JP4242670B2 - Soil-stabilized soil and method for producing the same - Google Patents
Soil-stabilized soil and method for producing the same Download PDFInfo
- Publication number
- JP4242670B2 JP4242670B2 JP2003057533A JP2003057533A JP4242670B2 JP 4242670 B2 JP4242670 B2 JP 4242670B2 JP 2003057533 A JP2003057533 A JP 2003057533A JP 2003057533 A JP2003057533 A JP 2003057533A JP 4242670 B2 JP4242670 B2 JP 4242670B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- water
- stabilized
- polymer
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、地盤の埋め戻しなどに利用される流動化処理土に関するもので、特に、止水機能を備えた土質安定処理土及びその製造方法に関するものである。
【0002】
【従来の技術】
地下鉄道構造物、共同溝又は建築地下構造物などの開削後に地中に埋め戻す構造物は、構築した構造物の外周に外防水工を施して漏水や浸水に備える必要がある。この外防水工には、塗膜防水工、シート防水工、モルタル防水工、ベントナイト防水工等がある。
外防水工の中では、ゴム系の防水シートを構造物の外周に接着剤によって貼り付けるシート防水工が信頼性の高い防水工であるとして多用されている。また、アスファルト系材料を塗膜として融着させる塗膜防水工、モルタルを吹き付けるモルタル防水工は、経済的な工法として採用されることがある。
一方、従来から流動化処理土が、地中構造物の周囲の狭隘な空間の埋め戻しに使われていた。ここで、流動化処理土とは、砂、粘土、シルト又はローム等からなる建設現場で発生する建設発生土や山砂などと、セメント系固化材とを混合して製造する、流動性の高い締め固め不要の充填材をいう。
この流動化処理土の防水効果を高める研究が、本願の発明者らによって行われており、非特許文献1の論文が開示されている。
【0003】
【非特許文献1】
久野悟郎、岩淵常太郎、和泉彰彦、外3名、“流動化処理土による外防水工法の開発(その1−モルタル防水剤の適用性)”、第37回地盤工学研究会発表会 平成14年度発表会講演集、社団法人地盤工学会、平成14年7月16〜18日、K−06、436、p.865−866
【0004】
【発明が解決しようとする課題】
前記した従来の外防水工にあっては、次のような問題点がある。
<イ>現在、外防水工として多用されているシート防水工は、突起物によりシートが破損し易く、破損した場合に極端に止水性が低下するという問題がある。また、湿潤面や凹凸面には接着しにくい。さらに、シートの外側に保護層を設ける必要があるうえに材料費が高いため、工費が増加するという問題がある。
<ロ>アスファルト系塗膜防水工は、経済的な工法として長年の施工実績はあるが、高熱処理を必要とし、煙と悪臭の発生によって施工環境が悪化するという問題がある。また、施工面の乾燥を要する点や、保護層を設ける必要がある点などシート防水工と同じ課題を抱えている。
<ハ>モルタル防水工は、経済的で施工性が良いという利点を有しているが、亀裂や剥離が生じやすいため、防水性能が低下し易い。
<ニ>スラリー化した泥水に固化材を混ぜて地中壁を構築する遮水壁工法が従来からあるが、透水係数が10−5〜−6cm/secのオーダーであり、外防水工として使用できるほどの不透水性を有してはいない。
<ホ>流動化処理土は、打設後に混合に使用した水が上昇するブリージングを起こす。このブリージングは、打ち継ぎ目のコールドジョイントの原因となり、その結果止水機能が低下する。
<ヘ>流動化処理土及びスラリー状の原位置の土に固化材を混合したソイルセメント等は、間隙が大きく、このため水中に在っては透流水の通過による固化物質の水への溶出が、気中にあっては二酸化炭素による中性化が、徐々に進行し、長期的には初期に発揮された固化状態が劣化する傾向にある。
【0005】
【発明の目的】
本発明は上記したような従来の問題を解決するためになされたもので、外防水工として採用できるような止水性能を備えた土質安定処理土及びその製造方法を提供することを目的とする。特に、透水係数が10−9〜−10cm/secのオーダーの不透水層が確保できる土質安定処理土及びその製造方法を提供することを目的とする。
また、長期間にわたって安定した止水性能及び固化状態が維持できる高耐久性の土質安定処理土及びその製造方法を提供することを目的とする。
さらに、施工性に優れ、経済的な外防水工を実施できる土質安定処理土及びその製造方法を提供することを目的とする。特に、施工の熟練度などに左右されにくく、容易に品質の高い外防水工を実施できる土質安定処理土及びその製造方法を提供することを目的とする。
また、打設後にブリージングがほとんど発生しない土質安定処理土及びその製造方法を提供することを目的とする。
本発明は、これらの目的の少なくとも一つを達成するものである。
【0006】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の土質安定処理土は、主原料となる被処理土と、水ガラスと、ポリビニルアルコール、エチレンビニルアルコール、アクリルポリマー又はウレタンのうちいずれかの高分子剤を液体化した高分子液と、水と、セメント系、石灰系又は石膏系の固化材と、を混合してなり、湿潤密度が1.3〜1.9g/cm3となるものである。ここで被処理土とは、砂、粘土、シルト又はローム等からなる建設現場で発生する建設発生土、原位置地盤又は採取した山砂などの土質安定処理土の主原料となる材料をいう。
また、上記した土質安定処理土には、細粒土を水に溶解して製造する泥水比重を1.1〜1.3に調整した調整泥水を加えてもよい。さらに、前記水ガラスの重量を全体の水重量の8%まで、好ましくは5%までとし、前記高分子剤の重量を全体の水重量の0.3%〜3%にするのが好ましい。ここで、全体の水重量とは、土質安定処理土の中に含まれるすべての水の重量をいう。配合時には土質安定処理土1m3中に含まれる水の量から各材料の使用量を算定する。よって、被処理土の含水率によって加える水の量は変化する。
【0007】
また、本発明の土質安定処理土の製造方法は、主原料となる被処理土に、水ガラスと、ポリビニルアルコール、エチレンビニルアルコール、アクリルポリマー若しくはウレタンのうちいずれかの高分子剤を液体化した高分子液と、水と、を加えてスラリー状の混合泥水を製造し、前記混合泥水にセメント系、石灰系又は石膏系の固化材を添加して練り混ぜ、湿潤密度が1.3〜1.9g/cm3の土質安定処理土を製造する方法である。
さらに、主原料となる被処理土に水を加えて製造した泥水、若しくは細粒土を水に溶解して製造する泥水比重を1.1〜1.3に調整した調整泥水に、水ガラスと、ポリビニルアルコール、エチレンビニルアルコール、アクリルポリマー若しくはウレタンのうちいずれかの高分子剤を液体化した高分子液と、を加えてスラリー状の混合泥水を製造し、前記混合泥水にセメント系、石灰系又は石膏系の固化材を添加して練り混ぜ、湿潤密度が1.3〜1.9g/cm3の土質安定処理土を製造する方法である。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0009】
<イ>土質安定処理土
