present invention is to provide a method for solidifying soil and a method for treating a concrete frame, which prevent the deterioration and improve the above-mentioned drawbacks of the known technology.

しかし、多価金属化合物として水溶性のCaCl2と難溶性のCa(OH)2を例とした場合、炭酸塩として重炭酸ソーダや炭酸ソーダのように水溶性の場合、容易に地下水と共に溶脱しやすいため、固結性が低い。又、炭酸カルシウムのように難溶性の場合は溶解度が低くやはり反応性が低いため、固結性が低い。 However, when water-soluble CaCl 2 and poorly soluble Ca (OH) 2 are used as polyvalent metal compounds as an example, when water-soluble carbonates such as sodium bicarbonate and sodium carbonate, it is easy to leach with groundwater. The caking property is low. In the case of poor solubility such as calcium carbonate, the solubility is low and the reactivity is low, so that the caking property is low.

このように前記先願発明は地下水の存在下で多価金属化合物と炭酸塩との接触時間は短く、反応性が低いことから固結性が低いことに問題があった。   As described above, the invention of the prior application has a problem in that the contact time between the polyvalent metal compound and the carbonate is short in the presence of groundwater, and the caking property is low because the reactivity is low.

本発明はこの問題を解決するために炭酸ガスを利用する方法を提供し、地盤中に浸透しやすく、固結しても地盤中の透水性が失われにくく、周囲の環境に影響を与えにくい地盤改良方法等、土又は建築物躯体の処理方法を提供するものである。   In order to solve this problem, the present invention provides a method using carbon dioxide gas, which easily penetrates into the ground, and even when consolidated, the water permeability in the ground is not easily lost, and the surrounding environment is hardly affected. The present invention provides a method for treating soil or a building frame, such as a ground improvement method.

上述の目的を達成するため、本発明は多価金属化合物と炭酸ガスを有効成分とする組成物を、土中に浸透させまたは注入し、又は土と混合して、又は建造物躯体に浸透させ又は吹き付けて又は被覆して不溶性塩を形成させ、土又は、建造物躯体を処理する。或いは、有害物を含む土を固結し有害物を分解して浄化する。なお、本発明において炭酸ガスとは炭酸水として使用する場合も含む。   In order to achieve the above-mentioned object, the present invention allows a composition containing a polyvalent metal compound and carbon dioxide gas to be infiltrated or injected into the soil, mixed with the soil, or infiltrated into the building frame. Or spray or coat to form insoluble salts and treat soil or building enclosures. Alternatively, the soil containing harmful substances is consolidated and the harmful substances are decomposed and purified. In the present invention, the carbon dioxide gas includes a case where it is used as carbonated water.

本発明は炭酸ガスが水に溶け、炭酸水となって多価金属化合物と反応し、炭酸カルシウムや炭酸マグネシウム、あるいは水酸化マグネシウム等の不溶性の多価金属化合物となって、長期にわったて土の間隙や岩壁の亀裂やコンクリートの割れ目に沈殿し、土や岩壁やコンクリートの構造物を固結強化し続けることに着目したものである。   In the present invention, carbon dioxide dissolves in water, reacts with the polyvalent metal compound as carbonated water, and becomes an insoluble polyvalent metal compound such as calcium carbonate, magnesium carbonate, or magnesium hydroxide. The focus is on the precipitation of soil gaps, rock wall cracks and concrete cracks, and the consolidation of soil, rock wall and concrete structures.

本発明の原理を以下に説明する。   The principle of the present invention will be described below.

地盤中、或いは注入液に吹き込んだ炭酸ガスは地下水、あるいは注入液に溶け二酸化炭素がカルシウムイオンと反応し地盤中の間隙や岩の割れ目に炭酸カルシウムを析出・沈殿させることができる。   The carbon dioxide gas blown into the ground or the injection solution dissolves in the ground water or the injection solution, and the carbon dioxide reacts with calcium ions, so that calcium carbonate can be deposited and precipitated in the gaps and rock cracks in the ground.

Ca2+ + CO2 + H2O → CaCO3↓ +2H+ Ca 2+ + CO 2 + H 2 O → CaCO 3 ↓ + 2H +

さらに、上述の目的を達成するため、本発明の建造物躯体の処理方法によれば、多価金属化合物を有効成分とし、その他の組成物の混合物、あるいはこれらのいずれかをA液、B液に分けてそれぞれの液、或いは混合物に炭酸ガスを吹き込む及び/又は炭酸ガスを溶解した炭酸水を混合するか、土中においてA、B液と炭酸ガス及び/又は炭酸水を浸透又は混合せしめ、あるいは建造物躯体に吹き付け、浸透、塗布または注入して不溶性塩を形成することを特徴とする。   Furthermore, in order to achieve the above-mentioned object, according to the method for treating a building housing of the present invention, a polyvalent metal compound is used as an active ingredient, a mixture of other compositions, or any one of them as liquid A, liquid B Injecting carbon dioxide gas into each liquid or mixture and / or mixing carbonated water in which carbon dioxide gas is dissolved, or infiltrating or mixing A, B liquid and carbon dioxide gas and / or carbonated water in the soil, Alternatively, the insoluble salt is formed by spraying, infiltrating, applying, or injecting the building housing.

上述の本発明によれば、多価金属化合物と炭酸ガス及び/又は炭酸水を有効成分として土中またはコンクリート躯体中に浸透(注入も含む)混合、または皮膜(吹き付けまたは塗布)によって不溶性塩を形成することにより有害物を発生せず、環境への悪影響を与えることなく土を固化することができ、あるいは排出土等を固結したり、コンクリート構造物の劣化部や亀裂部等を補修することができる。   According to the present invention, an insoluble salt is formed by mixing (including injection) or coating (spraying or applying) a polyvalent metal compound and carbon dioxide gas and / or carbonated water into the soil or concrete frame as active ingredients. By forming it, the soil can be solidified without generating harmful substances and adversely affecting the environment, or the discharged soil can be consolidated, or the degraded or cracked parts of the concrete structure can be repaired. be able to.

以下、本発明を実施するための最良の形態を具体的に詳述する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

本発明にかかる土の固結方法及び建造物躯体の処理方法はいずれも、一液性の注入材として、あるいは多価金属化合物を有効成分としたA液とし、その他の組成物をB液として用いても良い。一液或いは、炭酸ガス又は/更に炭酸水はA液、B液のどちらか、或いは両方に吹き込んでもよく、A液、B液の混合物、或いは注入後の地盤に直接注入しても良い。   The soil consolidation method and the building case processing method according to the present invention are both a one-part injection material or a liquid A containing a polyvalent metal compound as an active ingredient, and other compositions as a liquid B. It may be used. One liquid or carbon dioxide gas or / and further carbonated water may be blown into either liquid A, liquid B, or both, or may be directly injected into the mixture of liquid A or liquid B or the ground after injection.

