JP2004183364A - Underground continuous cut off wall structure in land - Google Patents

Underground continuous cut off wall structure in land Download PDF

Info

Publication number
JP2004183364A
JP2004183364A JP2002352905A JP2002352905A JP2004183364A JP 2004183364 A JP2004183364 A JP 2004183364A JP 2002352905 A JP2002352905 A JP 2002352905A JP 2002352905 A JP2002352905 A JP 2002352905A JP 2004183364 A JP2004183364 A JP 2004183364A
Authority
JP
Japan
Prior art keywords
water
underground
clay
wall
wall structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002352905A
Other languages
Japanese (ja)
Inventor
Takashi Tsuchida
孝 土田
Yoichi Watabe
要一 渡部
Goro Imai
五郎 今井
Koichi Yamada
耕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Yokohama National University NUC
National Institute of Maritime Port and Aviation Technology
Original Assignee
Penta Ocean Construction Co Ltd
Yokohama National University NUC
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd, Yokohama National University NUC, National Institute of Maritime Port and Aviation Technology filed Critical Penta Ocean Construction Co Ltd
Priority to JP2002352905A priority Critical patent/JP2004183364A/en
Publication of JP2004183364A publication Critical patent/JP2004183364A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground continuous cut off wall structure in land improving the durability, withstanding a strong external force in an earthquake without damage, bringing no crack by the ground movement, impairing no water sealability, and forming land at a low cost as compared with the in-situ solidified wall or a continuous underground wall. <P>SOLUTION: The underground continuous cut off wall in land is constituted by filling a filler 33 made by modifying to a gelatinous condition by adding clay minerals and a gelatinizer into a clay-suspension with an adjusted moisture content and mixing an impervious material having a deformation following nature with sand or aggregate such as crushed stones into a continuous underground ditch 30 formed in the depth down to the underground impervious layer 22. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地盤が有害物質により汚染されている場合に、その汚染された地盤の周囲に汚染が拡大するのを防止するために設置する陸地における地中連続遮水壁構造に関する。
【0002】
【従来の技術】
従来、工場やごみ焼却施設、あるいは既設廃棄物処分場(不適正処分場)等において地盤が有害物質により汚染されている場合、その汚染された地盤の周囲に汚染が拡大するのを防止する方法として、汚染地盤の周囲を矢板による止水壁や連続地中壁等によって囲み、遮水する方法が採られている。
【0003】
この遮水方法として、従来、鋼矢板、現位置固化壁、連続地中壁等による遮水工がある。
【0004】
この内鋼矢板による方法は、図4に示すように、U型等の鋼矢板1,1……を互いに連結して地中の不透水層2まで打ち込み、各鋼矢板1,1間の連結継手1a内に水膨張性の止水材3を予め充填しておき、水の流通を遮断できる構造とした鋼矢板による連続止水壁を形成するものである。
【0005】
また、現位置固化壁による方法は、図5に示すように地中の不透水層2に到る深さまで土砂攪拌翼5を旋回させつつ挿入し、その土壌中に固化材を注入しつつ攪拌することによって、地中の不透水層2に達する現位置固化壁6を連続して造成するものである。
【0006】
更に、連続地中壁による方法は、図6に示すように、地中の不透水層2に到る深さの連続地中溝7を溝堀用のグラブバケット等によって掘削し、その連続地中溝7内に鉄筋8及びコンクリート9を打設してコンクリート製の地中壁10を連続させて構築するものである。
【0007】
【発明が解決しようとする課題】
有害物質により汚染された地盤周囲の遮水は、汚染された地盤から周囲の地盤に汚染物質が流出しするのを防止するものであるが、何らかの原因で、これらの遮水工の一部が破損すると、汚染物質が再び周囲に流出し、汚染の拡大を招くことになる。従って、このような遮水工においては、所要の遮水性が長期的に確保され、かつ地震時や不動沈下といった地盤の変形に対しても十分に安全性が保たれる構造であることが求められる。