土質安定処理土は、流動化処理土や原位置地盤の止水性能を向上させたものをいう。従来の流動化処理土は、通常の埋め戻し土よりは透水係数は低いものの10−5〜−6cm/sec程度の透水係数があり、土でいえばシルトあるいは粘性土の透水性と同程度である。このため、建設発生土の状態よりも止水性能が向上してはいるが、外防水工として使用できる程度の止水性能は備えておらず、シート防水工などとの併用が必要であった。そこで、従来の流動化処理土や原位置地盤を本発明の土質安定処理土に変換することで、単独で外防水工として採用できるほどの高い止水性能を確保する。また、この結果として、固化物質の水への溶出を抑えることができ、固化状態を長期間維持できるため、高耐久性の土質安定処理土とすることができる。
土質安定処理土は、主原料となる被処理土と、水ガラスと、高分子剤を液体化した高分子液と、固化材とを混合して製造し、湿潤密度が1.3〜1.9g/cm3となる。密度を規定するのは、密度効果による止水性能の向上も期待しているためである。特に、流動化処理土として使用する場合は、湿潤密度は好ましくは1.5g/cm3以上、最適としては1.8g/cm3以上とする。
各成分について、以下に説明する。
【0010】
<ロ>被処理土
被処理土は、砂、粘土、シルト又はローム等からなる建設現場で発生する建設発生土、原位置地盤又は採取した山砂などの土質安定処理土の主原料となる材料をいう。
建設発生土は、埋め戻しをおこなう現地地盤から発生した土であっても、他の建設現場から運搬してきた土であってもよい。原位置地盤は、原位置に堆積した状態の地盤をいい、地盤改良工法においてセメント系固化材と原位置地盤を混合して改良を行うようにして原位置地盤を土質安定処理土に変換する。
また、土質安定処理土が必要とする水の量は、土質安定処理土の中に含まれるすべての水の重量である。よって、製造時に加える水の量は、必要とする水の量から被処理土の含水量や、水ガラスや高分子液や調整泥水に使用した水の重量を差し引いて算出する。
【0011】
<ハ>水ガラス
水ガラスは、ケイ酸のアルカリ塩で、通常、ケイ酸ナトリウムを主成分とする液状の材料をいう。人の健康や環境に与える影響が少ないので、従来から薬液注入工法で使用されている。
水ガラスは、無色透明の水溶液で、土中に注入すると数十秒から数十分で凝結する。粘着力が大きいため人造石やガラスなどの接着剤としても使用される。
水ガラスは、水で希釈された水ガラス溶液にして使用する。
【0012】
<ニ>高分子液
高分子液は、高分子剤を水や溶媒に溶解したり、分散させたりして液体化したものをいう。
高分子剤には、ポリビニルアルコール(以下、PVAという)、エチレンビニルアルコール(以下、EVAという)、アクリルポリマー又はウレタンが使用できる。この中で、PVAが最も土質安定処理土に使用する高分子剤として適している。
PVAは、水溶性ポリマーの一種で、アセチレンの分子中に3重結合を持つ炭化水素から出来ていて、アセチレン自体は、炭化カルシウム(カルシウムカーバイド)と水との反応によって生成する。PVAは、ポリ酢酸ビニル等のポリビニルエステルの加水分解によって調整する。PVAは、接着剤、繊維、紙用糊剤、溶液の乳化、懸濁、増粘剤等に用いられる。
EVAは、エチレンビニルアルコール共重合体ともいい、エチレン酢酸ビニル共重合体を加水分解したけん化物である。EVAは、水酸基をもつ親水性ポリマーであるため、優れた接着強度を有する。
アクリルポリマーは、アクリル系ポリマーとも呼ばれ、分散剤、増粘剤又は粘着剤として使用される。アクリル酸エステルやメタクリル酸エステル等が使用できる。
ウレタンは、ウレタン樹脂とも呼ばれ、分子鎖にウレタン結合をもつ重合体である。脂肪酸ジアミン又はグリコール類とジイソシアネート類の重付加によって得られる。主として発泡緩衝材に使用され、塗料原料や接着剤にも使用される。
【0013】
粉状の高分子剤の中には、簡単には水に溶け難く、被処理土と混合したときに均等に分散させることが難しいものもあるため、水や溶液に溶解又は分散させた状態で使用する。PVAは水溶性であり、例えば濃度が10%のPVA水溶液として使用する。また、水に溶け難いEVA、アクリルポリマー又はウレタンは、溶液に分散させて高分子エマルションとしたり、溶媒を使用して高分子溶液としたりして使用する。
【0014】
<ホ>調整泥水
調整泥水は、細粒土を水に溶解して製造する泥水であって、泥水比重を1.1〜1.3に調整して製造する。
細粒土とは、建設現場などで発生した沖積粘土などの粘土、関東ロームなどのローム、シルト、ベントナイトなどをいう。泥水は1種類又は複数の種類の細粒土を水に溶かして製造する。
【0015】
<ヘ>固化材
固化材の使用量は、例えばセメント系の固化材の場合は流動化処理土1m3に対して20〜200kg、石灰又は石膏系の固化材の場合は流動化処理土1m3に対して150〜400kgとする。
また、SMW工法やTRD工法などのように、地中や掘削溝内でスラリー化した泥水に固化材を混ぜて地中壁を構築する場合は、泥水(スラリー)1m3に対して300〜400kgのセメント系固化材を添加することもある。
密度の高い流動化処理土においては、添加していた固化材の量を従来に比べて減らし、施工上一時的に必要な程度の強度を確保するだけの量の固化材を添加する。この結果、流動化処理土の力学的性質を、土が本来もつ性質にすることができる。
【0016】
<ト>土質安定処理土の製造方法
まず、主原料となる建設現場から発生した被処理土、又は被処理土に水を加えて製造した泥水を用意する。また必要に応じて調整泥水を製造する。そして、泥水又は調整泥水に、水ガラスと高分子液を混合する。
水で希釈された水ガラス溶液を泥水又は調整泥水に加えると、後で投入するセメントとの水和反応によって水が減少し、水ガラスの粘性が増し、水ガラスの濃度が高くなって水の移動を拘束すると考えられる。さらに水ガラスは、水和反応を促進させる作用があるため、透水性を下げる効果は早期に発現される。また、高分子液を添加することによって、溶解した高分子剤の増粘作用により水の粘性を高めることができる。そして、添加する固化材も水和反応して水を消費するため、高分子液の濃度が高くなり、水の移動を拘束することができる。
水ガラスと高分子液は、それぞれを単独で添加しても従来の流動化処理土よりは透水係数を下げることができるが、両者を組み合わせることによって飛躍的に透水係数を下げることができる。すなわち、高分子剤と水ガラスが混合すると化学反応してゲル化するため、間隙内部の水の移動は、各々の材料を単独に使用する場合に比べて、非常に高いレベルで拘束される。この結果、外防水工として単独で使用できるほどの透水係数が10−9〜−10cm/secのオーダーの不透水層を構築することができる。従って、水ガラスと高分子液を混合する順序は、いずれが先になってもよいが、同時に混合することは避けるのが好ましい。一方の材料が泥水又は調整泥水に充分に分散する前に水ガラスと高分子剤が接触すると、その場で化学反応してゲル化した固まりができるおそれがあるためである。
一般に湿潤密度が1.6g/cm3の飽和土では間隙が70%程度有り、湿潤密度が1.3g/cm3の飽和土では間隙が80%程度有ることからもわかるように、間隙水は土質安定処理土の中でも非常に大きな割合を占める。この部分の水が変質すれば、土質安定処理土の止水性能が大幅に向上することになる。
【0017】
そして、水ガラスと高分子液とを添加した混合泥水に、セメント系、石灰系又は石膏系の固化材を添加して練り混ぜて土質安定処理土とする。地下構造物の外防水工として、埋め戻しに使用する土質安定処理土が代用できれば、外防水工を別途行う必要がなくなる。また、流動化した土質安定処理土を充填するだけでよいため、熟練度による施工の良否の差がほとんど出ない。また、充填された土質安定処理土が層状に構造物を覆うため、部分的に水の供給路が発達しても他の層で遮断されるため、防水性能が安定して維持される。
【0018】
また、水ガラスと高分子剤を混入することによって、土質安定処理土のじん性が向上し、地下構造物等の変形に追従することが出来るようになる。
また、従来、セメント系固化材による遮水壁や地盤改良は、仮設材としての位置付けがあったが、高い止水性能を持たせることで、流動化処理土中のCaの溶出を防ぎ劣化を抑えることができる。
