JP2016112540A - Water sealing material - Google Patents

Water sealing material Download PDF

Info

Publication number
JP2016112540A
JP2016112540A JP2014255751A JP2014255751A JP2016112540A JP 2016112540 A JP2016112540 A JP 2016112540A JP 2014255751 A JP2014255751 A JP 2014255751A JP 2014255751 A JP2014255751 A JP 2014255751A JP 2016112540 A JP2016112540 A JP 2016112540A
Authority
JP
Japan
Prior art keywords
water
water shielding
volume ratio
fiber
shielding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014255751A
Other languages
Japanese (ja)
Other versions
JP6411202B2 (en
Inventor
彩人 堤
Ayato Tsutsumi
彩人 堤
裕一 田中
Yuichi Tanaka
裕一 田中
将真 高
Changjin Ko
将真 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2014255751A priority Critical patent/JP6411202B2/en
Publication of JP2016112540A publication Critical patent/JP2016112540A/en
Application granted granted Critical
Publication of JP6411202B2 publication Critical patent/JP6411202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Landscapes

  • Revetment (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide water sealing material capable of improving strength by a fiber addition amount less than conventional one, and a having high deformation following property.SOLUTION: Water sealing material is obtained by mixing viscous soil (at inner split volume ratio of 70 to 90%) adjusted to moisture ratio of 100 to 300% and steel-making slag (at inner split volume ratio of 10 to 30%) of a particle diameter of 26.5 mm or less, and further adding fibrous material at outer split volume ratio of 0.1 to 1.0%.SELECTED DRAWING: Figure 2

Description

本発明は、たとえば、産業廃棄物処分場などの遮水工に適用可能な遮水材に関する。   The present invention relates to a water shielding material applicable to a water shielding work such as an industrial waste disposal site.

従来、産業廃棄物処分場などの遮水工の遮水材として、粘性土、ベントナイト、繊維から成る低強度・高変形追随性の土質系遮水材、あるいは、粘性土、セメント系固化材、繊維から成る高強度・低変形追随性の固化処理土遮水材が提案されている。特許文献1は、変形追随性遮水材として、海成粘土懸濁液、ベントナイト、珪酸塩類等、繊維状物質から成る遮水材を提案する。この遮水材は、変形追随性に優れる一方、強度が小さいため遮水構造に適用されると安定性に欠けることが指摘されていた。   Conventionally, as a water shielding material for water shielding works such as industrial waste disposal sites, low-strength, high-deformability soil-based water-insulating materials consisting of viscous soil, bentonite, fibers, or viscous soil, cement-based solidified material, A high-strength and low-deformability solidified soil impervious material composed of fibers has been proposed. Patent Document 1 proposes a water shielding material made of a fibrous material such as marine clay suspension, bentonite, silicates, etc. as a deformation-following water shielding material. It has been pointed out that this water shielding material is excellent in deformation followability but lacks stability when applied to a water shielding structure because of its low strength.

上記問題を解決するため、特許文献2は、強度と変形追随性を兼ね備えた遮水材を用いた遮水構造を提案する。この遮水材は、水を含む粘性土に、固化材(50〜150kg/m3)、短繊維(体積比0.2〜2.0%)を添加するもので、遮水性の高い固化処理土に弱い変形追随性を付与したものである。 In order to solve the above problem, Patent Document 2 proposes a water shielding structure using a water shielding material having both strength and deformation followability. This water shielding material is made by adding solidified material (50 to 150 kg / m 3 ) and short fibers (volume ratio 0.2 to 2.0%) to viscous soil containing water, and is weakly deformed to solidified soil with high water barrier properties. Follow-up is given.

特開2002-336811号公報JP 2002-336811 A 特開2006-326392号公報JP 2006-326392 A

特許文献1の変形追随性遮水材は、高い変形追随性を有するが、強度が小さいという弱点を有していた。特許文献2の遮水構造は、遮水材に強度を付与した結果、以下のような課題を有する。
(1)十分な靭性を付与するためには、短繊維の添加量を多くする必要があり、高コストにつながってしまう。
(2)施工中・供用中に地震等による地盤変動を受け大きなひずみが生じた場合、その後の強度回復を期待できない。
The deformation follow-up water shielding material of Patent Document 1 has a high deformation follow-up property, but has a weak point that the strength is small. The water shielding structure of Patent Document 2 has the following problems as a result of imparting strength to the water shielding material.
(1) In order to impart sufficient toughness, it is necessary to increase the amount of short fibers added, leading to high costs.
(2) If large strain occurs due to ground deformation due to earthquakes during construction and operation, subsequent strength recovery cannot be expected.

本発明は、上述のような従来技術の問題に鑑み、従来よりも少ない繊維添加量で強度を向上できかつ高い変形追随性を有する遮水材を提供することを目的とする。   An object of this invention is to provide the water shielding material which can improve an intensity | strength with the fiber addition amount smaller than before, and has a high deformation followability in view of the problem of the above prior art.

上記目的を達成するための遮水材は、含水比を100〜300%に調整した粘性土(内割り体積比で70〜90%)と粒径26.5mm以下の製鋼スラグ(内割り体積比で10〜30%)とを混合し、さらに繊維状物質を外割り体積比で0.1〜1.0%添加したものである。   In order to achieve the above objectives, the water shielding material consists of viscous soil (70-90% by internal volume ratio) with a moisture content adjusted to 100-300% and steelmaking slag with a particle size of 26.5mm or less (by internal volume ratio). 10 to 30%) and a fibrous substance is further added in an external volume ratio of 0.1 to 1.0%.

