JP3802777B2 - Deformation following type water shielding material - Google Patents

Deformation following type water shielding material Download PDF

Info

Publication number
JP3802777B2
JP3802777B2 JP2001146278A JP2001146278A JP3802777B2 JP 3802777 B2 JP3802777 B2 JP 3802777B2 JP 2001146278 A JP2001146278 A JP 2001146278A JP 2001146278 A JP2001146278 A JP 2001146278A JP 3802777 B2 JP3802777 B2 JP 3802777B2
Authority
JP
Japan
Prior art keywords
shielding material
deformation
water
water shielding
type water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001146278A
Other languages
Japanese (ja)
Other versions
JP2002336811A (en
Inventor
泰史 長江
蒸二 桑原
勝久 阿部
耕一 山田
大彦 力石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2001146278A priority Critical patent/JP3802777B2/en
Publication of JP2002336811A publication Critical patent/JP2002336811A/en
Application granted granted Critical
Publication of JP3802777B2 publication Critical patent/JP3802777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、海面における管理型廃棄物最終処分場の遮水構造物建造時に用いる遮水材に関し、とくに、ポンプ圧送時には流動性を有し、水中打設時には材料分離が小さく、打設後はゲル化し、低透水性および変形追従性を有する遮水材に関する。
【0002】
【従来の技術】
従来、海岸、海面に設ける管理型廃棄物最終処分場の遮水工は、図1および図2に示すように、その多くは、遮水シート等を護岸背面と底面に敷設する方法や、鋼矢板や鋼管矢板を用い、その継ぎ手部分に止水処理を施す方法であった。図1は、遮水シートを用いる方法の1例を示し、図1Aにおいて、1は護岸、2は2重遮水シート、3は押え材料、4は透水性地盤である。処分場5の大きさは、例えば、その底部の長さaが500m、護岸1の高さbが20m、干潮時の水面と護岸頂部との高低差cを5m、押え材料3の厚さを5mとする。図1Bは、その平面図を示す。
図2Aは、鋼管矢板6を用いて護岸を形成する方法を示し、鋼管矢板6を図2Bの拡大図に示すようにその継手部分8で係合させて打ち込み、継手部分8に止水材9を注入して、護岸7を形成し、図1Bと同様の平面形態の処分場5とする。図中、10は中詰材、11は不透水地盤である。
上記の遮水シートを用いる方法では、シートとシートの熱溶着やラップさせる作業を伴うために、現場作業が難しく、シートの破損が発生するおそれがあり、高い遮水性の確保が困難であった。
また、鋼管矢板を用いる方法には、継手部の止水材の充填が確実でなく護岸の変形により充填材が劣化するなどの欠点があった。
なお、管理型廃棄物最終処分場(以下、廃棄物処分場という)とは廃棄物処理法施行令第7条第14号ハに示された廃棄物最終処分場をいう。
【0003】
【発明が解決しようとする課題】
本発明は、遮水材の主材として海成粘土を用い、その透水性、水中分離抵抗性および変形追従性を改善し、廃棄物処分場の遮水工に適する遮水材を提供しようとするものである。
【0004】
【課題を解決するための手段】
海成粘土を用いる遮水材には、次の3つの特性が要求される。
1) 低透水性:
廃棄物処分場に収容した廃棄物中の有害物質が遮水材を通過しないよう、遮水材料には透水係数と施工厚みに基準値が設けられている。一般に必要とされる透水係数は、10−5(cm/sec)以下であり、施工厚みは、透水係数が10−5cm/secの場合には5.0m以上である。
2) 水中分離抵抗性:
海面における廃棄物処分場の遮水工では、トレーミー管を用いる水中打設工事が考えられる。この場合、打設される遮水材に、適当な粘着性が無ければ、打設中に海水と混合して、海水中に遮水材が分散し、施工を効率良く行うことができず、周辺海域を汚染することになる。
3) 変形追従性:
施工された遮水材は長期間(数十年)にわたって、加えられた外力の大きさに応じて変形し、亀裂および破断を生じない特性が必要となる。
この特性がなければ、上記1)、2)の特性を満していても、廃棄物処分場の遮水工に用いる遮水材としての機能は発揮されない。
例えば廃棄物処分場の遮水材として、海成粘土にセメントなどの固化剤を添加した固化
処理土を用いることが考えられているが、変形追従性に問題があり、施工後にひび割れを生じるなどの欠点がある。
【0005】
本発明者らは、海成粘土の透水性、水中分離抵抗性および、変形追従性を改善するために、添加剤と添加材の配合組成について、鋭意、研究を重ね、第1に、海成粘土の透水性を改善するための添加剤(以下、透水性低減剤という)として粘土鉱物を用い、水中分離抵抗性および変形追従性を改善するためのゲル化剤または水中分離抵抗剤として、金属を含む水溶性無機塩を用いることが極めて有効であることを見出した。第2に、前述した添加剤にゲル強化剤として、繊維状物質および/または固化剤を少量併用することによって、さらに変形追従性が改善されることを見出した。
【0006】
すなわち、本発明は、透水性低減剤として粘土鉱物を、水中分離抵抗性および変形追従性を改善するために、ゲル化剤または金属を含む水溶性無機塩を用いる。さらに、ゲル強化剤として、繊維状物質及び/または固化剤を少量併用する。
【0007】
透水性低減剤として用いる粘土鉱物は、粘土ハンドブック(日本粘土学会編:1994年10月30日発行)に記載されている粘土鉱物と同一のものである。その具体例としては、スメクタイト、カオリン鉱物、セピオライト、雲母粘土鉱物、混合層鉱物があり、これらの何れを用いてもよい。中でも、スメクタイト、カオリン鉱物、雲母粘土鉱物より選ばれた一種以上を用いることが好ましい。
上記スメクタイト族に分類される粘土鉱物の同族には、モンモリロナイト、サポナイト、ヘクトライトなどがあり、主としてモンモリロナイトから成る粘土をベントナイトと総称する。このベントナイトは、土木・建設および石油・小口径ボーリング分野、広く用いられ、市場に出回っているので、これを使用することが、経済的に好ましい。とくに群馬産、山形産、ワイオミング産の高膨潤性ナトリウムベントナイトを用いることが、最も好ましい。
【0008】
ゲル化剤および水中分離抵抗剤としては、水溶性アルカリ金属塩、アルカリ土類金属塩、珪酸塩類(以下、水溶性無機塩ともいう)の内、少なくとも一種類以上を用いる。ここでいう水溶性アルカリ金属塩、アルカリ土類金属塩は、13398の化学商品(化学工業日報社:1998年1月28日発行)に記載されている水溶性無機塩と同一の物である。例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、亜硝酸カルシウム、硝酸カルシウム、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウムアンモニウム等がある。
また珪酸塩類は、化学大辞典(共立出版株式会社)に記載されている珪酸塩類と同一の物である。例えば、メタ珪酸ナトリウム、オルト珪酸ナトリウム、二ケイ酸ナトリウム、四珪酸ナトリウム、メタ珪酸カリウム、二ケイ酸水素カリウムがあり、なかでもメタ珪酸ナトリウムを用いることが最も好ましい。
【0009】
さらに、ゲル強度の向上を目的として、繊維状物質および/または固化剤を、粘土鉱物および水溶性無機塩と併用する。繊維状物質としては、アスベスト、セピオライトなどの天然繊維としての鉱物繊維、ロックウール(テルナイト社製品:TNファイバー)、ガラス繊維、金属繊維、炭素繊維などの化学繊維としての無機繊維、ポリプロピレン系、ポリ塩化ビニリデン系などの化学繊維としての合成繊維があるが、経済性、繊維長、経時変化からみてロックウールを用いるのが好ましい。