ここまで、流動化処理土に防水剤となる水ガラスと高分子液を加える説明をしたが、この他にも沖積粘土地盤のような90%以上の飽和度が確保されている高含水比の原位置粘土地盤も、止水機能の高い土質安定処理土に変換することができる。
【0019】
以下、試験結果を参照しながら本発明の土質安定処理土の特性について説明する。
【0020】
<イ>防水剤の種類による透水係数の比較(図1)
図1に、流動化処理土に色々な種類の防水剤を添加した場合の透水係数について比較した結果を示す。ここで、流動化処理土の透水係数は、密度によっても変化するので、横軸には密度を示した。
図1から、密度が低く防水剤を添加しない流動化処理土や、無機質系モルタル防水剤を添加した流動化処理土の透水係数は、10−6cm/secのオーダーであり止水性能は低いことがわかる。しかし、水溶性ポリマー(PVA)や水ガラスを添加した流動化処理土の透水係数は、密度が低くても10−7cm/secのオーダーとなり、透水係数が1オーダー低下して止水性能が向上する。
しかし、水溶性ポリマー(PVA)や水ガラスを単独で使用した場合は、密度を1.6g/cm3に上げても10−8cm/secのオーダーであり、単独で外防水工に使用することは難しい。
ところが、水溶性ポリマー(PVA)と水ガラスを混合して添加した場合は、透水係数が更に1〜2オーダー低下して、10−9〜−10cm/secのオーダーの飛躍的に止水性能が向上した透水係数が得られた。これは、上述したように高分子剤と水ガラスが化学反応してゲル化することによって得られる効果であり、防水剤を単独で使用した場合の粘性の向上による不透水化とは異なるものである。このため、単独で防水剤を使用した場合の延長線を越えた飛躍的な止水性能が得られたものと考えられる。
この止水効果は、高分子剤としてエチレンビニルアルコール(EVA)、アクリルポリマー又はウレタンを使用した場合にも得ることができる。
【0021】
<ロ>流動性の検討
PVAは、流動性促進効果があるため、上記した高分子剤の中でも最も好ましい高分子剤と考えられる。図2は、PVAの添加量を横軸に、流動性を示す指標となるフロー値の変動比を縦軸にして描いた曲線である。図2からも、PVAの添加量が増加するとフロー値が増加することがわかる。
流動化処理土として本発明の土質安定処理土を使用する場合、充填性などの施工性を確保するために、流動性フロー値を160〜250mmとするのが好ましい。しかし、水ガラスは粘性があり、その添加量が5%を上回ると土質安定処理土の粘性が急激に増えて流動性が低下し、8%を超えると流動化処理土として使用するには実用的でなくなってしまう。ところが、PVAを同時に添加した場合は、PVAの流動性促進効果と相殺しあって所定の流動性を確保することができる。
【0022】
<ハ>じん性の検討
図3にPVAを添加した場合と、防水剤無添加の流動化処理土の場合の破壊ひずみを示した。
図3より、高分子剤の添加によって土質安定処理土の破壊時のひずみが添加量の増加に比例して伸びることがわかる。これは間隙内部の粘性が高分子剤の添加によって増加したことに起因するものと考えられる。
図4には、PVAを添加しない無添加処理土と、全体の水重量の0.5,1.0,1.5,3.0,6.0%の重量のPVAを添加した土質安定処理土の一軸圧縮試験の結果を示した。ここで、全体の水重量とは、土質安定処理土の中に含まれるすべての水の重量をいう。すなわち、混合時に加える水の他に、被処理土が元来持っている含水量や、高分子液や水ガラス希釈液などに使用した水の量も全体の水重量に含まれる。
この結果、全体の水重量の3.0,6.0%のPVAを添加した土質安定処理土は、破壊後もピーク強度を維持し続け、強度低下が10%程度(図示せず)まで起きないことがわかった。そこで、他の実験結果も考慮してPVAを単独で添加する場合は、全体の水重量の3%〜12%程度添加すると土質安定処理土のじん性が改善されることがわかった。
【0023】
<ニ>ブリージング率の検討
材料の分離抵抗性を確保するためにブリージング率を1%未満とするのが好ましい。ブリージング率は土木学会基準「プレパックトコンクリートの注入モルタルのブリージング率及び膨張試験法」(JSCE−1986)等により求めることができる。また、被処理土の種類及び土質安定処理土に含まれる細粒土分と固化材の総和と水の割合などから推定することもできる。
特に、ブリージングの発生は止水性の低下に繋がる原因となるため、ブリージングが発生しないのが好ましい。
高分子液と水ガラスを添加した場合は、土質安定処理土にはまったくブリージングが発生しないことが、すべての配合実験で確認できた。また、供試体を観察すると、土質安定処理土の表面は乾いているようにもみえた。
【0024】
<ホ>密度効果の検討
図5に、PVAを添加した土質安定処理土の間隙比と透水係数の関係を示した。間隙比が大きいということは密度が小さいということになるので、密度と透水係数の関係であるともいえる。
図5から、土質安定処理土の間隙比が大きくなるに従って透水係数が増加して、止水性能が低下していることがわかる。この透水係数の変化量は大きく、密度の違いによって透水係数が1〜2オーダー変化するといえる。ただし、密度の増加は、土質安定処理土の製造、運搬、打設において、コストを増加させる原因となるため、密度効果のみによって止水性能を向上させることは不経済であり、防水剤の添加との相乗効果を期待することとする。
【0025】
<ヘ>防水剤の添加量の検討
高分子剤の添加量が増加すると透水係数が低下することが図6からわかる。水ガラスを単体で添加した場合にも、図6と同じ傾向の結果が得られる。
また、図7には、水ガラスとPVAの混合割合について検討した結果を示す。
土質安定処理土1m3中に含まれる水の重量に対して5%以上の水ガラスを混合すると、粘性が上がりすぎてフロー値が低下し、8%を超えると打設が困難になるため、水ガラスの混入の上限は8%程度となる。
そして、水ガラスとPVAを混合した場合は、水ガラスが主剤、PVAが補助剤として作用し、土質安定処理土の透水係数を下げる。
PVAの添加量は、0.3〜1.0%程度が適量であり、3%以上混入すると不透水化が弱くなることが図7からわかる。よって、PVAの添加量は、0.3〜3.0%が好ましい。
【0026】
【発明の効果】
本発明の土質安定処理土及びその製造方法は、以上説明したようになるから次のような効果を得ることができる。
<イ>高分子液と水ガラスを混合することによって、土質安定処理土の止水性能を飛躍的に高めることができる。この結果、土質安定処理土を地下構造物の外防水工としてそのまま使用することができる。
<ロ>土質安定処理土の止水性能を高めることによって、透流水の通過による固化物質の水への溶出や、二酸化炭素による中性化を防ぐことができる。このため、土質安定処理土の固化状態を長く維持できるようになり、耐久性が向上する。
<ハ>スラリー状の土質安定処理土を充填するだけで、外防水工が実施できる。このため、施工性に優れ、他の方法に比べて経済的である。
【図面の簡単な説明】
【図1】添加する防水剤の種類及び密度による透水係数の比較図。
【図2】PVA添加量とフロー値の変動比との関係を示した図。
【図3】高分子剤添加量と破壊ひずみとの関係を示した図。
【図4】PVAの添加量ごとに圧縮ひずみと圧縮強度との関係を示した図。
【図5】PVAを添加した土質安定処理土の間隙比と透水係数の関係を示した図。
【図6】高分子剤添加量と透水係数との関係を示した図。
【図7】PVAと水ガラスの混合比と透水係数との関係を示した図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluidized soil used for backfilling the ground, and more particularly to a soil-stabilized soil having a water stop function and a method for producing the soil.
[0002]