この遮水材によれば、粘性土に製鋼スラグを混合することで、強度を向上させることができるととともに、施工中・供用中に地震等による地盤変動により大きなひずみを受けた場合でも材齢の増加とともに強度を回復することができる。また、粒状材料である製鋼スラグに繊維状物質が絡みやすくなることで、少ない繊維状物質の添加量で高い変形追随性を付与することができる。このように、従来よりも少ない繊維状物質の添加量で強度を向上できかつ高い変形追随性を有する。この遮水材は、たとえば、産業廃棄物処分場などの遮水工に好適な材料である。   According to this water shielding material, strength can be improved by mixing steelmaking slag with cohesive soil, and even when subjected to large strains due to ground deformation due to earthquakes, etc. during construction and in service The strength can be recovered with the increase of. In addition, since the fibrous substance is easily entangled with the steelmaking slag, which is a granular material, high deformation followability can be imparted with a small addition amount of the fibrous substance. As described above, the strength can be improved with a smaller amount of fibrous material than in the prior art, and high deformation followability can be obtained. The water shielding material is a material suitable for a water shielding work such as an industrial waste disposal site.

粘性土の含水比が100%以上であると、製鋼スラグや繊維状物質との施工性が低下せずに良好で、含水比300%以下であると、強度・遮水性が低下せずに良好である。製鋼スラグの混合量が体積比30%以下であると、施工性が低下せずに良好であり、また、体積比10%以上であると、遮水性の向上が期待できる。また、繊維状物質の添加量が体積比0.1%以上であると、好ましくは体積比0.2%以上であると、変形追随性の付与効果を得ることができ、また、添加量が体積比1.0%以下であると、添加量が多くならずにコストがさほどかさまない。   If the moisture content of the cohesive soil is 100% or more, workability with steelmaking slag and fibrous materials is good without deterioration, and if the moisture content is 300% or less, strength and water impermeability are not lowered. It is. When the steelmaking slag is mixed at a volume ratio of 30% or less, the workability is good without decreasing, and when the volume ratio is 10% or more, an improvement in water shielding can be expected. Further, when the addition amount of the fibrous substance is 0.1% or more by volume, preferably when the volume ratio is 0.2% or more, an effect of imparting deformation followability can be obtained, and the addition amount is 1.0% by volume. If it is below, the amount of addition is not increased and the cost is not so high.

上記遮水材において、流動性を向上させる目的で分散剤を少量添加することが好ましい。   In the water shielding material, it is preferable to add a small amount of a dispersant for the purpose of improving fluidity.

また、前記遮水材は、その一軸圧縮試験において圧縮ひずみが5%または5%以上で圧縮応力が減少しない特性を有することができる。かかる特性を有することで、遮水材が高い変形追随性を有するといえる。   In addition, the water shielding material may have a characteristic that the compressive stress does not decrease when the compressive strain is 5% or 5% or more in the uniaxial compression test. By having such characteristics, it can be said that the water shielding material has high deformation followability.

本発明によれば、従来よりも少ない繊維添加量で強度を向上できかつ高い変形追随性を有する遮水材を提供することができる。   According to the present invention, it is possible to provide a water shielding material that can improve the strength with a smaller amount of fiber addition than before and has high deformation followability.

本実施形態による遮水材を適用した海面産業廃棄物処分場の要部を概略的に示す断面図である。It is sectional drawing which shows roughly the principal part of the sea surface industrial waste disposal site to which the water-shielding material by this embodiment is applied. 本実施例における変形追随性の確認のための一軸圧縮試験から得られた応力ひずみ線図を示すグラフである。It is a graph which shows the stress-strain diagram obtained from the uniaxial compression test for the confirmation of a deformation | transformation followability in a present Example. 図2の本実施例との比較のため「小竹・裏山・松原「固化処理土の曲げ・引張強度特性」、ジオシンセティックス論文集、第27巻、133-140頁、2013)」から引用した、短繊維を混合したセメント固化処理土の一軸圧縮試験の応力ひずみ線図を示すグラフである。For comparison with this example in FIG. 2, quoted from “Kotake / Urayama / Matsubara“ Bending / Tensile Strength Properties of Solidified Soil ”, Geosynthetics, 27, 133-140, 2013)”. It is a graph which shows the stress-strain diagram of the uniaxial compression test of the cement solidification processing soil which mixed the short fiber. 実施例7における強度回復性の確認のための一軸圧縮試験から得られた応力ひずみ線図を示すグラフである。It is a graph which shows the stress strain diagram obtained from the uniaxial compression test for confirmation of the intensity | strength recoverability in Example 7. FIG. 図4の実施例7と比較するための比較例2における一軸圧縮試験から得られた応力ひずみ線図を示すグラフである。It is a graph which shows the stress-strain diagram obtained from the uniaxial compression test in the comparative example 2 for comparing with the Example 7 of FIG. 図4の実施例7と比較するための比較例3における一軸圧縮試験から得られた応力ひずみ線図を示すグラフである。It is a graph which shows the stress-strain diagram obtained from the uniaxial compression test in the comparative example 3 for comparing with Example 7 of FIG. 本実施例における施工性の確認のためのフロー試験から得られた製鋼スラグ添加量とフロー値との関係を示すグラフである。It is a graph which shows the relationship between the steelmaking slag addition amount obtained from the flow test for confirmation of the workability in a present Example, and a flow value.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による遮水材を適用した産業廃棄物処分場の要部を概略的に示す断面図である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing a main part of an industrial waste disposal site to which a water shielding material according to this embodiment is applied.

図1に示すように、本実施形態の海面産業廃棄物処分場の護岸1は、水底Gに捨石から構築されたマウンド2と、マウンド2の上に設置され海水A側に面するケーソン3と、ケーソン3の背面側(内水B側)に捨石から構築された裏込め4と、裏込め4の背面(内水B側)に設けられた遮水層5と、遮水層5の内水B側に水底Gから地盤内へと打設された鋼管矢板6と、を備える。遮水層5と鋼管矢板6は海面産業廃棄物処分場の側面遮水工を構成する。内水Bの水底G1には遮水層7が設けられ、海面産業廃棄物処分場の底面遮水工を構成する。遮水層5と遮水層7は、本実施形態による遮水材から構成される。なお、図1において、水底地盤が、たとえば、厚さ5m以上、透水係数が1.0×10-7m/s以下の連続した不透水性地層である場合、底面遮水工である遮水層7を省略することができる。 As shown in FIG. 1, the revetment 1 of the sea surface industrial waste disposal site of this embodiment includes a mound 2 constructed from rubble on the bottom G, a caisson 3 installed on the mound 2 and facing the sea water A side. The backfill 4 constructed from rubble on the back side (inside water B side) of the caisson 3, the water shielding layer 5 provided on the back side (inside water B side) of the backfill 4, and the inside of the water shielding layer 5 And a steel pipe sheet pile 6 placed on the water B side from the bottom G to the ground. The water-impervious layer 5 and the steel pipe sheet pile 6 constitute a side water-impervious construction for a sea surface industrial waste disposal site. A water-impervious layer 7 is provided on the bottom G1 of the internal water B, and constitutes a bottom impermeable work for a sea surface industrial waste disposal site. The water-impervious layer 5 and the water-impervious layer 7 are made of the water-impervious material according to the present embodiment. In addition, in FIG. 1, when the water bottom ground is a continuous water-impermeable formation with a thickness of 5 m or more and a water permeability coefficient of 1.0 × 10 −7 m / s or less, for example, Can be omitted.

本実施形態による遮水材は、含水比を100〜300%に調整した粘性土(内割り体積比で70〜90%)と粒径26.5mm以下の製鋼スラグ(内割り体積比で10〜30%)とを混合し、繊維(繊維状物質)を外割り体積比で0.1〜1.0%添加し、さらに流動性を向上させる目的で分散剤を少量添加したものである。   The water-impervious material according to the present embodiment has a viscous soil (internal volume ratio 70-90%) adjusted to a moisture content of 100-300% and a steelmaking slag having a particle size of 26.5 mm or less (internal volume ratio 10-30). %) And fiber (fibrous substance) is added in an external volume ratio of 0.1 to 1.0%, and a small amount of a dispersant is added for the purpose of improving fluidity.

上述の粘性土としては、浚渫土の他、購入材料、たとえば山粘土、ベントナイトなどを使用できる。含水比を100〜300%に調整して使用する。   In addition to dredged soil, purchased materials such as mountain clay and bentonite can be used as the clay. Use with water content adjusted to 100-300%.

上述の製鋼スラグは粒径26.5mm以下であり、目標強度や遮水性に応じて、製鋼スラグの混合量を10〜30%(体積比)の範囲で調整する。なお、製鋼スラグとして、高炉で製造された銑鉄を転炉で精錬する工程で生成される粒状体である転炉系製鋼スラグを用いることが好ましい。また、製鋼スラグには、粒径26.5mm以下の礫が含まれていてもよい。   The steelmaking slag described above has a particle size of 26.5 mm or less, and the mixing amount of the steelmaking slag is adjusted in the range of 10 to 30% (volume ratio) according to the target strength and water shielding. In addition, it is preferable to use the converter system steelmaking slag which is a granular material produced | generated at the process of refining pig iron manufactured with the blast furnace with a converter as steelmaking slag. Further, the steelmaking slag may contain gravel having a particle size of 26.5 mm or less.

上述の繊維として、その種類は任意であり、たとえば、ポリエステル、ポリプロピレン、ポリエチレン、ビニロンなど合成繊維全般、ガラス繊維、および炭素繊維などを使用できる。繊維の寸法も任意である。添加量は体積比で0.1〜1.0%の範囲で調整する。   The type of the above-mentioned fibers is arbitrary, and for example, synthetic fibers such as polyester, polypropylene, polyethylene, and vinylon, glass fibers, and carbon fibers can be used. The fiber dimensions are also arbitrary. The addition amount is adjusted in the range of 0.1 to 1.0% by volume ratio.

上述の分散剤として、たとえば、ポリアクリル酸、カルボキシメチルセルロース、または、ヒドロキシプロピルメチルセルロースなどを主成分とするものを用いることができるが、これらに限定されるものではない。   As the above-mentioned dispersant, for example, a polyacrylic acid, carboxymethylcellulose, hydroxypropylmethylcellulose or the like as a main component can be used, but is not limited thereto.

次に、図1の遮水層5および遮水層7の施工方法の一例について説明する。ただし、施工方法は、本例に限定されず、他の方法であってもよい。   Next, an example of the construction method of the water shielding layer 5 and the water shielding layer 7 of FIG. 1 is demonstrated. However, the construction method is not limited to this example, and may be another method.

(1)調泥
浚渫土等の粘性土に所定量の海水または清水を加え、粘性土を目的とする含水比に調整する。
(1) Mud control Add a predetermined amount of seawater or fresh water to clay soil such as dredged soil, and adjust the moisture content to the desired level.

(2)混練
調整泥をミキサーに送り、所定の体積比で製鋼スラグ・短繊維を加え練り混ぜ、遮水材を製造する。
(2) Kneading The adjusted mud is sent to a mixer, and steelmaking slag / short fibers are added and kneaded at a predetermined volume ratio to produce a water shielding material.

(3)圧送
製造された遮水材を、圧送ポンプを用いて、圧送管により打設場所まで搬送する。
(3) Pressure feed The manufactured water-impervious material is transported to a placement site by a pressure feed pipe using a pressure feed pump.

(4)打設
トレミー管により所定の位置に遮水材を打設する。すなわち、遮水材を図1の遮水層5、遮水層7に相当する位置に打設することで、遮水層5、遮水層7を構築する。
(4) Placing a water shielding material at a predetermined position using a tremely pipe. That is, the water shielding layer 5 and the water shielding layer 7 are constructed by placing a water shielding material at positions corresponding to the water shielding layer 5 and the water shielding layer 7 in FIG.

本実施形態による遮水材によれば、従来技術よりも少ない繊維添加量で、高い変形追随性を付与できる。特許文献2では、セメント系の固化材(微粉末)および短繊維(体積比0.2〜2%添加)により遮水材の強度・靭性を改善しているのに対し、本実施形態による遮水材では製鋼スラグの混合により強度を改善するとともに、粒状材料である製鋼スラグに繊維が絡みやすくなることで変形追随性が向上し、体積比0.1〜1.0%という少ない繊維添加量で高い変形追随性を付与できる。   According to the water shielding material according to the present embodiment, high deformation followability can be imparted with a smaller amount of added fiber than in the prior art. In Patent Document 2, the strength and toughness of the water shielding material is improved by cement-based solidified material (fine powder) and short fibers (volume ratio 0.2-2% added), whereas the water shielding material according to the present embodiment. In addition to improving strength by mixing steelmaking slag, deformation followability is improved by making fibers easily entangled with steelmaking slag, which is a granular material, and high deformation followability with a small fiber addition amount of 0.1 to 1.0% in volume ratio Can be granted.

また、本実施形態による遮水材は、施工中・供用中に地震等による地盤変動により大きなひずみを受けた場合でも材齢の増加とともに強度が回復する。製鋼スラグと粘性土を混合した材料は、長期的に強度が増加するが、本実施形態による遮水材は、繊維を添加することにより内部拘束効果が発揮され脆性破壊しない材料となるため、大きなひずみを受けた場合でも、製鋼スラグの長期強度発現特性を引き出し、その後の時間経過に伴う強度の増加を促すことができる(強度回復)。一方、繊維を添加しない場合には、脆性破壊により破壊面の接触力が失われるため、強度は回復しない。   In addition, the water shielding material according to the present embodiment recovers its strength as the material age increases even when it is subjected to a large strain due to ground fluctuation due to an earthquake or the like during construction and operation. The material mixed with steelmaking slag and cohesive soil increases in strength over the long term, but the water shielding material according to this embodiment is a material that exhibits an internal restraint effect by adding fibers and does not brittle fracture, so it is large. Even when subjected to strain, it is possible to draw out the long-term strength development characteristics of steelmaking slag and to promote an increase in strength over time (strength recovery). On the other hand, when the fiber is not added, the strength does not recover because the contact force on the fracture surface is lost due to brittle fracture.

次に、本発明について実施例によりさらに具体的に説明するが、本発明は本実施例に限定されるものではない。本実施例では、本遮水材の変形追随性、強度回復性、フロー試験による施工性、および遮水性について確認した。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to a present Example. In this example, the deformation following property, strength recovery property, workability by flow test, and water shielding property of the water shielding material were confirmed.

[変形追随性]
本実施例の繊維・製鋼スラグ混合遮水材は、含水比160%に調整した浚渫土(土粒子密度2.633g/cm3、液性限界101.3%)に、製鋼スラグ(室内試験のため粒径9.5mm以下に調整)およびポリエステル短繊維(繊維長20mm、繊維径14.8μm、比重1.38g/cm3)を所定の体積比で混合したものである。実施例1〜6では短繊維の配合割合を体積比で0.1〜1.0%まで6段階に変え、比較例1では短繊維を配合していない。実施例1〜6および比較例1についての配合を次の表1に示す。
[Deformability tracking]
The mixed impervious material for fiber and steelmaking slag of this example is made of steelmaking slag (particle size for laboratory tests) on clay (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) adjusted to a moisture content of 160%. 9.5 mm or less) and polyester short fibers (fiber length 20 mm, fiber diameter 14.8 μm, specific gravity 1.38 g / cm 3 ) mixed at a predetermined volume ratio. In Examples 1 to 6, the blending ratio of the short fibers was changed in six steps from 0.1 to 1.0% by volume, and in Comparative Example 1, no short fibers were blended. The formulations for Examples 1-6 and Comparative Example 1 are shown in Table 1 below.

Figure 2016112540
Figure 2016112540

表1のように繊維添加量をパラメータにした繊維・製鋼スラグ混合遮水材を作製し、養生7日後に一軸圧縮試験を実施した。この一軸圧縮試験から得られた応力ひずみ線図を図2に示す。なお、一軸圧縮試験は、JIS A 1216に基づいて実施した。   As shown in Table 1, a fiber / steel slag mixed water-insulating material with the amount of added fiber as a parameter was prepared, and a uniaxial compression test was carried out 7 days after curing. A stress strain diagram obtained from this uniaxial compression test is shown in FIG. The uniaxial compression test was performed based on JIS A 1216.

図2の結果から、短繊維を混合しない比較例1では5%の圧縮ひずみに達する前から圧縮応力が低下したのに対し、実施例2〜6のように短繊維を体積比で0.2%以上添加すると、5%以上の大ひずみレベルにおいても圧縮応力が低下しない材料となることがわかる。また、短繊維を体積比で0.1%添加した実施例1では、圧縮ひずみが5%のとき圧縮応力が低下しないことがわかる。また、繊維添加量が体積比で0.2〜1.0%の実施例2〜6では、繊維の添加量に応じて5%以上の大ひずみレベルにおいて圧縮応力の保持効果が高くなることがわかる。つまり、繊維添加量が増すと、変形追随性が向上する。   From the results of FIG. 2, in Comparative Example 1 in which the short fibers were not mixed, the compressive stress decreased before reaching 5% compressive strain, whereas the short fibers were 0.2% or more by volume as in Examples 2-6. It can be seen that when added, the material does not decrease in compressive stress even at a large strain level of 5% or more. Moreover, in Example 1 which added 0.1% of short fibers by volume ratio, when a compressive strain is 5%, it turns out that a compressive stress does not fall. In Examples 2 to 6 in which the fiber addition amount is 0.2 to 1.0% by volume, it can be seen that the compressive stress retention effect is increased at a large strain level of 5% or more depending on the fiber addition amount. That is, when the amount of added fiber is increased, the deformation followability is improved.

以上から、実施例1〜6の繊維・製鋼スラグ混合遮水材は、短繊維を体積比で0.1〜1.0%添加することで、好ましくは短繊維を体積比で0.2〜1.0%添加することで、圧縮ひずみが5%または5%以上で圧縮応力が減少しない特性を有し、高い変形追随性を有することがわかる。   From the above, the fiber / steel slag mixed water-insulating material of Examples 1 to 6 is obtained by adding 0.1 to 1.0% of short fibers by volume ratio, preferably by adding 0.2 to 1.0% of short fibers by volume ratio. It can be seen that the compressive strain is 5% or 5% or more and the compressive stress does not decrease and has high deformation followability.

比較のため、短繊維を混合したセメント固化処理土の一軸圧縮試験の結果を引用して図3に示す(小竹・裏山・松原「固化処理土の曲げ・引張強度特性」、ジオシンセティックス論文集、第27巻、133-140頁、2013)。図3から、セメント固化処理土の場合には、1.0vol%の短繊維を添加しても、軸ひずみ2%程度で圧縮応力の最大値を示した後、軸ひずみの増大とともに圧縮応力は低下する傾向が確認され、変形追随性が低下することがわかる。   For comparison, the results of a uniaxial compression test of cement-solidified soil mixed with short fibers are shown in Fig. 3 (Kotake, Urayama, Matsubara "Bending and tensile strength characteristics of solidified soil", Geosynthetics papers 27, 133-140, 2013). From Fig. 3, in the case of cement-solidified soil, even when 1.0 vol% of short fibers are added, the compressive stress decreases with increasing axial strain after showing the maximum compressive stress at about 2% axial strain. It can be seen that there is a tendency to deform and the deformation followability is reduced.

[強度回復性]
実施例7の繊維・製鋼スラグ混合遮水材は、含水比160%に調整した浚渫土(土粒子密度2.633g/cm3、液性限界101.3%)に、製鋼スラグ(室内試験のため粒径9.5mm以下に調整)およびポリエステル短繊維(繊維長20mm、繊維径14.8μm、比重1.38g/cm3)を所定の体積比で混合したものである。比較例2は、短繊維を混合しないものである。比較例3は、繊維を混合したセメント固化処理土の強度回復性を調べるために、含水比160%に調整した浚渫土に、高炉セメントB種(75kg/m3)、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を所定の体積比で添加した繊維混合セメント固化処理土である。次の表2に各配合を示す。
[Strength recovery]
The mixed water-impervious material for fiber and steelmaking slag of Example 7 was made of steelmaking slag (particle size for laboratory tests) in clay (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) adjusted to a moisture content of 160%. 9.5 mm or less) and polyester short fibers (fiber length 20 mm, fiber diameter 14.8 μm, specific gravity 1.38 g / cm 3 ) mixed at a predetermined volume ratio. In Comparative Example 2, short fibers are not mixed. In Comparative Example 3, in order to investigate the strength recovery of cement-solidified soil mixed with fibers, blast furnace cement type B (75 kg / m 3 ), polyester short fibers (fiber length) were adjusted to a moisture content adjusted to 160%. 20 mm, fiber diameter 14.8 μm) is added to the fiber-mixed cement solidified soil with a predetermined volume ratio. The following Table 2 shows each formulation.

Figure 2016112540
Figure 2016112540

ここで、繊維の添加量は、実施例7では、本遮水材の規定する繊維添加量(体積比で0.1〜1.0%)の中央値に近いこと、またすでに図2で変形追随性について評価済みであることから体積比で0.5%とした。また、繊維の添加の有無による強度の回復性を比較するため、比較例2の繊維添加量を0%とした場合についても評価した。一方、比較例3のセメントを使用する場合のセメント添加量については、図2の繊維添加量体積比0.5%の結果を参考にした。つまり、図2の繊維添加量体積比0.5%(材齢7日)における圧縮応力の最大値は170kN/m2であることから、これを参考にして材齢7日で圧縮応力の最大値が200kN/m2程度となるセメント量を添加した。 Here, in Example 7, the added amount of fiber is close to the median value of the added amount of fiber (0.1 to 1.0% by volume) defined by the water shielding material, and the deformation followability has already been evaluated in FIG. Since it has been completed, the volume ratio was set to 0.5%. In addition, in order to compare the recoverability of strength depending on whether or not the fiber was added, the case where the fiber addition amount of Comparative Example 2 was set to 0% was also evaluated. On the other hand, for the amount of cement added when the cement of Comparative Example 3 was used, the result of the fiber addition volume ratio 0.5% in FIG. 2 was referred to. In other words, the maximum value of compressive stress at the fiber addition volume ratio of 0.5% (age 7 days) in Fig. 2 is 170 kN / m 2. A cement amount of about 200 kN / m 2 was added.

強度の回復性はJIS A 1216による一軸圧縮試験により評価した。評価方法は、28日間養生した供試体を5%のひずみレベルまで一軸圧縮(処女圧縮)した後、載荷を一旦停止し供試体をとりだし、85日間暴露した後、再び一軸圧縮試験を実施した。暴露方法は、供試体をラップで包み乾燥を防ぐ方法(気中暴露)による。処女圧縮のひずみレベルを5%とした理由は、繊維添加量0%の供試体では、5%を超える圧縮ひずみを与えると、その後、供試体をとりだし暴露の準備をする際に供試体が崩壊してしまう恐れがあるためである。   Strength recovery was evaluated by a uniaxial compression test according to JIS A 1216. In the evaluation method, a specimen cured for 28 days was uniaxially compressed (virgin compression) to a strain level of 5%, and then the loading was temporarily stopped, the specimen was taken out, exposed for 85 days, and then subjected to a uniaxial compression test again. The exposure method is based on a method (air exposure) that wraps the specimen with a wrap to prevent drying. The reason for setting the virgin compression strain level to 5% is that for a specimen with 0% added fiber, if a compressive strain exceeding 5% is applied, the specimen collapses when the specimen is removed and prepared for exposure. This is because there is a risk of doing so.

上述のような一軸圧縮試験から得られた応力ひずみ線図を図4〜図6に示す。なお、図4〜図6の縦軸の圧縮応力は、圧縮ひずみ5%以下における圧縮応力の最大値により正規化(圧縮応力比)している。実施例7の結果を示す図4と、短繊維を混合しない比較例2の図5とを比較すると、浚渫土に製鋼スラグと短繊維を添加することで、処女圧縮時の一軸圧縮強さを超える強度回復が確認でき、また、製鋼スラグの混合だけ(短繊維を混合しない)では強度は回復しないことがわかる。   Stress strain diagrams obtained from the uniaxial compression test as described above are shown in FIGS. In addition, the compressive stress of the vertical axis | shaft of FIGS. 4-6 is normalized (compressive stress ratio) with the maximum value of the compressive stress in 5% or less of compressive strain. 4 showing the result of Example 7 and FIG. 5 of Comparative Example 2 in which short fibers are not mixed, by adding steelmaking slag and short fibers to the clay, the uniaxial compressive strength during virgin compression is increased. It can be seen that the strength recovery exceeds the limit, and that the strength is not recovered only by mixing the steelmaking slag (without mixing the short fibers).

また、実施例7の結果を示す図4と、短繊維を混合したセメント固化材の比較例3の図6とを比較すると、繊維を添加した場合でもセメント固化処理土では再圧縮後に処女圧縮時の一軸圧縮強さを上回る強度回復は生じないことがわかる。   Moreover, when FIG. 4 which shows the result of Example 7 and FIG. 6 of the comparative example 3 of the cement solidification material which mixed the short fiber are compared, even when the fiber is added, the cement solidification treated soil is subjected to virgin compression after recompression. It can be seen that no strength recovery exceeding the uniaxial compressive strength occurs.

[フロー試験による施工性]
実施例8,9,10および比較例4の繊維・製鋼スラグ混合遮水材は、含水比160%に調整した浚渫土(土粒子密度2.633g/cm3、液性限界101.3%)に、製鋼スラグ(室内試験のため粒径9.5mm以下に調整)およびポリエステル短繊維(繊維長20mm、繊維径14.8μm、比重1.38g/cm3)を所定の体積比で混合し、これに、流動性を向上させるためポリアクリル酸を主成分とする分散剤を2kg/m3添加したものである。これらの遮水材に対してフロー試験を実施し、材料の施工性を検討した。フロー試験は、JHS313-1999(日本道路公団規格 エアモルタル及びエアミルクの試験方法)に規定するシリンダー法に基づいて実施した。次の表3に配合を示す。
[Workability by flow test]
The fiber / steel slag mixed water-insulating material of Examples 8, 9, 10 and Comparative Example 4 is made of steel (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) adjusted to a moisture content of 160%. Slag (adjusted to a particle size of 9.5 mm or less for laboratory tests) and polyester short fiber (fiber length 20 mm, fiber diameter 14.8 μm, specific gravity 1.38 g / cm 3 ) are mixed at a specified volume ratio, In order to improve, 2 kg / m 3 of a dispersant mainly composed of polyacrylic acid is added. A flow test was conducted on these water shielding materials to examine the workability of the materials. The flow test was performed based on the cylinder method specified in JHS313-1999 (Japan Highway Public Corporation Standard Air Mortar and Air Milk Test Method). The formulation is shown in Table 3 below.

Figure 2016112540
Figure 2016112540

図7にフロー試験の結果を示す。図7から、製鋼スラグの添加量が増えるほど、フロー値が小さくなり、施工性が低下することがわかる。ここで、本遮水材においては、良好な施工性の指標としてフロー値85mm以上と規定するが、実施例8〜10では、フロー値が87mm以上で規定値以上である。一方、フロー値が81mmとなった製鋼スラグ体積比40%配合の比較例4では、試料が硬く混練が難しくなることを確認した。以上の結果から、本遮水材における製鋼スラグの添加量の上限値は良好な施工性を確保する観点から体積比で30%であるといえる。   FIG. 7 shows the result of the flow test. From FIG. 7, it can be seen that as the amount of steelmaking slag added increases, the flow value decreases and the workability decreases. Here, in this water-impervious material, the flow value is defined as 85 mm or more as an index of good workability, but in Examples 8 to 10, the flow value is 87 mm or more and is the specified value or more. On the other hand, in Comparative Example 4 with a steelmaking slag volume ratio of 40% blended with a flow value of 81 mm, it was confirmed that the sample was hard and kneading was difficult. From the above results, it can be said that the upper limit value of the steelmaking slag addition amount in the water shielding material is 30% by volume from the viewpoint of ensuring good workability.

[遮水性]
実施例11,12,13および比較例5の繊維・製鋼スラグ混合遮水材は、含水比160%に調整した浚渫土(土粒子密度2.633g/cm3、液性限界101.3%)に、製鋼スラグ(室内試験のため粒径9.5mm以下に調整)、ポリエステル短繊維(繊維長20mm、繊維径14.8μm、比重1.38g/cm3)を所定の体積比で混合したものである。これらの繊維・製鋼スラグ混合遮水材の透水係数を計測し、廃棄物処分場の遮水材としての適用性を評価した。このため、JIS A 1218に基づいて変水位透水試験を実施し、また、「地盤材料試験の方法と解説 525頁 平成21年11月25日発行(地盤工学会)」の記載を参考にした三軸圧縮試験装置を用いた透水試験を実施した。せん断強度が不十分で供試体が自立しないような配合では前者を適用し、それ以外では後者を適用した。次の表4に配合および試験結果を示す。
[Waterproof]
The fiber / steel slag mixed water-insulating material of Examples 11, 12, 13 and Comparative Example 5 is made of steel (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) adjusted to a moisture content of 160%. Slag (adjusted to a particle size of 9.5 mm or less for laboratory tests) and polyester short fibers (fiber length 20 mm, fiber diameter 14.8 μm, specific gravity 1.38 g / cm 3 ) are mixed at a predetermined volume ratio. We measured the permeability coefficient of these fiber / steel slag mixed impervious materials, and evaluated the applicability as a water impervious material for waste disposal sites. For this purpose, a water level permeability test was carried out based on JIS A 1218, and three methods were referred to the description of “Ground material test method and explanation, page 525, issued on November 25, 2009 (Geotechnical Society)”. A water permeability test using an axial compression test apparatus was performed. The former was applied in the case where the specimen was not self-supporting because of insufficient shear strength, and the latter was applied otherwise. Table 4 below shows the formulation and test results.

Figure 2016112540
Figure 2016112540

廃棄物処分場の不透水性材料としての条件は、底面遮水工については「層厚5m以上、透水係数1.0×10-7m/s以下」、側面遮水工については「層厚0.5m以上、透水係数1.0×10-8m/s以下」とされている((財)港湾空間高度化センター「管理型廃棄物埋立護岸設計・施工・管理マニュアル(改訂版)」、36-37頁、2008)。かかる規定から、透水係数に応じて必要な層厚を確保すれば、遮水材として成立することがわかるが、ここでは、底面遮水材を想定し、「層厚5m以上、透水係数1.0×10-7m/s以下」を一つの目標値と考えることにする。 The conditions for the impervious material at the waste disposal site are “layer thickness of 5 m or more, permeability coefficient of 1.0 × 10 −7 m / s or less” for bottom impermeable construction, and “layer thickness of 0.5 m for side impermeable construction” As mentioned above, it is said that the permeability coefficient is 1.0 × 10 -8 m / s or less. ”(Portrait of Port Space Advancement Center“ Management Waste Landfill Revetment Design, Construction and Management Manual (Revised Version) ”, pages 36-37 , 2008). From these regulations, it can be seen that if the required layer thickness is ensured according to the hydraulic conductivity, it will be established as a water shielding material, but here, assuming a bottom water shielding material, `` layer thickness 5 m or more, hydraulic conductivity 1.0 × “10 -7 m / s or less” is considered as one target value.

表4の結果から、製鋼スラグの添加量が増えると遮水材の透水性が向上することがわかる。製鋼スラグの添加量が体積比5%の比較例5では、目標の遮水性を達成できないことがわる。一方、製鋼スラグの添加量を体積比で10%以上にした実施例11,12,13では、透水係数は1.0×10-7m/s以下の値となり、目標の遮水性を満足することがわかる。以上の結果から、本遮水材における製鋼スラグの添加量の下限値は体積比で10%であるといえる。 From the results in Table 4, it can be seen that the water permeability of the water shielding material is improved when the amount of steelmaking slag added is increased. In Comparative Example 5 in which the amount of steelmaking slag added is 5% by volume, it can be seen that the target water shielding property cannot be achieved. On the other hand, in Examples 11, 12, and 13 in which the amount of steelmaking slag added was 10% or more by volume ratio, the water permeability coefficient was 1.0 × 10 −7 m / s or less, which satisfies the target water barrier property. Recognize. From the above results, it can be said that the lower limit value of the steelmaking slag addition amount in the water shielding material is 10% by volume ratio.

以上のように本発明を実施するための形態および実施例について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図1の海面産業廃棄物処分場の護岸および遮水工の構造は一例であって、本発明の遮水材は、他の構造に適用できることはもちろんである。   As mentioned above, although the form and Example for implementing this invention were demonstrated, this invention is not limited to these, A various deformation | transformation is possible within the range of the technical idea of this invention. For example, the structure of the revetment and the impermeable construction of the sea surface industrial waste disposal site in FIG. 1 is an example, and the water shielding material of the present invention can of course be applied to other structures.

また、本発明による遮水材は、産業廃棄物処分場(陸上および海面)の遮水工のための遮水材として適用できるが、これに限定されず、他の設備や構造に適宜適用できることはもちろんであり、たとえば、鉛直遮水壁の継手部に充填する遮水材料や汚染土壌の封じ込め材料として利用でき、また、変形追随性材料としての利用も考えられ、大きな変形が予想される構造に適用できる。   Further, the water shielding material according to the present invention can be applied as a water shielding material for a water shielding work at an industrial waste disposal site (land and sea surface), but is not limited thereto, and can be appropriately applied to other facilities and structures. Of course, for example, it can be used as a water-blocking material filling the joints of vertical water-blocking walls and as a containment material for contaminated soil. Applicable to.

本発明によれば、従来よりも少ない繊維添加量で強度を向上できかつ高い変形追随性を有する遮水材を実現できるので、たとえば、産業廃棄物処分場における遮水工のための適切な遮水材を提供することができる。   According to the present invention, it is possible to realize a water shielding material that can improve strength and have high deformation followability with a smaller amount of fiber addition than in the past. Water material can be provided.

1 護岸
2 マウンド
3 ケーソン
4 裏込め
5 遮水層
6 鋼管矢板
7 遮水層
A 海水
B 内水
G,G1 水底
DESCRIPTION OF SYMBOLS 1 Revetment 2 Mound 3 Caisson 4 Backfill 5 Water shielding layer 6 Steel pipe sheet pile 7 Water shielding layer A Sea water B Inside water G, G1 Bottom

Claims (3)

含水比を100〜300%に調整した粘性土(内割り体積比で70〜90%)と粒径26.5mm以下の製鋼スラグ(内割り体積比で10〜30%)とを混合し、さらに繊維状物質を外割り体積比で0.1〜1.0%添加した遮水材。   Cohesive soil with a water content adjusted to 100-300% (70-90% by internal volume ratio) and steelmaking slag with a particle size of 26.5mm or less (10-30% by internal volume ratio) are mixed, and fiber Water shielding material with 0.1 to 1.0% added by volume ratio. 流動性向上のために分散剤をさらに添加した請求項1に記載の遮水材。   The water shielding material according to claim 1, further comprising a dispersant added for improving fluidity. 前記遮水材についての一軸圧縮試験において圧縮ひずみが5%または5%以上で圧縮応力が減少しない特性を有する請求項1または2に記載の遮水材。   The water shielding material according to claim 1 or 2, which has a characteristic that a compressive strain does not decrease when a compressive strain is 5% or 5% or more in a uniaxial compression test of the water shielding material.
JP2014255751A 2014-12-18 2014-12-18 Impermeable material Active JP6411202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255751A JP6411202B2 (en) 2014-12-18 2014-12-18 Impermeable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255751A JP6411202B2 (en) 2014-12-18 2014-12-18 Impermeable material

Publications (2)

Publication Number Publication Date
JP2016112540A true JP2016112540A (en) 2016-06-23
JP6411202B2 JP6411202B2 (en) 2018-10-24

Family

ID=56140486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255751A Active JP6411202B2 (en) 2014-12-18 2014-12-18 Impermeable material

Country Status (1)

Country Link
JP (1) JP6411202B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053150A (en) * 2015-09-10 2017-03-16 五洋建設株式会社 Submerged dyke construction material and submerged dyke structure using the same
JP6275795B1 (en) * 2016-10-11 2018-02-07 洋伸建設株式会社 Tremy placing device and its placing method
JP2020066911A (en) * 2018-10-24 2020-04-30 五洋建設株式会社 Forming material and forming method for structure including sloping section
JP2021008748A (en) * 2019-07-01 2021-01-28 公益財団法人鉄道総合技術研究所 Impermeable structure of slope and its construction method
CN116950139A (en) * 2023-07-31 2023-10-27 重庆诺为生态环境工程有限公司 Stable framework compact structure, impermeable composite material, impermeable layer and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192656A (en) * 2000-01-06 2001-07-17 Penta Ocean Constr Co Ltd Method for producing water-impermeable soil material having deformation following property of load
JP2002336811A (en) * 2001-05-16 2002-11-26 Terunaito:Kk Deformation follow-up type impervious liner material
JP2004183364A (en) * 2002-12-04 2004-07-02 Port & Airport Research Institute Underground continuous cut off wall structure in land
JP2006326392A (en) * 2005-05-23 2006-12-07 Toyo Constr Co Ltd Water shielding structure of waste disposal facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192656A (en) * 2000-01-06 2001-07-17 Penta Ocean Constr Co Ltd Method for producing water-impermeable soil material having deformation following property of load
JP2002336811A (en) * 2001-05-16 2002-11-26 Terunaito:Kk Deformation follow-up type impervious liner material
JP2004183364A (en) * 2002-12-04 2004-07-02 Port & Airport Research Institute Underground continuous cut off wall structure in land
JP2006326392A (en) * 2005-05-23 2006-12-07 Toyo Constr Co Ltd Water shielding structure of waste disposal facility

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053150A (en) * 2015-09-10 2017-03-16 五洋建設株式会社 Submerged dyke construction material and submerged dyke structure using the same
JP6275795B1 (en) * 2016-10-11 2018-02-07 洋伸建設株式会社 Tremy placing device and its placing method
JP2018062736A (en) * 2016-10-11 2018-04-19 洋伸建設株式会社 Tremie installation device and installation method thereof
JP2020066911A (en) * 2018-10-24 2020-04-30 五洋建設株式会社 Forming material and forming method for structure including sloping section
JP2021008748A (en) * 2019-07-01 2021-01-28 公益財団法人鉄道総合技術研究所 Impermeable structure of slope and its construction method
JP7096789B2 (en) 2019-07-01 2022-07-06 公益財団法人鉄道総合技術研究所 Slope impermeable structure and its construction method
CN116950139A (en) * 2023-07-31 2023-10-27 重庆诺为生态环境工程有限公司 Stable framework compact structure, impermeable composite material, impermeable layer and preparation method and application thereof

Also Published As

Publication number Publication date
JP6411202B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6411202B2 (en) Impermeable material
Estabragh et al. Treatment of an expansive soil by mechanical and chemical techniques
JP4678496B2 (en) Impervious structure of waste disposal site
Zmemla et al. A phosphogypsum‐based road material with enhanced mechanical properties for sustainable environmental remediation
JP5999718B2 (en) Underground impermeable wall construction material
Tempest et al. Characterization and Demonstration of Reuse Applications ofSewage Sludge Ash
JP2014133782A (en) Soft soil conditioner, and improvement method of soft soil and improvement method of soft ground using the same
JP2013059758A (en) Impervious material
JP6786203B2 (en) Submarine construction material and submarine structure using this material
KR101413719B1 (en) Construction method for complex pile structure
Soltani-Jigheh et al. Effects of tire chips on shrinkage and cracking characteristics of cohesive soils
TW201144257A (en) Method for producing artificial stone material
Roberts et al. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material
JP5954351B2 (en) Artificial shallow ground or tidal flat and its repair method
Mastoi et al. Physico-mechanical and microstructural behaviour of high-water content zinc-contaminated dredged sediment treated with integrated approach PHDVPSS
KR102106528B1 (en) Folwable landfill cover soil composition
Ahmed et al. Assessment of recycled gypsum for organic soft clay soil improvement
JP2001002956A (en) Water-impervious material
CN107162516B (en) A kind of curing agent and its application method for curing process discarded slurry
JP4703575B2 (en) Mixing design method for solidification material of impermeable wall
JP2017031656A (en) Weight fluidization treatment soil
Taha et al. Solidification of tank bottom sludge
CHIEN et al. Study on sludge recycling with compaction type and placing type by rice husk-cement-stabilized soil method
JP3966371B2 (en) Containment method for spilled heavy metals from waste final disposal site
Rujikiatkamjorn et al. Compaction and strength testing of industrial waste blends as potential port reclamation fill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180926

R150 Certificate of patent or registration of utility model

Ref document number: 6411202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250