JP2013136938A - Underground continuous cut-off wall method - Google Patents

Underground continuous cut-off wall method Download PDF

Info

Publication number
JP2013136938A
JP2013136938A JP2012259965A JP2012259965A JP2013136938A JP 2013136938 A JP2013136938 A JP 2013136938A JP 2012259965 A JP2012259965 A JP 2012259965A JP 2012259965 A JP2012259965 A JP 2012259965A JP 2013136938 A JP2013136938 A JP 2013136938A
Authority
JP
Japan
Prior art keywords
wall
clay mineral
water
forming composition
underground continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012259965A
Other languages
Japanese (ja)
Other versions
JP6207149B2 (en
Inventor
Kanichi Akagi
寛一 赤木
Yoshimasa Kondo
義正 近藤
Atsuo Tsuchiya
敦雄 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAGUMA KK
Waseda University
Toa Corp
Maguma Co Ltd
Original Assignee
MAGUMA KK
Waseda University
Toa Corp
Maguma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAGUMA KK, Waseda University, Toa Corp, Maguma Co Ltd filed Critical MAGUMA KK
Priority to JP2012259965A priority Critical patent/JP6207149B2/en
Publication of JP2013136938A publication Critical patent/JP2013136938A/en
Application granted granted Critical
Publication of JP6207149B2 publication Critical patent/JP6207149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underground continuous cut-off wall method in which an underground continuous cut-off wall is established by a wall composition using a smectite clay mineral granular materials as a main component, regarding the impervious performance of the underground continuous cut-off wall, and in which the underground continuous cut-off wall has self-repair performance for a crack due to water absorption and expansivity of the smectite clay mineral granular material when the wall is cracked.SOLUTION: The underground continuous cut-off wall method comprises a step of digging and mixing by using bubble-mixed earth obtained by adding bubble or bubble and water, as a stabilizer, and a replacement step of sending a wall composition to the bottom of the dug part so as to replace the bubble-mixed earth with the wall composition after completion of the digging and mixing step. In the method, the wet density of the bubble-mixed earth at the time of digging and mixing is adjusted to be in a range from 1.03-1.72 g/cm, and the wall composition to be used in the replacement step is obtained by mixing a smectite clay mineral granular material with water or with water and bubble.

Description

本発明は地中連続止水壁工法に関するものである。   The present invention relates to an underground continuous water blocking wall construction method.

ソイルセメント地中連続止水壁は、構造物を構築するための仮設土留め壁、地下水を溜めるための地下ダム用止水壁や、有害物質で汚染された工場跡地等から有害物質の流出を遮断するための止水壁等として多用途に使用されている。   Soil cement underground water barriers prevent the release of harmful substances from temporary earth retaining walls for constructing structures, water barriers for underground dams for storing groundwater, and factory sites contaminated with harmful substances. It is used for various purposes as a water blocking wall for blocking.

ソイルセメント地中連続止水壁の施工法は、壁体の造成方法により原位置混合撹拌工法と置換工法に大別される。原位置混合撹拌工法は、掘削時の溝壁を安定に保つためにセメントスラリーを安定液として使用し、掘削土とセメントスラリーを混合、撹拌し、この混合土を固化させる工法である。   Soil cement underground continuous water barrier construction methods are roughly classified into in-situ mixing and agitation methods and replacement methods depending on the wall construction method. The in-situ mixing agitation method is a method of using cement slurry as a stabilizing liquid in order to keep the groove wall stable during excavation, mixing and agitating excavated soil and cement slurry, and solidifying the mixed soil.

置換工法は、安定液としてベントナイト系安定液を使用し、鉄筋コンクリート地下連続壁用の掘削機を使用して掘削を行い、排泥土とセメントスラリーを混合、撹拌したソイルセメント組成物を、ベントナイト系安定液と置換することにより、ソイルセメント地中連続壁を構築する工法である。置換工法による止水壁は品質がよいことから大深度で水密性の高い止水壁に適用されることが多い。   The replacement method uses bentonite stabilizer as the stabilizer, excavates using an excavator for the reinforced concrete underground continuous wall, mixes the agitation soil and cement slurry, and stirs the soil cement composition into the bentonite stable It is a construction method that constructs soil cement underground continuous walls by replacing with liquid. Since the quality of the water-stop wall by the replacement method is good, it is often applied to a water-stop wall that is deep and highly watertight.

これらの工法において止水壁の壁体材料は、掘削土を主要材料として、これに固化材を混合・混練したものであり、掘削土の物性によっては必ずしも止水壁として必要な性能を十分に満たした組成とはいえない。さらに、これまでのソイルセメント地中連続止水壁は、強度と透水係数に関しては設計品質を定めて一定の物性を確保しているが、地震等の外力によりクラックが入り、そこから漏水が生じることへの配慮はなく、まして自己修復する機能は保有していない。   In these construction methods, the wall material of the water barrier wall is a material in which excavated soil is the main material and solidified material is mixed and kneaded. Depending on the physical properties of the excavated soil, the performance required for the water barrier wall is not sufficient. It cannot be said that the composition is full. In addition, conventional soil cement underground water barriers have been designed with certain design properties for strength and hydraulic conductivity, but they have certain physical properties, but cracks are generated by external forces such as earthquakes, resulting in water leakage. There is no consideration for this, and much less self-healing function.

特許4342558号公報Japanese Patent No. 4342558

本発明は、以上のとおりの事情に鑑みてなされたものであり、地中連続止水壁の遮水性に関し、スメクタイト系粘土鉱物粒状体を主要構成材とする造壁組成物により地中連続止水壁を構築し、地中連続止水壁にクラックが入った場合、スメクタイト系粘土鉱物粒状体の水の吸収、膨張性により、クラックの自己修復性を有する地中連続止水壁工法を提供することを課題とする。   The present invention has been made in view of the circumstances as described above, and relates to the water barrier properties of the underground continuous water blocking wall. When a water wall is built and cracks occur in the underground continuous water barrier, the underground continuous water barrier construction method with self-healing ability of cracks is provided by the water absorption and expansion of the smectite clay mineral granular material. The task is to do.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1に、気泡又は気泡と水を添加した気泡混合土を安定液として掘削、混合を行う掘削、混合工程と、掘削、混合工程の完了後に、造壁組成物を掘削の底部に送り込み、気泡混合土と造壁組成物を置換する置換工程からなる地中連続止水壁工法であって、気泡混合土が、掘削、混合時に、湿潤密度を1.03〜1.72g/cmの範囲に調整した気泡混合土であり、置換工程に用いる造壁組成物が、スメクタイト系粘土鉱物粒状体と水、又はスメクタイト系粘土鉱物粒状体と水及び気泡を混練した造壁組成物であることを特徴とする地中連続止水壁工法である。 First, after completion of excavation, mixing process, excavation, mixing process, and excavation, mixing process with the foam or mixed gas with the addition of air bubbles or air bubbles and water as a stable liquid, the wall-forming composition is sent to the bottom of the excavation, An underground continuous waterstop wall construction method comprising a substituting process for substituting the mixed soil and the wall-forming composition, wherein the foam mixed soil has a wet density in the range of 1.03 to 1.72 g / cm 3 when excavated and mixed. The wall-forming composition used in the replacement step is a wall-forming composition obtained by kneading smectite-based clay mineral particles and water, or smectite-based clay mineral particles, water and bubbles. It is an underground continuous water barrier method.

第2に、上記第1の発明の地中連続止水壁工法において、掘削、混合時に、湿潤密度を調整した気泡混合土と、スメクタイト系粘土鉱物粒状体及び水、又はスメクタイト系粘土鉱物粒状体と水及び気泡を混練した造壁組成物を混合して造壁組成物として使用する。   Secondly, in the underground continuous water blocking wall construction method of the first invention, in the excavation and mixing, the bubble mixed soil whose wet density is adjusted, the smectite clay mineral granule and water, or the smectite clay mineral granule A wall-forming composition kneaded with water and bubbles is used as a wall-forming composition.