[Prior art]
A structure to be buried in the ground after excavation, such as a subway structure, a common ditch, or an underground building structure, needs to be provided with an outer waterproofing work on the outer periphery of the constructed structure in order to prepare for water leakage or inundation. As this outer waterproofing work, there are a coating waterproofing work, a sheet waterproofing work, a mortar waterproofing work, a bentonite waterproofing work and the like.
In the outer waterproofing work, a sheet waterproofing work in which a rubber-based waterproofing sheet is attached to the outer periphery of a structure with an adhesive is often used as a highly reliable waterproofing work. In addition, a waterproof coating method for fusing asphalt-based materials as a coating film and a mortar waterproofing method for spraying mortar are sometimes adopted as economical methods.
On the other hand, fluidized soil has traditionally been used for backfilling confined spaces around underground structures. Here, fluidized soil is produced by mixing construction-generated soil or mountain sand generated at a construction site made of sand, clay, silt or loam with cement-based solidified material and has high fluidity. A filler that does not require compaction.
Researches for enhancing the waterproofing effect of the fluidized soil have been conducted by the inventors of the present application, and a paper of Non-Patent
[0003]
[Non-Patent Document 1]
Goro Kuno, Tsunetaro Iwabuchi, Akihiko Izumi, 3 others, “Development of water-proofing method using fluidized soil (Part 1-Applicability of mortar waterproofing agent)”, 37th Geotechnical Society Presentation 2014 Proceedings of the presentation, Geotechnical Society of Japan, July 16-18, 2002, K-06, 436, p. 865-866
[0004]
[Problems to be solved by the invention]
The above-described conventional waterproofing work has the following problems.
<A> Currently, the sheet waterproofer, which is widely used as an outer waterproofer, has a problem that the sheet is easily damaged by the protrusions, and the water-stopping property is extremely lowered when it is damaged. Further, it is difficult to adhere to wet surfaces and uneven surfaces. Furthermore, since it is necessary to provide a protective layer on the outside of the sheet and the material cost is high, there is a problem that the construction cost increases.
<B> Asphalt-based coating waterproofing works have many years of construction experience as an economical construction method, but require a high heat treatment, and there is a problem that the construction environment deteriorates due to generation of smoke and odor. Moreover, it has the same problems as the sheet waterproofing work, such as the point that requires a dry construction surface and the need to provide a protective layer.
<C> Mortar waterproofing has the advantage of being economical and having good workability. However, since the mortar waterproofing is easy to crack and peel off, the waterproof performance is likely to deteriorate.
<D> Although there is a water-impervious wall construction method that builds underground walls by mixing solidified material with slurried slurry, the water permeability is on the order of 10-5 to -6 cm / sec. It is not impermeable enough to be used.
<E> Fluidized soil causes breathing in which water used for mixing rises after placement. This breathing causes a cold joint at the joint, and as a result, the water stop function is lowered.