ロックウールは、数種の鉱物を高熱で溶融処理し、細い繊維状にした非晶質の人工無機繊維であり、天然鉱物繊維である石綿(アスベスト)とは異なる。遮水材料としてロックウールを使用する目的は、繊維で遮水材料中の各物質を絡ませ、それによって、分離性を防ぎつつ変形追従性を維持し、強度を向上させることにある。
固化剤としては、消石灰、生石灰、石灰系固化剤、無水石膏、半水石膏、セメント系固化剤、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント等のポルトランドセメント類、高炉セメント、フライアッシュセメントなどであり、特に限定されない。
【0010】
なお、施工性を考慮し、ゲル化の遅延を目的として、ゲル化遅延剤を、粘土鉱物、珪酸塩類、アルカリ金属塩、アルカリ土類金属塩、と併用する。または粘土鉱物、珪酸塩類、アルカリ金属塩、アルカリ土類金属塩、および、繊維状物質、固化剤の一種類または二種類以上と併用する。
ゲル化遅延剤物質としては、ホウ酸アルカリ金属塩類(例えば、TR-18:テルナイト社製)、リグニンスルホン酸アルカリ金属類(例えば、リグニンスルホン酸ナトリウム)、ポリカルボン酸アルカリ金属塩類(例えば、QF750:日本ゼオン社製)、ポリアクリル酸アルカリ金属塩類(例えば、ポリアクリル酸ナトリウム)などの水溶性高分子、デキストリン、脂肪酸、ショ糖、マルトース、アルコール類があるが、ホウ酸アルカリ金属塩類とポリアクリル酸アルカリ金属塩類を用いるのが好ましい。
【0011】
本発明に用いる粘土鉱物および水溶性無機塩は、粉体混合物または粉体を別々に添加しても良く、あるいは海成粘土の含水比を調整するために用いる海水に、予め懸濁または溶解させて添加してもよい。また、水溶性無機塩は液体品を使用してもよい。
【0012】
本発明に用いるベントナイト(粘土鉱物)の添加量は、含水比100〜300%の海成粘土懸濁液100容量部当たり、5重量部〜50重量部の範囲が適正である。ベントナイトの添加量が5重量部以下の範囲では、透水係数の低減および水溶性無機塩の添加によるゲル強度が低く、遮水材として適合しない場合がある。また、50重量部以上の範囲では、水溶性無機塩の添加によるゲル強度が高すぎて、施工上問題を生じる場合がある。
【0013】
珪酸塩類の添加量は、上記100容量部の海成粘土懸濁液当たり、0.05重量部〜10重量部の範囲が適正であり、0.05重量部以下では、ゲル強度が低く、遮水材として適合しない場合がある。また、10重量部以上は、水溶性無機塩の添加によるゲル強度が高すぎて、施工上問題を生じる場合がある。
【0014】
また、併用される繊維状物質の添加量は、上記100容量部の海成粘土懸濁液当たり、0〜5重量部の範囲が適正である。固化剤の添加量は、0〜5重量部未満の範囲が適正で、それ以上の範囲では、ゲル強度が強すぎたり、固化反応が生じるため適当でない場合がある。
さらに、併用されるゲル化遅延物質の添加量は、上記100容量部の海成粘土懸濁液当たり、0〜3重量部の範囲が適正であるが、それ以上の範囲では、ゲル化を抑制して適正なゲル強度を発現しない場合がある。
【0015】
本発明の作用について説明する。
一般の港湾浚渫で得られる海成粘土の含水比は、50〜150%である。この含水比50〜150%程度の含水比が低い海成粘土に添加剤を混合し、均一で流動性をもち雑物を分離しやすい性状にするためには、これに、予め海水あるいは清水を添加し、含水比を100%から300%程度まで増加させ、懸濁液にする必要がある。このとき海成粘土の間隙率が増加する。これにベントナイトを加えるとベントナイト粒子が海成粘土粒子の間隙をうめると同時にゲル化を引きおこす。
しかし、この状態の海成粘土懸濁液は、ゲル強度が小さいため、水中打設時に材料分離が大きくなる可能性がある。これに水溶性アルカリ金属塩、アルカリ土類金属塩、珪酸塩類を加えると、金属陽イオンが、ベントナイトおよび海成粘土中の粘土分と反応し、粘土粒子が電気的に引き合って塊を形成し、ゲル化現象を呈する。
【0016】
ゲル化のメカニズムは十分解明されていないのが、メタ珪酸ナトリウムを加えた場合は、(1)pH低下による珪酸の重合、ゲル化、(2)多価陽イオンとの反応による重合、ゲル化が考えられる。
メカニズム(1)について;メタ珪酸ナトリウムは、pH11以下になると珪酸ゲルを生成(ゾル状またはゲル状の珪酸を遊離)する。PH9前後の浚渫土或いは粘土鉱物を含む溶液に、所定量のメタ珪酸ナトリウムを加えた場合、メタ珪酸ナトリウムは、ゲル状の珪酸を遊離し、様々な形態の珪酸ゲルを生成する。
メカニズム(2)について;浚渫土、粘土鉱物及び希釈剤(海水)中には、多価陽イオン(Ca,Mg,Alなど)が存在する。この多価陽イオンは、古くから珪酸類の硬化剤として用いられている。多価陽イオンは、珪酸ナトリウムと反応して珪酸金属、金属の水酸化物、など種々な組成の沈殿物や生成物を形成する。これらの生成物の中には、メタ珪酸ナトリウムの電荷の中和が起こり分子間が増大して凝結を生じるものもある。
以上2つのメカニズムから、粘土鉱物を含む懸濁液は、メタ珪酸ナトリウムからの生成物と反応し、粘土鉱物を凝集させ、結果的にゲル化物を形成するものと考えられる。このような、ゲル構造を有する遮水材料に外力が作用した場合、構造体は外力の大きさに応じて変形し、亀裂および破断を生じない。
【0017】
さらに、ロックウールのような繊維状物質を併用すると、海成粘土およびベントナイト粒子と繊維状物質が絡み合い、架橋状態を作り出すことにより、ゲル強度がさらに増加する。固化剤を併用した場合は、通常の固化と同様な固化反応により、強度の増加が達成される。本発明の場合は、使用する固化剤添加量が非常に少ないため、完全な固化状態には至らず、変形追従性は残る。
さらに、透水性低減剤、ゲル化剤、繊維状物質を単品使用あるいは2から3物質の併用でゲル強度が高くなり、施工性に問題が生じる場合がある。そのときは、ホウ酸アルカリ金属塩類あるいはポリアクリル酸アルカリ金属塩類のようなゲル遅延剤を併用すると、施工時のゲル化および強度が緩和され、施工後、経時変化とともに強度が高くなるが、変形追従性は残る。
【0018】
また、変形追従性とは液状ないしは塑性状を呈しており、外力に対し自由に形状を変えることができる状態のことをいい、ベーンせん断値あるいはフロー値でその状態を知ることができる。
ベーンせん断値は海成粘土に粘土鉱物及びゲル化剤を加えて改質した場合、粘土鉱物及びゲル化剤の添加量に比例して増加する。ベーンせん断値が高い場合は、遮水材料が塑性状態を通り越し、固化状態になった場合と同様な亀裂が入る。ベーンせん断値が低い場合は液状を呈している。
フロー値は海成粘土に粘土鉱物及びゲル化剤を加えて改質した場合、粘土鉱物及びゲル化剤の添加量に比例して低下する。フロー値が高い場合は、遮水性は液状を呈している。フロー値が低い場合は塑性状態を呈しているといえる。
したがって、ベーンせん断値及びフロー値を測定することで変形追従性の大きさを知ることができる。本発明の遮水材料の最終のベーンせん断値の適正値は0.3〜6.0(kN/m)、フロー値の適正値は80〜195mmである。
【0019】
【発明の実施の形態】
次に本発明の変形追従遮水材を用いた、海面における管理型廃棄物処分場の遮水工事の施工方法について述べるが、必ずしもこの方法に限定されない。
施工は図3に示すように、次の工程によって行なわれる。
(1) 解泥
原料土である海成粘土に水又は海水を加えスラリー状に解きほぐす。このとき、海成粘土中に含まれる大きなレキ、ゴミを取り除く。
(2) 調泥
スラリー状の海成粘土に、所定量の水又は海水を加え、雑物を除去し、目的とする含水比及び密度に調整する。
(3) 混練
得られた調整泥をプラント内のミキサーに送り込み、ベントナイト、ゲル化剤、繊維状物質等を加え、練り混ぜ、遮水材を製造する。
(4) 圧送
遮水材を、圧送ポンプを用いて、圧送管により打設場所まで搬送する。
(5) 打設
トレーミー管を使用して、所定の位置に遮水材を打設する。
【0020】
本発明を、以下に記述する実施例によって、さらに詳細に説明するが、その内容に限定されない。
実施例1
名古屋港(東航路)海成粘土を浚渫時の加水を考慮して、人工海水を用いて含水比150%にした。この調整土(以下ベース流体と言う)に対して、粘土鉱物として透水性低減剤(ベントナイト)、例えばテルゲル(テルナイト社製)、クニゲルV1(クニミネ工業株式会社)及び浅間ベントナイト(豊順鉱業社製)を用い、ゲル化剤として珪酸ナトリウムを用い、粘性発現(Flow値)、強度(ベーン剪断)の物性値を測定した。試験組成と結果を表1に示す。
名古屋港海成粘土の土質特性試験結果は、表2に示す。
試験方法は、流動性としてFlow試験(JHS A 313、単位:mm)、変形追従性としてベーン剪断(単位:kN/m2)試験を行った。測定間隔は、遮水材試作直後と物性値がほぼ安定した状態として16時間後、さらに長期間後の状態として2週間後(336時間)とした。
【表1】