第3に、上記第1又は第2の発明の地中連続止水壁工法において、スメクタイト系粘土鉱物粒状体を1〜10%濃度の水溶性樹脂に浸漬し、乾燥させ、その表面を水溶性樹脂により被覆したスメクタイト系粘土鉱物粒状体を使用する。   Third, in the underground continuous water blocking wall construction method of the first or second invention, the smectite clay mineral particles are immersed in a water-soluble resin having a concentration of 1 to 10%, dried, and the surface thereof is water-soluble. Smectite clay mineral particles coated with resin are used.

第4に、上記第1又は第2の発明の地中連続止水壁工法において、スメクタイト系粘土鉱物粒状体をセメントミルクに浸漬し、乾燥させ、その表面をセメント凝結体により被覆したスメクタイト系粘土鉱物粒状体を使用する。   Fourth, in the underground continuous water blocking wall construction method of the first or second invention, the smectite clay in which the smectite clay mineral particles are dipped in cement milk and dried, and the surface thereof is coated with the cement aggregate. Use mineral granules.

第5に、上記第1又は第2の発明の地中連続止水壁工法において、スメクタイト系粘土鉱物粒状体を70〜100%濃度の硅酸ソーダに浸漬し、乾燥させ、その表面を硅酸ソーダ固化体により被覆したスメクタイト系粘土鉱物粒状体を使用する。   Fifth, in the underground continuous water blocking wall construction method of the first or second invention, the smectite clay mineral particles are immersed in 70-100% sodium oxalate and dried, and the surface is oxalic acid. Smectite clay mineral particles coated with soda solidified material are used.

第6に、上記第1又は第2の発明の地中連続止水壁工法において、スメクタイト系粘土鉱物粒状体を油脂液に浸漬し、乾燥させ、その表面を油脂体により被覆したスメクタイト系粘土鉱物粒状体を使用する。   Sixth, in the underground continuous water blocking wall construction method of the first or second invention, the smectite clay mineral in which the smectite clay mineral particles are immersed in an oil and fat solution and dried, and the surface thereof is coated with the oil and fat body. Use granules.

第7に、上記第1から第6の発明の地中連続止水壁工法において、スメクタイト系粘土鉱物粒状体に粘土、シルト、砂、礫、フライアッシュのいずれかを組み合わせて添加することにより乾燥密度を大きくした造壁組成物を使用する。   Seventh, in the underground continuous water blocking wall construction method of the first to sixth inventions, drying is performed by adding any combination of clay, silt, sand, gravel and fly ash to the smectite clay mineral granular material. A wall-forming composition having a high density is used.

第8に、上記第1から第7の発明の地中連続止水壁工法において、スメクタイト系粘土鉱物粒状体が、原鉱石を破砕し、又は粉体から造粒し、含水比、粒度を調整したスメクタイト系粘土鉱物粒状体である。   Eighth, in the underground continuous water blocking wall construction method of the first to seventh inventions, the smectite clay mineral granule crushes the raw ore or granulates from the powder to adjust the water content ratio and the particle size Smectite clay mineral granule.

第9に、上記第1から第8の発明の地中連続止水壁工法において、造壁組成物に固化材を添加する。   Ninth, in the underground continuous water blocking wall construction method of the first to eighth inventions, a solidifying material is added to the wall-forming composition.

第10に、上記第1から第9の発明の地中連続止水壁工法において、造壁組成物が未固結な状態のうちに、構造を強化する部材を造壁組成物中に挿入し、地中連続止水壁の強度を高める。   Tenth, in the underground continuous waterstop wall construction method of the first to ninth inventions, a member for reinforcing the structure is inserted into the wall-forming composition while the wall-forming composition is unconsolidated. , Increase the strength of continuous underground water barrier.

第11に、上記第1から第9の発明の地中連続止水壁工法において、造壁組成物を掘削の底部に送り込む、気泡混合土と造壁組成物の置換手段として、トレミーにより造壁組成物を気泡掘削土底部に送り込み、それらの比重差を利用して置換する。   Eleventhly, in the underground continuous water blocking wall construction method of the first to ninth inventions, as a means for replacing the bubble-mixed soil and the wall-forming composition, the wall-forming composition is sent to the bottom of the excavation, and the wall-making is made by Tremy. The composition is fed to the bottom of the bubbling excavation soil and replaced using the difference in specific gravity.

第12に、上記第1から第9の発明の地中連続止水壁工法において、造壁組成物を掘削の底部に送り込み、気泡混合土と造壁組成物の置換手段として、スパイラルオーガーを内蔵したトレミーにより、動力機によるスパイラルオーガーの回転により造壁組成物を強制的に気泡混合土中に排出、置換する。   Twelfth, in the underground continuous waterstop wall construction method of the first to ninth inventions, the wall-forming composition is fed to the bottom of excavation, and a spiral auger is incorporated as a means for replacing the bubble-mixed soil and the wall-forming composition. The walled composition is forcibly discharged and replaced into the bubble-mixed soil by rotating the spiral auger with a power machine.

本発明の地中連続止水壁工法によれば、スメクタイト系粘土鉱物粒状体を主成分とした造壁組成物により地中連続止水壁を構築することにより、地震等の外力により地中連続止水壁にクラックが入り、水が浸入してもスメクタイト系粘土鉱物粒状体が水を吸収し膨張し、クラックを自己修復する機能を発現させることができる。   According to the underground continuous water blocking wall method of the present invention, the underground continuous water blocking wall is constructed with a wall-forming composition mainly composed of smectite clay mineral particles, so that the underground continuous water wall is continuously generated by an external force such as an earthquake. Even if the water blocking wall is cracked and water enters, the smectite clay mineral particulates can absorb water and expand to develop a function of self-repairing the crack.

本発明の地中連続止水壁工法を示した概略図である。It is the schematic which showed the underground continuous water stop wall construction method of this invention. 経過時間0〜3500分によるベントナイト粒状体の吸水による膨張圧を示すグラフである。It is a graph which shows the expansion pressure by the water absorption of the bentonite granular material by elapsed time 0-3500 minutes. 図2の経過時間0〜200分を示したグラフである。It is the graph which showed the elapsed time of 0-200 minutes of FIG. 粒径に対する通過質量百分率の関係を示したグラフである。It is the graph which showed the relationship of the passage mass percentage with respect to a particle size.

以下に、本発明の地中連続止水壁工法について詳述する。   Below, the underground continuous water stop wall construction method of this invention is explained in full detail.

本発明の地中連続止水壁工法は、気泡又は気泡と水を添加した気泡混合土を安定液として掘削、混合を行う掘削、混合工程と、掘削、混合工程の完了後に、造壁組成物を掘削の底部に送り込み、気泡混合土と造壁組成物を置換する置換工程からなる構築法である。   The underground continuous waterstop wall construction method of the present invention is a wall-forming composition after excavation, mixing step, excavation, mixing step and completion of excavation, mixing step, excavating and mixing with air bubbles or air bubble mixed soil added with air bubbles and water. Is a construction method consisting of a replacement step in which the air is mixed into the bottom of excavation to replace the bubble-mixed soil and the wall-forming composition.

まず、掘削、混合工程について図1を用いて説明する。   First, the excavation and mixing process will be described with reference to FIG.

本発明の掘削、混合工程では、地中連続壁施工機械1の掘削機の先端部から気泡を添加しながら掘削、混合を行い、気泡と掘削土が混合した気泡混合土2を造成する。気泡混合土2の湿潤密度は、後述する置換工程(I、II)で置換する造壁組成物3よりも小さく、かつ、溝壁の安定を保つために1.03g/cmより大きくなるように、気泡もしくは気泡と水の添加量により調節を行う。 In the excavation and mixing step of the present invention, excavation and mixing are performed while adding bubbles from the tip of the excavator of the underground continuous wall construction machine 1 to create the bubble mixed soil 2 in which the bubbles and the excavated soil are mixed. The wet density of the cell-mixed soil 2 is smaller than the wall-forming composition 3 to be replaced in the replacement step (I, II) described later, and is larger than 1.03 g / cm 3 in order to keep the groove wall stable. In addition, adjustment is performed according to the amount of bubbles or the amount of bubbles and water added.

ここで、気泡混合土2の湿潤密度が置換工程で置換する造壁組成物3よりも小さい具体的な条件としては、従来経験的に得られたデータを基にした数値として、後述する造壁組成物3の湿潤密度の上限値の1.72g/cmとすることができる。 Here, as specific conditions in which the wet density of the bubble mixed soil 2 is lower than that of the wall-forming composition 3 to be replaced in the replacement step, a numerical value based on data obtained from experience is used, The upper limit of the wet density of the composition 3 can be 1.72 g / cm 3 .

なお、気泡混合土2の湿潤密度と気泡添加量は、下記式(1)に基づいて算定することができる。   In addition, the wet density and bubble addition amount of the bubble mixed soil 2 can be calculated based on the following formula (1).

ここで、γは気泡混合土の湿潤密度(g/cm)、wは気泡混合土の含水比(%)、Qは気泡添加率(%)、γは土粒子の密度(g/cm)、γは水の密度(g/cm)、γは気泡の密度(g/cm)を表す。 Here, γ c is the wet density (g / cm 3 ) of the bubble mixed soil, w is the water content ratio (%) of the bubble mixed soil, Q is the bubble addition rate (%), and γ s is the density of the soil particles (g / cm cm 3 ), γ w represents the density of water (g / cm 3 ), and γ b represents the density of bubbles (g / cm 3 ).

また気泡添加率Qは下記式(2)で表すことができる。   The bubble addition rate Q can be expressed by the following formula (2).

ここで使用する気泡は、起泡剤を24倍の空気により発泡させた気泡であり、掘削土の混練性、分離性等から、その物性値は密度が0.04g/cm、平均粒径は500μm以下であることが望ましい。掘削土の土粒子の密度は概ね2.6〜2.7g/cmであるので、密度が0.04g/cmの気泡を掘削土に混ぜると容易に気泡混合土2の湿潤密度を低下させることができる。 The bubbles used here are bubbles obtained by foaming a foaming agent with 24 times air, and the physical property values of the excavated soil include kneadability and separability, and the physical property value is a density of 0.04 g / cm 3 and an average particle diameter. Is preferably 500 μm or less. The density of the soil particles of excavated soil is generally is 2.6~2.7g / cm 3, easily reduce the wet density of the bubbles mixed soil 2 the density is mixed bubbles 0.04 g / cm 3 to excavated soil Can be made.

さらに気泡を混合することにより、気泡混合土2の流動性がよくなるので、置換工程での造壁組成物3との置換が容易になる。   Further, by mixing the bubbles, the fluidity of the bubble mixed soil 2 is improved, so that the replacement with the wall-forming composition 3 in the replacement step is facilitated.

なお、気泡混合土2は掘削時の安定液として有効であることは、本発明者らの研究による特許(特許第3725750号)で明らかであり、さらに溝壁面の安定を保つためには気泡混合土2の湿潤密度を1.03g/cm以上に保つことが必要であることが知られている。 In addition, it is clear in the patent (patent No. 3725750) by the present inventors that the bubble mixed soil 2 is effective as a stabilizing liquid during excavation. It is known that it is necessary to keep the wet density of the soil 2 at 1.03 g / cm 3 or more.

また、地中連続止水壁を構築する地盤が地下水位以下にある場合は、気泡のみの添加により気泡混合土2を容易に作成できるが、地下水位以上の部分においては気泡のみでは消泡が生じるので、気泡の添加と一緒に加水をするが、加水量が多いと気泡混合土が分離する可能性があるので、掘削土1m当たり50〜100L程度の加水にとどめることが望ましい。 In addition, when the ground for constructing a continuous water barrier is below the groundwater level, it is possible to easily create the bubble-mixed soil 2 by adding only bubbles. Since it occurs, water is added together with the addition of bubbles, but if the amount of water is large, there is a possibility that the bubble mixed soil will be separated. Therefore, it is desirable to limit the addition to about 50 to 100 L per 1 m 3 of excavated soil.

孔壁の安定のための気泡混合土2の最低の湿潤密度1.03g/cmを得るために必要な気泡量を式(1)より計算すると、掘削土1m当たり砂質土では概ね780L、粘性土では概ね550Lとなる。 When the amount of bubbles necessary to obtain the minimum wet density of 1.03 g / cm 3 of the bubble mixed soil 2 for stabilizing the pore wall is calculated from the equation (1), it is approximately 780 L in the sandy soil per 1 m 3 of the excavated soil. In viscous soil, it is approximately 550L.

なお、上記本発明の掘削、混合工程の施工に使用する地中連続壁施工機械1は特に限定されるものではないが、例えば、ソイルセメント地中連続壁の施工に使用される等厚式ソイルセメント地中連続壁施工機械や、柱列式ソイルセメント地中連続壁の造成に用いられる地中連続壁施工機械を使用することができ、これらの中でも壁厚を一定に造成することができる点で、等厚式ソイルセメント地中連続壁施工機械を好適に用いることができる。   In addition, the underground continuous wall construction machine 1 used for construction of the excavation and mixing process of the present invention is not particularly limited. For example, a constant thickness soil used for construction of soil cement underground continuous wall Cement underground continuous wall construction machines and underground continuous wall construction machines used for the construction of column row soil cement underground continuous walls can be used, and among these, the wall thickness can be made constant. Thus, an iso-thickness soil cement underground continuous wall construction machine can be suitably used.

次に、掘削、混合工程の完了後に、造壁組成物3を掘削の底部に送り込み、気泡混合土2と造壁組成物3を置換する置換工程に移る。   Next, after completion of the excavation and mixing process, the wall-forming composition 3 is sent to the bottom of the excavation, and the process proceeds to a replacement process in which the bubble mixed soil 2 and the wall-forming composition 3 are replaced.

置換工程に用いる造壁組成物3は、スメクタイト系粘土鉱物粒状体と水、又はスメクタイト系粘土鉱物粒状体と水及び気泡を混練した造壁組成物3である。   The wall-forming composition 3 used in the replacement step is a wall-forming composition 3 in which smectite-based clay mineral particles and water, or smectite-based clay mineral particles, water and bubbles are kneaded.

造壁組成物3は、地上部の混練機4により、気乾状態にあるスメクタイト系粘土鉱物粒状体と水を重量比で概ね1:1〜1:0.5、好ましくは1:0.6の範囲で混合して、組成を調整したものである。そして、このような条件で調整した造壁組成物3の湿潤密度は凡そ1.46〜1.72g/cmとなる。また、スメクタイト系粘土鉱物粒状体と水に、さらに気泡を添加した造壁組成物3は流動性が増加するため、置換作業をより容易にすることができる。 The wall-forming composition 3 is approximately 1: 1 to 1: 0.5, preferably 1: 0.6, in a weight ratio of the smectite clay mineral particles and water in an air-dried state by the above-mentioned kneader 4. The composition was adjusted by mixing in the range of. The wet density of the wall-forming composition 3 adjusted under such conditions is about 1.46 to 1.72 g / cm 3 . Further, the wall-forming composition 3 in which bubbles are further added to the smectite-based clay mineral particles and water increases the fluidity, so that the replacement work can be facilitated.

なお、スメクタイト系粘土鉱物の形状として粉体を使用した場合、粉体は水と混合すると、直ちに水を吸収し膨張を始めると共に粘性が増加する。そのために、例えばスメクタイト系粘土と水を1:0.6の重量比で混合した場合でも急速に団子状となり、混練やさらにはトレミー5での置換が困難となる。しかしながら、大量の水を使用すると、スメクタイト系の粘土は混練時に吸水し膨張が終了するため、吸水、膨張による自己修復性が期待できない。   In addition, when powder is used as the shape of the smectite clay mineral, when the powder is mixed with water, the powder immediately absorbs water and starts to expand and the viscosity increases. For this reason, for example, even when smectite clay and water are mixed at a weight ratio of 1: 0.6, they rapidly form dumplings, which makes it difficult to knead and replace with Tremy 5. However, when a large amount of water is used, the smectite clay absorbs water during kneading and ends expansion, so that self-repairability due to water absorption and expansion cannot be expected.

それ故、スメクタイト系粘土鉱物粒状体を用いることが必要であり、この場合は造壁組成物3中のスメクタイト系粘土鉱物粒状体の表面のみが水を吸収した状態で、トレミー5を用いて気泡混合土2と置換でき、造壁組成物3中のスメクタイト系粘土鉱物粒状体は混練水や地中の水を吸収し、膨張して地中連続止水壁を構築する。   Therefore, it is necessary to use a smectite clay mineral granule. In this case, only the surface of the smectite clay mineral granule in the wall-forming composition 3 absorbs water, and bubbles are formed using the tremy 5. The smectite clay mineral particles in the wall-forming composition 3 can be replaced with the mixed soil 2 and absorb kneaded water and underground water and expand to construct an underground continuous water blocking wall.

なお、スメクタイト系粘土鉱物粒状体は、地中においてより多くの水を吸収させて膨張させるために、気乾状態に近い含水比のスメクタイト系粘土鉱物粒状体を使用することが望ましい。   The smectite clay mineral particles are desirably smectite clay mineral particles having a moisture content close to an air-dried state in order to absorb more water in the ground and expand.

また、本発明で用いるスメクタイト系粘土鉱物粒状体は、原鉱石を破砕し、又は粉体から造粒し、含水比、粒度を調整したスメクタイト系粘土鉱物粒状体であってもよく、特に経済的な観点から、原鉱石を粉砕したスメクタイト系粘土鉱物粒状体を用いるのが望ましい。   Further, the smectite clay mineral granules used in the present invention may be smectite clay mineral granules obtained by crushing raw ore or granulating from powder and adjusting the water content ratio and particle size, and are particularly economical. From such a viewpoint, it is desirable to use a smectite clay mineral granular material obtained by pulverizing raw ore.

また、本発明では掘削、混合時に、湿潤密度を調整した気泡混合土2と、上記のスメクタイト系粘土鉱物粒状体及び水、又はスメクタイト系粘土鉱物粒状体と水及び気泡を混練した造壁組成物3を使用することもできる。   Further, in the present invention, the cell mixing composition 2 in which the wet density is adjusted during excavation and mixing, and the above-mentioned smectite clay mineral granular material and water, or the smectite clay mineral granular material, water and bubbles are kneaded. 3 can also be used.

この場合には、地上に排泥した気泡混合土2と、スメクタイト系粘土鉱物粒状体の混合体を供試体として膨張試験を行い、溝壁の土圧以上の膨張圧が得られることを確認して造壁組成物3を利用することが望ましい。   In this case, an expansion test is performed using a mixture of the bubble mixed soil 2 discharged on the ground and the smectite clay mineral granular material as a test piece, and it is confirmed that an expansion pressure higher than the earth pressure of the groove wall is obtained. Therefore, it is desirable to use the wall-forming composition 3.

さらに本発明では、スメクタイト系粘土鉱物粒状体を予め、水溶性樹脂、セメントミルク、硅酸ソーダ、あるいは油脂液に浸漬し、乾燥させ、その表面を水溶性樹脂、セメントミルク、硅酸ソーダ、あるいは油脂液により被覆・含浸させたスメクタイト系粘土鉱物粒状体を使用することができる。   Further, in the present invention, the smectite clay mineral granular material is previously immersed in a water-soluble resin, cement milk, sodium oxalate, or oil and fat, and dried, and the surface thereof is water-soluble resin, cement milk, sodium oxalate, or Smectite clay mineral particles coated and impregnated with an oil / fat liquid can be used.

乾燥したスメクタイト系粘土鉱物粒状体は、水と混合すると直ちに水を吸収し始め粘性が増加するので、時間の経過とともに置換が困難になる。そこで、スメクタイト系粘土鉱物粒状体を1〜10%濃度の水溶性樹脂に短時間浸漬し、乾燥させ、スメクタイト系粘土鉱物粒状体表面を水溶性樹脂で被覆することにより、吸水開始時間を遅らせることができ、造壁組成物3の混練、置換作業のための時間的な余裕をとることが可能となる。   When the dried smectite clay mineral particles are mixed with water, they immediately start to absorb water and increase in viscosity, so that replacement becomes difficult over time. Therefore, by delaying the smectite clay mineral particles in a 1-10% water-soluble resin for a short time, drying, and coating the surface of the smectite clay mineral particles with the water-soluble resin, the water absorption start time is delayed. Therefore, it is possible to allow time for kneading and replacement work of the wall-forming composition 3.

スメクタイト系粘土鉱物粒状体の表面を被覆する水溶性樹脂としては、通常公知の水溶性樹脂であれば制限なく用いることができ、例えば、合成ポリマーとして、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ナトリウム、ポリエチレンイミン、ポリエチレンオキシド、ポリビニルピロリドン等、半合成ポリマーとして、カルボキシメチルセルロース、ヒドロキシエチルセルロース、酸化デンプン等、天然ポリマーとして、アルギン酸等を挙げることができる。   As the water-soluble resin that coats the surface of the smectite clay mineral granular material, any known water-soluble resin can be used without limitation. For example, as a synthetic polymer, polyvinyl alcohol, polyacrylamide, sodium polyacrylate, Examples of semisynthetic polymers such as polyethyleneimine, polyethylene oxide, and polyvinylpyrrolidone include carboxymethylcellulose, hydroxyethylcellulose, and oxidized starch, and examples of natural polymers include alginic acid.

これらの中でもポリビニルアルコールを好適に用いることができ、重合度100〜400の超低重合度でケン化度(モル%)が88〜90のポリビニルアルコール(日本酢ビ・ポバール(株)製 商品名:アニオン変性PVA AP−17)は水に溶けやすく、粘土の安定性がよい等の特徴があり特に好適に用いることができる。   Among these, polyvinyl alcohol can be preferably used. Polyvinyl alcohol having a polymerization degree of 100 to 400 and a saponification degree (mol%) of 88 to 90 (manufactured by Nippon Acetate / Poval Co., Ltd.) : Anion-modified PVA AP-17) has characteristics such as being easily soluble in water and good stability of clay, and can be particularly preferably used.

また本発明では、スメクタイト系粘土鉱物粒状体をセメントミルク、硅酸ソーダ、あるいは油脂液に浸漬し、乾燥させ、その表面をそれぞれ、セメント凝結体、硅酸ソーダ固化体、ないし油脂体により被覆・含浸させたスメクタイト系粘土鉱物粒状体を使用することもできる。   In the present invention, the smectite clay mineral particles are immersed in cement milk, sodium oxalate, or an oil and fat solution and dried, and the surfaces thereof are respectively coated with cement aggregate, sodium oxalate solidified body, or oil body. Impregnated smectite clay mineral particles can also be used.

この処理は、前記の水溶性樹脂により被覆する処理と同じく、スメクタイト系粘土鉱物粒状体への水の浸入を一時的に遅らせることにより、軟泥化の程度を防ぎ、施工時間に余裕を持たせるために、気乾状態のベントナイト粒状体の表面にセメント凝結体、硅酸ソーダ固化体、ないし油脂体の被膜を造成するものである。   This treatment is similar to the treatment with the water-soluble resin described above, by temporarily delaying the intrusion of water into the smectite clay mineral granule, thereby preventing the degree of soft mud and providing a sufficient time for construction. In addition, a film of cement aggregate, sodium oxalate solidified body or oil body is formed on the surface of bentonite granular body in an air-dried state.

セメントミルク、硅酸ソーダ、あるいは油脂液中に固形の粘土鉱物粒状体を浸漬し、セメントミルク、硅酸ソーダ、ないし油脂液を付着させ、乾燥させることによりセメントミルク、硅酸ソーダ、ないし油脂液の被膜を固定化させた粘土鉱物粒状体は、水が被膜を通過し固形の粘土鉱物粒状体まで到達するのに少なくとも100分の時間がかかることが確認されている。   Cement milk, sodium oxalate, or oil / fat liquid by immersing solid clay mineral particles in cement milk, sodium oxalate, or oil / fat, adhering cement milk, sodium oxalate or oil / fat liquid, and drying. It has been confirmed that it takes at least 100 minutes for water to pass through the coating and reach the solid clay mineral granules.

気乾状態の粘土鉱物粒状体にセメント被膜を造成するためのセメントと水の比率としては、好ましくは40〜80%、より好ましくは50%程度の範囲である。水とセメントの比率がこの範囲であればセメントの被膜が十分に形成され、固形の粘土鉱物粒状体の粒子同士が付着することがなく、良質な固形物とすることができる。   The ratio of cement to water for forming a cement coating on the air-dried clay mineral granules is preferably in the range of about 40 to 80%, more preferably about 50%. If the ratio of water and cement is within this range, a cement film is sufficiently formed, and particles of solid clay mineral particles do not adhere to each other, and a high-quality solid material can be obtained.

また、スメクタイト系粘土鉱物粒状体の表面を被覆する硅酸ソーダとしては、通常公知の硅酸ソーダであれば制限なく用いることができ、70〜100%濃度に希釈して使用することができる。   Moreover, as sodium oxalate which coat | covers the surface of a smectite clay mineral granular material, if it is a conventionally well-known sodium oxalate, it can be used without a restriction | limiting and can be used by diluting to a 70-100% density | concentration.

これらの中でも、地盤改良等で用いられている硅酸ソーダ3号は廉価であり、また入手が容易であることから好適に用いることができる。   Among these, sodium oxalate No. 3 used for ground improvement and the like is inexpensive and can be suitably used because it is easily available.

スメクタイト系粘土鉱物粒状体の表面を被覆する油脂液としては、通常の油脂類であれば制限なく用いることができ、例えば、食用油、機械油類、あるいは水溶性切削油等を挙げることができる。   As the oil / fat liquid covering the surface of the smectite clay mineral granular material, any ordinary oil / fat can be used without limitation, and examples thereof include edible oils, machine oils, and water-soluble cutting oils. .

さらに本発明では、スメクタイト系粘土鉱物粒状体に粘土、シルト、砂、礫、フライアッシュのいずれかを組み合わせて添加することにより乾燥密度を大きくした造壁組成物3とすることができる。   Furthermore, in this invention, it can be set as the wall-forming composition 3 which made dry density large by adding in combination with any of clay, silt, sand, gravel, and fly ash to a smectite clay mineral granular material.

なお、土質工学会の基準(JSF)によれば、砂は粒径0.075〜2mm、礫は粒径2mm以上と定義されており、本発明で用いる砂、礫もこれに準拠したものである。   In addition, according to the standards (JSF) of the Japan Society for Geotechnical Engineering, sand is defined as having a particle size of 0.075 to 2 mm, and gravel is defined as having a particle size of 2 mm or more. The sand and gravel used in the present invention are also compliant with this. is there.

造壁組成物3中のスメクタイト系粘土鉱物粒状体の配合量を多くし、かつ乾燥密度を大きくすることにより、スメクタイト系粘土鉱物粒状体が吸水膨張した時の膨張圧は大きくなるため、より安定した地中連続止水壁を構築することができる。   By increasing the blending amount of the smectite clay mineral particles in the wall-forming composition 3 and increasing the dry density, the expansion pressure when the smectite clay mineral particles are absorbed and expanded by water increases, so it is more stable. A continuous underground water barrier can be constructed.

造壁組成物3の粒度分布をよくすることにより乾燥密度及び膨張圧を大きくすることができる。この効果を発現させるために、粒度分布は下記式(3)を満たすことが望ましい。   The drying density and the expansion pressure can be increased by improving the particle size distribution of the wall-forming composition 3. In order to exhibit this effect, it is desirable that the particle size distribution satisfies the following formula (3).

Ucは均等係数、Uc´は曲率係数を表し、これらは土の粒度試験方法(JSF T 131−1990)で規定されている。   Uc represents a uniformity coefficient, Uc ′ represents a curvature coefficient, and these are defined by a soil grain size test method (JSF T 131-1990).

これによると、Ucは下記式(4)で、Uc´は下記式(5)で表される。   According to this, Uc is represented by the following formula (4), and Uc ′ is represented by the following formula (5).

Uc=D60/D10 (4)
Uc´=(D30/(D10×D60) (5)
ここで、D10、D30、D60は粒径加積曲線から、通過質量百分率10%、30%、60%に対する粒径D(mm)を表す。
Uc = D 60 / D 10 (4)
Uc ′ = (D 30 ) 2 / (D 10 × D 60 ) (5)
Here, D 10 , D 30 , and D 60 represent the particle diameter D (mm) with respect to the passing mass percentage of 10%, 30%, and 60% from the particle diameter accumulation curve.

均等係数Ucは、粒径加積曲線の傾度を表すもので、大きくなるほど、粒度分布が広いことを表している。一般にUcが4〜5以下の土は”粒度分布が悪い“とされ、10以上の土は”粒度分布がよい“とされている。これらの表現は土の締固めの難易度に対応したものである。また、曲率係数Uc´は粒径加積曲線のなだらかさを示すもので、Uc´が1〜3の場合に”粒度分布がよい“としている。すなわち、”粒度分布がよい“ためにはUcとUc´に関する上記の条件を同時に満足する必要がある。   The uniformity coefficient Uc represents the gradient of the particle size accumulation curve, and the larger the particle size distribution, the wider the particle size distribution. In general, soil having Uc of 4 to 5 or less is regarded as “poor particle size distribution”, and soil of 10 or more is regarded as “good particle size distribution”. These expressions correspond to the degree of soil compaction difficulty. Further, the curvature coefficient Uc ′ indicates the smoothness of the particle size accumulation curve, and when Uc ′ is 1 to 3, “the particle size distribution is good”. That is, in order to “good particle size distribution”, it is necessary to satisfy the above-mentioned conditions for Uc and Uc ′ simultaneously.

また本発明では、地中連続止水壁に強度を求める必要があるときは、固化材としてセメント類を造壁組成物3に添加使用することにより、強度のある地中連続止水壁体を構築することもできる。   Moreover, in this invention, when it is necessary to ask | require intensity | strength for an underground continuous water stop wall, a strong underground continuous water stop wall body is obtained by adding and using cement as a solidification material to the wall-forming composition 3. It can also be constructed.

さらに、本発明の地中連続止水壁工法では、造壁組成物3のみで構成した地中連続止水壁を構造体として使用するために強度が必要な場合には、造壁組成物3が未固結な状態のうちに、H型鋼やシートパイル等の構造体を強化する部材を造壁組成物3中に挿入し、地中連続止水壁強度を高めることができる。   Furthermore, in the underground continuous water blocking wall method of the present invention, when the underground continuous water blocking wall composed only of the wall forming composition 3 is required to be used as a structure, the wall forming composition 3 In the unsolidified state, a member that reinforces the structure such as H-shaped steel or sheet pile can be inserted into the wall-forming composition 3 to increase the strength of the underground continuous water blocking wall.

置換工程に用いる手段としては、図1の2)置換工程Iに示すように地中連続壁工法においてコンクリートの打設に通常用いられるトレミー5を用いて、造壁組成物3と気泡混合土2の比重差を利用し、造壁組成物3を気泡混合土2中に打設する手段を用いることができるが、比重差が小さく置換が困難の場合は、図1の3)置換工程IIに示すように、造壁組成物3を強制的に排出、置換する方法として、スパイラルオーガー7を用いることもできる。   As the means used in the replacement process, as shown in 2) replacement process I of FIG. 1, the wall-forming composition 3 and the cell-mixed soil 2 are used by using the tremy 5 which is usually used for placing concrete in the underground continuous wall construction method. Can be used to place the wall-forming composition 3 into the bubble-mixed soil 2, but when the specific gravity difference is small and replacement is difficult, 3) in FIG. As shown, a spiral auger 7 can be used as a method for forcibly discharging and replacing the wall-forming composition 3.

気泡混合土2と造壁組成物3の置換手段として、トレミー5に動力機8により回転されるスパイラルオーガー7を内蔵せしめ、トレミー5上部に投入された造壁組成物6をスパイラルオーガー7の回転によりトレミー5の先端より、掘削部底部の気泡混合土2中に強制的に排出し、気泡混合土2と置換しながら上部に引抜き、さらには水平方向に移動して地中連続止水壁全体を造壁組成物3にて満たす置換工程であり、この結果、地中連続止水壁の高密度化と高品質化を図ることが可能である。   As a means for replacing the bubble-mixed soil 2 and the wall-forming composition 3, the spiral auger 7 that is rotated by the power machine 8 is incorporated in the tremey 5, and the wall-forming composition 6 put on the top of the tremy 5 is rotated by the rotation of the spiral auger 7. From the tip of the tremy 5, it is forcibly discharged into the bubble mixing soil 2 at the bottom of the excavation part, pulled out to the top while replacing the bubble mixing soil 2, and further moved in the horizontal direction so that the entire continuous underground water blocking wall This is a replacement process filled with the wall-forming composition 3, and as a result, it is possible to increase the density and quality of the underground continuous water blocking wall.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

以下に、実施例として本発明の地中連続止水壁工法の効果を確認するために行った膨張試験、被覆試験、粒度配合試験、透水試験について詳述する。
<膨張試験>
スメクタイト系粘土鉱物粒状体の吸水による膨張圧について、溝壁からの土圧による拘束圧中での造壁組成物の吸水、膨張を想定し、以下の膨張試験を行った。
In the following, an expansion test, a coating test, a particle size blending test, and a water permeability test conducted to confirm the effect of the underground continuous water blocking wall method of the present invention will be described in detail.
<Expansion test>
As for the expansion pressure due to water absorption of the smectite clay mineral granular material, the following expansion test was conducted assuming water absorption and expansion of the wall-forming composition under the restraint pressure due to earth pressure from the groove wall.

試験装置は、JIS A 1217:2009に準拠した土の圧密試験で使用する圧密試験機を用い、供試体はスメクタイト系粘土鉱物として、代表的な粘土鉱物であるベントナイトの原鉱石を粉砕し、最大粒径10mmと20mmの気乾状態の粒状体を使用して供試体とするための試料1〜7を調整した。   The test apparatus uses a compaction tester used in a soil compaction test in accordance with JIS A 1217: 2009, and the specimen is a smectite clay mineral, which is a typical clay mineral bentonite ore. Samples 1 to 7 for preparing specimens using air-dried granules having a particle size of 10 mm and 20 mm were prepared.

これらの各試料1〜7を円筒状の圧密リング内に入れ、軽く締めて膨張試験の供試体とした。供試体の上部には膨張量を計測するために変位計と膨張圧を計測するための載荷装置を取り付けた。
表1に試験装置寸法及び試料の初期状態、配合量を示す。
Each of these samples 1 to 7 was put in a cylindrical compacting ring and lightly tightened to obtain a specimen for an expansion test. A displacement meter and a loading device for measuring expansion pressure were attached to the upper part of the specimen to measure the amount of expansion.
Table 1 shows the dimensions of the test apparatus, the initial state of the sample, and the blending amount.

各供試体の下端から給水を始めるとベントナイトは吸水し膨張を始めるので、膨張量が常に1/100mm以下になるように加圧力により調整し、この加圧力を膨張圧とした。表2に膨張試験終了時の試料の状態を、図2及び図3に膨張試験結果(時間と膨張圧の関係)のグラフを示す。   When water supply is started from the lower end of each specimen, the bentonite starts to absorb water and expand, so that the amount of expansion is always adjusted to 1/100 mm or less by adjusting the applied pressure, and this applied pressure is taken as the expansion pressure. Table 2 shows the state of the sample at the end of the expansion test, and FIGS. 2 and 3 show graphs of the expansion test results (relationship between time and expansion pressure).

図2は経過時間0〜3500分のベントナイト粒状体の吸水による膨張圧を示し、図3は図2の経過時間0〜200分を示したものである。   FIG. 2 shows the expansion pressure due to water absorption of bentonite granules having an elapsed time of 0-3500 minutes, and FIG. 3 shows the elapsed time of 0-200 minutes in FIG.

図2、3に示す試料1は、最大粒径10mmのベントナイト粒状体のみの場合の時間と膨張圧の関係を示す。このグラフによると、吸水と同時に膨張を始めて、膨張圧が大きくなり始め、約50分程度で膨張圧の増加は緩やかになり、1360分経過後には膨張圧は150kN/mとなる。 Samples 1 shown in FIGS. 2 and 3 show the relationship between time and expansion pressure when only bentonite granules having a maximum particle size of 10 mm are used. According to this graph, the expansion starts at the same time as the water absorption, the expansion pressure starts to increase, the increase in the expansion pressure becomes moderate after about 50 minutes, and the expansion pressure becomes 150 kN / m 2 after 1360 minutes.

給水開始時の供試体の含水比は0.3%であったが、1360分経過後の含水比は65.9%であった。ベントナイトの膨張はその含有物により異なるが、通常は含水比が200〜300%程度なので、まだ十分な膨張が生じる含水比といえる。
<被覆試験>
水溶性樹脂、セメントミルク、硅酸ソーダ、あるいは油脂液を被覆する処理をしたベントナイト粒状体の有効性を確認するための被覆試験を行った。
The water content of the specimen at the start of water supply was 0.3%, but the water content after 1360 minutes was 65.9%. Although the expansion of bentonite varies depending on the content, it can be said that the water content ratio is still about 200 to 300%, so that the water content ratio still causes sufficient expansion.
<Coating test>
A coating test was conducted to confirm the effectiveness of water-soluble resin, cement milk, sodium oxalate, or bentonite granules treated with an oil / fat liquid.

水溶性樹脂としてポリビニルアルコール(日本酢ビ・ポバール(株)製 商品名 AP−17)の重合度100〜400の超低重合度でケン化度(モル%)が88〜90の2%水溶液に、セメントミルクとして普通ポルトランドセメントを水セメント比40%のミルクに、硅酸ソーダとして硅酸ソーダ3号の原液中に、油脂類として水溶性切削油((株)エーゼット製 商品名 No.824)の原液中に、スメクタイト系の粘土鉱物である最大粒径20mmのベントナイト粒状体を1秒間浸漬し、気中で乾燥させ、表面にそれぞれ、ポリビニルアルコール、セメントミルク、硅酸ソーダ、油脂液の被膜を造成した。   As a water-soluble resin, polyvinyl alcohol (trade name: AP-17, manufactured by Nippon Vinegar Poval Co., Ltd., trade name: AP-17) has an ultralow polymerization degree of 100 to 400 and a saponification degree (mol%) of 2 to 90%. Ordinary Portland cement as a cement milk to 40% water cement milk, sodium oxalate No. 3 as a sodium oxalate solution, water-soluble cutting oil as fats and oils (trade name No. 824, manufactured by AZET Co., Ltd.) A bentonite granule having a maximum particle size of 20 mm, which is a smectite clay mineral, is dipped in the stock solution for 1 second, dried in the air, and coated with polyvinyl alcohol, cement milk, sodium oxalate, and an oil liquid on the surface, respectively. Was created.

この表面を被覆したベントナイト粒状体を用いて調整した試料4〜7の膨張試験の結果を図2に示す。この結果から表面を被覆しない試料1〜3と比較して、表面を被覆した試料4〜7の吸水膨張圧の発現は遅くなり、表面を被覆したスメクタイト系粘土鉱物粒状体が有効に使用できることが確認された。
<粒度配合試験>
表1に試料1〜7のベントナイト粒状体と硅砂との配合割合を、図4に通過質量百分率の関係を示す。
The result of the expansion test of Samples 4 to 7 prepared using the bentonite granules coated on the surface is shown in FIG. From this result, compared to Samples 1 to 3 that do not cover the surface, the expression of water absorption expansion pressure of Samples 4 to 7 that cover the surface is delayed, and the smectite clay mineral particles that cover the surface can be used effectively. confirmed.
<Particle size blending test>
Table 1 shows the blending ratio of the bentonite granules and cinnabar sand of Samples 1 to 7, and FIG. 4 shows the relationship of the passing mass percentage.

試料1は最大粒径10mm以下のベントナイト粒状体のみによる試料であり、試料2は試料1のベントナイト粒状体を75%、硅砂6号を25%の重量比率で混合した試料であり、試料3は試料1のベントナイト粒状体を60%、硅砂5号を20%、硅砂6号を20%の重量比率で混合した試料であり、試料4、5、6、7は最大粒径20mmのベントナイト粒状体を各々ポリビニルアルコール、セメントミルク、ケイ酸ソーダ及び水溶性切削液にて被覆したスメクタイト系粘土鉱物粒状体を57%、硅砂3号を43%の重量比率で混合した試料である。   Sample 1 is a sample made only of bentonite granules having a maximum particle size of 10 mm or less. Sample 2 is a sample in which the bentonite granules of sample 1 are mixed at a weight ratio of 75% and dredged sand No. 6 at a weight ratio of 25%. Sample 1 was a mixture of 60% bentonite granules, 20% cinnabar No. 5 and 20% cinnabar 6 in weight ratio, and samples 4, 5, 6, and 7 were bentonite granules having a maximum particle size of 20 mm. Is a sample in which smectite clay mineral particles coated with polyvinyl alcohol, cement milk, sodium silicate and water-soluble cutting fluid are mixed in a weight ratio of 57% and cinnabar No. 3 in a weight ratio of 43%.

表2及び図2によると、数式4、5の条件を満たす粒度分布の良い試料2,3は、粒度分布の悪い試料1、4、5、6、7よりも膨張圧は大きく、粒度調整をすることが有効であることが確認された。
<透水試験>
さらに試料2、3、6についてJIS A 1218:2009に準拠した変水位透水試験機を用いて透水試験を行うと、表2中に示すように透水係数は1×10−7〜1×10−8cm/sであり、地中連続止水壁としての遮水性能を十分満たしていることが確認できた。
According to Table 2 and FIG. 2, the samples 2 and 3 with good particle size distribution satisfying the expressions 4 and 5 have a larger expansion pressure than the samples 1, 4, 5, 6, and 7 with poor particle size distribution, so It was confirmed that it was effective.
<Water permeability test>
Further, when a water permeability test was performed on samples 2, 3 and 6 using a variable water permeability tester based on JIS A 1218: 2009, the water permeability coefficient was 1 × 10 −7 to 1 × 10 − as shown in Table 2. It was 8 cm / s, and it was confirmed that the water shielding performance as an underground continuous water blocking wall was sufficiently satisfied.

1 地中連続壁施工機械
2 気泡混合土
3 造壁組成物
4 混練機
5 トレミー
6 造壁組成物投入
7 スパイラルオーガー
8 動力機
DESCRIPTION OF SYMBOLS 1 Underground continuous wall construction machine 2 Bubble mixing soil 3 Wall-forming composition 4 Kneading machine 5 Tremy 6 Wall-making composition input 7 Spiral auger 8 Power machine

Claims (12)

気泡又は気泡と水を添加した気泡混合土を安定液として掘削、混合を行う掘削、混合工程と、掘削、混合工程の完了後に、造壁組成物を、掘削の底部に送り込み、気泡混合土と造壁組成物の置換工程からなる地中連続止水壁工法であって、気泡混合土が、掘削、混合時に、湿潤密度を1.03〜1.72g/cmの範囲に調整した気泡混合土であり、置換工程に用いる造壁組成物が、スメクタイト系粘土鉱物粒状体と水又はスメクタイト系粘土鉱物粒状体と水及び気泡を混練した造壁組成物であることを特徴とする地中連続止水壁工法。 Drilling, mixing, and mixing process, and after completion of the drilling and mixing process, the wall-forming composition is sent to the bottom of the drilling, An underground continuous water barrier method comprising a wall-forming composition replacement step, in which a bubble mixing soil is adjusted to a wet density of 1.03 to 1.72 g / cm 3 during excavation and mixing. It is soil, and the wall-forming composition used for the substitution step is a wall-forming composition obtained by kneading smectite clay mineral granules and water or smectite clay mineral granules, water and bubbles. Water barrier construction method. 掘削、混合時に、湿潤密度を調整した気泡混合土と、スメクタイト系粘土鉱物粒状体及び水、又はスメクタイト系粘土鉱物粒状体と水及び気泡を混練した造壁組成物を混合して造壁組成物として使用することを特徴とする請求項1に記載の地中連続止水壁工法。   A wall-forming composition prepared by mixing a foam-mixed soil adjusted in wet density with a smectite-based clay mineral granular material and water, or a wall-forming composition kneaded with smectite-based clay mineral granular material, water and bubbles during excavation and mixing. The underground continuous water blocking wall construction method according to claim 1, wherein: スメクタイト系粘土鉱物粒状体を1〜10%濃度の水溶性樹脂に浸漬し、乾燥させ、その表面を水溶性樹脂により被覆したスメクタイト系粘土鉱物粒状体を使用することを特徴とする請求項1又は2に記載の地中連続止水壁工法。   The smectite clay mineral granules are immersed in a water-soluble resin having a concentration of 1 to 10%, dried, and smectite clay mineral granules whose surfaces are coated with the water-soluble resin are used. The underground continuous water barrier construction method according to 2. スメクタイト系粘土鉱物粒状体をセメントミルクに浸漬し、乾燥させ、その表面をセメント凝結体により被覆したスメクタイト系粘土鉱物粒状体を使用することを特徴とする請求項1又は2に記載の地中連続止水壁工法。   The underground smectite-based clay according to claim 1 or 2, wherein the smectite-based clay mineral particles are dipped in cement milk, dried, and the surface thereof is coated with cement aggregates. Water barrier construction method. スメクタイト系粘土鉱物粒状体を70〜100%濃度の硅酸ソーダに浸漬し、乾燥させ、その表面を硅酸ソーダ固化体により被覆したスメクタイト系粘土鉱物粒状体を使用することを特徴とする請求項1又は2に記載の地中連続止水壁工法。   The smectite clay mineral particles are used, wherein the smectite clay mineral particles are immersed in sodium oxalate having a concentration of 70 to 100% and dried, and the surface thereof is coated with solidified sodium oxalate. The underground continuous water barrier construction method according to 1 or 2. スメクタイト系粘土鉱物粒状体を油脂液に浸漬し、乾燥させ、その表面を油脂体により被覆したスメクタイト系粘土鉱物粒状体を使用することを特徴とする請求項1又は2に記載の地中連続止水壁工法。   3. The underground continuous stop according to claim 1, wherein the smectite clay mineral particles are immersed in an oil and fat solution and dried, and the smectite clay mineral particles whose surface is coated with the oil and fat body are used. Water wall construction method. スメクタイト系粘土鉱物粒状体に粘土、シルト、砂、礫、フライアッシュのいずれかを組み合わせて添加することにより粒度組成を調整し乾燥密度を大きくした造壁組成物を使用することを特徴とする請求項1から6のいずれか一項に記載の地中連続止水壁工法。   Claims characterized by using a wall-forming composition having a dry density increased by adjusting the particle size composition by adding any combination of clay, silt, sand, gravel and fly ash to the smectite clay mineral granules. The underground continuous water blocking wall construction method according to any one of Items 1 to 6. スメクタイト系粘土鉱物粒状体が、原鉱石を破砕し、又は粉体から造粒し、含水比、粒度を調整したスメクタイト系粘土鉱物粒状体であることを特徴とする請求項1から7のいずれか一項に記載の地中連続止水壁工法。   The smectite clay mineral granule is a smectite clay mineral granule obtained by crushing raw ore or granulating from powder and adjusting the water content ratio and particle size. The underground continuous water barrier construction method according to one item. 造壁組成物に固化材を添加することを特徴とする請求項1から8のいずれか一項に記載の地中連続止水壁工法。   The underground continuous water blocking wall construction method according to any one of claims 1 to 8, wherein a solidifying material is added to the wall-forming composition. 造壁組成物が未固結な状態のうちに、構造を強化する部材を造壁組成物中に挿入し、地中連続止水壁の強度を高めることを特徴とする請求項1から9のいずれか一項に記載の地中連続止水壁工法。   10. The structure according to claim 1, wherein a member that reinforces the structure is inserted into the wall-forming composition while the wall-forming composition is unconsolidated to increase the strength of the underground continuous water blocking wall. The underground continuous water barrier construction method according to any one of the above. 造壁組成物を掘削の底部に送り込む、気泡混合土と造壁組成物の置換手段として、トレミーにより造壁組成物を気泡掘削土底部に送り込み、それらの比重差を利用して置換することを特徴とする上記第1から第10のいずれか一項に記載の地中連続止水壁工法   As a means of replacing the bubble-mixed soil and the wall-forming composition by sending the wall-forming composition to the bottom of the excavation, the wall-forming composition is sent to the bottom of the bubble-digging earth by treme and replaced using the specific gravity difference between them. The underground continuous water blocking wall construction method according to any one of the above first to tenth features 造壁組成物を掘削の底部に送り込む、気泡混合土と造壁組成物の置換手段として、スパイラルオーガーを内蔵したトレミーを用いて、スパイラルオーガーの回転により造壁組成物を強制的に気泡混合土中に排出、置換することを特徴とする請求項1から10のいずれか一項に記載の地中連続止水壁工法。
As a means of replacing the bubble-mixing soil and the wall-forming composition by feeding the wall-forming composition to the bottom of excavation, the wall-forming composition is forcibly rotated by the rotation of the spiral auger. The underground continuous water blocking wall construction method according to any one of claims 1 to 10, wherein the underground discharge wall is discharged and replaced.
JP2012259965A 2011-11-28 2012-11-28 Underground continuous water barrier method Active JP6207149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259965A JP6207149B2 (en) 2011-11-28 2012-11-28 Underground continuous water barrier method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011259479 2011-11-28
JP2011259479 2011-11-28
JP2012259965A JP6207149B2 (en) 2011-11-28 2012-11-28 Underground continuous water barrier method

Publications (2)

Publication Number Publication Date
JP2013136938A true JP2013136938A (en) 2013-07-11
JP6207149B2 JP6207149B2 (en) 2017-10-04

Family

ID=48912853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259965A Active JP6207149B2 (en) 2011-11-28 2012-11-28 Underground continuous water barrier method

Country Status (1)

Country Link
JP (1) JP6207149B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130650A (en) * 2015-09-01 2015-12-09 河北农业大学 Solid mine waste planting mixed soil and preparation method thereof
CN114541482A (en) * 2022-02-28 2022-05-27 上海公路桥梁(集团)有限公司 Permeation prevention device and permeation prevention method
KR20220121315A (en) * 2021-02-25 2022-09-01 주식회사 골든포우 Firming agent for water impermeable barrier or blocking barrier of waste landfill
KR20220121314A (en) * 2021-02-25 2022-09-01 주식회사 골든포우 Water impermeable material and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111455976A (en) * 2020-04-14 2020-07-28 江西省水利科学研究院 Construction method of self-setting mortar impervious wall by grooving method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231956A (en) * 1994-12-08 1996-09-10 Kunimine Kogyo Kk Plastic water-stopping material
JPH11347488A (en) * 1998-06-03 1999-12-21 Hojun Yoko:Kk Water proofing method by bentonite spraying
JP2001295268A (en) * 2000-04-11 2001-10-26 Techno Paudalton:Kk Cut-off construction method
JP2003528205A (en) * 2000-03-20 2003-09-24 トリソプラスト・インターナショナル・ベスローテン・フェンノートシャップ Clay-containing mixture or blend capable of forming a moisture-proof gel, and use of the mixture and blend
JP2007262831A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Back-filling method for underground excavated hole
JP2008190241A (en) * 2007-02-06 2008-08-21 Daiyo Kiko Kogyo Kk Construction method of slurry solidified wall
JP4342558B2 (en) * 2006-06-24 2009-10-14 学校法人早稲田大学 Construction method of impermeable wall
JP2010236349A (en) * 2009-03-12 2010-10-21 Waseda Univ Construction method for stage type solidification
JP2011202355A (en) * 2010-03-24 2011-10-13 Waseda Univ Method for creating underground structure with standard bubble stabilizing liquid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231956A (en) * 1994-12-08 1996-09-10 Kunimine Kogyo Kk Plastic water-stopping material
JPH11347488A (en) * 1998-06-03 1999-12-21 Hojun Yoko:Kk Water proofing method by bentonite spraying
JP2003528205A (en) * 2000-03-20 2003-09-24 トリソプラスト・インターナショナル・ベスローテン・フェンノートシャップ Clay-containing mixture or blend capable of forming a moisture-proof gel, and use of the mixture and blend
JP2001295268A (en) * 2000-04-11 2001-10-26 Techno Paudalton:Kk Cut-off construction method
JP2007262831A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Back-filling method for underground excavated hole
JP4342558B2 (en) * 2006-06-24 2009-10-14 学校法人早稲田大学 Construction method of impermeable wall
JP2008190241A (en) * 2007-02-06 2008-08-21 Daiyo Kiko Kogyo Kk Construction method of slurry solidified wall
JP2010236349A (en) * 2009-03-12 2010-10-21 Waseda Univ Construction method for stage type solidification
JP2011202355A (en) * 2010-03-24 2011-10-13 Waseda Univ Method for creating underground structure with standard bubble stabilizing liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130650A (en) * 2015-09-01 2015-12-09 河北农业大学 Solid mine waste planting mixed soil and preparation method thereof
KR20220121315A (en) * 2021-02-25 2022-09-01 주식회사 골든포우 Firming agent for water impermeable barrier or blocking barrier of waste landfill
KR20220121314A (en) * 2021-02-25 2022-09-01 주식회사 골든포우 Water impermeable material and manufacturing method thereof
KR102573831B1 (en) 2021-02-25 2023-08-31 주식회사 골든포우 Firming agent for water impermeable barrier or blocking barrier of waste landfill
KR102573830B1 (en) * 2021-02-25 2023-08-31 주식회사 골든포우 Water impermeable material and manufacturing method thereof
CN114541482A (en) * 2022-02-28 2022-05-27 上海公路桥梁(集团)有限公司 Permeation prevention device and permeation prevention method
CN114541482B (en) * 2022-02-28 2023-06-23 上海公路桥梁(集团)有限公司 Permeation prevention device and permeation prevention method

Also Published As

Publication number Publication date
JP6207149B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6207149B2 (en) Underground continuous water barrier method
WO2005095300A1 (en) Concrete composition, process for producing the same, method of regulating viscosity, and method of constructing cast-in-place concrete pile from the concrete composition
JP6101019B2 (en) Soil-based deformation following water-blocking material and method for producing the same
JP4905394B2 (en) Excavator
JP6755743B2 (en) Manufacturing method of fluidized soil cement
KR101235797B1 (en) Light weight fill materials with fluidity and resistance to segregation
JP5676897B2 (en) Construction method of underground structure with standard bubble stabilizer
JP4074570B2 (en) Vibration isolation wall and its construction method
JPH0452327A (en) Stabilized soil and construction method using this soil
JP4970547B2 (en) Preparation method of bubble stabilizer and bubble drilling method
JP2006045877A (en) Underground continuous wall construction method
US3192720A (en) Anticorrosive back-fill method
JP2004218337A (en) Soil-cement wall reclamation material
JP5192186B2 (en) Cement mixture containing concrete glass and method for producing the same
JP3088628B2 (en) Self-hardening stabilizer
JP2006326422A (en) Mud improvement method and evaluation method for addition rate of mud improvement material
JP4242670B2 (en) Soil-stabilized soil and method for producing the same
JP2006328902A (en) Method of manufacturing replenishing material for ground improvement construction method and replenishing material
JP2001207436A (en) Slurry composition
JP6193105B2 (en) Deformation following type water shielding material
JP3799024B2 (en) Improved soil and manufacturing method thereof
JP7390744B2 (en) Underground impermeable wall using in-situ stirring method
JP2011080207A (en) Method of improving subsurface layer and method of improving columnar ground
JP6711869B2 (en) Missing material
JP2004339801A (en) Fluid filler manufacturing method and plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6207149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250