<F> Soil cement, etc., in which solidified material is mixed with fluidized soil and slurry in situ soil, has a large gap, so if it is in water, elution of the solidified material into the water by passing through water However, in the air, neutralization with carbon dioxide proceeds gradually, and in the long term, the initial solidification state tends to deteriorate.
[0005]
OBJECT OF THE INVENTION
The present invention has been made to solve the above-described conventional problems, and an object thereof is to provide a soil-stabilized soil having a water-stopping performance that can be adopted as an outer waterproofing work and a method for manufacturing the soil. . In particular, an object of the present invention is to provide a soil-stabilized soil capable of ensuring a water-impermeable layer having a water permeability of the order of 10 −9 to −10 cm / sec and a method for producing the soil.
Another object of the present invention is to provide a highly durable soil-stabilized soil that can maintain a stable water-stopping performance and a solidified state over a long period of time, and a method for producing the soil.
It is another object of the present invention to provide a soil-stabilized soil excellent in workability and capable of performing economical waterproofing and a method for producing the soil. In particular, it is an object of the present invention to provide a soil-stabilized soil and a method for producing the soil that can be easily subjected to a high-quality outer waterproofing work that is not easily affected by the degree of construction skill.
It is another object of the present invention to provide a soil-stabilized soil in which breathing hardly occurs after placement and a method for producing the soil.
The present invention achieves at least one of these objects.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the soil-stabilized soil of the present invention is a treated soil that is a main raw material, water glass, polyvinyl alcohol, ethylene vinyl alcohol, acrylic polymer, or urethane. A polymer solution obtained by liquefying a molecular agent, water, and a cement-based, lime-based, or gypsum-based solidified material are mixed to have a wet density of 1.3 to 1.9 g / cm 3. is there. Here, the soil to be treated refers to a material which is a main raw material for soil-stabilized soil such as construction generated soil generated at a construction site made of sand, clay, silt or loam, in-situ ground or collected mountain sand.
Moreover, you may add the adjustment muddy water which adjusted the muddy water specific gravity manufactured to melt | dissolve fine-grained soil in water to 1.1-1.3 to the above-mentioned soil-stabilized soil. Furthermore, it is preferable that the weight of the water glass is up to 8%, preferably up to 5% of the total water weight, and the weight of the polymer agent is 0.3% to 3% of the total water weight. Here, the total water weight means the weight of all water contained in the soil-stabilized soil. At the time of blending, the amount of each material used is calculated from the amount of water contained in 1 m 3 of soil-stabilized soil. Therefore, the amount of water to be added varies depending on the moisture content of the soil to be treated.
[0007]
In the method for producing a soil-stabilized soil according to the present invention, water glass and a polymer agent selected from polyvinyl alcohol, ethylene vinyl alcohol, acrylic polymer, and urethane are liquefied in the soil to be treated as a main raw material. A polymer liquid and water are added to produce a slurry-like mixed mud, and a cement-based, lime-based or gypsum-based solidifying material is added to the mixed mud and kneaded, and the wet density is 1.3 to 1. This is a method for producing a soil-stabilized soil of .9 g / cm 3 .
Furthermore, muddy water produced by adding water to the soil to be treated as a main raw material, or muddy water produced by dissolving fine-grained soil in water, adjusted muddy water adjusted to 1.1 to 1.3, water glass and , A polymer liquid obtained by liquefying any one of a polymer agent selected from the group consisting of polyvinyl alcohol, ethylene vinyl alcohol, acrylic polymer, and urethane, to produce a slurry-like mixed mud water. Alternatively, it is a method for producing a soil-stabilized soil having a wet density of 1.3 to 1.9 g / cm 3 by adding a gypsum-based solidifying material and kneading.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0009]
<I> Soil-stabilized soil Soil-stabilized soil is one that has improved the water stopping performance of fluidized soil or in-situ ground. The conventional fluidized soil has a permeability of about 10 −5 to −6 cm / sec, although the permeability is lower than that of ordinary backfill soil, and is equivalent to the permeability of silt or clay soil. It is. For this reason, although the water-stopping performance has improved compared to the state of the soil where construction has occurred, it does not have the water-stopping performance to the extent that it can be used as an outer waterproofing work, and it was necessary to use it together with a sheet waterproofing work etc. . Therefore, by converting the conventional fluidized soil and the in-situ ground to the soil-stabilized soil according to the present invention, a high water-stopping performance that can be adopted as an external waterproofing work alone is secured. As a result, the elution of the solidified substance into water can be suppressed and the solidified state can be maintained for a long period of time, so that a highly durable soil-stabilized soil can be obtained.
Soil-stabilized soil is produced by mixing soil to be treated as a main raw material, water glass, a polymer solution obtained by liquefying a polymer agent, and a solidifying material, and has a wet density of 1.3 to 1. 9 g / cm 3 . The reason for specifying the density is that the improvement of the water stop performance by the density effect is also expected. In particular, when used as fluidized soil, the wet density is preferably 1.5 g / cm 3 or more, and most preferably 1.8 g / cm 3 or more.
Each component will be described below.
[0010]
<B> Treated soil Treated soil is a material used as the main raw material for soil-stabilized soil such as construction-generated soil, in-situ ground, or collected mountain sand generated at construction sites consisting of sand, clay, silt or loam. Say.
The construction generated soil may be soil generated from the local ground to be backfilled or may be soil transported from another construction site. The in-situ ground refers to the ground deposited in the in-situ position, and the in-situ ground is converted to a soil-stabilized soil by mixing the cement-based solidified material and the in-situ ground in the ground improvement method.
Moreover, the amount of water required for the soil-stabilized soil is the weight of all the water contained in the soil-stabilized soil. Therefore, the amount of water added at the time of production is calculated by subtracting the water content of the soil to be treated and the weight of the water used for the water glass, the polymer solution and the adjusted mud from the amount of water required.
[0011]
<C> Water glass Water glass is an alkali salt of silicic acid and usually refers to a liquid material mainly composed of sodium silicate. Since it has little impact on human health and the environment, it has traditionally been used in chemical injection methods.
Water glass is a colorless and transparent aqueous solution that condenses in tens of seconds to several tens of minutes when poured into the soil. Because of its high adhesive strength, it is also used as an adhesive for artificial stone and glass.
Water glass is used as a water glass solution diluted with water.
[0012]
<D> Polymer solution The polymer solution is a solution obtained by dissolving or dispersing a polymer agent in water or a solvent.