従来の水ガラスグラウト等による注入では、注入中、注入材がゲル化時間に達すれば、流動性が失われて急激に圧力が上昇する。さらに、それ以上注入すれば、地盤が破壊して地盤の弱体化あるいは地盤変位を来たす。   In the injection by the conventional water glass grout or the like, if the injection material reaches the gel time during the injection, the fluidity is lost and the pressure rapidly increases. Furthermore, if it is injected more than that, the ground will be destroyed and the ground will be weakened or the ground will be displaced.

また、水ガラスは硬化剤の塩化カルシウムと接触すると、瞬時に両液のカルシウム分とシリカ分の全量が反応して流動性のないゲルを生じる。このため、水ガラス系では注入範囲がせまく、また、繰り返して注入しても破壊や地盤隆起を起こしてしまう。   Further, when water glass comes into contact with the hardener calcium chloride, the total amount of calcium and silica in both solutions reacts instantaneously to form a non-flowable gel. For this reason, in the water glass system, the injection range is large, and even if it is repeatedly injected, destruction or ground uplifting occurs.

これに対して、本発明では土中またはコンクリート躯体中に炭酸ガス又は/更に炭酸水を混合すると、多価金属イオンと反応し土粒子間、またはコンクリート躯体間に析出し空隙を埋めるもので、極めてゆるやかに反応し、液全体がゲル化しないので流動性がそこなわれることはない。   On the other hand, in the present invention, when carbon dioxide gas or / and further carbonated water is mixed in the soil or the concrete frame, it reacts with the polyvalent metal ions and precipitates between the soil particles or the concrete frame to fill the voids, It reacts very gently and the liquid does not gel, so the fluidity is not compromised.

このため、液をそのまま注入しても全量が直ちに反応せず、地盤中の粒子表面に白濁分が付着する程度であって、そのまま地盤中に浸透する。しかし、そのまま注入し続けると、どこまでも流出してしまうので、ある程度注入した時点で注入を中断し、加圧をやめれば、その領域の土粒子間隙に注入液が保持されたまま反応が進行する。   For this reason, even if the liquid is injected as it is, the whole amount does not react immediately, and the amount of white turbidity adheres to the particle surface in the ground, and penetrates into the ground as it is. However, if the injection is continued as it is, it will flow out to any extent. If the injection is interrupted to a certain extent and the pressurization is stopped, the reaction proceeds while the injection solution is held in the soil particle gap in that region.

したがって、この工程を繰り返せば、土粒子表面に付着する反応生成物が徐々に厚くなり、最終的には土粒子間隙が反応生成物で填充され、しかも必要以上の範囲まで注入液が逸脱しないですむ。   Therefore, if this process is repeated, the reaction product adhering to the surface of the soil particles will gradually thicken, eventually the soil particle gap will be filled with the reaction product, and the injected solution will not deviate beyond the required range. Mu

炭酸ガスは気体であるため、微細な地盤中の空隙や構造物躯体の亀裂に入ることが可能であり、注入液中に溶解した多価金属イオンと反応し微細な空隙を埋めることが出来る。   Since carbon dioxide gas is a gas, it can enter voids in the fine ground and cracks in the structure body, and can react with polyvalent metal ions dissolved in the injection solution to fill the fine voids.

また、懸濁状の多価金属化合物は炭酸ガスや、炭酸ガスが水に溶解した炭酸水と反応し大きな空隙や亀裂を埋めることが出来る。   In addition, the suspended polyvalent metal compound can react with carbon dioxide or carbonated water in which carbon dioxide is dissolved in water to fill large voids and cracks.

炭酸ガスはガスボンベよりそのボンベ圧で地盤中或いは多価金属化合物の溶液中に吹き込むことが出来る。また、液化炭酸ガス(加圧下で水に炭酸ガスを溶解させたもの)やドライアイスを用いても良い。   Carbon dioxide can be blown from the gas cylinder into the ground or into the solution of the polyvalent metal compound at the cylinder pressure. Alternatively, liquefied carbon dioxide (dissolved carbon dioxide in water under pressure) or dry ice may be used.

炭酸ガスは気体であるので多価金属塩溶液の濃度を変化させることなくCO2を吸収させることが出来るので、炭酸水としてCO2を反応させるのに比べて高い強度を得ることが出来る。又多価金属化合物の水溶液がアルカリを呈する場合は炭酸ガスが容易に溶解して反応するため効果的である。 Since carbon dioxide gas is a gas, CO 2 can be absorbed without changing the concentration of the polyvalent metal salt solution, so that a higher strength can be obtained than when CO 2 is reacted as carbonated water. Also, when the aqueous solution of the polyvalent metal compound exhibits an alkali, it is effective because the carbon dioxide gas dissolves and reacts easily.

本発明者らは二酸化炭素と多価金属化合物との反応の挙動が従来の水ガラス系グラウトのゲル化と極めて異なる点に着目し、この特性を利用して地盤中で不溶性多価金属化合物を形成し、本発明を完成した。   The present inventors paid attention to the fact that the reaction behavior of carbon dioxide and polyvalent metal compounds is very different from the gelation of conventional water glass grout, and by utilizing this characteristic, insoluble polyvalent metal compounds are formed in the ground. And completed the present invention.

又、注入材組成分としてシリカ分を加えてゲル化機能を与えれば、止水性の優れた固結体が形成されかつ固結を早めることも出来る。   Further, if a silica component is added as an injection material composition to give a gelling function, a solidified body having excellent water blocking properties can be formed and consolidation can be accelerated.

上述の多価金属化合物と炭酸ガス又は/更に炭酸水を土中、地盤中ないしはコンクリート躯体中で反応させれば、反応生成物である炭酸ガスによって多価金属の炭酸塩、鉱物、方解石、しょう乳石等に類似した沈殿物を人工的に生ぜしめることが可能である。   If the above polyvalent metal compound reacts with carbon dioxide or / and carbonated water in the soil, in the ground, or in a concrete frame, the carbonate, gas, mineral, calcite, gypsum of the polyvalent metal is reacted with the reaction product carbon dioxide. It is possible to artificially produce a precipitate similar to milkstone.

例えば多価金属がCa、Mgの場合、CaCO3、MgCO3等を、Alの場合Al(OH)3等を形成して沈殿する。例えば、アルミン酸ナトリウム水溶液にCO2を反応させると、Al(OH)3が生成し結晶性のものが沈殿する。 For example, when the polyvalent metal is Ca or Mg, CaCO 3 , MgCO 3 or the like is formed, and when it is Al, Al (OH) 3 or the like is formed and precipitated. For example, when CO 2 is reacted with an aqueous sodium aluminate solution, Al (OH) 3 is generated and a crystalline one is precipitated.