【0008】
しかし、上述した従来の方法の内の鋼矢板による方法は、比較的低コストで施工が可能であるが、各鋼矢板間の継手部における遮水を完全に行わせることが困難であり、また、汚染物質の種類によっては鋼矢板の腐食が懸念されるという問題がある。
【0009】
また、上述した従来の現位置固化壁による方法では、比較的高い遮水性能が期待できるが、コストが高く、また、地震等による地盤の変動によってひび割れが生じる可能性が高いという問題がある。
【0010】
更に、上述した連続地中壁による方法では、現位置固化壁よりも高い止水性能が期待でき、現位置固化壁に比べて高強度ではあるが、コストが高く、地震等による地盤の変動によってひび割れが生じる可能性が否定できないという問題がある。
【0011】
本発明はこのような従来の問題に鑑み、耐久性に優れ、地震時などにおける強い外力に対しても損傷されず、地盤変動によっても亀裂を生じることがなくて遮水性が損なわれず、しかも、現位置固化壁や連続地中壁に比べて低コストで造成できる陸地における地中連続遮水壁構造の提供を目的としてなされたものである。
【0012】
【課題を解決するための手段】
上述の如き従来の問題を解決し、所期の目的を達成するための請求項1に記載の発明の特徴は、地下の不透水層に達する深さに形成した連続地中溝内に含水比調整した粘土懸濁液に粘土鉱物及びゲル化剤を加えてゲル状に改質した変形追従性を有する遮水材と砂若しくは砕石等の骨材とを混合した充填材を充填することにある。
【0013】
このように構成することによって、地中の汚染された部分と非汚染部分とを十分な遮水性を有する遮水壁によって遮断することができ、しかも、地震や不動沈下等の変化に対して遮水壁が追従し、遮水性の著しい低下を防止する。
【0014】
請求項2の発明は、請求項1の構成に加え、粘土懸濁液の含水比が50〜300%であり、前記粘土鉱物が、スメクタイト、カオリン鉱物、雲母粘土鉱物、セピオライト、混合層鉱物から選ばれた少なくとも1種であるとともに、ゲル化剤が、珪酸塩類、アルカリ金属塩類、アルカリ土類金属塩類から選ばれた少なくとも1種であることを特徴とする。
【0015】
このように構成することによって、遮水壁は十分な遮水性能を得るとともに、地震等の外力、不動沈下等による地盤の変形に対しても好適に適応できる。
【0016】
請求項3の発明は、請求項1又は2の構成に加え、遮水材に、無機質材料又は有機質材料からなる繊維状物質、石灰系又はセメント系の固化剤、及び/又はゲル化遅延剤を添加したことを特徴とする。
【0017】
このように構成することによって、遮水壁の施工時には充填材は流動性を保ち、施行後は、十分なゲル強度を発揮するようになる。
【0018】
請求項4の発明は、請求項3の構成に加え、ゲル化遅延剤が、ナトリウム、カリウムなどのアルカリ金属のホウ酸塩類、ナトリウム、カリウムなどのアルカリ金属のリグニンスルホン酸塩類、ナトリウム、カリウムなどのアルカリ金属のポリカルボン酸塩類、ナトリウム、カリウムなどのアルカリ金属のポリアクリル酸塩類などの水溶性高分子、デキストリン、脂肪酸、ショ糖、マルトース、アルコール類から選ばれた少くとも1種であることを特徴とする。
【0019】
このように構成することによって、施工中に流動性が失われるのを防ぎ、好適な施工性を得ることができる。
【0020】
【発明の実施の形態】
次に本発明の実施の形態を図1〜図3について説明する。
【0021】
図において、符号20は本発明を実施した地中連続遮水壁であり、この遮水壁20は有害化学物質等によって汚染された地盤21の周囲を囲む配置に、地表面から地下の不透水層22に達する深さに連続して形成されている。
【0022】
この遮水壁20の構築は、溝堀用のグラブバケットを使用して地表より連続した地中溝30を掘削形成する。この溝の掘削に際しては、従来の連続地中壁の構築における地中溝の掘削形成と同様に、掘削途中の溝30内にベントナイト液を充填し、溝内壁面の崩落を防止しつつ行う。
【0023】
溝30の掘削形成後、図2に示すようにベントナイト液31が満されている溝30内に、トレーミー管32を使用して遮水壁20を構成させる充填材33を溝底部より上方に順次注入する。
【0024】
充填材33は、変形追従性を有する遮水材と砂若しくは砕石等の骨材とを混合したものであり、ミキサーを使用した充填材調整プラントによって混練されるようになっている。
【0025】
この変形追従性を有する遮水材は、含水比調整した粘土懸濁液に粘土鉱物及びゲル化剤を加えてゲル状に改質したものであり、変形追従性を備えるとともに、透水係数がk=1.0×10−6(cm/s)以下となっている。従って、この遮水材に骨材を混合し、これを必要な厚さ(50cm以上)に打設することによって、十分な遮水性能が得られるようになっている。
【0026】
遮水材の透水性を低減させるために用いる粘土鉱物としては、スメクタイト、カオリン鉱物、セピオライト、雲母粘土鉱物、混合層鉱物があり、これらのいずれを用いてもよいが、スメクタイト、カオリン鉱物、雲母粘土鉱物より選ばれた一種以上を用いることが好ましい。
【0027】
粘土鉱物の添加量は、含水比50〜300%の粘土懸濁液100容量部当たり、5重量部〜50重量部の範囲が適正である。粘土鉱物の添加量が5重量部以下の範囲では、透水係数の低減および水溶性無機塩の添加によるゲル強度が低く、遮水材として適合しない場合がある。また、50重量部以上の範囲では、水溶性無機塩の添加によるゲル強度が高すぎて、施工上問題を生じる場合がある。
【0028】
ゲル化剤としては、水溶性アルカリ金属塩、アルカリ土類金属塩、珪酸塩類(以下、水溶性無機塩ともいう)の内、少なくとも一種類以上を用いる。
【0029】
ゲル化剤の添加量は、上記100容量部の粘土懸濁液当たり、0.05重量部〜10重量部の範囲が適正であり、0.05重量部以下では、ゲル強度が低く、遮水材として適合しない場合がある。また、10重量部以上は、水溶性無機塩の添加によるゲル強度が高すぎて、施工上問題を生じる場合がある。
【0030】
尚、本発明に用いる粘土鉱物および水溶性無機塩は、粉体混合物または粉体を別々に添加しても良く、あるいは粘土の含水比を調整するために用いる水に、予め懸濁または溶解させて添加してもよい。また、水溶性無機塩は液体品を使用してもよい。
【0031】
さらに、この遮水材では、繊維状物質および/または固化剤を、粘土鉱物および水溶性無機塩と併用することによってゲル強度の向上を図っている。
【0032】
この繊維状物質としては、アスベストなどの天然繊維としての鉱物繊維、ロックウールなどの化学繊維としての無機繊維、ポリプロピレン系などの化学繊維としての合成繊維がある。
【0033】