Figure 0003802777
【表2】
Figure 0003802777
3種類のベントナイトを同一添加量で用いた変形追従型遮水材の試験結果より、透水性低減剤は、初期粘性発現が低く(低いFlow値)、16時間後に高いゲル強度(高いベーン剪断)を有するテルゲルが優れていることが分かった。よって、以下の実施例はテルゲルを用いて試験した。
【0021】
実施例2
名古屋港海成粘土を人工海水で含水比150%に調整したベース流体に対して、透水性低減剤としてテルゲルの添加量を変えて変形追従型遮水材を試作し、物性値を試験した。試験組成と結果を表3に示す。試験は実施例1に示した方法で行った。
【表3】
Figure 0003802777
ベース流体に透水性低減剤(テルゲル)を添加することで変形追従型遮水材が得られ、添加量によって流動性(Flow値)及び強度(ベーン剪断値)の物性値を変えることができる。
【0022】
実施例3
名古屋港海成粘土を人工海水で含水比150%に調整したベース流体に対して、透水性低減剤としてテルゲル、ゲル化剤として珪酸ナトリウムを用いて変形追従型遮水材を試作し、物性値の測定及び水中分離抵抗試験、pH測定試験、透水係数測定試験を実施した。水中分離抵抗試験とは、作成した遮水材を海水中に吐出させる試験で、遮水材から発生する懸濁物質量を測定し、海水1リットル当り懸濁物質量であらわした値から、水中分離性の優劣を判定する。試験組成と結果を表4,5,6及び図4,5,6に示す。試験は実施例1に示した方法で行った。
【表4】
Figure 0003802777
【表5】
Figure 0003802777
【表6】
Figure 0003802777
【0023】
ベース流体に、透水性低減剤およびゲル化剤を添加することで変形追従型遮水材が得られた。透水性低減剤/ゲル化剤の添加量を変えることで、流動性(Flow値)及び強度(ベーン剪断値)を変えることができる。
また、遮水材の水中分離抵抗の試験より、懸濁物質量の値は低く、また、pH測定試験より、pH値が低いことより分離性が小さく、かつアルカリ汚染の小さい遮水材であることが分かる。透水性試験では、何れの配合組成の透水係数も10−6(cm/sec)以下の透水係数を示し、遮水材の低透水性が確保されていることが分かる。
【0024】
実施例4
名古屋港海成粘土を人工海水で含水比150%に調整したベース流体に対して、増粘剤としてテルゲル、ゲル化剤として珪酸ナトリウム、さらにゲル強度の向上を目的に、繊維状物質としてTNファイバーおよび少量の固化剤(高炉セメントB種:トクヤマ社製)を用いて変形追従型遮水材を試作し、物性値を試験した。試験組成と結果を表7に示す。試験は実施例1に示した方法で行った。
【表7】
Figure 0003802777
ベース流体に、透水性低減剤およびゲル化剤を添加し、さらにTNファイバー或いはセメントを併用して作成した遮水材の物性値は、併用しない遮水材よりも高い物性値を得ることができた。
また、遮水性低減剤/ゲル化剤/繊維性物質、透水性低減剤/ゲル化剤/固化剤の添加量を変えることで流動性(FLOW値)及び強度(ベーンせん断値)を変えることができる。
ベース流体に、実施例3に示した増粘剤およびゲル化剤(珪酸ソーダ)の低い添加量範囲に少量のセメントを添加することで、実施例3で得られた物性値よりも高い物性値の変形追従型遮水材が得られた。透水性低減剤/ゲル化剤/固化剤の添加量を変えることで、流動性(Flow値)及び強度(ベーン剪断値)を変えることができる。
【0025】
実施例5
名古屋港海成粘土を人工海水で含水比150%に調整したベース流体に対して、透水性低減剤としてテルゲル、ゲル化剤として珪酸ナトリウムを用いて変形追従型遮水材を試作した。このゲル化した変形追従型遮水材に、ゲル化遅延剤としてQF750およびTR-18を用いて物性値を試験した。
試験組成と結果を表8に示す。試験は実施例1に示した方法で行った。
名古屋港海成粘土の上質特性試験結果は、前記表2に示す。
【表8】
Figure 0003802777
ゲル遅延剤は、組成−16と比較して、試作直後の流動性に優れ(Flow値が高くなる)、強度も低く(ベーン剪断値を低くなる)、ゲル遅延効果が得られた。さらに強度は経時変化とともに高くなる傾向を示した。ゲル化遅延剤QF750は、TR-18よりも高いゲル遅延効果を示した。
【0026】
実施例6
これまでの実施例は、名古屋港(東航路)海成粘土を、人工海水で含水比150%に調整したベース流体に透水性低減剤としてテルゲル、ゲル化剤として珪酸ナトリウム、ゲル強化剤としてTNファイバーを用いて変形追従型遮水材を調整したものである。
しかし、海成粘土は地域によって物理的特性が異なる。そのため、東京港(新海面)海成粘土を用いて変形追従型遮水材を確認した。
東京港海成粘土の土質特性試験結果は、表9に示した。
【表9】
Figure 0003802777
試料の調整にあたって、東京湾海成粘土がW0=132.6%でシルト分が32.9%及び粘土分が50.3%と高いため、人工海水を用いて含水比200%に調整したものをベース流体とした。
上記ベース流体にゲル化剤として珪酸ナトリウムを添加して変形追従型遮水材を試作し、物性値を試験した。試験組成と結果を表10に示す。試験は実施例1に示した方法で行った。
【表10】
Figure 0003802777
東京港海成粘土を用いた変形追従型遮水材は、珪酸ソーダのみの添加で試験した。その結果、名古屋湾海成粘土を用いた場合と同様に、珪酸ナトリウムの添加量とともに、変形追従性を維持した状態で物性値の向上が認められた。なお、東京湾海成粘土中のシルト、粘土分が高く透水性低減剤の添加を必要としなかった。
【0027】
【発明の効果】
述のように、本発明によれば、地域を問わず、海成粘土及び浚渫土を、清水あるいは海水を用いてその含水比を調整したベース流体に添加剤として粘土鉱物、ゲル化剤を加え、さらにゲル強化剤を加えて(必要ならばゲル化遅延剤を用いることが可能できる)、変形追従型遮水材提供することができる。本発明の変形追従型遮水材で、施工条件(底面、法面)に必要とされる物性値は、透水性低減剤、ゲル化剤およびゲル強化剤の添加量を調整することで達成できる。
【図面の簡単な説明】
【図1】 図1(A)、(B)は従来の廃棄物処理場の断面と平面を示し、図1(A)は図1(B)のX−X線による断面図である
【図2】 図2(A)は、従来の別の廃棄物処理場の断面を示し、図2(B)は、図2(A)のY−Y線による断面拡大図である
【図3】 図3は海成粘土を用い、これを処理場の底面に打設する工程を示す図。
【図4】 図4は、水中分離抵抗試験における試験組成と懸濁物質量とpHの関係を示す図表。
【図5】 図5は、試験組成と透水係数の関係(1)を示す図表。
【図6】 図6は、試験組成と透水係数の関係(2)を示す図表である。[0001]
[Industrial application fields]
The present invention relates to a water shielding material used at the time of construction of a water shielding structure of a management-type waste final disposal site on the sea surface, and in particular, has fluidity at the time of pumping, small material separation at the time of underwater casting, The present invention relates to a water shielding material that gels and has low water permeability and deformation followability.
[0002]
[Prior art]
Conventionally, as shown in Fig. 1 and Fig. 2, most of the impervious works at the management-type waste final disposal site on the coast and the sea surface are laid on the back and bottom of the revetment, It was a method of using a sheet pile or steel pipe sheet pile and applying a water stop treatment to the joint part. FIG. 1 shows an example of a method using a water-impervious sheet. In FIG. 1A, 1 is a revetment, 2 is a double water-impervious sheet, 3 is a presser material, and 4 is a water-permeable ground. The size of the disposal site 5 is, for example, the bottom length a is 500 m, the height b of the revetment 1 is 20 m, the height difference c between the water surface and the revetment top at low tide is 5 m, and the thickness of the presser material 3 is 5m. FIG. 1B shows a plan view thereof.
FIG. 2A shows a method of forming a revetment using the steel pipe sheet pile 6, and the steel pipe sheet pile 6 is driven by engaging with the joint portion 8 as shown in the enlarged view of FIG. 2B. To form a revetment 7 to be a disposal site 5 having a flat form similar to FIG. 1B. In the figure, 10 is a filling material, and 11 is an impermeable ground.
In the method using the above-described water-impervious sheet, it is difficult to work on site, there is a risk of damage to the sheet, and it is difficult to ensure high water-imperviousness because it involves heat welding and wrapping of the sheets. .
Further, the method using the steel pipe sheet pile has a drawback that the water-stopping material is not reliably filled in the joint portion, and the filling material is deteriorated due to deformation of the revetment.
The managed waste final disposal site (hereinafter referred to as the waste disposal site) refers to the waste final disposal site indicated in Article 7, Item 14 of the Waste Management Law Enforcement Ordinance.
[0003]
[Problems to be solved by the invention]
The present invention uses marine clay as the main material of the water shielding material, improves its water permeability, water separation resistance and deformation followability, and seeks to provide a water shielding material suitable for a water shielding work in a waste disposal site. To do.
[0004]
[Means for Solving the Problems]
The following three characteristics are required for a water shielding material using marine clay.
1) Low water permeability:
In order to prevent harmful substances in the waste housed in the waste disposal site from passing through the water-insulating material, the water-impervious material has a standard value for the water permeability coefficient and construction thickness. In general, the required hydraulic conductivity is 10 −5 (cm / sec) or less, and the construction thickness is 5.0 m or more when the hydraulic conductivity is 10 −5 cm / sec.
2) Water separation resistance:
For the impervious construction of the waste disposal site on the sea surface, underwater placing work using a traymy pipe is considered. In this case, if the water shielding material to be placed does not have appropriate adhesiveness, it is mixed with seawater during the placement, the water shielding material is dispersed in the seawater, and the construction cannot be performed efficiently. The surrounding sea area will be polluted.
3) Deformability following:
The constructed water shielding material is required to have a characteristic that does not cause cracks and breakage over a long period of time (several decades) depending on the magnitude of the applied external force.
Without this characteristic, even if the above-mentioned characteristics 1) and 2) are satisfied, the function as a water shielding material used for the water shielding work at the waste disposal site is not exhibited.
For example, it is considered to use a solidified soil with a solidifying agent such as cement added to marine clay as a water shielding material for a waste disposal site, but there is a problem in deformation following properties, and cracks occur after construction. There are disadvantages.
[0005]
In order to improve the water permeability, water separation resistance, and deformation followability of marine clays, the present inventors have earnestly and repeatedly studied the blending composition of additives and additives. additives for improving the water permeability of clay (hereinafter, referred to as water permeability reducing agent) using a clay mineral as a, as a gelling agent or water separation resistance agent for improving the water separation resistance and deformation followability It has been found that it is extremely effective to use a water-soluble inorganic salt containing a metal . Secondly, it has been found that deformation followability can be further improved by using a small amount of a fibrous substance and / or a solidifying agent as a gel reinforcing agent in addition to the aforementioned additives.
[0006]
That is, the present invention uses a clay mineral as a water permeability reducing agent and a water-soluble inorganic salt containing a gelling agent or a metal in order to improve water separation resistance and deformation followability . Furthermore, a small amount of a fibrous substance and / or a solidifying agent is used in combination as a gel reinforcing agent.
[0007]
The clay mineral used as the water permeability reducing agent is the same as the clay mineral described in the clay handbook (edited by the Japan Clay Society: published on October 30, 1994). Specific examples thereof include smectite, kaolin mineral, sepiolite, mica clay mineral, and mixed layer mineral, and any of these may be used. Among these, it is preferable to use one or more selected from smectite, kaolin mineral, and mica clay mineral.
The family of clay minerals classified as the smectite group includes montmorillonite, saponite, hectorite and the like, and clays mainly composed of montmorillonite are collectively called bentonite. Since this bentonite is widely used in the civil engineering / construction and oil / small-diameter boring fields and is on the market, it is economically preferable to use it. In particular, it is most preferable to use highly swellable sodium bentonite from Gunma, Yamagata and Wyoming.
[0008]
As the gelling agent and the water separation resistance agent, at least one of water-soluble alkali metal salts, alkaline earth metal salts, and silicates (hereinafter also referred to as water-soluble inorganic salts) is used. The water-soluble alkali metal salt and alkaline earth metal salt here are the same as the water-soluble inorganic salt described in 13398 chemical products (Chemical Industry Daily, published on January 28, 1998). Examples include sodium chloride, potassium chloride, calcium chloride, calcium nitrite, calcium nitrate, aluminum sulfate, polyaluminum chloride, and aluminum ammonium sulfate.
Silicates are the same as silicates described in the Chemical Dictionary (Kyoritsu Shuppan Co., Ltd.). For example, there are sodium metasilicate, sodium orthosilicate, sodium disilicate, sodium tetrasilicate, potassium metasilicate, and potassium hydrogen disilicate, and it is most preferable to use sodium metasilicate.
[0009]
Furthermore, for the purpose of improving the gel strength, a fibrous substance and / or a solidifying agent is used in combination with a clay mineral and a water-soluble inorganic salt. Fibrous substances include mineral fibers as natural fibers such as asbestos and sepiolite, inorganic fibers as chemical fibers such as rock wool (Ternite product: TN fiber), glass fibers, metal fibers, carbon fibers, polypropylene, poly Synthetic fibers are used as chemical fibers such as vinylidene chloride, but it is preferable to use rock wool in view of economy, fiber length, and changes with time.
Rock wool is an amorphous artificial inorganic fiber that is made by melting several kinds of minerals with high heat to form thin fibers, and is different from asbestos, which is a natural mineral fiber. The purpose of using rock wool as the water-impervious material is to entangle each substance in the water-impervious material with fibers, thereby maintaining the deformation follow-up property while preventing separation and improving the strength.
As the solidifying agent, slaked lime, quicklime, lime-based solidifying agent, anhydrous gypsum, hemihydrate gypsum, cement-based solidifying agent, ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, moderately hot Portland cement and other Portland cements , Blast furnace cement, fly ash cement and the like, and are not particularly limited.
[0010]
In consideration of workability, a gel retarder is used in combination with clay minerals, silicates, alkali metal salts, and alkaline earth metal salts for the purpose of delaying gelation. Or it is used in combination with one or more kinds of clay minerals, silicates, alkali metal salts, alkaline earth metal salts, fibrous substances, and solidifying agents.
Examples of the gel retarder include alkali metal borates (for example, TR-18: manufactured by Ternite), alkali metals for lignin sulfonate (for example, sodium lignin sulfonate), alkali metal salts for polycarboxylic acid (for example, QF750). : Manufactured by Nippon Zeon Co., Ltd.), water-soluble polymers such as alkali metal polyacrylates (for example, sodium polyacrylate), dextrin, fatty acid, sucrose, maltose, alcohols, but alkali metal borate and poly It is preferable to use alkali metal acrylates.
[0011]
The clay mineral and water-soluble inorganic salt used in the present invention may be added separately as a powder mixture or powder, or suspended or dissolved in seawater used to adjust the water content ratio of marine clay. May be added. A liquid product may be used as the water-soluble inorganic salt.
[0012]
The amount of bentonite (clay mineral) used in the present invention is suitably in the range of 5 to 50 parts by weight per 100 parts by volume of marine clay suspension having a water content of 100 to 300%. When the amount of bentonite added is 5 parts by weight or less, the gel strength due to the reduction of the water permeability coefficient and the addition of the water-soluble inorganic salt is low, which may not be suitable as a water shielding material. In addition, in the range of 50 parts by weight or more, the gel strength due to the addition of the water-soluble inorganic salt is too high, which may cause problems in construction.
[0013]
The amount of silicate added is suitably in the range of 0.05 to 10 parts by weight per 100 parts by volume of the marine clay suspension. May not be suitable as water material. On the other hand, if it is 10 parts by weight or more, the gel strength due to the addition of the water-soluble inorganic salt is too high, which may cause problems in construction.
[0014]
Moreover, the addition amount of the fibrous substance used together is appropriate in the range of 0 to 5 parts by weight per 100 parts by volume of the marine clay suspension. The addition amount of the solidifying agent is appropriately in the range of 0 to less than 5 parts by weight, and in the range beyond this, the gel strength may be too strong or a solidification reaction may occur.
Furthermore, the addition amount of the gel-retarding substance used in combination is appropriately in the range of 0 to 3 parts by weight per 100 parts by volume of the marine clay suspension, but in the range beyond this, gelation is suppressed. As a result, the proper gel strength may not be exhibited.
[0015]
The operation of the present invention will be described.
The water content of marine clay obtained at a general port is 50-150%. In order to mix an additive with marine clay having a low water content ratio of about 50 to 150% and to make it uniform, fluid and easy to separate impurities, sea water or fresh water is added to this in advance. It is necessary to add and increase the water content ratio from 100% to about 300% to form a suspension. At this time, the porosity of marine clay increases. When bentonite is added to this, the bentonite particles fill the gaps between the marine clay particles and at the same time cause gelation.
However, since the marine clay suspension in this state has a low gel strength, there is a possibility that the material separation will be large when placed in water. When water-soluble alkali metal salts, alkaline earth metal salts, and silicates are added to this, metal cations react with the clay content in bentonite and marine clay, and clay particles electrically attract each other to form a lump. Exhibits a gelation phenomenon.
[0016]
The mechanism of gelation has not been fully elucidated, but when sodium metasilicate is added, (1) polymerization and gelation of silicic acid due to pH reduction, and (2) polymerization and gelation by reaction with polyvalent cations Can be considered.
Regarding mechanism (1); sodium metasilicate produces a silica gel (sol or gel-like silicic acid is liberated) at pH 11 or less. When a predetermined amount of sodium metasilicate is added to a solution containing clay or clay mineral around PH9, the sodium metasilicate liberates gel-like silicic acid and produces various forms of silicic acid gel.
About mechanism (2): Multivalent cations (Ca, Mg, Al, etc.) exist in dredged soil, clay minerals and diluents (seawater). This polyvalent cation has long been used as a curing agent for silicic acids. The polyvalent cation reacts with sodium silicate to form precipitates and products of various compositions such as metal silicate and metal hydroxide. Some of these products neutralize the charge of sodium metasilicate, increase intermolecularity and cause condensation.
From the above two mechanisms, it is considered that the suspension containing the clay mineral reacts with the product from the sodium metasilicate, causes the clay mineral to aggregate and consequently forms a gelled product. When an external force is applied to such a water shielding material having a gel structure, the structure is deformed according to the magnitude of the external force, and does not crack and break.
[0017]
Furthermore, when a fibrous substance such as rock wool is used in combination, marine clay and bentonite particles and the fibrous substance are entangled to create a crosslinked state, thereby further increasing the gel strength. When a solidifying agent is used in combination, an increase in strength is achieved by a solidification reaction similar to normal solidification. In the case of the present invention, since the amount of the solidifying agent to be used is very small, the solidified state is not reached, and the deformation followability remains.
Furthermore, when the water permeability reducing agent, the gelling agent, and the fibrous substance are used individually or in combination of two to three substances, the gel strength is increased, which may cause problems in workability. If this happens, when used in combination gel retardation agents, such as boric acid alkali metal salts or polyacrylic acid alkali metal salts, gelling and strength during construction is reduced, after construction, the strength may turn increases with aging, Deformability tracking remains.
[0018]
Further, the deformation follow-up property indicates a liquid or plastic state, which means a state in which the shape can be freely changed with respect to an external force, and the state can be known from a vane shear value or a flow value.
When a clay mineral and a gelling agent are added to marine clay and modified, the vane shear value increases in proportion to the amount of the clay mineral and the gelling agent added. When the vane shear value is high, the water-impervious material passes through the plastic state and cracks similar to the case when the solid state is obtained. When the vane shear value is low, it is liquid.
When a clay mineral and a gelling agent are added to marine clay and modified, the flow value decreases in proportion to the amount of the clay mineral and the gelling agent added. When the flow value is high, the water shielding property is liquid. When the flow value is low, it can be said that the plastic state is exhibited.
Therefore, the magnitude of the deformation followability can be known by measuring the vane shear value and the flow value. The appropriate value of the final vane shear value of the water shielding material of the present invention is 0.3 to 6.0 (kN / m 2 ), and the appropriate value of the flow value is 80 to 195 mm.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, although the construction method of the water shielding construction of the management type waste disposal site in the sea surface using the deformation | transformation follow-up water shielding material of this invention is described, it is not necessarily limited to this method.
As shown in FIG. 3, the construction is performed by the following steps.
(1) Thawing Dissolve slurry in water by adding water or seawater to marine clay, which is the raw soil. At this time, the big scraps and dust contained in marine clay are removed.
(2) Mud preparation Add a predetermined amount of water or seawater to slurry-like marine clay to remove impurities and adjust to the desired water content and density.
(3) Kneading The obtained adjusted mud is sent to a mixer in the plant, bentonite, gelling agent, fibrous substance, etc. are added and kneaded to produce a water shielding material.
(4) Pressure feed The water-impervious material is transported to the placement site by a pressure feed pipe using a pressure feed pump.
(5) Placing a water shielding material at a specified position using a tramy tube.
[0020]
The present invention will be described in more detail with reference to the examples described below, but is not limited thereto.
Example 1
The water content of the Nagoya Port (East Route) marine clay was adjusted to 150% using artificial seawater in consideration of drought. For this adjusted soil (hereinafter referred to as base fluid), a water permeability reducing agent (bentonite) as a clay mineral, for example, Tergel (manufactured by Ternite), Kunigel V1 (Kunimine Industry Co., Ltd.) and Asama Bentonite (manufactured by Toyshun Mining Co., Ltd.) ), Sodium silicate was used as a gelling agent, and physical properties of viscosity expression (Flow value) and strength (vane shear) were measured. The test compositions and results are shown in Table 1.
The soil property test results of Nagoya Port Marine Clay are shown in Table 2.
The test method was a flow test (JHS A 313, unit: mm) as fluidity and a vane shear (unit: kN / m 2 ) test as deformation follow-up. The measurement interval was 16 hours after the prototype of the water-shielding material and the property value was almost stable, and two weeks (336 hours) after a longer period.
[Table 1]
Figure 0003802777
[Table 2]
Figure 0003802777
From the test results of the deformation follow-up type water shielding material using the same amount of three types of bentonite, the water permeability reducing agent has a low initial viscosity (low flow value) and high gel strength after 16 hours (high vane shear). Terugeru with it was found that has been excellent. Thus, the following examples were tested using tergel.
[0021]
Example 2
For the base fluid prepared by adjusting the water content ratio of Nagoya Port marine clay to 150% with artificial seawater, a deformation-following water-impervious material was produced by changing the amount of tergel added as a water permeability reducing agent, and the physical properties were tested. The test composition and results are shown in Table 3. The test was performed by the method shown in Example 1.
[Table 3]
Figure 0003802777
By adding a water permeability reducing agent (Tergel) to the base fluid, a deformation-following water-impervious material can be obtained, and the physical properties of fluidity (Flow value) and strength (vane shear value) can be changed depending on the amount of addition.
[0022]
Example 3
A prototype of a deformation-following water-insulating material using tergel as a water permeability reducing agent and sodium silicate as a gelling agent for a base fluid adjusted to 150% moisture content with artificial seawater from Nagoya Port marine clay. And water separation resistance test, pH measurement test, and permeability coefficient measurement test were carried out. Underwater separation resistance test is a test in which the created water-impervious material is discharged into seawater. The amount of suspended solids generated from the water-impervious material is measured, and from the value expressed as the amount of suspended solids per liter of seawater, Determine the superiority or inferiority of separability. Test compositions and results are shown in Tables 4, 5, 6 and FIGS. The test was performed by the method shown in Example 1.
[Table 4]
Figure 0003802777
[Table 5]
Figure 0003802777
[Table 6]
Figure 0003802777
[0023]
A deformation-following water-impervious material was obtained by adding a water permeability reducing agent and a gelling agent to the base fluid. The flowability (Flow value) and strength (vane shear value) can be changed by changing the addition amount of the water permeability reducing agent / gelling agent.
In addition, the amount of suspended solids is lower than the water separation resistance test of the water shielding material, and the water shielding material is less separable and less alkaline due to the lower pH value than the pH measurement test. I understand that. In the water permeability test, the water permeability coefficient of any blending composition shows a water permeability coefficient of 10 −6 (cm / sec) or less, and it can be seen that the low water permeability of the water shielding material is secured.
[0024]
Example 4
TELGEL as a thickener, sodium silicate as a gelling agent, and TN fiber as a fibrous material for the purpose of improving gel strength against a base fluid adjusted to 150% moisture content with artificial seawater from Nagoya Port marine clay Further, a deformation follow-up type water shielding material was produced using a small amount of solidifying agent (blast furnace cement B type: manufactured by Tokuyama Corporation), and the physical property values were tested. The test composition and results are shown in Table 7. The test was performed by the method shown in Example 1.
[Table 7]
Figure 0003802777
The physical properties of a water shielding material made by adding a water permeability reducing agent and a gelling agent to the base fluid and using TN fiber or cement together can be higher than those of water shielding materials not used in combination. It was.
In addition, fluidity (FLOW value) and strength (vane shear value) can be changed by changing the amount of added water impermeability reducing agent / gelling agent / fibrous substance, water permeability reducing agent / gelling agent / solidifying agent. it can.
A physical property value higher than the physical property value obtained in Example 3 by adding a small amount of cement to the base fluid in the low addition amount range of the thickener and gelling agent (sodium silicate) shown in Example 3. Thus, a deformation following type water shielding material was obtained. By changing the addition amount of the water permeability reducing agent / gelling agent / solidifying agent, the flowability (Flow value) and the strength (vane shear value) can be changed.
[0025]
Example 5
A deformation follow-up type water-insulating material was prototyped using tergel as the water permeability reducing agent and sodium silicate as the gelling agent for the base fluid prepared by adjusting the water content ratio to 150% with artificial seawater. The gelled deformation following type water shielding material was tested for physical properties using QF750 and TR-18 as gel retarders.
The test compositions and results are shown in Table 8. The test was performed by the method shown in Example 1.
The results of the quality test of Nagoya Port Marine Clay are shown in Table 2 above.
[Table 8]
Figure 0003802777
The gel retarder was superior in fluidity immediately after trial production (increase the Flow value) and low in strength (lower the vane shear value) compared to the composition- 16, and a gel retardation effect was obtained. Furthermore, the strength tended to increase with time. The gel retarder QF750 showed a higher gel retarding effect than TR-18.
[0026]
Example 6
In the examples so far, marine clay from Nagoya Port (East Route) was prepared by using tergel as a water permeability reducing agent, sodium silicate as a gelling agent, and TN as a gel reinforcing agent. The deformation following type water shielding material is adjusted by using a fiber.
However, marine clay has different physical characteristics depending on the region. Therefore, the deformation follow-up type water-impervious material was confirmed using marine clay at Tokyo Port (new sea surface).
The soil property test results of Tokyo Port Marine Clay are shown in Table 9.
[Table 9]
Figure 0003802777
Hit the adjustment of the sample, for silt content is high 50.3% 32.9% and clay content in the W 0 = 132.6% Tokyo Ocean formed clay, 200% water content using an artificial seawater The adjusted fluid was used as the base fluid.
A sodium silicate was added to the base fluid as a gelling agent to produce a deformation-following water-proof material, and physical properties were tested. The test compositions and results are shown in Table 10. The test was performed by the method shown in Example 1.
[Table 10]
Figure 0003802777
The deformation follow-up type water shielding material using marine clay from Tokyo Port was tested by adding only sodium silicate. As a result, as in the case of using Nagoya Bay marine clay, improvement in physical properties was observed with the addition of sodium silicate while maintaining the deformation following ability. In addition, silt and clay content in Tokyo Bay Marine Clay was high, and it was not necessary to add a water permeability reducing agent.
[0027]
【The invention's effect】
As above mentioned, according to the present invention, regardless of the region, the marine clay and dredged soil, the base fluid was adjusted its water content by using a fresh water or sea water, clay minerals as additives, gelling agent was added, further added to the gel strengthening agent (wear can be used gelling retarder, if necessary), it is possible to provide a deformation-following water-impervious material. In the deformation follow-up type water shielding material of the present invention, the physical property values required for the construction conditions (bottom surface, slope) can be achieved by adjusting the addition amount of the water permeability reducing agent, gelling agent and gel reinforcing agent. .
[Brief description of the drawings]
[1] FIG. 1 (A), the cross-sectional views according to line X-X of (B) shows a waste treatment plant of the cross section and the plane of the past, Fig. 1 (A) 1 (B).
2A is a cross-sectional view of another conventional waste disposal site, and FIG. 2B is an enlarged cross-sectional view taken along line YY of FIG . 2A.
FIG. 3 is a diagram showing a process of placing marine clay on the bottom surface of the treatment plant.
FIG. 4 is a chart showing the relationship between the test composition, the amount of suspended solids, and pH in an underwater separation resistance test.
FIG. 5 is a chart showing the relationship (1) between the test composition and the hydraulic conductivity.
FIG. 6 is a chart showing the relationship (2) between the test composition and the hydraulic conductivity.

Claims (11)

含水比100〜300%の海成粘土懸濁液に、粘土鉱物を加え、これに珪酸塩類、アルカリ金属塩類、アルカリ土類金属塩類から選ばれた少くとも1種を加えてゲル状物質に改質してなる変形追従型遮水材。  A clay mineral is added to a marine clay suspension having a water content of 100 to 300%, and at least one selected from silicates, alkali metal salts, and alkaline earth metal salts is added to the suspension to change to a gel-like substance. Deformation follow-up type water shielding material. 上記変形追従型遮水材に、繊維状物質を加えてる請求項1に記載の変形追従型遮水材。In the deformation-following water-impervious material, deformation-following seepage control material according to claim 1 ing added fibrous substance. 上記変形追従型遮水材に、固化剤を加えてなる請求項1に記載の変形追従型遮水材。  The deformation follow-up type water shielding material according to claim 1, wherein a solidifying agent is added to the deformation follow-up type water shielding material. 上記変形追従型遮水材に、ゲル化遅延剤を加えてなる請求項1に記載の変形追従型遮水材。  The deformation follow-up type water shielding material according to claim 1, wherein a gelation retarder is added to the deformation follow-up type water shielding material. 上記変形追従型遮水材に、繊維状物質、固化剤、ゲル化遅延剤の内、2つ以上を加えてなる請求項1に記載の変形追従型遮水材。  The deformation follow-up type water shielding material according to claim 1, wherein two or more of a fibrous substance, a solidifying agent, and a gelation retarder are added to the deformation follow-up type water shielding material. 前記粘土鉱物が、スメクタイト、カオリン鉱物、雲母粘土鉱物、セピオライト、混合層鉱物から選ばれた少くとも1種である請求項1ないしのいずれかに記載の変形追従型遮水材。The deformation follow-up type water shielding material according to any one of claims 1 to 5 , wherein the clay mineral is at least one selected from smectite, kaolin mineral, mica clay mineral, sepiolite, and mixed layer mineral. 前記珪酸塩類が、メタ珪酸ナトリウム、オルト珪酸ナトリウム、二ケイ酸ナトリウム、四珪酸ナトリウム、メタ珪酸カリウム、二ケイ酸水素カリウムから選ばれた少くとも1種である請求項1ないし5のいずれかに記載の変形追従型遮水材。  The silicate is at least one selected from sodium metasilicate, sodium orthosilicate, sodium disilicate, sodium tetrasilicate, potassium metasilicate, and potassium hydrogen disilicate. The deformation follow-up type water shielding material as described. 前記繊維状物質が、アスベスト、セピオライトなどの鉱物繊維、ロックウール、ガラス繊維、金属繊維、炭素繊維などの無機繊維、ポリプロプレン系、ポリ塩化ビニリデン系などの合成繊維から選ばれた少くとも1種である請求項2又は5に記載の変形追従型遮水材。The fibrous material is at least one selected from mineral fibers such as asbestos and sepiolite, inorganic fibers such as rock wool, glass fibers, metal fibers and carbon fibers, and synthetic fibers such as polypropylene and polyvinylidene chloride. The deformation follow-up type water shielding material according to claim 2 or 5 . 前記固化剤が、消石灰、生石灰、石灰系固化剤、無水石膏、半水石膏、セメント、セメント系固化剤から選ばれた少くとも1種である請求項3又は5に記載の変形追従型遮水材。6. The deformation-following water-impervious structure according to claim 3 or 5, wherein the solidifying agent is at least one selected from slaked lime, quicklime, lime-based solidifying agent, anhydrous gypsum, hemihydrate gypsum, cement, and cement-based solidifying agent. Wood. 前記ゲル化遅延剤が、ナトリウム、カリウムなどのアルカリ金属のホウ酸塩類、ナトリウム、カリウムなどのアルカリ金属のリグニンスルホン酸塩類、ナトリウム、カリウムなどのアルカリ金属のポリカルボン酸塩類、ナトリウム、カリウムなどのアルカリ金属のポリアクリル酸塩類などの水溶性高分子、デキストリン、脂肪酸、ショ糖、マルトース、アルコール類から選ばれた少くとも1種である請求項4、請求項5のいずれかに記載の変形追従型遮水材。  Examples of the gel retarder include alkali metal borates such as sodium and potassium, alkali metal lignin sulfonates such as sodium and potassium, alkali metal polycarboxylates such as sodium and potassium, sodium and potassium, etc. 6. The deformation follow-up according to any one of claims 4 and 5, which is at least one selected from water-soluble polymers such as alkali metal polyacrylates, dextrin, fatty acid, sucrose, maltose and alcohols. Mold impermeable material. 含水比150〜300%の海成粘土懸濁液100容量部に、粘土鉱物を5〜50重量部、珪酸塩類を0.05〜10重量部、繊維状物質を0〜5重量部、固化剤を0〜5重量部、ゲル化遅延物質を0〜3重量部添加し、混合してなる変形追従型遮水材。  100 parts by volume of marine clay suspension with a water content of 150-300%, 5-50 parts by weight of clay mineral, 0.05-10 parts by weight of silicates, 0-5 parts by weight of fibrous material, solidifying agent 0-5 parts by weight, 0-3 parts by weight of a gel-retarding substance, and a deformation follow-up type water shielding material obtained by mixing.
JP2001146278A 2001-05-16 2001-05-16 Deformation following type water shielding material Expired - Fee Related JP3802777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146278A JP3802777B2 (en) 2001-05-16 2001-05-16 Deformation following type water shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001146278A JP3802777B2 (en) 2001-05-16 2001-05-16 Deformation following type water shielding material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004202742A Division JP3996915B2 (en) 2004-07-09 2004-07-09 Deformation following type water shielding material