NaAlO3+2H2O+CO2→Al(OH) 3+NaHCO3 NaAlO 3 + 2H 2 O + CO 2 → Al (OH) 3 + NaHCO 3

又、多価金属化合物がCaCl2のように水溶性でなくて、CaCO3、CaSO4、Mg(OH)2、Ca(OH) 2等のように難溶性塩であっても、その水溶液中にはCa、Mgがイオンとなって溶解しているため、これらが炭酸ガスと反応して難溶性塩の固形分が浸透できない細かい土粒子間や亀裂中に侵入して沈殿物を形成して透水性を閉塞して止水硬化を生ずる。 In addition, even if the polyvalent metal compound is not water-soluble like CaCl 2 and is hardly soluble like CaCO 3 , CaSO 4 , Mg (OH) 2 , Ca (OH) 2, etc. Since Ca and Mg are dissolved in the form of ions, they react with carbon dioxide gas and penetrate into fine soil particles or cracks that cannot penetrate solids of sparingly soluble salts, forming precipitates. Occludes water permeability and causes water hardening.

このようにして得られた炭酸カルシウムを主成分とする硬化物はアルカリ分や酸類を溶出せず、全く公害性のない硬化物である。これはほぼ中性でありながら、長期的にしょう乳洞にみられる結晶構造を人工的に形成している。したがって、配合や施工法を工夫することによって、強度や、結晶構造の形成速度を促進させることができる。   The cured product obtained from calcium carbonate as the main component in this way is a cured product that does not elute alkalis and acids and has no pollution. Although it is almost neutral, it artificially forms a crystal structure found in the cave in the long term. Therefore, the strength and the rate of formation of the crystal structure can be promoted by devising the formulation and construction method.

この現象は他の硫酸や燐酸の化合物と、多価金属化合物との反応においても同様である。なお、本発明では上述配合液、或いはA液及びB液の両方またはいずれか一方を加温することにより、結晶構造の形成が一層促進され、強度増加が早くなる。   This phenomenon is the same in the reaction of other sulfuric acid or phosphoric acid compounds with polyvalent metal compounds. In addition, in this invention, formation of a crystal structure is further accelerated | stimulated and an intensity | strength increase becomes quick by heating the above-mentioned mixing | blending liquid or both or any one of A liquid and B liquid.

多価金属化合物としては、例えばカルシウムやマグネシウムの酸化物、水酸化物、塩化物等が挙げられ、この中で特に、消石灰、塩化カルシウムや塩化マグネシウム等の多価金属塩化物が好ましい。   Examples of the polyvalent metal compound include oxides, hydroxides and chlorides of calcium and magnesium. Among these, polyvalent metal chlorides such as slaked lime, calcium chloride and magnesium chloride are particularly preferable.

さらに、カルシウム塩、マグネシウム塩やカルシウム、マグネシウムやアルミニウムの水酸化物や炭酸塩、これらを含む微粒子石灰、微粒子セメント等も挙げられる。これら微粒子石灰や微粒子セメントとしては、平均粒径が10μm以下、比表面積が5000cm2/g以上のものが好ましい。 Further, calcium salts, magnesium salts and calcium, hydroxides and carbonates of magnesium and aluminum, fine particle lime containing these, fine particle cement, and the like are also included. As these fine particle lime and fine particle cement, those having an average particle diameter of 10 μm or less and a specific surface area of 5000 cm 2 / g or more are preferable.

これらの多価金属化合物は単独で、又は複数種を組み合わせて用いられる。これらの難溶性多価金属化合物を含む注入液は溶解度に相当する多価金属イオンを含むため、これらの混合物を地盤中に注入すると固形分が大きな割れ目や土粒子間に充填され、上澄み液に相当する部分が細い亀裂や土粒子間に浸透し、炭酸ガス、或いはそれが溶解した炭酸水によって炭酸カルシウムを沈殿させて止水性を付与する。   These polyvalent metal compounds are used alone or in combination of two or more. Since the injection solution containing these hardly soluble polyvalent metal compounds contains polyvalent metal ions corresponding to the solubility, when these mixtures are injected into the ground, solids are filled between cracks and soil particles, and the supernatant liquid is filled. Corresponding portions permeate between fine cracks and soil particles, and calcium carbonate is precipitated by carbon dioxide gas or carbonated water in which it dissolves to give water-stopping properties.

又、この際大きな粒系の炭酸カルシウムとカルシウムイオンと炭酸水による炭酸カルシウムが一体となった固結体が形成される。上記においてA液として多価金属を含有させた場合、A液中の多価金属化合物の濃度は特に限定されないが、1〜30重量%が好ましい。   At this time, a solid body is formed in which large-grain calcium carbonate, calcium ions, and calcium carbonate by carbonated water are integrated. In the above, when a polyvalent metal is contained as the liquid A, the concentration of the polyvalent metal compound in the liquid A is not particularly limited, but is preferably 1 to 30% by weight.

さらに、B液を構成する化合物は炭酸ガス或いは更に炭酸塩、重炭酸塩を併用しても良い。勿論これらの一部をA液側に混合しても良い。又、上記本発明全組成物の混合液とA液又はB液を同時あるいは時間差をおいて地盤中に注入して地盤中の反応を促進してもよい。   Furthermore, the compound which comprises B liquid may use together carbon dioxide gas, or also carbonate and bicarbonate. Of course, some of these may be mixed on the liquid A side. Moreover, you may inject | pour into the ground the liquid mixture of the said all composition of this invention, A liquid, or B liquid simultaneously or with a time difference, and accelerate | stimulate the reaction in the ground.

本発明により析出するカルシウム塩とは炭酸カルシウム、水酸化カルシウム、塩化カルシウム、硝酸カルシウム、二酸化アルミニウム等で、注入する地盤や配合に影響される。   The calcium salt precipitated according to the present invention is calcium carbonate, calcium hydroxide, calcium chloride, calcium nitrate, aluminum dioxide or the like, and is affected by the ground and the composition to be injected.

B液中の化合物の濃度はA液の多価金属化合物との反応が十分に行われる濃度であって、A液の濃度及びA、B液の使用割合にも関係するが、好ましくは0.1〜30重量%である。また、透水性の悪い地盤を固結する際に、出来るだけ地盤内部まで固結する場合には、低濃度液を用い、繰り返して土中に浸透または注入し、または土と混合する。   The concentration of the compound in the B liquid is a concentration at which the reaction with the polyvalent metal compound in the A liquid is sufficiently performed, and is also related to the concentration of the A liquid and the usage ratio of the A and B liquids, but preferably 0.1 to 30% by weight. Further, when solidifying a ground having poor water permeability, if it is solidified as much as possible into the ground, a low-concentration liquid is used and repeatedly infiltrated or injected into the soil or mixed with the soil.

本発明にかかる上述の全組成物の混合液はA液及びB液は地盤注入等、土の固結の場合には、これらを土中に浸透または注入し、または土と混合して不溶性塩を形成させ、土を固結する。   In the case of solidification of the liquid A and the liquid B, the mixed liquid of the above-mentioned all compositions according to the present invention is infiltrated or injected into the soil, or mixed with the soil to form an insoluble salt. And solidify the soil.

上述のA液及びB液からなる本発明にかかる注入材はさらに、次の(1)〜(7)に示される組成物の一種または複数種を併用することもでき、これにより強度や止水性が一層向上する。   The injection material according to the present invention consisting of the above-mentioned liquid A and liquid B can be used in combination with one or more of the compositions shown in the following (1) to (7). Is further improved.

(1) 水ガラスを有効成分とする組成物
これは例えば、水ガラスと、硬化剤とを有効成分とする組成物である。水ガラスはSiO2 /Na2O=2〜6のモル比を呈し、工業的に製造されているもの、あるいはこれに苛性アルカリを添加したものである。使用に際しては水で稀釈される。
(1) Composition containing water glass as an active ingredient This is, for example, a composition containing water glass and a curing agent as active ingredients. The water glass has a molar ratio of SiO 2 / Na 2 O = 2 to 6 and is manufactured industrially, or is obtained by adding a caustic alkali thereto. When used, it is diluted with water.

硬化剤としては、重炭酸塩、塩化カルシウム、重硫酸ソーダ、アルミン酸ソーダ、硫酸バンド、みょうばん等の無機塩、炭酸、硫酸、燐酸、塩酸等の無機酸類、酢酸等の有機酸類、ジアセチン、トリアセチン、エチレンカーボネート等のエステル類、グリオキザール、微粒子セメント等のセメント類、微粒子スラグ等のスラグ類、消石灰や苛性アルカリ等のアルカリ剤等が挙げられる。   Hardeners include bicarbonate, calcium chloride, sodium bisulfate, sodium aluminate, sulfate band, alum, etc., inorganic acids such as carbonic acid, sulfuric acid, phosphoric acid, hydrochloric acid, organic acids such as acetic acid, diacetin, triacetin And esters such as ethylene carbonate, cements such as glyoxal and fine particle cement, slags such as fine particle slag, and alkali agents such as slaked lime and caustic alkali.

この組成物の併用方法は、いかなる方法でもよいが、本発明にかかるA、B液を注入する前後に浸透させて併用する。   Any method may be used for this composition, but it is used by infiltrating before and after injecting the liquids A and B according to the present invention.

(2) 水ガラス以外の硬化性組成物
具体的には、エポキシ樹脂、ポリエステル樹脂等の硬化性樹脂組成物が挙げられる。
(2) Curable compositions other than water glass Specific examples include curable resin compositions such as epoxy resins and polyester resins.

(3) 難溶性カルシウム化合物を有効成分とする組成物
本発明において、難溶性カルシウム化合物とは水に対する溶解度(20℃)が5重量%以下のカルシウムが好ましく、具体的には炭酸カルシウム、セメント類、スラグ類、石灰類等が挙げられる。
(3) Composition comprising a hardly soluble calcium compound as an active ingredient In the present invention, the hardly soluble calcium compound is preferably calcium having a water solubility (20 ° C.) of 5% by weight or less, specifically calcium carbonate, cements. Slags, limes and the like.

この併用方法としては、地盤が不均一のために本発明にかかるA、B液が逸脱するような場合に、この逸脱を防止することを主目的として併用することが好ましく、具体的には、本発明にかかるA、B液を注入する前に一次注入材として併用することも出来るが、前述したように難溶性カルシウム化合物の上溶液による炭酸カルシウムの生成を本発明に用いることが出来る。   As this combination method, when the grounds A and B according to the present invention deviate due to non-uniform ground, it is preferable to use in combination mainly for the purpose of preventing this deviation, specifically, Before injecting the A and B liquids according to the present invention, they can be used together as a primary injection material. However, as described above, the production of calcium carbonate by the upper solution of a hardly soluble calcium compound can be used in the present invention.

(4) 微粒子スラグまたは微粒子セメントを有効成分とする組成物
これら微粒子スラグや微粒子セメントとしては平均粒径が10μm以下、比表面積が5000cm/g以上のものが用いられる。この場合も(3)の場合と同じく、上澄液による炭酸カルシウムの生成を本発明に用いることが出来る。
(4) Composition containing fine particle slag or fine particle cement as an active ingredient As these fine particle slag and fine particle cement, those having an average particle diameter of 10 μm or less and a specific surface area of 5000 cm 2 / g or more are used. In this case, as in the case of (3), the production of calcium carbonate by the supernatant can be used in the present invention.

(5) アルカリ剤を有効成分とする組成物
アルカリ剤としては、消石灰、苛性アルカリ等が用いられる。
(5) Composition containing alkali agent as active ingredient As the alkali agent, slaked lime, caustic alkali or the like is used.

(6) 活性シリカまたはコロイダルシリカを有効成分とする組成物
水ガラスをイオン交換樹脂またはイオン交換膜を用いて、水ガラス中のアルカリ分を除去して得られる活性シリカ、酸性水ガラスの酸根やアルカリ金属をイオン交換樹脂、イオン交換膜で除去して得られる活性シリカ、活性シリカを濃縮して造粒したコロイダルシリカ等が挙げられる。
(6) Composition containing active silica or colloidal silica as an active ingredient Active silica obtained by removing alkali from water glass using an ion exchange resin or an ion exchange membrane, acid radicals of acidic water glass, Examples include activated silica obtained by removing an alkali metal with an ion exchange resin and an ion exchange membrane, colloidal silica obtained by concentrating and granulating active silica.

硬化剤としては、塩化ナトリウム、塩化カリウム等の無機塩及び硬化速度やpHの調整のために酸類あるいはアルカリ類が使用される。   As the curing agent, inorganic salts such as sodium chloride and potassium chloride and acids or alkalis are used for adjusting the curing rate and pH.

(7) 炭酸ガス
炭酸ガスを多価金属化合物に吹き込んで注入しても良いし、又、炭酸ガスをあとから地盤中に注入して初期における炭酸カルシウムの析出による固結を加速して炭酸カルシウムを形成しても良い。
(7) Carbon dioxide gas Carbon dioxide gas may be injected by injecting into the polyvalent metal compound, or carbon dioxide gas may be injected into the ground later to accelerate the caking due to the precipitation of calcium carbonate in the initial stage, and thus calcium carbonate. May be formed.

又、本発明の注入液と同時にあるいは注入後に地盤中に炭酸ガス或いは炭酸ガスと水ガラスの混合液を吹き込んでもよい。この方法や装置は本出願人によって(例えば、特許文献2(特公平07−057870号公報)等)、既に開示されている。   Further, carbon dioxide or a mixed solution of carbon dioxide and water glass may be blown into the ground simultaneously with or after the injection of the present invention. This method and apparatus have already been disclosed by the present applicant (for example, Patent Document 2 (Japanese Patent Publication No. 07-057870)).

以下、本発明を実施例により具体的に詳述する。   Hereinafter, the present invention will be described in detail by way of examples.

〔実施例1〕炭酸カルシウムの析出実験
炭酸ガスによる多価金属化合物の硬化実験を行った。
[Example 1] Precipitation experiment of calcium carbonate An experiment of curing a polyvalent metal compound with carbon dioxide gas was performed.

多価金属化合物としては、石灰0.59gを25mlの蒸留水に溶解したもの(石灰水)と、貝殻を多く含む地盤を300gを採取し、500mlの蒸留水でよく撹拌後、ろ過した液(ろ過液)25mlの2種類を用意した。
炭酸ガスはガスボンベより1L/minで液中に吹き込んだ。
25℃、2時間吹込んだ後に観察を行った。
As a polyvalent metal compound, 300 g of a ground solution containing 0.59 g of lime dissolved in 25 ml of distilled water (lime water) and ground containing a lot of shells, and after stirring well with 500 ml of distilled water, is filtered ( Two types of 25 ml of filtrate) were prepared.
Carbon dioxide gas was blown into the liquid at 1 L / min from a gas cylinder.
Observation was carried out after blowing at 25 ° C. for 2 hours.

結果を表1に示す。   The results are shown in Table 1.

Figure 2008063794
Figure 2008063794

カルシウムを含む液において炭酸ガスを添加した場合、白色の炭酸カルシウムの析出が見られた。また有機栄養源を加えることで析出量が多くなった。   When carbon dioxide was added to the liquid containing calcium, white calcium carbonate was precipitated. Moreover, the amount of precipitation increased by adding organic nutrient sources.

比較例1、2はカルシウムは含むが炭酸ガスを吹き込まない液であり、炭酸カルシウムの析出がみられなかった。   Comparative Examples 1 and 2 were solutions containing calcium but not blowing carbon dioxide, and no precipitation of calcium carbonate was observed.

また、カルシウムを含まない液に炭酸ガスを添加しても炭酸カルシウムの析出は見られなかった。   Further, even when carbon dioxide was added to a solution containing no calcium, no precipitation of calcium carbonate was observed.

〔実施例2〕
多価金属化合物と炭酸ガスを配合した薬液を用い透水試験を行った。
[Example 2]
A water permeability test was performed using a chemical solution containing a polyvalent metal compound and carbon dioxide.

(1) 使用材料
多価金属化合物:
消石灰 比表面積:10,000cm/g
塩化カルシウム2水塩 試薬1級
塩化マグネシウム6水塩 試薬1級
炭酸ガス
(1) Materials used Polyvalent metal compounds:
Slaked lime Specific surface area: 10,000 cm 2 / g
Calcium chloride dihydrate, reagent grade 1, magnesium chloride hexahydrate, reagent grade 1, carbon dioxide

(2) 配合
塩化カルシウム(2水塩)を水に溶解して、20(重量)%の溶液を調製した。同様に他の多価金属化合物についても調製した。
(2) Formulation Calcium chloride (dihydrate) was dissolved in water to prepare a 20% (by weight) solution. Similarly, other polyvalent metal compounds were prepared.

これらを表2に示す。   These are shown in Table 2.

Figure 2008063794
Figure 2008063794

この液にノズルにより炭酸ガスを1l/minで吹き込んだ。   Carbon dioxide gas was blown into the liquid at 1 l / min through a nozzle.

(3) 土中への浸透試験
直径5cm、長さ1mのプラスチック製モールドに豊浦標準砂を90cm充填した。(相対密度60%、透水係数=1.5×10−2cm/s)。次いで、1000mlの水を自然流下させた。次に、A液500mlとB液500mlを混合し自然流下させた。
(3) Penetration test into soil 90cm of Toyoura standard sand was filled in a plastic mold with a diameter of 5cm and a length of 1m. (Relative density 60%, hydraulic conductivity = 1.5 × 10 −2 cm / s). Then 1000 ml of water was allowed to flow down naturally. Next, 500 ml of liquid A and 500 ml of liquid B were mixed and allowed to flow naturally.

A液及びB液の混合液の自然流下を1サイクルとした。このサイクルを5サイクルと、10サイクルの2種類を行った。   The natural flow of the liquid mixture of liquid A and liquid B was defined as one cycle. This cycle was performed in two types: 5 cycles and 10 cycles.

終了後モールドの上下をラップで密封し、室内養生した。一軸圧縮強度は養生7日に測定した。   After completion, the upper and lower sides of the mold were sealed with a wrap and cured indoors. Uniaxial compressive strength was measured on the 7th day of curing.

(4) 透水試験
固結物をモールドから脱型し、測定法(土質工学会基準)に準じた加圧透水試験を行った。水圧は0.1MPaとした。
(4) Water permeability test The solidified product was removed from the mold, and a pressure water permeability test was performed according to the measurement method (geological engineering society standard). The water pressure was 0.1 MPa.

(5) 透水試験、一軸圧縮強度の結果
水のみの場合と、本発明を比較した結果を表2に示す。
(5) Results of water permeability test and uniaxial compressive strength Table 2 shows the results of comparing the present invention with water alone.

水のみの場合に比べ、本発明の実施例ではどれも透水係数は約1桁低下しており、地盤の止水効果と固結効果が得られることがわかった。   Compared to the case of water alone, in the examples of the present invention, the water permeability coefficient decreased by about an order of magnitude, and it was found that the water stopping effect and the consolidation effect of the ground can be obtained.

表3に5サイクル繰り返した場合の結果と、10サイクル繰り返した場合の透水係数と一軸圧縮強度を示す。10サイクル繰り返した場合は、透水係数が5サイクルよりも更に一桁減少した。この結果より本発明は一般の水ガラスのように一回の注入で不透性になるわけではないが、注入を繰り返すことにより透水性が低下することがわかった。これは生成した炭酸カルシウムが土粒子の間隙に沈積するためと思われる。   Table 3 shows the results when 5 cycles are repeated, the water permeability and the uniaxial compressive strength when 10 cycles are repeated. When 10 cycles were repeated, the hydraulic conductivity decreased by an order of magnitude more than 5 cycles. From this result, it was found that the present invention does not become impervious by a single injection as in general water glass, but the water permeability is lowered by repeated injection. This seems to be because the generated calcium carbonate is deposited in the gaps between the soil particles.

したがって、注入の繰り返しの程度によって透水性の低下を任意にコントロールすることが出来ることが判った。又、透水性を低下させる一方、完全に止水性にしないように透水性を保持しながら固結効果を得るという特徴は、地盤中の本来ある地下水脈は保持しながら地盤改良を行うという極めて特異な効果が得られるという特徴を持つことが判った。   Therefore, it was found that the decrease in water permeability can be arbitrarily controlled by the degree of repetition of injection. In addition, the characteristic of obtaining a consolidation effect while reducing water permeability while maintaining water permeability so as not to completely stop water is extremely unique in that ground improvement is carried out while retaining the original groundwater veins in the ground. It has been found that it has a characteristic that it can produce a great effect.

又、このような特徴は道路下の地盤の支持力を増加しながら排水機能は持たすという画期的な利用効果を持つ。又、地盤を強化しながら排水機能は保持するために斜面の補強に使用すれば地すべり防止に画期的な地盤改良を可能にする。   In addition, such a feature has an epoch-making effect of having a drainage function while increasing the bearing capacity of the ground under the road. In addition, if it is used to reinforce the slope in order to maintain the drainage function while strengthening the ground, it will be possible to make groundbreaking ground improvement to prevent landslides.

Figure 2008063794
Figure 2008063794

〔実施例3〕
(1) 配合
実施例2の配合を用いた水酸化カルシウム(消石灰)と炭酸ガスを用いた。液温は20℃で行った。
Example 3
(1) Formulation Calcium hydroxide (slaked lime) and carbon dioxide using the formulation of Example 2 were used. The liquid temperature was 20 ° C.

(2) 実験方法
1)コンクリート浸漬試験
モルタル供試体(直径5cm×長さ10cm)を本発明の混合液150mlに所定時間浸漬後、モルタル供試体を液から取り出し、軽く拭いた後、放置し1サイクルとした。
浸漬後、液から取り出し、供試体をラップで包み、室内養生した。
(2) Experimental method 1) Concrete immersion test A mortar specimen (diameter 5 cm x length 10 cm) is immersed in 150 ml of the mixed solution of the present invention for a predetermined time, and then the mortar specimen is taken out of the liquid, lightly wiped, and left to stand. Cycle.
After immersion, the sample was removed from the solution, and the specimen was wrapped in a wrap and cured indoors.

2)コンクリート塗布試験
モルタル供試体(直径5cm×長さ10cm)の全面に本発明の混合液を幅4cmのハケで塗布した。
塗布量は、塗布後のモルタル供試体の重量変化で確認した。塗布後、室温に30分以上放置し、これを1サイクルとした。
2) Concrete application test The mixed liquid of the present invention was applied to the entire surface of a mortar specimen (diameter 5 cm x length 10 cm) with a brush having a width of 4 cm.
The coating amount was confirmed by the change in weight of the mortar specimen after coating. After the application, it was allowed to stand at room temperature for 30 minutes or more, and this was defined as one cycle.

3)コンクリート吹付け試験
モルタル供試体(直径5cm×長さ10cm)の片面に塗装機により、本発明の混合液を吹付け、30分以上放置した。これを1サイクルとし数回吹き付けた。
3) Concrete spray test The mixed liquid of the present invention was sprayed on one side of a mortar specimen (diameter 5 cm x length 10 cm) with a coating machine and left for 30 minutes or more. This was made one cycle and sprayed several times.

(3) 結果
結果を表4に示す。浸透、塗布、吹付のいずれでも、未処理のものに比べ透水係数が低下し改善が見られた。
(3) Results Table 4 shows the results. In any of the infiltration, coating, and spraying, the permeability coefficient was lowered and an improvement was seen compared to the untreated one.

Figure 2008063794
Figure 2008063794

さらに、本発明の地盤注入剤を用いて不溶性塩を形成する場合、
(1)多価金属化合物を有効成分とするA液に炭酸ガスを吹き込む、又は炭酸ガスを吹き込んだ水(炭酸水)を配合する方法、
Furthermore, when forming an insoluble salt using the ground injection agent of the present invention,
(1) A method in which carbon dioxide gas is blown into liquid A containing a polyvalent metal compound as an active ingredient, or water (carbonated water) into which carbon dioxide gas has been blown is blended,

(2)多価金属化合物以外の化合物を有効成分とするB液に炭酸ガスを吹き込む、又は炭酸ガスを吹き込んだ水(炭酸水)を配合する方法、 (2) A method in which carbon dioxide gas is blown into liquid B containing a compound other than a polyvalent metal compound as an active ingredient, or water (carbonated water) into which carbon dioxide gas has been blown is blended,

(3)上記A液、B液を混合した液に炭酸ガスを吹き込む、又は炭酸ガスを吹き込んだ水(炭酸水)を配合する方法、 (3) A method of blending water (carbonated water) into which carbon dioxide gas is blown or carbon dioxide gas is blown into a liquid obtained by mixing the liquid A and the liquid B.

(4)上記A液、B液を土中又はコンクリート躯体中に浸透(注入も含む)混合、又は皮膜(吹き付け又は塗布)後、或いは同時に炭酸ガスを浸透混合または皮膜、又は炭酸ガスを次き込んだ水(炭酸水)を浸透混合または皮膜する方法、
を用いることも出来る。
(4) After mixing (including injection) the solution A and solution B into the soil or concrete frame, or after coating (spraying or coating), or at the same time, osmotic mixing or coating, or coating with carbon dioxide. A method of osmotic mixing or filming water (carbonated water)
Can also be used.

〔実施例4〕
図1は本発明において実際の地盤において炭酸ガスを混合する方法を説明したフローシートであって、主にA、B液送液管路5、複数系統(図1では2系統)の炭酸ガス圧送管路、すなわち、高圧炭酸ガス圧送管路12及び低圧炭酸ガス圧送管路14、及び地盤6中に挿入された注入管7を含んで構成される。
Example 4
FIG. 1 is a flow sheet for explaining a method of mixing carbon dioxide gas in the actual ground in the present invention. Mainly, the A and B liquid feed pipe lines 5 and a plurality of systems (two systems in FIG. 1) carbon dioxide pressure feed. A pipe line, that is, a high-pressure carbon dioxide pressure feed line 12 and a low-pressure carbon dioxide pressure feed line 14, and an injection pipe 7 inserted into the ground 6 are configured.

A、B液送液管路5は多価金属化合物水溶液(A液)貯槽1−1、その他の組成物水溶液(B液)貯槽1−2から地盤6中に挿入された注入管7に配管され、図1に示されるように上流側からそれぞれ、気液混合装置2、注入ポンプ3及び流量計4が送液管路5に配置される。   A and B liquid feed pipes 5 are piped from the polyvalent metal compound aqueous solution (A liquid) storage tank 1-1 and the other composition aqueous solution (B liquid) storage tank 1-2 to the injection pipe 7 inserted into the ground 6. Then, as shown in FIG. 1, the gas-liquid mixing device 2, the injection pump 3, and the flow meter 4 are arranged in the liquid feeding line 5 from the upstream side, respectively.

高圧炭酸ガス圧送管路12は高圧炭酸ガス容器8−2と連結管9−2を介して連結され、注入管7まで配管される。管路12内には電磁弁10−2、減圧弁11−2及び炭酸ガス吹出ノズル13がそれぞれ配置される。この炭酸ガス吹出ノズル13は図示しないが注入管7に備えることもできる。   The high-pressure carbon dioxide pressure feeding line 12 is connected to the high-pressure carbon dioxide container 8-2 via the connection pipe 9-2 and is connected to the injection pipe 7. An electromagnetic valve 10-2, a pressure reducing valve 11-2, and a carbon dioxide gas blowing nozzle 13 are disposed in the pipe 12 respectively. Although not shown, the carbon dioxide gas blowing nozzle 13 can be provided in the injection pipe 7.

低圧炭酸ガス圧送管路14は上述の高圧炭酸ガス圧送管路12と同様、圧力の低下された高圧炭酸ガス容器8−1と連結管9−1を介して連結され、水溶液貯槽1−1、1−2又は送液管路5の気液混合装置2よりも上流側まで配管される。管路14内には上述と同様、電磁弁10−1、減圧弁11−1及び上記と同様な炭酸ガス吹出ノズル15がそれぞれ配置される。   The low-pressure carbon dioxide pressure feed line 14 is connected to the reduced-pressure high-pressure carbon dioxide container 8-1 through the connection pipe 9-1 in the same manner as the high-pressure carbon dioxide pressure feed line 12, and the aqueous solution storage tank 1-1, 1-2 or piped to the upstream side of the gas-liquid mixing device 2 in the liquid feeding pipeline 5. Similarly to the above, the solenoid valve 10-1, the pressure reducing valve 11-1, and the carbon dioxide gas blowing nozzle 15 similar to the above are arranged in the pipe line 14, respectively.

上述の構成からなる本発明装置によれば、送液管路5の上流側、又は水溶液貯槽1−1、1−2中に、低圧炭酸ガス圧送管路14を介し、低圧炭酸ガス容器8−1から電磁弁10−1、減圧弁11−1及び炭酸ガス吹出ノズル15を経て水溶液に炭酸ガスを噴射し、次いで、気液混合装置2で多価金属化合物とその他の組成物と炭酸ガスを充分混合して炭酸ガスの水溶液への吸収率を高め、かつ注入ポンプ3により炭酸ガスの吸収された多価金属化合物水溶液を送液管路5介して注入管7に送液する。   According to the apparatus of the present invention having the above-described configuration, the low-pressure carbon dioxide container 8- The carbon dioxide gas is injected into the aqueous solution from 1 through the electromagnetic valve 10-1, the pressure reducing valve 11-1, and the carbon dioxide blowing nozzle 15, and then the polyhydric metal compound, the other composition and the carbon dioxide gas are fed by the gas-liquid mixing device 2. Mix well to increase the absorption rate of the carbon dioxide gas into the aqueous solution, and the polyhydric metal compound aqueous solution in which the carbon dioxide gas is absorbed by the injection pump 3 is sent to the injection pipe 7 through the liquid supply line 5.

さらに、高圧炭酸ガス圧送管路12を介し、高圧炭酸ガス容器8−2から電磁弁10−2、減圧弁11−2及び炭酸ガス吹出ノズル13を経て注入管7中に炭酸ガスを噴射する。   Further, carbon dioxide is injected into the injection pipe 7 from the high-pressure carbon dioxide container 8-2 via the electromagnetic valve 10-2, the pressure reducing valve 11-2, and the carbon dioxide blowing nozzle 13 via the high-pressure carbon dioxide pressure feed line 12.

本発明にかかる注入材の注入装置の一具体例の説明図である。It is explanatory drawing of one specific example of the injection apparatus of the injection material concerning this invention.

符号の説明Explanation of symbols

1 水溶液貯槽
2 混合槽
3 注入ポンプ
4 流量計
5 水溶液送液管路
6 地盤
7 注入管
8 炭酸ガス容器
9 連結管
10 電磁弁
11 減圧弁
12 高圧炭酸ガス圧送管路
13 炭酸ガス吹出ノズル
14 低圧炭酸ガス圧送管路
15 炭酸ガス吹出ノズル
DESCRIPTION OF SYMBOLS 1 Aqueous solution storage tank 2 Mixing tank 3 Injection pump 4 Flowmeter 5 Aqueous solution liquid supply line 6 Ground 7 Injection pipe 8 Carbon dioxide gas container 9 Connection pipe
10 Solenoid valve
11 Pressure reducing valve
12 High-pressure carbon dioxide gas supply line
13 Carbon dioxide blowing nozzle
14 Low pressure carbon dioxide gas supply line
15 Carbon dioxide blowing nozzle

Claims (5)

多価金属化合物と炭酸ガスを有効成分とする組成物を、土中に浸透させまたは注入し、又は土と混合して、又は建造物躯体に浸透させ又は吹き付けて又は被覆して不溶性塩を形成させることを特徴とする土又は建築物躯体の処理方法。   A composition containing polyvalent metal compounds and carbon dioxide as active ingredients is infiltrated or injected into the soil, mixed with the soil, or infiltrated or sprayed into the building enclosure or coated to form an insoluble salt. A method for treating soil or a building frame, characterized in that: 請求項1において、多価金属化合物は、多価金属の塩化物、炭酸塩、水酸化物、硫酸塩、及びセメント又はスラグの群から選択される一種または複数種であることを特徴とする土又は建造物躯体の処理方法。   The soil according to claim 1, wherein the polyvalent metal compound is one or more selected from the group consisting of chlorides, carbonates, hydroxides, sulfates, and cements or slags of polyvalent metals. Or the processing method of a building frame. 請求項1において、前記組成物に更に、炭酸塩、重炭酸塩、多価金属化合物の群から選択される一種または複数種を有効成分とする組成物を、土中に浸透させまたは注入し、又は土と混合して、又は建造物躯体に浸透させ又は吹き付けて又は被覆して不溶性塩を形成させることを特徴とする土又は建築物躯体の処理方法。   The composition according to claim 1, further comprising infiltrating or injecting into the soil a composition containing one or more selected from the group of carbonates, bicarbonates, and polyvalent metal compounds as an active ingredient, Alternatively, a method for treating soil or building enclosures comprising mixing with soil, or infiltrating or spraying or covering the building enclosure to form an insoluble salt. 請求項1〜3において、多価金属化合物を有効成分とする組成物を、注入又は混合した土又は構造物躯体に炭酸ガスを有効成分とする組成物を1回又は複数回注入することを特徴とする土又は建築物躯体の処理方法。   The composition containing a carbon dioxide gas as an active ingredient is injected once or a plurality of times according to claims 1 to 3 into a soil or a structure housing in which a composition containing a polyvalent metal compound as an active ingredient is injected or mixed. The processing method of the soil or building frame. 請求項1〜3において、難溶性多価金属化合物を有効成分とする組成物を、土中又は構造物躯体に注入し、さらに水溶性多価金属化合物を有効成分とする組成物を注入することを特徴とする土又は建築物躯体の処理方法。
Injecting the composition which uses a sparingly soluble polyvalent metal compound as an active ingredient in soil or a structure housing | casing in Claims 1-3, and also inject | pours the composition which uses a water-soluble polyvalent metal compound as an active ingredient further. A method for treating soil or building enclosures.
JP2006241860A 2006-09-06 2006-09-06 Method of treating soil or building skeleton Pending JP2008063794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241860A JP2008063794A (en) 2006-09-06 2006-09-06 Method of treating soil or building skeleton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241860A JP2008063794A (en) 2006-09-06 2006-09-06 Method of treating soil or building skeleton

Publications (1)

Publication Number Publication Date
JP2008063794A true JP2008063794A (en) 2008-03-21

Family

ID=39286739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241860A Pending JP2008063794A (en) 2006-09-06 2006-09-06 Method of treating soil or building skeleton

Country Status (1)

Country Link
JP (1) JP2008063794A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241475A (en) * 2011-05-23 2012-12-10 Linack Co Ltd Method for reinforcing concrete
JP2013159775A (en) * 2012-02-09 2013-08-19 Nippon Chem Ind Co Ltd Gelling time-adjustable injection water stop material for ground pore
NO20160273A1 (en) * 2015-02-16 2016-08-17 Jle As Method for stabilizing grounds
KR101920886B1 (en) * 2018-06-19 2018-11-21 한국건설기술연구원 Chemical healing method for mitigating subsequent damage of concrete building structure due to fire
JP2018193679A (en) * 2017-05-12 2018-12-06 株式会社大林組 Ground improvement method
JP2020159032A (en) * 2019-03-26 2020-10-01 株式会社ティ・エス・プランニング Crack repairing method for concrete structure
CN114482087A (en) * 2021-12-23 2022-05-13 合肥工业大学 Method for solidifying side slope by microorganism mineralization filling-magnesia carbonization guniting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396212A (en) * 1977-02-01 1978-08-23 Takeo Suzuki Method of injecting chemical liquid to inject cement and carbon dioxide gas
JPS53133918A (en) * 1977-04-26 1978-11-22 Ezaki Yoshio Method of stabilizing mature of soil by carbon dioxide gas
JPS546309A (en) * 1977-06-16 1979-01-18 Mamoru Akashi Method of stabilizing nature of soil
JPS547713A (en) * 1977-06-17 1979-01-20 Mamoru Akashi Method of stabilizing nature of soil
JP2004067819A (en) * 2002-08-05 2004-03-04 Kyokado Eng Co Ltd Method for consolidating soil and method for treating concrete skeleton

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396212A (en) * 1977-02-01 1978-08-23 Takeo Suzuki Method of injecting chemical liquid to inject cement and carbon dioxide gas
JPS53133918A (en) * 1977-04-26 1978-11-22 Ezaki Yoshio Method of stabilizing mature of soil by carbon dioxide gas
JPS546309A (en) * 1977-06-16 1979-01-18 Mamoru Akashi Method of stabilizing nature of soil
JPS547713A (en) * 1977-06-17 1979-01-20 Mamoru Akashi Method of stabilizing nature of soil
JP2004067819A (en) * 2002-08-05 2004-03-04 Kyokado Eng Co Ltd Method for consolidating soil and method for treating concrete skeleton

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241475A (en) * 2011-05-23 2012-12-10 Linack Co Ltd Method for reinforcing concrete
JP2013159775A (en) * 2012-02-09 2013-08-19 Nippon Chem Ind Co Ltd Gelling time-adjustable injection water stop material for ground pore
NO20160273A1 (en) * 2015-02-16 2016-08-17 Jle As Method for stabilizing grounds
NO339059B1 (en) * 2015-02-16 2016-11-07 Jle As Method for stabilizing grounds
JP2018193679A (en) * 2017-05-12 2018-12-06 株式会社大林組 Ground improvement method
KR101920886B1 (en) * 2018-06-19 2018-11-21 한국건설기술연구원 Chemical healing method for mitigating subsequent damage of concrete building structure due to fire
JP2020159032A (en) * 2019-03-26 2020-10-01 株式会社ティ・エス・プランニング Crack repairing method for concrete structure
JP7264448B2 (en) 2019-03-26 2023-04-25 株式会社ティ・エス・プランニング Method for repairing cracks in concrete structures
CN114482087A (en) * 2021-12-23 2022-05-13 合肥工业大学 Method for solidifying side slope by microorganism mineralization filling-magnesia carbonization guniting

Similar Documents

Publication Publication Date Title
JP2008063794A (en) Method of treating soil or building skeleton
KR101472485B1 (en) Geo-polymer mortar cement composition using the same construction methods
JP4696200B2 (en) Ground injection method
JP2008063495A (en) Method for treating soil or building skeleton
KR102435537B1 (en) Eco-friendly grout manufacturing method forming silica-sol phase and grouting method using the same
JP5578642B2 (en) Ground injection agent and ground injection method
KR100884285B1 (en) The soil stabilization for which this for super-high-pressure injection and this were used with hardening agent for soft soil stabilization
JPH07166163A (en) Chemical agent solution for injection into ground
JP2008138069A (en) Method for treating soil or construction skeleton
JP5504414B1 (en) Repair method for concrete structures
JP4955123B2 (en) Ground injection material and ground injection method
JP4679811B2 (en) Silica solution for ground injection and ground injection method
JP5015193B2 (en) Ground injection material and ground injection method
JP2008231769A (en) Construction method and equipment for soil improvement
JP4212315B2 (en) Soil consolidation method and concrete frame processing method
JP6339848B2 (en) Impermeable structure and method for forming impermeable structure
JP2006226014A (en) Grouting construction method
JP2010116759A (en) Soil improving method
JP4437481B2 (en) Ground improvement method
JP6712828B1 (en) Ground injection material and ground injection method
JP3413398B2 (en) Ground consolidation method
JP4757428B2 (en) Alkaline silica for solidification of ground, apparatus for producing the same, and ground consolidation material
JP2004196922A (en) Alkaline silica for ground hardening, apparatus for producing the same and ground hardening material
JP4766532B1 (en) Ground injection method
JP3871057B2 (en) Gap filling method for structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101228