併用される繊維状物質の添加量は、上記100容量部の粘土懸濁液当たり、0〜5重量部の範囲が適正である。固化剤の添加量は、0〜5重量部未満の範囲が適正で、それ以上の範囲では、ゲル強度が強すぎたり、固化反応が生じるため適当でない場合がある。
【0034】
固化剤としては、消石灰、生石灰、石灰系固化剤、無水石膏、半水石膏、セメント系固化剤、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント等のポルトランドセメント類、高炉セメント、フライアヅシュセメントなどがある。
【0035】
なお、この遮水材には、施工中に流動性が失われ施工性が落ちることがないように、ゲル化遅延剤を併用するようにしてもよい。
【0036】
ゲル化遅延剤物質としては、ナトリウム、カリウムなどのアルカリ金属のホウ酸塩類、ナトリウム、カリウムなどのアルカリ金属のリグニンスルホン酸塩類、ナトリウム、カリウムなどのアルカリ金属のポリカルボン酸塩類、ナトリウム、カリウムなどのアルカリ金属のポリアクリル酸塩類などの水溶性高分子、デキストリン、脂肪酸、ショ糖、マルトース、アルコール類がある。
【0037】
併用されるゲル化遅延物質の添加量は、上記100容量部の粘土懸濁液当たり、0〜3重量部の範囲が適正であるが、それ以上の範囲では、ゲル化を抑制して適正なゲル強度を発現しない場合がある。
【0038】
この遮水材では、一般の港湾浚渫で得られた含水比が50〜150%程度の粘土に、予め清水を添加し、含水比を50〜300%程度まで増加させた懸濁液とし、これに粘土鉱物を加えると粘土鉱物粒子が粘土粒子の間隙をうめると同時にゲル化を引きおこし、均一で流動性をもち、雑物を分離しやすい性状となる。
【0039】
しかし、この状態の粘土懸濁液は、ゲル強度が小さいため、水中打設時に材料分離が大きくなる可能性がある。そこで、この粘土懸濁液に水溶性アルカリ金属塩、アルカリ土類金属塩、珪酸塩類を加えることによって、金属陽イオンが、粘土鉱物および粘土鉱物中の粘土分と反応し、粘土粒子が電気的に引き合って塊を形成し、ゲル化現象を呈するようにすることによって、遮水材は変形追従性を得る。
【0040】
尚、べ一ンせん断値を測定し、一定の範囲に管理することにより、変形追従性の大きさを知ることができ、本発明の遮水材のべ一ンせん断値の適正範囲は、0.3(kN/mm)〜6.0(kN/mm)である。
【0041】
骨材としては、粒径が0.075mm〜50mm程度の砂、砂礫、砕石或いはスラグ等を用い、これを遮水材100容量部に対して、5〜50容量部の割合で混合する。
【0042】
次に充填材の製造方法について説明する。
【0043】
図3に示すように、解泥工程において、解泥槽40に収容した原料土である粘土41に水を加えスラリー状に解きほぐすとともに、粘土中に含まれる大きなレキ、ゴミを取り除く。
【0044】
次に、バックホー42等の移送手段によってスラリー状の粘土を調泥工程の調泥槽43に移送させる。この調泥槽43ではスラリー状の粘土に、所定量の水を加え、雑物を除去し、目的とする含水比(50〜300%)及び密度に調整し、調整泥収容槽44に調整泥45を貯める。
【0045】
そして、この得られた調整泥45を混練工程におけるプラント46内のミキサー47に送り込み、これに助材添加装置48から粘土鉱物、ゲル化剤、繊維状物質等からなる助材を加えて遮水材を調製し、これに更に砂若しくは砕石等の骨材を練り混ぜ、充填材を製造する。
【0046】
この充填材を、圧送ポンプ49を用いて、圧送管50により打設場所まで搬送し(圧送工程)、図2に示すトレーミー管32を使用して、所定の位置に打設する(打設工程)。
【0047】
【発明の効果】
上述のように、本発明に係る陸地における地中連続遮水壁構造は、遮水材料に天然の材料である石材や粘土系遮水材を用いるため、長期的に材料劣化が生じにくく、長く遮水性能を維持することができる。
【0048】
また、変形追従性を有する粘土系遮水材を用いるため、地震時や不動沈下といった地盤変形に対して遮水壁が追従し、遮水性の著しい低下を防止することができる。
【0049】
更には、地震時や遮水壁近隣における構造物の設置等により遮水壁に比較的大きな外カが作用した場合においても、骨材による骨格の摩擦により抵抗し、遮水性が損なわれるような著しい遮水壁の変形に対して十分な耐久性を有する。
【0050】
骨材は石材を、遮水材は粘土を主材料とするため、材料のコストが比較的安価であり、また、粘土はポンプ圧送が可能であり施工性が良く安価に施工することができる。
【図面の簡単な説明】
【図1】本発明に係る陸地における地中連続遮水壁構造を示す断面図である。
【図2】充填材の打設工程を示す断面図である。
【図3】充填材の製造工程を示す側面図である。
【図4】(a)は従来の遮水壁構造の一例を示す断面図、(b)は同遮水壁構造に使用する鋼矢板の継手部分を示す断面図である。
【図5】従来の遮水壁構造の他の一例を示す縦断面図である。
【図6】従来の遮水壁構造の更に他の一例を示す縦断面図である。
【符号の説明】
20 地中連続遮水壁
21 汚染地盤
22 不透水層
30 地中溝
31 ベントナイト液
32 トレーミー管
33 充填材
40 解泥槽
41 粘土
42 バックホー
43 調泥槽
44 調整泥収容槽
45 調整泥
46 プラント
47 ミキサー
48 助材添加装置
49 圧送ポンプ
50 圧送管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an underground continuous impermeable wall structure on land installed to prevent the contamination from spreading around the contaminated ground when the ground is contaminated with harmful substances.
[0002]
[Prior art]
Conventionally, when the ground has been contaminated with harmful substances in factories, refuse incineration facilities, or existing waste disposal sites (inappropriate disposal sites), a method of preventing the contamination from spreading around the contaminated ground As a method, a method is adopted in which the surroundings of the contaminated ground are surrounded by a water stop wall or continuous underground wall made of a sheet pile to block water.
[0003]
Conventionally, as this water shielding method, there is a water shielding method using a steel sheet pile, an in-situ solidified wall, a continuous underground wall, or the like.
[0004]
As shown in FIG. 4, the method using the inner steel sheet piles is such that U-shaped steel sheet piles 1, 1... The joint 1a is filled with a water-swellable water-stopping material 3 in advance to form a continuous water-stop wall made of steel sheet pile having a structure capable of blocking water flow.
[0005]
In the method using the solidified wall at the current position, as shown in FIG. 5, the earth and sand agitating blade 5 is inserted while being swirled to a depth reaching the impermeable layer 2 under the ground, and the solidified material is injected into the soil and agitated. By doing so, the in-situ solidified wall 6 reaching the impermeable layer 2 underground is continuously formed.
[0006]
Further, in the method using the continuous underground wall, as shown in FIG. 6, a continuous underground trench 7 having a depth reaching the impermeable layer 2 underground is excavated by a grab bucket or the like for trenching, and the continuous underground trench is used. A reinforcing steel bar 8 and concrete 9 are cast in the inside 7 to form a continuous underground wall 10 made of concrete.
[0007]
[Problems to be solved by the invention]
The seepage around the ground contaminated by harmful substances prevents the outflow of pollutants from the contaminated ground to the surrounding ground. If broken, the contaminants will flow back into the surroundings, causing the contamination to spread. Therefore, it is required that such a structure has a structure that ensures the required water shielding over a long period of time and that is sufficiently safe against ground deformation such as an earthquake or immovable settlement. Can be
[0008]
However, the method using steel sheet piles among the above-mentioned conventional methods can be performed at a relatively low cost, but it is difficult to completely perform water shielding at the joint between the steel sheet piles, and However, there is a problem that corrosion of steel sheet piles may occur depending on the type of contaminants.
[0009]
Further, the above-described method using the in-situ solidified wall described above can be expected to have relatively high water blocking performance, but has a problem that the cost is high and that there is a high possibility that cracks will occur due to ground changes due to an earthquake or the like.
[0010]
Furthermore, in the method using the continuous underground wall described above, higher water stopping performance can be expected than the in-situ solidified wall, and the strength is higher than the in-situ solidified wall, but the cost is high, and the There is a problem that the possibility of cracking cannot be denied.
[0011]
In view of such conventional problems, the present invention is excellent in durability, is not damaged even by strong external force such as at the time of an earthquake, does not crack even by ground deformation, does not impair water shielding, and The purpose of the present invention is to provide an underground continuous impermeable wall structure on land that can be constructed at a lower cost than an in-situ solidified wall or a continuous underground wall.
[0012]
[Means for Solving the Problems]
The feature of the invention according to claim 1 for solving the conventional problems as described above and achieving the intended purpose is that the water content ratio is adjusted in a continuous underground trench formed at a depth reaching an impermeable layer underground. The present invention is to fill a filler obtained by adding a clay material and a gelling agent to a modified clay suspension to form a gel, and mixing a water-blocking material having deformability and an aggregate such as sand or crushed stone.
[0013]
With this configuration, the contaminated and non-contaminated parts of the ground can be blocked by a water-impervious wall having sufficient water-blocking properties, and furthermore, can be shielded from changes such as earthquakes and immovable settlements. The water wall follows, preventing a significant drop in the water barrier.
[0014]
The invention according to claim 2 is the composition according to claim 1, wherein the clay suspension has a water content of 50 to 300%, and the clay mineral is selected from smectite, kaolin mineral, mica clay mineral, sepiolite, and mixed-layer mineral. The gelling agent is at least one selected from the group consisting of silicates, alkali metal salts, and alkaline earth metal salts.
[0015]
With this configuration, the impermeable wall can obtain sufficient impermeable performance and can be suitably adapted to deformation of the ground due to external force such as an earthquake, immovable settlement, and the like.
[0016]
According to the invention of claim 3, in addition to the structure of claim 1 or 2, the impermeable material comprises a fibrous substance composed of an inorganic material or an organic material, a lime-based or cement-based solidifying agent, and / or a gel retarder. It is characterized by being added.
[0017]
With this configuration, the filler keeps fluidity during construction of the impermeable wall, and exhibits sufficient gel strength after the construction.
[0018]
According to the invention of claim 4, in addition to the constitution of claim 3, the gelling retardant may be an alkali metal borate such as sodium or potassium, an alkali metal lignin sulfonate such as sodium or potassium, sodium, potassium or the like. At least one selected from water-soluble polymers such as alkali metal polycarboxylates, alkali metal polyacrylates such as sodium and potassium, dextrins, fatty acids, sucrose, maltose and alcohols It is characterized by.
[0019]
With this configuration, it is possible to prevent fluidity from being lost during construction, and to obtain suitable workability.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS.
[0021]
In the figure, reference numeral 20 denotes an underground continuous impermeable wall embodying the present invention, and the impermeable wall 20 is arranged so as to surround the periphery of the ground 21 contaminated by harmful chemical substances or the like, and impervious water from the ground surface to the underground. It is formed continuously to the depth reaching the layer 22.
[0022]
The construction of the impermeable wall 20 is to excavate and form a continuous underground trench 30 from the ground surface using a grab bucket for trenching. In excavation of the trench, similarly to the excavation formation of the underground trench in the construction of the continuous underground wall, the trench 30 in the middle of excavation is filled with a bentonite liquid to prevent collapse of the inner wall surface of the trench.
[0023]
After excavation of the groove 30, as shown in FIG. 2, in the groove 30 filled with the bentonite liquid 31, a filler material 33 constituting the impermeable wall 20 using the trammy tube 32 is sequentially arranged above the groove bottom. inject.
[0024]
The filler 33 is a mixture of a water-blocking material having deformability and an aggregate such as sand or crushed stone, and is kneaded by a filler adjusting plant using a mixer.
[0025]
The water-blocking material having this deformation-following property is obtained by adding a clay mineral and a gelling agent to a clay suspension having an adjusted water content to modify it into a gel state. = 1.0 × 10 −6 (cm / s) or less. Therefore, a sufficient water-blocking performance can be obtained by mixing an aggregate with the water-blocking material and casting it to a required thickness (50 cm or more).
[0026]
Examples of the clay mineral used to reduce the water permeability of the impermeable material include smectite, kaolin mineral, sepiolite, mica clay mineral, and mixed layer mineral, and any of these may be used, but smectite, kaolin mineral, mica It is preferable to use one or more selected from clay minerals.
[0027]
The amount of the clay mineral to be added is appropriately in the range of 5 to 50 parts by weight per 100 parts by volume of the clay suspension having a water content of 50 to 300%. When the addition amount of the clay mineral is 5 parts by weight or less, the gel strength due to the reduction of the water permeability and the addition of the water-soluble inorganic salt is low, and thus the clay mineral may not be suitable as a water barrier material. If the amount is more than 50 parts by weight, the gel strength due to the addition of the water-soluble inorganic salt is too high, and a problem may be caused in construction.
[0028]
As the gelling agent, at least one or more of water-soluble alkali metal salts, alkaline earth metal salts, and silicates (hereinafter, also referred to as water-soluble inorganic salts) is used.
[0029]
The addition amount of the gelling agent is appropriately in the range of 0.05 to 10 parts by weight per 100 parts by volume of the above-mentioned clay suspension. May not be suitable as material. On the other hand, when the amount is 10 parts by weight or more, the gel strength due to the addition of the water-soluble inorganic salt is too high, and there may be a problem in construction.
[0030]
The clay mineral and the water-soluble inorganic salt used in the present invention may be added as a powder mixture or powder separately, or may be previously suspended or dissolved in water used to adjust the water content of the clay. May be added. The water-soluble inorganic salt may be a liquid product.
[0031]
Further, in this water shielding material, the fibrous substance and / or the solidifying agent are used in combination with the clay mineral and the water-soluble inorganic salt to improve the gel strength.
[0032]
Examples of the fibrous substance include mineral fibers as natural fibers such as asbestos, inorganic fibers as chemical fibers such as rock wool, and synthetic fibers as chemical fibers such as polypropylene.
[0033]
The addition amount of the fibrous substance to be used in combination is appropriately in the range of 0 to 5 parts by weight per 100 parts by volume of the above-mentioned clay suspension. The amount of the solidifying agent to be added is appropriately in the range of 0 to less than 5 parts by weight, and in the range of more than 0 to 5 parts by weight, the gel strength may be too strong or a solidification reaction may occur, which may be inappropriate.
[0034]
Portland cements such as slaked lime, quicklime, lime-based solidifying agents, anhydrous gypsum, hemihydrate gypsum, cement-based solidifying agents, ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, and moderately heated Portland cement , Blast furnace cement, fly ash cement and so on.
[0035]
It should be noted that a gel retarder may be used in combination with the water-blocking material so that the fluidity is not lost during construction and the workability is not deteriorated.
[0036]
Examples of the gelling retardant include borates of alkali metals such as sodium and potassium, ligninsulfonates of alkali metals such as sodium and potassium, polycarboxylates of alkali metals such as sodium and potassium, and sodium and potassium. And water-soluble polymers such as alkali metal polyacrylates, dextrins, fatty acids, sucrose, maltose and alcohols.
[0037]
The addition amount of the gelation retarding substance to be used in combination is appropriately in the range of 0 to 3 parts by weight per 100 parts by volume of the above-mentioned clay suspension, but in the range more than that, the gelation is suppressed and the appropriate amount is suppressed. Gel strength may not be exhibited.
[0038]
In this water-blocking material, fresh water is added in advance to clay having a water content of about 50 to 150% obtained by general port dredging, and the suspension is increased to a water content of about 50 to 300%. When clay mineral is added, clay mineral particles fill the pores of the clay particles and cause gelation at the same time, have a uniform and fluidity, and have a property of easily separating foreign substances.
[0039]
However, since the clay suspension in this state has a low gel strength, there is a possibility that the material separation becomes large during casting in water. Therefore, by adding water-soluble alkali metal salts, alkaline earth metal salts, and silicates to this clay suspension, the metal cations react with the clay mineral and the clay component in the clay mineral, and the clay particles become electrically conductive. The water impermeable material has a deformability following property by forming a lump and exhibiting a gelling phenomenon.
[0040]
Incidentally, by measuring the vane shear value and managing it within a certain range, the magnitude of deformation followability can be known. The appropriate range of the vane shear value of the water impermeable material of the present invention is 0. a .3 (kN / mm 2) ~6.0 (kN / mm 2).
[0041]
As the aggregate, sand, gravel, crushed stone, slag, or the like having a particle size of about 0.075 mm to 50 mm is used, and is mixed at a ratio of 5 to 50 parts by volume with respect to 100 parts by volume of the impermeable material.
[0042]
Next, a method for producing the filler will be described.
[0043]
As shown in FIG. 3, in the demulsification process, water is added to the clay 41, which is the raw material soil contained in the demulsification tank 40, to loosen the slurry into a slurry state, and at the same time, large rubs and dust contained in the clay are removed.
[0044]
Next, the slurry-form clay is transferred to the sludge tank 43 in the sludge preparation step by a transfer means such as the backhoe 42. In this mud conditioning tank 43, a predetermined amount of water is added to the slurry-like clay to remove foreign substances, the water content is adjusted to a target water content (50 to 300%) and the density is adjusted, and the adjusted mud is stored in the adjusted mud storage tank 44. Earn 45.
[0045]
Then, the obtained adjusted mud 45 is sent to a mixer 47 in a plant 46 in a kneading process, and an auxiliary material including a clay mineral, a gelling agent, a fibrous substance, and the like is added from an auxiliary material adding device 48 to water-blocking. A filler is prepared, and an aggregate such as sand or crushed stone is further kneaded to produce a filler.
[0046]
This filler is conveyed to a setting place by a pressure feeding pipe 50 using a pressure feeding pump 49 (pressure feeding step), and is driven into a predetermined position using a tray-me pipe 32 shown in FIG. ).
[0047]
【The invention's effect】
As described above, the underground continuous impermeable wall structure on land according to the present invention uses stone or clay-based impermeable material, which is a natural material, as the impermeable material. Water barrier performance can be maintained.
[0048]
In addition, since a clay-based water-blocking material having deformation-following properties is used, the water-blocking wall follows the ground deformation such as an earthquake or immovable settlement, thereby preventing a significant decrease in water-blocking.
[0049]
Furthermore, even when relatively large external force acts on the impermeable wall due to an earthquake or the installation of a structure near the impermeable wall, the friction of the skeleton by the aggregates will resist and impair the impermeable water. It has sufficient durability against significant impermeable wall deformation.
[0050]
The aggregate is mainly made of stone, and the water-blocking material is mainly made of clay. Therefore, the cost of the material is relatively low, and the clay can be pumped and pumped, so that the workability is good and the work can be performed at low cost.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an underground continuous impermeable wall structure on land according to the present invention.
FIG. 2 is a cross-sectional view showing a step of placing a filler.
FIG. 3 is a side view showing a manufacturing process of the filler.
FIG. 4A is a cross-sectional view showing an example of a conventional impermeable wall structure, and FIG. 4B is a cross-sectional view showing a joint portion of a steel sheet pile used for the impermeable wall structure.
FIG. 5 is a longitudinal sectional view showing another example of the conventional water impermeable wall structure.
FIG. 6 is a longitudinal sectional view showing still another example of the conventional impermeable wall structure.
[Explanation of symbols]
Reference Signs List 20 continuous underground impermeable wall 21 contaminated ground 22 impervious layer 30 underground trench 31 bentonite liquid 32 trammy pipe 33 filling material 40 mud crushing tank 41 clay 42 backhoe 43 mud adjusting tank 44 adjusted mud storage tank 45 adjusted mud 46 plant 47 mixer 48 auxiliary material addition device 49 pressure pump 50 pressure tube

Claims (4)

地下の不透水層に達する深さに形成した連続地中溝内に含水比調整した粘土懸濁液に粘土鉱物及びゲル化剤を加えてゲル状に改質した変形追従性を有する遮水材と砂若しくは砕石等の骨材とを混合した充填材を充填してなる陸地における地中連続遮水壁構造。A water-impregnating material with a deformation-following property obtained by adding a clay mineral and a gelling agent to a clay suspension with an adjusted water content in a continuous underground trench formed to the depth of reaching the impermeable layer under the ground Underground continuous impermeable wall structure on land filled with filler mixed with aggregate such as sand or crushed stone. 粘土懸濁液の含水比が50〜300%であり、前記粘土鉱物が、スメクタイト、カオリン鉱物、雲母粘土鉱物、セピオライト、混合層鉱物から選ばれた少なくとも1種であるとともに、ゲル化剤が、珪酸塩類、アルカリ金属塩類、アルカリ土類金属塩類から選ばれた少なくとも1種である請求項1に記載の陸地における地中連続遮水壁構造。The clay suspension has a water content of 50 to 300%, and the clay mineral is at least one selected from smectite, kaolin mineral, mica clay mineral, sepiolite, and mixed layer mineral, and the gelling agent is The underground continuous impermeable wall structure on land according to claim 1, which is at least one selected from silicates, alkali metal salts, and alkaline earth metal salts. 遮水材に、無機質材料又は有機質材料からなる繊維状物質、石灰系又はセメント系の固化剤、及び/又はゲル化遅延剤を添加してなる請求項1又は2に記載の陸地における地中連続遮水壁構造。The underground continuity on land according to claim 1 or 2, wherein a fibrous substance made of an inorganic material or an organic material, a lime-based or cement-based solidifying agent, and / or a gelling retardant are added to the water-blocking material. Impermeable wall structure. ゲル化遅延剤が、ナトリウム、カリウムなどのアルカリ金属のホウ酸塩類、ナトリウム、カリウムなどのアルカリ金属のリグニンスルホン酸塩類、ナトリウム、カリウムなどのアルカリ金属のポリカルボン酸塩類、ナトリウム、カリウムなどのアルカリ金属のポリアクリル酸塩類などの水溶性高分子、デキストリン、脂肪酸、ショ糖、マルトース、アルコール類から選ばれた少くとも1種である請求項3に記載の陸地における地中連続遮水壁構造。Gelling retardants include alkali metal borates such as sodium and potassium, alkali metal lignin sulfonates such as sodium and potassium, alkali metal polycarboxylates such as sodium and potassium, and alkalis such as sodium and potassium. The underground continuous impermeable wall structure on land according to claim 3, which is at least one selected from water-soluble polymers such as metal polyacrylates, dextrins, fatty acids, sucrose, maltose, and alcohols.
JP2002352905A 2002-12-04 2002-12-04 Underground continuous cut off wall structure in land Pending JP2004183364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352905A JP2004183364A (en) 2002-12-04 2002-12-04 Underground continuous cut off wall structure in land

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352905A JP2004183364A (en) 2002-12-04 2002-12-04 Underground continuous cut off wall structure in land

Publications (1)

Publication Number Publication Date
JP2004183364A true JP2004183364A (en) 2004-07-02

Family

ID=32754376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352905A Pending JP2004183364A (en) 2002-12-04 2002-12-04 Underground continuous cut off wall structure in land

Country Status (1)

Country Link
JP (1) JP2004183364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110202A (en) * 2013-12-06 2015-06-18 株式会社テルナイト Deformation follow-up type impervious material
JP2016112540A (en) * 2014-12-18 2016-06-23 五洋建設株式会社 Water sealing material
JP2017198033A (en) * 2016-04-28 2017-11-02 一般社団法人Nb研究所 Filler for gap space in artificial structure and sealing method for gap space in artificial structure
CN116950139A (en) * 2023-07-31 2023-10-27 重庆诺为生态环境工程有限公司 Stable framework compact structure, impermeable composite material, impermeable layer and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118603A (en) * 1996-10-24 1998-05-12 Ohbayashi Corp Waste disposal facilities and method for constituting the same
JPH10325139A (en) * 1997-05-27 1998-12-08 Tone Chika Gijutsu Kk Multifunctional underground continuous wall and working method thereof
JPH1143935A (en) * 1997-07-25 1999-02-16 Shimizu Corp Underground water shielding wall, and construction method thereof
JP2002336811A (en) * 2001-05-16 2002-11-26 Terunaito:Kk Deformation follow-up type impervious liner material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118603A (en) * 1996-10-24 1998-05-12 Ohbayashi Corp Waste disposal facilities and method for constituting the same
JPH10325139A (en) * 1997-05-27 1998-12-08 Tone Chika Gijutsu Kk Multifunctional underground continuous wall and working method thereof
JPH1143935A (en) * 1997-07-25 1999-02-16 Shimizu Corp Underground water shielding wall, and construction method thereof
JP2002336811A (en) * 2001-05-16 2002-11-26 Terunaito:Kk Deformation follow-up type impervious liner material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110202A (en) * 2013-12-06 2015-06-18 株式会社テルナイト Deformation follow-up type impervious material
JP2016112540A (en) * 2014-12-18 2016-06-23 五洋建設株式会社 Water sealing material
JP2017198033A (en) * 2016-04-28 2017-11-02 一般社団法人Nb研究所 Filler for gap space in artificial structure and sealing method for gap space in artificial structure
CN116950139A (en) * 2023-07-31 2023-10-27 重庆诺为生态环境工程有限公司 Stable framework compact structure, impermeable composite material, impermeable layer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2005095300A1 (en) Concrete composition, process for producing the same, method of regulating viscosity, and method of constructing cast-in-place concrete pile from the concrete composition
KR102185405B1 (en) SGM(Soil Geolead Mixed) METHOD FOR SOLIDIFYING GROUND FOR SURFACE LAYER
CN107724381A (en) The vertical antifouling isolation wall construction of cement bentonite and method
JP3802777B2 (en) Deformation following type water shielding material
CN101008178B (en) Soft base processing construction process using excavating and stirring method
RU2551560C2 (en) Road-building composite material
CN207775867U (en) A kind of vertical antifouling isolation wall construction of cement-bentonite
CN105672203B (en) A kind of plugging construction method of dykes and dams RCCP
JP2004183364A (en) Underground continuous cut off wall structure in land
JP4976073B2 (en) Repair method for underground filler and earth structure
KR101423123B1 (en) Method for constructing impervious wall of waste landfill pond
KR100272950B1 (en) Method of forming water-resist wall of rubbish buried place
US4050258A (en) Method of building embankments and structure supports of backfilling
JPH0452327A (en) Stabilized soil and construction method using this soil
JP2004181394A (en) Water barrier base structure of waste reclaimed land
JPH0571730B2 (en)
JP2005299337A (en) Consolidation accelerating method for blast-furnace slag back-filling material
JP4743679B2 (en) Water-improving soil-improving solidified material, method for producing water-improving improved soil, and water-sealing
JP4027572B2 (en) How to use construction soil
JP2007131805A (en) Improved ground material
JP3996915B2 (en) Deformation following type water shielding material
JP2003184072A (en) Surface layer ground improvement method
JP3116766B2 (en) Fluidization method of fine particle aggregate
KR101578668B1 (en) Soil solidification of solidification compositions and Embankment construction method using the same
KR102511035B1 (en) Installation structure for protecting river

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610