As the polymer agent, polyvinyl alcohol (hereinafter referred to as PVA), ethylene vinyl alcohol (hereinafter referred to as EVA), acrylic polymer or urethane can be used. Among these, PVA is most suitable as a polymer agent used for soil-stabilized soil.
PVA is a kind of water-soluble polymer, and is made of a hydrocarbon having a triple bond in the acetylene molecule. Acetylene itself is produced by a reaction between calcium carbide (calcium carbide) and water. PVA is prepared by hydrolysis of polyvinyl esters such as polyvinyl acetate. PVA is used for adhesives, fibers, paper paste, solution emulsification, suspension, thickeners, and the like.
EVA is also called an ethylene vinyl alcohol copolymer, and is a saponified product obtained by hydrolyzing an ethylene vinyl acetate copolymer. Since EVA is a hydrophilic polymer having a hydroxyl group, it has excellent adhesive strength.
The acrylic polymer is also called an acrylic polymer, and is used as a dispersant, a thickener or an adhesive. Acrylic acid esters and methacrylic acid esters can be used.
Urethane is also called a urethane resin and is a polymer having a urethane bond in a molecular chain. Obtained by polyaddition of fatty acid diamines or glycols and diisocyanates. It is mainly used for foam cushioning materials, and is also used for paint raw materials and adhesives.
[0013]
Some powdery polymer agents are not easily dissolved in water and difficult to disperse evenly when mixed with the soil to be treated. use. PVA is water-soluble, for example, used as a PVA aqueous solution having a concentration of 10%. Further, EVA, acrylic polymer or urethane which is hardly soluble in water is used by dispersing in a solution to form a polymer emulsion or using a solvent to form a polymer solution.
[0014]
<E> Adjusted muddy water Adjusted muddy water is muddy water produced by dissolving fine-grained soil in water, and produced by adjusting the specific gravity of the muddy water to 1.1 to 1.3.
Fine-grained soil refers to clay such as alluvial clay generated at construction sites, loam such as Kanto loam, silt, bentonite and the like. Muddy water is produced by dissolving one or more types of fine-grained soil in water.
[0015]
<F> The amount of the solidifying material solidifying material, for example in the case of solidifying material cementitious 20~200kg respect fluidizing treated soil 1 m 3, the fluidizing treated soil 1 m 3 in the case of lime or gypsum-based solidifying material 150 to 400 kg.
In addition, as in the SMW method and the TRD method, when the underground wall is constructed by mixing the solidified material with slurry slurried in the ground or in the excavation trench, 300 to 400 kg for 1 m 3 of muddy water (slurry). The cement-based solidifying material may be added.
In the fluidized soil with a high density, the amount of the solidifying material added is reduced as compared with the conventional one, and an amount of the solidifying material sufficient to temporarily secure the strength required for construction is added. As a result, the mechanical properties of the fluidized soil can be made the properties inherent to the soil.
[0016]
<G> Method for Producing Soil Stabilized Soil First, a soil to be treated generated from a construction site as a main raw material or a muddy water produced by adding water to the soil to be treated is prepared. Moreover, the adjusted muddy water is produced as necessary. And water glass and a polymer liquid are mixed with muddy water or adjustment muddy water.
When a water glass solution diluted with water is added to muddy water or conditioned muddy water, the water decreases due to the hydration reaction with the cement to be added later, the viscosity of the water glass increases, the concentration of the water glass increases and the water glass concentration increases. It is thought to restrain movement. Furthermore, since water glass has the effect | action which accelerates | stimulates a hydration reaction, the effect which reduces water permeability is expressed at an early stage. Moreover, by adding a polymer solution, the viscosity of water can be increased by the thickening action of the dissolved polymer agent. And since the solidifying material to add also hydrates and consumes water, the density | concentration of a polymer liquid becomes high and can restrict | limit the movement of water.
Even if each of water glass and polymer solution is added alone, the water permeability can be lowered as compared with the conventional fluidized soil, but by combining them, the water permeability can be drastically lowered. That is, when the polymer agent and water glass are mixed, they chemically react and gel, so that the movement of water in the gap is restrained at a very high level as compared with the case where each material is used alone. As a result, it is possible to construct a water-impermeable layer having a water permeability coefficient on the order of 10 −9 to −10 cm / sec so that it can be used alone as an outer waterproofing work. Accordingly, the order of mixing the water glass and the polymer solution may be any one, but it is preferable to avoid mixing at the same time. This is because if the water glass and the polymer agent come into contact with each other before one of the materials is sufficiently dispersed in the muddy water or the adjusted muddy water, there is a possibility that a gelled mass may be formed by a chemical reaction on the spot.
As can be seen from the fact that the saturated soil with a wet density of 1.6 g / cm 3 generally has a gap of about 70%, and the saturated soil with a wet density of 1.3 g / cm 3 has a gap of about 80%, It accounts for a very large proportion of the soil with stable soil treatment. If the water in this part is altered, the water stopping performance of the soil with stable soil treatment will be greatly improved.
[0017]
Then, a cement-based, lime-based, or gypsum-based solidifying material is added to the mixed mud water to which water glass and polymer liquid have been added, and kneaded to obtain a soil-stabilized soil. If the soil-stabilized soil used for backfilling can be used as an external waterproofing work for underground structures, it is not necessary to perform an external waterproofing work separately. Moreover, since it is only necessary to fill the fluidized soil-stabilized soil, there is almost no difference in the quality of construction depending on the skill level. Moreover, since the filled soil-stabilized soil covers the structure in layers, even if the water supply path is partially developed, it is blocked by other layers, so that the waterproof performance is stably maintained.
[0018]
Moreover, by mixing the water glass and the polymer agent, the toughness of the soil-stabilized soil is improved, and the deformation of the underground structure and the like can be followed.
Conventionally, the impermeable walls and ground improvement by cement-based solidification materials have been positioned as temporary materials, but by providing high water-stopping performance, the dissolution of Ca in fluidized soil is prevented and deteriorated. Can be suppressed.
Up to this point, we have explained the addition of water glass and polymer solution as a waterproofing agent to the fluidized soil, but in addition to this, it has a high water content ratio that ensures 90% or more saturation like alluvial clay ground. In-situ clay ground can also be converted into soil-stabilized soil with high water stopping function.
[0019]
Hereinafter, the characteristics of the soil-stabilized soil of the present invention will be described with reference to test results.
[0020]
<I> Comparison of hydraulic conductivity by type of waterproofing agent (Fig. 1)
In FIG. 1, the result compared about the water transmission coefficient at the time of adding various kinds of waterproofing agent to fluidization processing soil is shown. Here, since the hydraulic conductivity of the fluidized soil also changes depending on the density, the horizontal axis indicates the density.
From FIG. 1, the hydraulic conductivity of fluidized soil with a low density without adding a waterproofing agent or fluidized soil with an inorganic mortar waterproofing agent is on the order of 10 −6 cm / sec, and the waterproof performance is low. I understand that. However, the hydraulic conductivity of the fluidized soil to which water-soluble polymer (PVA) or water glass is added is on the order of 10 −7 cm / sec even if the density is low, and the hydraulic conductivity decreases by one order and the water stopping performance is reduced. improves.
However, when a water-soluble polymer (PVA) or water glass is used alone, it is on the order of 10 −8 cm / sec even if the density is increased to 1.6 g / cm 3 , and it is used alone for the outer waterproofing work. It ’s difficult.
However, when a water-soluble polymer (PVA) and water glass are mixed and added, the water permeability is further reduced by 1 to 2 orders, and the water stoppage performance is drastically reduced to the order of 10 −9 to −10 cm / sec. Improved water permeability. This is an effect obtained by the chemical reaction between the polymer agent and water glass as described above and gelation, which is different from the impermeability caused by the increase in viscosity when the waterproofing agent is used alone. is there. For this reason, it is thought that the dramatic water stop performance beyond the extension line when a waterproofing agent is used alone was obtained.
This water-stopping effect can also be obtained when ethylene vinyl alcohol (EVA), acrylic polymer or urethane is used as the polymer agent.
[0021]
<B> Study of fluidity PVA is considered to be the most preferred polymer agent among the polymer agents described above because it has a fluidity promoting effect. FIG. 2 is a curve drawn with the amount of PVA added on the horizontal axis and the flow value variation ratio serving as an indicator of fluidity on the vertical axis. FIG. 2 also shows that the flow value increases as the amount of PVA added increases.
When the soil-stabilized soil of the present invention is used as the fluidized soil, it is preferable to set the fluidity flow value to 160 to 250 mm in order to ensure workability such as fillability. However, water glass is viscous, and if the amount added exceeds 5%, the viscosity of the soil stabilized soil will rapidly increase and fluidity will decrease, and if it exceeds 8%, it will be practical for use as fluidized soil. It will not be right. However, when PVA is added at the same time, a predetermined fluidity can be secured by offsetting the fluidity promoting effect of PVA.
[0022]
<C> Examination of toughness FIG. 3 shows fracture strains in the case of adding PVA and in the case of fluidized soil with no waterproofing agent added.
From FIG. 3, it can be seen that the strain at the time of destruction of the soil-stabilized soil increases in proportion to the increase in the amount of addition due to the addition of the polymer agent. This is considered to be due to the fact that the viscosity inside the gap was increased by the addition of the polymer agent.
FIG. 4 shows a soil-stabilized treatment in which PVA is not added and PVA is added at a weight of 0.5, 1.0, 1.5, 3.0, 6.0% of the total water weight. The result of uniaxial compression test of soil is shown. Here, the total water weight means the weight of all water contained in the soil-stabilized soil. That is, in addition to the water added at the time of mixing, the water content originally contained in the soil to be treated and the amount of water used for the polymer solution or the water glass diluent are also included in the total water weight.
As a result, the soil-stabilized soil to which PVA of 3.0, 6.0% of the total water weight is added continues to maintain the peak strength even after breakage, and the strength decreases to about 10% (not shown). I knew it was n’t there. Therefore, it was found that when PVA is added alone in consideration of other experimental results, the toughness of the soil stabilized soil is improved by adding about 3% to 12% of the total water weight.
[0023]
<D> Examination of breathing rate In order to ensure the separation resistance of the material, it is preferable to set the breathing rate to less than 1%. The breathing rate can be determined according to the Japan Society of Civil Engineers standard "Breathing rate and expansion test method of prepacked concrete injection mortar" (JSCE-1986). Moreover, it can also estimate from the kind of to-be-processed soil, the sum total of the fine-grained soil content and solidification material, and the ratio of water which are contained in the soil stabilization processing soil.
In particular, it is preferable that no breathing occurs because the occurrence of breathing leads to a decrease in water stoppage.
It was confirmed in all compounding experiments that no breathing occurred in the soil stabilized soil when the polymer solution and water glass were added. Moreover, when the specimen was observed, the surface of the soil-stabilized soil seemed to be dry.
[0024]
<E> Examination of density effect FIG. 5 shows the relationship between the pore ratio and the permeability coefficient of the soil-stabilized soil to which PVA is added. A large gap ratio means that the density is small, so it can be said that the relationship is between the density and the hydraulic conductivity.
From FIG. 5, it can be seen that the water permeability increases as the gap ratio of the soil-stabilized soil increases and the water stopping performance decreases. The amount of change in the hydraulic conductivity is large, and it can be said that the hydraulic conductivity changes by 1 to 2 orders due to the difference in density. However, the increase in density causes an increase in costs in the production, transportation and placement of soil-stabilized soil, so it is uneconomical to improve the water-stopping performance only by the density effect. And expect a synergistic effect.
[0025]
<F> Examination of addition amount of waterproofing agent It can be seen from FIG. 6 that the water permeability decreases as the addition amount of the polymer agent increases. Even when water glass is added alone, the result having the same tendency as in FIG. 6 is obtained.
Moreover, in FIG. 7, the result of having examined about the mixing ratio of water glass and PVA is shown.
When mixing 5% or more of water glass with respect to the weight of water contained in 1 m 3 of soil-stabilized soil, the viscosity increases too much and the flow value decreases, and if it exceeds 8%, it becomes difficult to place. The upper limit of water glass mixing is about 8%.
And when water glass and PVA are mixed, water glass acts as a main agent and PVA acts as an auxiliary agent, and lowers the water permeability coefficient of the soil-stabilized soil.
It can be seen from FIG. 7 that the addition amount of PVA is an appropriate amount of about 0.3 to 1.0%, and that water impermeability is weakened when 3% or more is mixed. Therefore, the addition amount of PVA is preferably 0.3 to 3.0%.
[0026]
【The invention's effect】
Since the soil-stabilized soil and the manufacturing method thereof according to the present invention are as described above, the following effects can be obtained.
<I> The water stopping performance of the soil-stabilized soil can be dramatically improved by mixing the polymer solution and water glass. As a result, the soil-stabilized soil can be used as it is as an outer waterproofing work for the underground structure.
<B> By increasing the water stopping performance of the soil with stable soil treatment, elution of the solidified substance into the water due to the passage of the permeated water and neutralization with carbon dioxide can be prevented. For this reason, the solidified state of the soil-stabilized soil can be maintained for a long time, and the durability is improved.
<C> The outer waterproofing work can be performed only by filling the slurry-like soil-stabilized soil. For this reason, it is excellent in workability and is economical compared with other methods.
[Brief description of the drawings]
FIG. 1 is a comparison diagram of water permeability coefficient according to the type and density of a waterproofing agent to be added.
FIG. 2 is a graph showing the relationship between the amount of PVA added and the flow ratio fluctuation ratio.
FIG. 3 is a graph showing the relationship between the polymer agent addition amount and fracture strain.
FIG. 4 is a diagram showing the relationship between compressive strain and compressive strength for each amount of PVA added.
FIG. 5 is a diagram showing the relationship between the pore ratio of the soil-stabilized soil to which PVA is added and the hydraulic conductivity.
FIG. 6 is a graph showing the relationship between the polymer agent addition amount and the water permeability coefficient.
FIG. 7 is a diagram showing the relationship between the mixing ratio of PVA and water glass and the water permeability.
Claims (5)
水ガラスと、
ポリビニルアルコール、エチレンビニルアルコール、アクリルポリマー又はウレタンのうちいずれかの高分子剤を液体化した高分子液と、
水と、
セメント系、石灰系又は石膏系の固化材と、を混合してなり、
湿潤密度が1.3〜1.9g/cm3となる、土質安定処理土。Treated soil as the main raw material,
Water glass,
A polymer liquid obtained by liquefying any one of polyvinyl alcohol, ethylene vinyl alcohol, acrylic polymer, and urethane; and
water and,
Cement-based, lime-based or gypsum-based solidifying material is mixed,
Soil-stabilized soil having a wet density of 1.3 to 1.9 g / cm 3 .
前記混合泥水にセメント系、石灰系又は石膏系の固化材を添加して練り混ぜ、
湿潤密度が1.3〜1.9g/cm3の土質安定処理土を製造する、土質安定処理土の製造方法。To the treated soil that is the main raw material, water glass, a polymer solution obtained by liquefying any one of polyvinyl alcohol, ethylene vinyl alcohol, acrylic polymer or urethane, and water are added to form a slurry. Producing mixed mud water,
Add cement-based, lime-based or gypsum-based solidifying material to the mixed mud and knead,
A method for producing soil-stabilized soil, which comprises soil-treated soil having a wet density of 1.3 to 1.9 g / cm 3 .
前記混合泥水にセメント系、石灰系又は石膏系の固化材を添加して練り混ぜ、湿潤密度が1.3〜1.9g/cm3の土質安定処理土を製造する、土質安定処理土の製造方法。Muddy water produced by adding water to the soil to be treated as the main raw material, or muddy water produced by dissolving fine-grained soil in water, adjusted muddy water adjusted to 1.1 to 1.3, water glass, polyvinyl A slurry-like mixed mud water is produced by adding a polymer solution obtained by liquefying any polymer agent of alcohol, ethylene vinyl alcohol, acrylic polymer or urethane,
Cement-based, lime-based or gypsum-based solidifying material is added to the mixed mud and kneaded to produce a soil-stabilized soil having a wet density of 1.3 to 1.9 g / cm 3. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003057533A JP4242670B2 (en) | 2003-03-04 | 2003-03-04 | Soil-stabilized soil and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003057533A JP4242670B2 (en) | 2003-03-04 | 2003-03-04 | Soil-stabilized soil and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004263148A JP2004263148A (en) | 2004-09-24 |
JP4242670B2 true JP4242670B2 (en) | 2009-03-25 |
Family
ID=33120931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003057533A Expired - Fee Related JP4242670B2 (en) | 2003-03-04 | 2003-03-04 | Soil-stabilized soil and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4242670B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006225926A (en) * | 2005-02-16 | 2006-08-31 | Tokura Construction Co Ltd | Banking construction method utilizing backfilling material such as fluidized soil, pit sand, local soil and crushed stone |
JP7041330B2 (en) * | 2019-07-31 | 2022-03-24 | 大坪Gsi株式会社 | Artificial blade gold soil used for the impermeable zone of the reservoir body |
CN113480258A (en) * | 2021-07-20 | 2021-10-08 | 太原市荣泰筑路材料有限公司 | Low-shrinkage cement stabilized soil |
-
2003
- 2003-03-04 JP JP2003057533A patent/JP4242670B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004263148A (en) | 2004-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Anagnostopoulos | Laboratory study of an injected granular soil with polymer grouts | |
CA2871595C (en) | Foamed cement compositions containing metal silicides usable in subterranean well operations | |
KR101709125B1 (en) | Rapid hardening and pseudo-plastic backfill material for sewer pipe and Constructing method using the same | |
CN101844894A (en) | Flexible grout material for concrete pavement | |
JP3802777B2 (en) | Deformation following type water shielding material | |
KR102457167B1 (en) | Eco friendly injection for ground reinforcement grout composition and construction method using the same | |
JP2018203582A (en) | Water-proof material | |
KR101550220B1 (en) | Powder-type self waterproofing admixture, manufacturing methode of the same and methode of construction using the same | |
JP5033699B2 (en) | Grouting material for waterproof sheet and construction method | |
CN107555865A (en) | A kind of anti-seepage reinforcing cream slurry of water resistant stream erosion | |
JP6101019B2 (en) | Soil-based deformation following water-blocking material and method for producing the same | |
JP2013136938A (en) | Underground continuous cut-off wall method | |
JP4242670B2 (en) | Soil-stabilized soil and method for producing the same | |
JP2008223475A (en) | Grouting method | |
JP3514614B2 (en) | Grout material and grouting method | |
JP2007239443A (en) | Suck-out preventive injection method | |
JP4976073B2 (en) | Repair method for underground filler and earth structure | |
JPH0649607B2 (en) | Method for producing acid-resistant barrier seal in soil and sealing composition useful for this purpose | |
KR100632356B1 (en) | Composition for reinforcing stabilization of soil and waste concrete | |
JP2008081951A (en) | Impervious structure at joint part of impervious wall and impervious method | |
JP3088628B2 (en) | Self-hardening stabilizer | |
US3192720A (en) | Anticorrosive back-fill method | |
JP2005264455A (en) | Underground cavity filling method and filler for underground cavity | |
JP2020023852A (en) | Method for injecting hardening grout into ground beneath groundwater | |
JP2004322096A (en) | Deformation follow-up type water-impervious material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050617 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4242670 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |