JP2015110202A - Deformation follow-up type impervious material - Google Patents

Deformation follow-up type impervious material Download PDF

Info

Publication number
JP2015110202A
JP2015110202A JP2013253187A JP2013253187A JP2015110202A JP 2015110202 A JP2015110202 A JP 2015110202A JP 2013253187 A JP2013253187 A JP 2013253187A JP 2013253187 A JP2013253187 A JP 2013253187A JP 2015110202 A JP2015110202 A JP 2015110202A
Authority
JP
Japan
Prior art keywords
water
barium sulfate
deformation
mass
shielding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013253187A
Other languages
Japanese (ja)
Other versions
JP6193105B2 (en
Inventor
誠一 成島
Seiichi Narishima
誠一 成島
元三 中村
Genzo Nakamura
元三 中村
泰史 長江
Yasushi Nagae
泰史 長江
裕二 稲元
Yuji Inamoto
裕二 稲元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEAFAIR CO Ltd
Hojo Co Ltd
Telnite Co Ltd
Seibu Construction Co Ltd
Hojun Co Ltd
Original Assignee
LEAFAIR CO Ltd
Hojo Co Ltd
Telnite Co Ltd
Seibu Construction Co Ltd
Hojun Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEAFAIR CO Ltd, Hojo Co Ltd, Telnite Co Ltd, Seibu Construction Co Ltd, Hojun Co Ltd filed Critical LEAFAIR CO Ltd
Priority to JP2013253187A priority Critical patent/JP6193105B2/en
Publication of JP2015110202A publication Critical patent/JP2015110202A/en
Application granted granted Critical
Publication of JP6193105B2 publication Critical patent/JP6193105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a deformation follow-up type impervious material where the possibility of the occurrence of the bleeding of a clay mineral and barium sulfate is extremely reduced, which shows the property of a gelatinous plastic body not being separated and being dispersed in water and which has an excellent impervious effect.SOLUTION: A deformation follow-up type impervious material includes at least 100.0 pts.mass water, 6.0-20.0 pts.mass clay mineral powder and 30.0-400.0 pts.mass barium sulfate powder. A production method of the deformation follow-up type impervious material comprises at least: a step to obtain a suspension by blending water and the clay mineral powder; and a step to obtain a fluid composition by blending the suspension and the barium sulfate powder.

Description

本発明は、地盤が有害物質により汚染されている場合に、汚染物質が地下水と共に周辺の地盤を汚染することを防止するために設置する連続地中遮水壁構造に関する。   The present invention relates to a continuous underground impermeable wall structure that is installed in order to prevent contaminants from contaminating the surrounding ground together with groundwater when the ground is contaminated by harmful substances.

従来、工場やごみ焼却施設、あるいは既設廃棄物処分場等において、地盤が有害物質により汚染されている場合、汚染物質が地下水に侵入し周辺の地盤を汚染することを防止するために、汚染した地盤の周囲を矢板による止水壁や連続地中壁等によって囲み遮水する方法が採られている。   Conventionally, when the ground is contaminated with harmful substances in factories, waste incineration facilities, or existing waste disposal sites, the contaminated substances have been contaminated to prevent them from entering the groundwater and contaminating the surrounding ground. A method is adopted in which the surroundings of the ground are surrounded by a sheet wall made of sheet piles or continuous underground walls, etc., and is insulated.

遮水方法としては、具体的には、鋼矢板工法、現位置固化壁工法、連続地中壁工法等がある。   Specific examples of the water shielding method include a steel sheet pile method, an in-situ solidified wall method, and a continuous underground wall method.

鋼矢板による遮水壁を構築する方法は、U型等の鋼矢板を互いに連結して地中の不透水層まで打ち込み、各鋼矢板間の連結継手内に水膨張性の止水材を予め充填しておき、水の流通を遮断できる構造することで連続遮水壁を形成するものである。   The method of constructing a water-impervious wall with steel sheet piles is to connect U-shaped steel sheet piles to each other and drive them to the impermeable layer in the ground. A continuous impermeable wall is formed by filling the structure and blocking the flow of water.

現位置固化壁による方法は、TRD工法等のように地中の不透水層に到る深さまで土砂攪拌翼を旋回させつつ挿入し、その土壌中に固化材を注入しつつ攪拌することによって、地中の不透水層に達する現位置固化壁を連続して造成するものである。   The method using the solidified wall at the current position is inserted by rotating the earth and sand agitating blade to the depth reaching the impermeable layer in the ground like the TRD method, and stirring while injecting the solidifying material into the soil. The in-situ solidified wall that reaches the impermeable layer in the ground is continuously created.

連続地中壁による方法は、地中の不透水層に到る深さの連続地中溝を溝堀用のグラブバケット等によって掘削し、その連続地中溝内に鉄筋およびコンクリートを打設してコンクリート製の地中壁を連続して構築するものである。   The method using the continuous underground wall is a method of excavating a continuous underground groove with a depth reaching the underground impermeable layer with a grab bucket for ditching, and placing reinforcing steel and concrete in the continuous underground groove to produce concrete. The underground wall made of steel is constructed continuously.

また、特許文献1には、地下の不透水層に達する深さに形成した連続地中溝内に含水比を調整した粘土懸濁液に粘土鉱物およびゲル化剤を加えてゲル状に改質した変形追従性を有する遮水材と砂若しくは砕石等の骨材とを混合した充填材を充填する方法が開示されている。   Moreover, in patent document 1, clay mineral and the gelatinizer were added to the clay suspension which adjusted the moisture content in the continuous underground ditch formed in the depth which reaches an underground impermeable layer, and it changed into the gel form. A method of filling a filler obtained by mixing a water shielding material having deformation followability and an aggregate such as sand or crushed stone is disclosed.

特開2004−183364号公報JP 2004-183364 A

前述した3工法による遮水壁は、何らかの原因でこれらの遮水工の一部が破損すると、汚染物質が再び周囲に流出し、汚染の拡大を招く恐れがある。また、所要の遮水性を長期的に確保することや、地震時や不動沈下といった地盤の変形に対する安全性をさらに高めることが必要とされている。   If the water-impervious walls formed by the three methods described above are damaged for some reason, the contaminants may flow out to the surroundings again, leading to an increase in contamination. In addition, it is necessary to ensure the required water shielding for a long time and to further improve the safety against deformation of the ground such as during an earthquake or immovable settlement.

特許文献1の方法においても、遮水材の透水係数が10-6cm/秒前後と透水性が高く、汚染された地下水の移動を抑制するには不十分である場合がある。また、遮水材の比重が1.17〜1.66g/ccと低く、地下水の移動速度が大きい場合は、遮水材が薄まり流出する問題がある。砂などの骨材の使用量を遮水材100.0容量部に対して5.0〜50.0容量部の割合で混合しても、遮水材の比重は1.23〜1.94g/ccと依然低く、骨材と遮水材が均一な状態にならないことから遮水材のみが流出して骨材のみが残るという問題がある。 Even in the method of Patent Document 1, the water permeability of the water shielding material is as high as about 10 −6 cm / sec, which is insufficient to suppress the movement of contaminated groundwater. Further, when the specific gravity of the water shielding material is as low as 1.17 to 1.66 g / cc and the moving speed of the groundwater is high, there is a problem that the water shielding material is diluted and flows out. Even if the amount of aggregate such as sand is mixed at a ratio of 5.0 to 50.0 parts by volume with respect to 100.0 parts by volume of the water shielding material, the specific gravity of the water shielding material is 1.23 to 1.94 g. There is a problem that only the water shielding material flows out and only the aggregate remains because the aggregate and the water shielding material are not in a uniform state.

発明者らは上記課題について鋭意検討した結果、水と粘土鉱物粉末を配合した粘土鉱物の懸濁液にさらに硫酸バリウムを配合することにより、塑性体のゲル状の性状を呈する、遮水効果を有する変形追従型遮水材を見出した。   As a result of intensive studies on the above problems, the inventors have further obtained a water shielding effect by exhibiting a gel-like property of a plastic body by further adding barium sulfate to a clay mineral suspension containing water and clay mineral powder. The deformation follow-up type water-impervious material having been found was found.

すなわち、本発明の一つの態様によると、100.0質量部の水と、6.0〜20.0質量部の粘土鉱物粉末と、30.0〜400.0質量部の硫酸バリウム粉末とを少なくとも含む変形追従型遮水材を提供することができる。また、本発明の別の態様では、水と粘土鉱物粉末を配合して懸濁液を得る工程と、前記懸濁液と硫酸バリウム粉末を配合して、流動性組成物を得る工程とを少なくとも含む、変形追従型遮水材の製造方法を提供することができる。   That is, according to one embodiment of the present invention, 100.0 parts by mass of water, 6.0-20.0 parts by mass of clay mineral powder, and 30.0-400.0 parts by mass of barium sulfate powder. It is possible to provide a deformation following water shielding material including at least. In another aspect of the present invention, at least a step of blending water and clay mineral powder to obtain a suspension, and a step of blending the suspension and barium sulfate powder to obtain a fluid composition are at least included. The manufacturing method of the deformation | transformation follow-up type water-impervious material can be provided.

本発明の変形追従型遮水材は、硫酸バリウム粉末の沈降やブリージングの発生の可能性が極めて低減される。つまり、粘土鉱物や硫酸バリウムが分離せずに水中に分散するため、塑性体のゲル状の性状を呈し、優れた遮水効果を有する。   The deformation-following water-impervious material of the present invention greatly reduces the possibility of sedimentation or breathing of barium sulfate powder. That is, since clay minerals and barium sulfate are dispersed in water without being separated, they exhibit a gel-like property of a plastic body and have an excellent water shielding effect.

更に詳しく述べると、粘土鉱物粉末と硫酸バリウム粉末を水に均一に混合することにより、粘土鉱物が適度に水和膨潤して、塑性変形の特性を有したゲル体の遮水材となる。粘土鉱物は、コロイド範囲の粒子径で硫酸バリウム粒子間に作用して粒子空隙を埋め、透水係数を10-10〜10-12cm/秒まで著しく低下させることが可能である。また、硫酸バリウムは真比重が4.3g/ccと非常に高く、化学的には不活性で非常に安定した鉱物であることから、塑性流動性を維持したまま遮水材を製造することが可能である。また、連続地中壁孔内に充填した場合には、周辺の地盤と同程度の比重となり、地盤の変形を押させることができる。更に、地震等の外部応力が加わっても、それに応じた塑性変形を生じて変形追従することから、遮水効果が失われない。 More specifically, when the clay mineral powder and the barium sulfate powder are uniformly mixed with water, the clay mineral is appropriately hydrated and swollen to provide a gel-like water-impervious material having plastic deformation characteristics. The clay mineral acts between the barium sulfate particles with a particle diameter in the colloidal range to fill the particle voids, and can significantly reduce the water permeability to 10 −10 to 10 −12 cm / sec. In addition, since barium sulfate has a very high true specific gravity of 4.3 g / cc and is a chemically inert and extremely stable mineral, it is possible to produce a water shielding material while maintaining plastic fluidity. Is possible. Moreover, when it fills in a continuous underground wall hole, it becomes a specific gravity comparable as the surrounding ground, and can deform | transform a ground. Furthermore, even if an external stress such as an earthquake is applied, plastic deformation corresponding to the stress is generated and the deformation is followed, so that the water shielding effect is not lost.

本発明は、変形追従型遮水材に関する。本発明の変形追従型遮水材は、水と粘土鉱物粉末と硫酸バリウム粉末を少なくとも含む。   The present invention relates to a deformation follow-up type water shielding material. The deformation following type water shielding material of the present invention contains at least water, clay mineral powder, and barium sulfate powder.

本発明に用いられる水としては、水道水、純水等の精製または蒸留された人工水、および地下水、川水、海水等の天然水が挙げられ、水道水および海水が好ましい。   Examples of the water used in the present invention include purified or distilled artificial water such as tap water and pure water, and natural water such as ground water, river water, and seawater, with tap water and seawater being preferred.

粘土鉱物としては、スメクタイト、カオリン鉱物、蛇紋石、雲母粘土鉱物、緑泥石、バーミキュライト、タルク、セピオライト、混合層鉱物、アロフェン、イモゴライト等が挙げられる。これらの粘土鉱物を1種類、または2種類以上を組み合わせて用いてもよい。これらの粘土鉱物の中で、特にスメクタイトが好ましく、スメクタイト粘土鉱物の含有量が60.0%以上、膨潤力が20ml/2g以上の製品を使用することが好ましい。スメクタイトに分類される粘土鉱物の同族には、モンモリロナイト、サポナイト、ヘクトライト等があり、主としてモンモリロナイトからなる粘土をベントナイトと総称する。このベントナイトは、土木、建設および石油、小口径ボーリング分野等の分野に用いられており、市場に広く出回っているため入手しやすく、また、経済的にも好ましい。例えば、群馬産、山形産、ワイオミング産の高膨潤性ナトリウムベントナイトが好ましく、特に高膨潤性のスメクタイト粘土鉱物が主成分であるワイオミング産のベントナイト製品(製品名:NBクレイ)を用いることが好適である。粘土鉱物は、粉砕された粉末として用いることが好ましく、例えば、ローラーミル、振動ミルやボールミル等を用いて粉砕することができる。粘土鉱物粉末の粒径は、例えば、地盤工学会基準の「土の粒度試験方法」(JGS0131−2000)に準拠して測定することができ、この場合、粒子径分布が0.2〜70.0μmの範囲に存在し、D60粒子径が1.0〜2.5μmの範囲にあることが好ましい。 Examples of the clay mineral include smectite, kaolin mineral, serpentine, mica clay mineral, chlorite, vermiculite, talc, sepiolite, mixed layer mineral, allophane, imogolite and the like. These clay minerals may be used alone or in combination of two or more. Among these clay minerals, smectite is particularly preferable, and a product having a smectite clay mineral content of 60.0% or more and a swelling power of 20 ml / 2 g or more is preferably used. The family of clay minerals classified as smectite includes montmorillonite, saponite, hectorite, etc., and clays mainly composed of montmorillonite are collectively called bentonite. This bentonite is used in fields such as civil engineering, construction, oil, and small bore boring, and is easily available because it is widely available in the market, and is also economically preferable. For example, highly swellable sodium bentonite from Gunma, Yamagata, and Wyoming is preferred, and it is particularly preferable to use a bentonite product (product name: NB clay) from Wyoming, which is mainly composed of highly swellable smectite clay mineral. is there. The clay mineral is preferably used as a pulverized powder, and can be pulverized using, for example, a roller mill, a vibration mill, a ball mill, or the like. The particle size of the clay mineral powder can be measured in accordance with, for example, the “Ground Size Test Method” (JGS0131-2000) of the Geotechnical Society of Japan, and in this case, the particle size distribution is 0.2 to 70. It is preferably in the range of 0 μm, and the D 60 particle diameter is in the range of 1.0 to 2.5 μm.

粘土鉱物粉末の配合量は、水100.0質量部に対して、6.0〜20.0質量部、特に流動性においては、好ましくは6.0〜18.0質量部の範囲である。6.0質量部より少ないと、変形追従型遮水材において、ブリージングを発生させたり、硫酸バリウムが沈降してしまう。20.0質量部より多いと、変形追従型遮水材において、特に高比重領域で流動性がなくなり、ポンプによる充填や抜き取りが出来なくなる。ブリージングは、水から粘土鉱物や硫酸バリウムの固形分が分離する現象である。例えば、プレコンパクトコンクリート工(注入モルタル)のブリージング率および膨張率試験方法(地盤工学会)に準拠して評価することができ、1%以下が好ましい。   The blending amount of the clay mineral powder is 6.0 to 20.0 parts by mass with respect to 100.0 parts by mass of water, and particularly preferably in the range of 6.0 to 18.0 parts by mass in terms of fluidity. When the amount is less than 6.0 parts by mass, breathing occurs or barium sulfate settles in the deformation-following water shielding material. When the amount is more than 20.0 parts by mass, in the deformation following type water shielding material, fluidity is lost particularly in a high specific gravity region, and filling and extraction by a pump cannot be performed. Breathing is a phenomenon in which the solid content of clay minerals and barium sulfate is separated from water. For example, it can evaluate based on the breathing rate and expansion coefficient test method (Geotechnical Society) of pre-compact concrete (injection mortar), and 1% or less is preferable.

硫酸バリウムとしては、一般に市販されている化学品の硫酸バリウム粉末を用いることができる。しかしながら、遮水材のコストが高くなる。このため、バライト鉱山から採掘される硫酸バリウム原鉱石を粉砕し、一定の粒度分布の範囲に調整したバライト粉末製品(製品名:テルバー)である硫酸バリウム粉末を用いることが好適である。変形追従型遮水材に用いる硫酸バリウムの好ましい規格としては、真比重が4.2以上、湿式篩い分析での200メッシュ残留物が3.0%以下であり、純度が90.0%以上である。   As barium sulfate, a commercially available chemical barium sulfate powder can be used. However, the cost of the water shielding material increases. For this reason, it is preferable to use barium sulfate powder which is a barite powder product (product name: Telbar) obtained by pulverizing barium sulfate raw ore mined from a barite mine and adjusting it to a range of a certain particle size distribution. As a preferable standard of barium sulfate used for the deformation follow-up type water shielding material, the true specific gravity is 4.2 or more, the 200 mesh residue in the wet sieving analysis is 3.0% or less, and the purity is 90.0% or more. is there.

硫酸バリウムの配合量は、水100.0質量部に対して、30.0〜400.0質量部、好ましくは185.0〜400.0質量部の範囲である。硫酸バリウムが30.0質量部より少ないと、遮水効果が劣る。400.0質量部より多いと、遮水材において、良好な流動性を得られず、遮水材の単位体積当たりの水分量が不足し、遮水材の製造が困難となる。硫酸バリウムは、水と配合した際に沈降してしまうと、所望の遮水材の性能が十分に得られない。このため、上記で説明したとおり、100.0質量部の水に対して、粘土鉱物粉末が6.0〜20.0質量部、硫酸バリウム粉末が30.0〜400.0質量部の配合比とすることがよい。なお、硫酸バリウムの沈降は、例えば、シリンダーに一定量の遮水材を量り取り、24時間静置後に沈降量を測定することで評価することができる。   The compounding quantity of barium sulfate is 30.0-400.0 mass parts with respect to 100.0 mass parts of water, Preferably it is the range of 185.0-400.0 mass parts. If the amount of barium sulfate is less than 30.0 parts by mass, the water shielding effect is poor. When the amount is more than 400.0 parts by mass, good fluidity cannot be obtained in the water shielding material, the amount of water per unit volume of the water shielding material is insufficient, and the production of the water shielding material becomes difficult. If barium sulfate settles when mixed with water, the desired performance of the water shielding material cannot be obtained sufficiently. For this reason, as explained above, with respect to 100.0 parts by mass of water, the blending ratio of the clay mineral powder is 6.0 to 20.0 parts by mass and the barium sulfate powder is 30.0 to 400.0 parts by mass. It is good to do. In addition, sedimentation of barium sulfate can be evaluated by, for example, measuring a certain amount of a water shielding material in a cylinder and measuring the sedimentation amount after leaving for 24 hours.

変形追従型遮水材の比重は、例えば、硫酸バリウムの配合量によって調整することができる。遮水材の比重としては、2.01〜2.59g/ccの範囲とすることが、地下水の移動を抑制し、周辺地盤を安定させ、また、周辺地盤への透水性を低くする等の点で好適である。   The specific gravity of the deformation-following water shielding material can be adjusted by, for example, the blending amount of barium sulfate. The specific gravity of the water shielding material is in the range of 2.01 to 2.59 g / cc, which suppresses the movement of groundwater, stabilizes the surrounding ground, and lowers the water permeability to the surrounding ground. This is preferable in terms of points.

変形追従型遮水材は、必要に応じて、高分子ポリマーや分散剤等の有機化合物、または石灰石、石膏、砂利等のコンクリート材やモルタル材等をさらに含んでいてもよい。但し、有機化合物は、長期間の使用においてはバクテリアなどによって分解し、製造直後の特性から変化することが懸念されるため、使用期間に注意する必要がある。   The deformation-following water-impervious material may further contain an organic compound such as a polymer or a dispersant, or a concrete material such as limestone, gypsum, or gravel, or a mortar material, if necessary. However, it is necessary to pay attention to the period of use because the organic compound may be degraded by bacteria or the like during long-term use and change from characteristics immediately after production.

変形追従型遮水材の製造方法としては、水と粘土鉱物粉末を配合して懸濁液を得る工程と、懸濁液と硫酸バリウム粉末を配合して、流動性組成物を得る工程とを少なくとも含む。また、さらに、得られた流動性組成物をポンプによって容器へ充填する工程を含んでいてもよい。   As a method for producing the deformation-following water-insulating material, there are a step of blending water and clay mineral powder to obtain a suspension, and a step of blending the suspension and barium sulfate powder to obtain a fluid composition. Including at least. Furthermore, you may include the process of filling the container with the obtained fluid composition with a pump.

上記のようにして得られた変形追従型遮水材の流動性は、ポンプ等で移送可能なレベルが好ましく、例えば、JIS R 5201「セメントの物理試験方法」によるモルタルのテーブルフロー試験に準拠して評価することができる。この場合、テーブルフロー値が100〜195が好ましく、125〜195mmがさらに好ましい。   The fluidity of the deformation-following water-impervious material obtained as described above is preferably at a level that can be transferred with a pump or the like. For example, it conforms to a mortar table flow test according to JIS R 5201 “Cement physical test method”. Can be evaluated. In this case, the table flow value is preferably 100 to 195, and more preferably 125 to 195 mm.

本発明によれば、遮水材は「変形追従性」である。変形追従性は、液状ないしは塑性状を呈しており、外力に対し自由に形状を変えることができる状態のことをいい、例えば、ベーンせん断値あるいはフロー値でその状態を知ることができる。ベーンせん断値が高い場合若しくはフロー値が低い場合は、遮水材が塑性状態を通り越し、固化状態になった場合と同様な亀裂が入る。ベーンせん断値が低い場合若しくはフロー値が高い場合は、液状を呈する。したがって、ベーンせん断値およびフロー値を測定することで変形追従性の大きさを知ることができる。本発明の遮水材のベーンせん断値は、JGS1411−2003に準拠して測定する場合には、0.3〜6.0kN/mが好ましい。フロー値は、上述したとおりJIS R 5201「セメントの物理試験方法」によるモルタルのテーブルフロー試験に準拠した場合に、テーブルフロー値が100〜195mmが好ましい。 According to the present invention, the water shielding material is “deformability followability”. Deformation followability refers to a state in which a liquid or plastic shape is exhibited and the shape can be freely changed with respect to an external force. For example, the state can be known from a vane shear value or a flow value. When the vane shear value is high or the flow value is low, the water shielding material passes through the plastic state and cracks similar to the case when the solid state is obtained. When the vane shear value is low or the flow value is high, a liquid state is exhibited. Therefore, the magnitude of the deformation followability can be known by measuring the vane shear value and the flow value. The vane shear value of the water shielding material of the present invention is preferably 0.3 to 6.0 kN / m 2 when measured according to JGS1411-2003. When the flow value conforms to the mortar table flow test according to JIS R 5201 “Physical test method for cement” as described above, the table flow value is preferably 100 to 195 mm.

また、変形追従型遮水材は、例えば、容器等に充填して使用する場合、充填した後にゲル状の塑性体の性状を呈する。塑性体は、半固体と液体の中間の状態を示すものであり、例えば、JIS A 1205「土の液性限界・塑性限界試験方法」に準拠して評価することができる。 In addition, for example, when the deformation follow-up type water shielding material is used by being filled in a container or the like, it exhibits the properties of a gel-like plastic body after being filled. The plastic body shows an intermediate state between a semi-solid and a liquid, and can be evaluated in accordance with, for example, JIS A 1205 “Solid liquid limit / plastic limit test method”.

さらに、変形追従型遮水材は、優れた遮水効果を有する。遮水効果は、例えば透水係数で評価することができ、JIS A 1218「変水位法」に準拠して測定することができる。透水係数は小さいほど、遮水材の遮水効果があり、例えば、10-8cm/秒より小さいことが好ましく、10-10cm/秒より小さいことがさらに好ましい。 Furthermore, the deformation-following water shielding material has an excellent water shielding effect. The water shielding effect can be evaluated by, for example, a water permeability coefficient, and can be measured according to JIS A 1218 “Water level method”. The smaller the water permeability coefficient, the better the water shielding effect of the water shielding material. For example, it is preferably smaller than 10 −8 cm / second, and more preferably smaller than 10 −10 cm / second.

本発明の変形追従型遮水材は、変形追従性と低透水性を与えるために、水と粘土鉱物粉末を配合して懸濁液に硫酸バリウム粉末を配合している。更に詳しく述べると、粘土鉱物粉末と硫酸バリウム微粉末と水を均一に混合することにより粘土鉱物が適度に水和膨潤して、塑性変形の特性を有したゲル体の遮水材となる。粘土鉱物は、コロイド範囲の粒子径で硫酸バリウム粒子間に作用して粒子空隙を埋め、透水係数を10-10〜10-12cm/秒まで著しく低下させることが可能である。また、硫酸バリウムは、真比重が4.3g/ccと非常に高く、化学的には不活性で非常に安定した鉱物であることから、塑性流動性を維持したまま遮水材を製造することが可能となる。連続地中壁孔内に充填した場合、周辺の地盤と同程度の比重となり、地盤の変形を押させることができる。更に、地震等の外部応力が加わっても、それに応じた塑性変形を生じて変形追従することから遮水効果が失われることはない。 In order to provide deformation followability and low water permeability, the deformation follow-up type water shielding material of the present invention contains water and clay mineral powder, and barium sulfate powder is added to the suspension. More specifically, when the clay mineral powder, barium sulfate fine powder and water are uniformly mixed, the clay mineral is appropriately hydrated and swollen to provide a gel-like water-impervious material having plastic deformation characteristics. The clay mineral acts between the barium sulfate particles with a particle diameter in the colloidal range to fill the particle voids, and can significantly reduce the water permeability to 10 −10 to 10 −12 cm / sec. In addition, since barium sulfate has a very high true specific gravity of 4.3 g / cc and is a chemically inert and extremely stable mineral, it is necessary to manufacture a water shielding material while maintaining plastic fluidity. Is possible. When it fills in the continuous underground wall hole, it becomes the specific gravity of the same degree as the surrounding ground, and it can push the deformation of the ground. Further, even if an external stress such as an earthquake is applied, a plastic deformation corresponding to the external stress is generated to follow the deformation, so that the water shielding effect is not lost.

以上のことから、本発明によれば、粘土鉱物や硫酸バリウムのブリージングの発生の可能性が極めて低減された、分離せずに水中に分散した、ゲル状の塑性体の性状を呈する、優れた遮水効果を有する変形追従型遮水材を提供できる。   From the above, according to the present invention, the possibility of the occurrence of breathing of clay minerals and barium sulfate was extremely reduced, and the gel-like plastic material dispersed in water without separation was excellent. It is possible to provide a deformation follow-up type water shielding material having a water shielding effect.

以下に実施例および比較例を挙げて本発明にかかる変形追従型遮水材について更に説明するが、本発明はこれらに限定されるものではない。   The deformation follow-up type water shielding material according to the present invention will be further described below with reference to Examples and Comparative Examples, but the present invention is not limited to these.

<実施例1〜23>
水として水道水を用い、粘土鉱物粉末としてベントナイト(NBクレイ、ホージュン社製)を用いて、懸濁液を作製した。得られた懸濁液に硫酸バリウム粉末(テルバー、テルナイト社製)を配合して、変形追従型遮水材を作製した。各実施例の変形追従型遮水材の配合組成比を表1に示す。なお、含水比は、水の重量を固体の重量で除して、物質に含まれる水分の割合を示したものであり、{(水の重量(g))/(固体の重量(g))}×100で算出した。また、出来上り容量は、水の比重1.0g/cc、硫酸バリウム粉末であるバライトの真比重4.3g/cc、粘土鉱物粉末であるベントナイトの真比重2.5g/ccを用いて算出し、出来上り1m当りの配合量は、表1の配合組成比に基づいて算出した。
<Examples 1 to 23>
Suspensions were prepared using tap water as water and bentonite (NB clay, manufactured by Hojun Co.) as clay mineral powder. A barium sulfate powder (Telber, manufactured by Ternite) was blended with the obtained suspension to prepare a deformation-following water-impervious material. Table 1 shows the composition ratio of the deformation follow-up type water shielding material of each example. The water content is the ratio of water contained in the substance by dividing the weight of water by the weight of solid, {(weight of water (g)) / (weight of solid (g)) } It calculated with * 100. The finished capacity is calculated using a specific gravity of water of 1.0 g / cc, a true specific gravity of barite which is barium sulfate powder 4.3 g / cc, and a true specific gravity of bentonite which is clay mineral powder 2.5 g / cc. The blending amount per 1 m 3 of the finished product was calculated based on the blending composition ratio in Table 1.

Figure 2015110202
Figure 2015110202

得られた変形追従型遮水材は、以下の方法を用いて評価した。流動性評価は、JIS R 5201「セメントの物理試験方法」によるモルタルのテーブルフロー試験に準拠して測定した。テーブルフロー値については、130〜190mm±5mmの範囲の場合に、特に流動性良好と判明した。遮水材の比重は、水の比重を1.0g/ccとし、硫酸バリウム粉末であるバライトの真比重4.3g/cc、粘土鉱物粉末であるベントナイトの真比重2.5g/ccを用いて各々算出した。ブリージングは、プレコンパクトコンクリート工(注入モルタル)のブリージング率および膨張率試験方法(地盤工学会)に準拠して測定した。得られたブリージング率が1%以下を良好とした。硫酸バリウムの沈降は、シリンダーに一定量の遮水材を量り取り、24時間静置後に沈降量を測定した。得られた沈降量が零であるものを沈降分離なしとした。遮水性は、透水係数で評価した。透水係数は、JIS A 1218「変水位法」に準拠して測定し、10-8cm/秒より小さい場合に遮水性良好とした。なお、評価結果を表2と表3に示す。 The obtained deformation follow-up type water shielding material was evaluated using the following method. The fluidity evaluation was performed according to a mortar table flow test according to JIS R 5201 “Physical test method for cement”. As for the table flow value, it was found that the flowability was particularly good in the range of 130 to 190 mm ± 5 mm. The specific gravity of the water shielding material is such that the specific gravity of water is 1.0 g / cc, the true specific gravity of barite as barium sulfate powder is 4.3 g / cc, and the true specific gravity of bentonite as clay mineral powder is 2.5 g / cc. Each was calculated. Breathing was measured according to the breathing rate and expansion rate test method (Geotechnical Society) of pre-compact concrete (injection mortar). The obtained breathing rate was defined as 1% or less. For sedimentation of barium sulfate, a certain amount of water shielding material was weighed in a cylinder, and the amount of sedimentation was measured after standing for 24 hours. When the obtained sedimentation amount was zero, no sedimentation separation was performed. The water impermeability was evaluated by a water permeability coefficient. The water permeability was measured in accordance with JIS A 1218 “Variable level method”, and when the water permeability was smaller than 10 −8 cm / sec, the water permeability was good. The evaluation results are shown in Tables 2 and 3.

Figure 2015110202
Figure 2015110202

Figure 2015110202
Figure 2015110202

表2に示すように、ベントナイトの配合量が水道水100.0質量部に対し、6.0〜20.0質量部の範囲で、良好な流動性を得るとともに、ブリージングおよび硫酸バリウムの沈降分離も発生しなかった。また、表3に示すように、変形追従型遮水材の透水係数は、10-8cm/秒よりも小さく、また、従来の遮水材の10-6cm/秒よりも小さく、透水性が良好となることがわかった。このことから、変形追従型遮水材は、遮水材として優れているといえる。 As shown in Table 2, when the blending amount of bentonite is in the range of 6.0 to 20.0 parts by mass with respect to 100.0 parts by mass of tap water, good fluidity is obtained, and bleeding and sedimentation of barium sulfate are separated. Also did not occur. Further, as shown in Table 3, the water permeability coefficient of the deformation-following water-impervious material is smaller than 10 −8 cm / second, and smaller than 10 −6 cm / second of the conventional water-impervious material. Was found to be good. From this, it can be said that the deformation follow-up type water shielding material is excellent as a water shielding material.

<比較例1>
粘土鉱物を用いない以外は、実施例1と同様にして変形追従型遮水材を作製し評価した。結果を表2に示す。得られた組成物は、硫酸バリウムが完全に沈降分離して底部に硫酸バリウムの層が形成され、目的とする遮水材の性質は得られなかった。
<Comparative Example 1>
A deformation following type water shielding material was prepared and evaluated in the same manner as in Example 1 except that no clay mineral was used. The results are shown in Table 2. In the obtained composition, barium sulfate was completely settled and separated to form a barium sulfate layer at the bottom, and the desired properties of the water shielding material were not obtained.

<比較例2〜8>
表1に示す組成比を用いた以外は、実施例1と同様にして変形追従型遮水材を作製し評価した。結果を表2に示す。ベントナイト添加量が、水道水100.0質量部に対し5.0質量部より少なくなると、高流動性になるとともに多量のブリージングが発生した。また、硫酸バリウム添加量が400.0質量部を超えると、流動性が著しく低くなり、均一に混合することができず、製造することができなかった。
<Comparative Examples 2-8>
Except that the composition ratio shown in Table 1 was used, a deformation follow-up type water shielding material was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2. When the amount of bentonite added was less than 5.0 parts by mass with respect to 100.0 parts by mass of tap water, high fluidity and a large amount of breathing occurred. Moreover, when the addition amount of barium sulfate exceeded 400.0 mass parts, fluidity | liquidity became remarkably low, and it was not able to mix uniformly and to manufacture.

Claims (6)

100.0質量部の水と、6.0〜20.0質量部の粘土鉱物粉末と、30.0〜400.0質量部の硫酸バリウム粉末とを少なくとも含む変形追従型遮水材。   A deformation follow-up type water-impervious material comprising at least 100.0 parts by mass of water, 6.0-20.0 parts by mass of clay mineral powder, and 30.0-400.0 parts by mass of barium sulfate powder. 前記硫酸バリウム粉末が、185.0質量部以上400.0質量部未満である請求項1に記載の変形追従型遮水材。   The deformation follow-up type water shielding material according to claim 1, wherein the barium sulfate powder is 185.0 parts by mass or more and less than 400.0 parts by mass. 前記粘土鉱物が、スメクタイト、カオリン鉱物、蛇紋石、雲母粘土鉱物、緑泥石、バーミキュライト、タルク、セピオライト、混合層鉱物、アロフェンおよびイモゴライトからなる群から選ばれる1種類または2種類以上の組み合わせである請求項1または請求項2に記載の変形追従型遮水材。   The clay mineral is one or a combination of two or more selected from the group consisting of smectite, kaolin mineral, serpentine, mica clay mineral, chlorite, vermiculite, talc, sepiolite, mixed layer mineral, allophane and imogolite. The deformation follow-up type water shielding material according to claim 1 or claim 2. 前記水が、海水である請求項1〜3のいずれか1項に記載の変形追従型遮水材。   The deformation follow-up type water shielding material according to any one of claims 1 to 3, wherein the water is seawater. 2.01〜2.59g/ccの比重を有する請求項1〜4のいずれか1項に記載の変形追従型遮水材。   The deformation follow-up type water shielding material according to any one of claims 1 to 4, having a specific gravity of 2.01 to 2.59 g / cc. 請求項1〜5のいずれか1項に記載の変形追従型遮水材の製造方法であって、
水と粘土鉱物粉末を配合して懸濁液を得る工程と、
前記懸濁液と硫酸バリウム粉末を配合して、流動性組成物を得る工程と
を少なくとも含む、変形追従型遮水材の製造方法。
It is a manufacturing method of a change following type impermeable material given in any 1 paragraph of Claims 1-5,
Mixing water and clay mineral powder to obtain a suspension;
A method for producing a deformation-following water-impervious material, comprising at least a step of blending the suspension and barium sulfate powder to obtain a fluid composition.
JP2013253187A 2013-12-06 2013-12-06 Deformation following type water shielding material Active JP6193105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013253187A JP6193105B2 (en) 2013-12-06 2013-12-06 Deformation following type water shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013253187A JP6193105B2 (en) 2013-12-06 2013-12-06 Deformation following type water shielding material

Publications (2)

Publication Number Publication Date
JP2015110202A true JP2015110202A (en) 2015-06-18
JP6193105B2 JP6193105B2 (en) 2017-09-06

Family

ID=53525549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013253187A Active JP6193105B2 (en) 2013-12-06 2013-12-06 Deformation following type water shielding material

Country Status (1)

Country Link
JP (1) JP6193105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198033A (en) * 2016-04-28 2017-11-02 一般社団法人Nb研究所 Filler for gap space in artificial structure and sealing method for gap space in artificial structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630762A (en) * 1969-12-29 1971-12-28 Mineral Products Corp Waterproofing barrier
WO2001070903A1 (en) * 2000-03-20 2001-09-27 Trisoplast International B.V. Clay-containing mixture or blend capable of forming a moisture resistant gel, and use of that mixture and blend
JP2002336811A (en) * 2001-05-16 2002-11-26 Terunaito:Kk Deformation follow-up type impervious liner material
JP2004183364A (en) * 2002-12-04 2004-07-02 Port & Airport Research Institute Underground continuous cut off wall structure in land
JP2005066425A (en) * 2003-08-21 2005-03-17 Matsushita Electric Ind Co Ltd Composition and method for decontaminating soil and ground water
JP2005139632A (en) * 2003-11-04 2005-06-02 Japan Found Eng Co Ltd Excavation method
JP2008043845A (en) * 2006-08-11 2008-02-28 Ohbayashi Corp Deformation follow-up type impervious liner material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630762A (en) * 1969-12-29 1971-12-28 Mineral Products Corp Waterproofing barrier
WO2001070903A1 (en) * 2000-03-20 2001-09-27 Trisoplast International B.V. Clay-containing mixture or blend capable of forming a moisture resistant gel, and use of that mixture and blend
JP2002336811A (en) * 2001-05-16 2002-11-26 Terunaito:Kk Deformation follow-up type impervious liner material
JP2004183364A (en) * 2002-12-04 2004-07-02 Port & Airport Research Institute Underground continuous cut off wall structure in land
JP2005066425A (en) * 2003-08-21 2005-03-17 Matsushita Electric Ind Co Ltd Composition and method for decontaminating soil and ground water
JP2005139632A (en) * 2003-11-04 2005-06-02 Japan Found Eng Co Ltd Excavation method
JP2008043845A (en) * 2006-08-11 2008-02-28 Ohbayashi Corp Deformation follow-up type impervious liner material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198033A (en) * 2016-04-28 2017-11-02 一般社団法人Nb研究所 Filler for gap space in artificial structure and sealing method for gap space in artificial structure

Also Published As

Publication number Publication date
JP6193105B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
Al-Bared et al. A review on the geotechnical and engineering characteristics of marine clay and the modern methods of improvements
Du et al. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin
Koch Bentonites as a basic material for technical base liners and site encapsulation cut-off walls
Ata et al. Properties of soil–bentonite–cement bypass mixture for cutoff walls
RU2541009C2 (en) Improved road-building soil
JP5999718B2 (en) Underground impermeable wall construction material
JP6101019B2 (en) Soil-based deformation following water-blocking material and method for producing the same
RU2551560C2 (en) Road-building composite material
JP2016176198A (en) Construction method for underground impermeable wall, and underground impermeable wall
Cheng et al. Workability study of sand-bentonite-cement mixtures for construction of two-phase cut-off wall
JP4131458B2 (en) Filling material for buried waste, manufacturing method and construction method thereof
CN106939165A (en) A kind of soil body curing agent and its preparation method and its gunnite method
Latifi et al. Experimental investigations on behaviour of strip footing placed on chemically stabilised backfills and flexible retaining walls
JP6294218B2 (en) Radiation shielding material and manufacturing method thereof
JP6193105B2 (en) Deformation following type water shielding material
JP2013136938A (en) Underground continuous cut-off wall method
Shigematsu et al. Experimental study on properties of liquefied stabilized soil produced with different types of solidifiers and thickeners
JP2012101153A (en) Deformation-followable water shut-off material used for water shut-off construction, and water shut-off structure using the deformation-followable water shut-off material
US20090142143A1 (en) Fly Ash Bentonite Slurry Mixture for Slurry Wall Construction
CN105268731A (en) Novel environmental protection material soil curing agent for ecological remediation
JP2014171977A (en) Deformation follow-up impervious material, method for producing deformation follow-up impervious material and construction method using deformation follow-up impervious material
RU2493325C1 (en) Earth mixture
Elsiragy Geotechnical behaviour of reinforced soft clay by marble dust as a waste material
Hatem et al. Proportioning of cement-based grout for sealing fractured rock-use of packing models
JP5192186B2 (en) Cement mixture containing concrete glass and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170809

R150 Certificate of patent or registration of utility model

Ref document number: 6193105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250