Publications (2)

Publication Number Publication Date
JP2002336811A JP2002336811A (en) 2002-11-26
JP3802777B2 true JP3802777B2 (en) 2006-07-26

Family

ID=18991956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146278A Expired - Fee Related JP3802777B2 (en) 2001-05-16 2001-05-16 Deformation following type water shielding material

Country Status (1)

Country Link
JP (1) JP3802777B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181394A (en) * 2002-12-04 2004-07-02 Port & Airport Research Institute Water barrier base structure of waste reclaimed land
JP2004183364A (en) * 2002-12-04 2004-07-02 Port & Airport Research Institute Underground continuous cut off wall structure in land
JP3996915B2 (en) * 2004-07-09 2007-10-24 株式会社テルナイト Deformation following type water shielding material
JP5014621B2 (en) * 2005-12-06 2012-08-29 五洋建設株式会社 Impermeable sheet joint for underwater connection at sea surface waste disposal site and underwater impermeable method for impermeable sheet
JP4614168B2 (en) * 2006-03-22 2011-01-19 五洋建設株式会社 Apparatus for testing resistance to separation of water in lightweight soil and test method thereof
JP2008043845A (en) * 2006-08-11 2008-02-28 Ohbayashi Corp Deformation follow-up type impervious liner material
JP4853200B2 (en) * 2006-09-26 2012-01-11 株式会社大林組 Water-blocking structure and water-blocking method at joints of water-blocking walls, and water-insulating material that can follow deformation
JP5054388B2 (en) * 2007-02-05 2012-10-24 五洋建設株式会社 Construction method of impermeable structure for sea surface waste disposal site
JP2008188527A (en) * 2007-02-05 2008-08-21 Penta Ocean Construction Co Ltd Water shielding structure of sea surface waste disposal site and its construction method
JP5060184B2 (en) * 2007-06-26 2012-10-31 榮治 今井 Connection method of branch pipe to underground main pipe and its connection structure
JP4905296B2 (en) * 2007-08-29 2012-03-28 株式会社大林組 Method for constructing retaining wall and retaining wall
JP2013059758A (en) * 2012-03-26 2013-04-04 Toyo Constr Co Ltd Impervious material
JP6101019B2 (en) * 2012-08-27 2017-03-22 国立研究開発法人 海上・港湾・航空技術研究所 Soil-based deformation following water-blocking material and method for producing the same
JP6193105B2 (en) * 2013-12-06 2017-09-06 株式会社テルナイト Deformation following type water shielding material
JP6411202B2 (en) * 2014-12-18 2018-10-24 五洋建設株式会社 Impermeable material
JP6714421B2 (en) * 2016-04-22 2020-06-24 大成建設株式会社 How to set the composition of plastic filler
JP2018053437A (en) * 2016-09-26 2018-04-05 大成建設株式会社 Water blocking material and manufacturing method thereof, and water blocking structure of diaphragm wall

Also Published As

Publication number Publication date
JP2002336811A (en) 2002-11-26

Similar Documents

Publication Publication Date Title
JP3802777B2 (en) Deformation following type water shielding material
CN101052697B (en) Composition for ground-improving material, grouting material comprising the same, and method of using the same
US4696698A (en) Flexible grout composition and method
US4696699A (en) Flexible grout composition and method
KR100918102B1 (en) Soil solidifier and pavement method using the same
EP1561733A1 (en) Construction material based upon a sludge or sludged waste material
CN105367010A (en) Hardening agent for road and roadbed hardening method
KR20070008556A (en) Porous particulate material for fluid treatment, cementitious composition and method of manufacture thereof
WO2002064527A1 (en) Cement composition
CN103275730B (en) Barium-containing sulphoaluminate soft soil curing agent and preparation method thereof
US4797158A (en) Flexible grout composition and method
JP6866547B2 (en) Waterproof material
JPH0581632B2 (en)
CN108191274A (en) A kind of special cementitious material of maritime concrete
CN101289850B (en) Saline soil curing agent and technical applications thereof
Hurley et al. Sodium silicate stabilization of soils: A review of the literature
KR101473228B1 (en) The composition of solidificant having highstrength and rapid solidification
JP3996915B2 (en) Deformation following type water shielding material
CN115477519A (en) High-impermeability shield tunnel synchronous grouting material, preparation and use method
JP3372684B2 (en) Cement inorganic admixture for nuclear waste
JP2002121552A (en) Solidifier for water-containing soil and process for solidifying water-containing soil using this
JP6101108B2 (en) Cement admixture and cement composition
JP6578316B2 (en) Ground improvement method
JP4242670B2 (en) Soil-stabilized soil and method for producing the same
JP2004183364A (en) Underground continuous cut off wall structure in land

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3802777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees