JP2006328902A - Method of manufacturing replenishing material for ground improvement construction method and replenishing material - Google Patents

Method of manufacturing replenishing material for ground improvement construction method and replenishing material Download PDF

Info

Publication number
JP2006328902A
JP2006328902A JP2005157635A JP2005157635A JP2006328902A JP 2006328902 A JP2006328902 A JP 2006328902A JP 2005157635 A JP2005157635 A JP 2005157635A JP 2005157635 A JP2005157635 A JP 2005157635A JP 2006328902 A JP2006328902 A JP 2006328902A
Authority
JP
Japan
Prior art keywords
mixing
ground improvement
attachment
earth
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005157635A
Other languages
Japanese (ja)
Inventor
Michisuke Satou
道祐 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Construction Co Ltd filed Critical Toyo Construction Co Ltd
Priority to JP2005157635A priority Critical patent/JP2006328902A/en
Publication of JP2006328902A publication Critical patent/JP2006328902A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a replenishing material manufacturing method capable of using sediment of various properties over a wide range, and easily and stably applicable to a compaction pile construction method regardless of static and dynamic. <P>SOLUTION: Construction generating earth, water and a solidifying material are inputted by predetermined blending in a generating place of the construction generating earth or a pit 1 formed in its vicinity, and this material is formed as mixed powder by agitating and mixing by an attachment 4 held by a backhoe 2. Next, the attachment held by the backhoe is replaced, and a mixture is rolled and compacted in the same pit 1 by the attachment, and is cured and solidified as it sis. Afterwards, a solidified body is ruptured in the proper size, and is carried to a ground improvement site. The solidified body is similarly crushed in the pit by the attachment 4 used for agitation and mixing, and the replenishing material having the desired grain size distribution is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地盤改良工法、特に地盤中に杭を造成して地盤を締固める締固め杭工法に用いる補給材の製造方法と該製造方法により製造された補給材とに関する。   The present invention relates to a method for manufacturing a replenishment material used in a ground improvement method, particularly a compacted pile method for forming a pile in the ground and compacting the ground, and a replenishment material manufactured by the manufacturing method.

締固め杭工法には、大きく別けて、ケーシングを回転させながら地盤に貫入した後、ケーシング内に補給材を投入し、ケーシングを回転上昇させながらその先端から補給材を排出して、地盤中に杭を造成する静的締固め杭工法と、ケーシングを起振機により振動させながら地盤に貫入した後、ケーシング内に補給材を投入し、該ケーシングを振動させながら引抜いてその先端から補給材を排出して、地盤中に杭を造成する動的締固め杭工法とがある。このような締固め杭工法において、前記補給材としては、ケーシングからの排出性、造成後の杭強度等を考慮して良質の砂や礫が一般に用いられるが、近年、これら良質の砂や礫の入手が困難となっており、そのコストも益々上昇する傾向にある。   The compacted pile method is largely divided into the ground, rotating through the casing and penetrating into the ground. Then, the supply material is put into the casing. Static compaction pile construction method for creating piles and after penetrating the ground while vibrating the casing with a vibrator, supply the material into the casing, pulling out the casing while vibrating the casing and pulling the supply material from the tip There is a dynamic compaction pile method that discharges and creates piles in the ground. In such a compacted pile method, good quality sand and gravel are generally used as the replenishing material in consideration of discharge from the casing, pile strength after creation, etc. It has become difficult to obtain and its cost has been increasing.

そこで、例えば、特許文献1には、掘削土砂とセメント系固化材とを撹拌混合してなる混合粉粒体を補給材の代替として用いることが提案され、また、特許文献2には、補給材を袋体に入れて該袋体を介して地盤中に排出することが提案されている。
特開平10−183600号公報 特開2003−239269号公報
For this reason, for example, Patent Document 1 proposes to use a mixed granular material obtained by stirring and mixing excavated sediment and cement-based solidified material as an alternative to the supplement material, and Patent Document 2 discloses a supplement material. Has been proposed to be discharged into the ground through the bag body.
JP-A-10-183600 JP 2003-239269 A

しかしながら、特許文献1に記載される対策によれば、地盤中の水分を吸収して混合粉粒体が固化するので、造成後の杭強度は確保されるものの、掘削土砂に含まれるシルト分や細砂分および微細なセメント粒子がケーシング内壁に付着し易く、特に静的締固め杭工法においてはこれら粒子のケーシング内壁への付着堆積が顕著となって、実質その適用は不可能となる。一方、特許文献2に記載される対策によれば、袋体に土砂を入れるので、土砂の性状に制限を受けないが、ケーシング内に予め袋体を収納するなどの面倒な作業が必要になることに加え、袋体が破損する危険があり、施工性、安定性の面で問題がある。   However, according to the measures described in Patent Document 1, since the mixed powder and solids are solidified by absorbing moisture in the ground, the pile strength after formation is ensured, but the silt content contained in the excavated earth and sand Fine sand and fine cement particles are likely to adhere to the inner wall of the casing. In particular, in the static compaction pile method, the adhesion and accumulation of these particles on the inner wall of the casing becomes remarkable, and the application thereof becomes virtually impossible. On the other hand, according to the countermeasure described in Patent Document 2, since earth and sand are put into the bag body, there is no restriction on the properties of the earth and sand, but troublesome work such as storing the bag body in the casing in advance is required. In addition, there is a risk of breakage of the bag, which is problematic in terms of workability and stability.

本発明は、上記した従来の問題点に鑑みてなされたもので、その課題とするところは、種々の性状の土砂を広範に使用でき、しかも、静的、動的とを問わず締固め杭工法に簡便にかつ安定して適用できる補給材の製造方法を提供し、併せて該製造方法により得られた補給材を提供することにある。   The present invention has been made in view of the above-mentioned conventional problems, and the problem is that a wide variety of soils having various properties can be used, and compacted piles regardless of whether they are static or dynamic. An object of the present invention is to provide a method for producing a supplement that can be applied to a construction method simply and stably, and also to provide a supplement obtained by the production method.

上記課題を解決するため、本発明に係る地盤改良工法用補給材の製造方法は、土砂と、水とセメント系固化材とを撹拌混合して混合物を得る撹拌混合工程、前記混合物を締固めしてそのまま固化体とする締固め工程、および前記固化体を所定の粒度分布となるように破砕する破砕工程を含むことを特徴とする。   In order to solve the above-mentioned problems, a method for producing a replenishment material for ground improvement according to the present invention comprises a stirring and mixing step of stirring and mixing earth and sand, water and a cement-based solidifying material to obtain a mixture, and compacting the mixture. A compacting step for directly solidifying the solidified product, and a crushing step for crushing the solidified product to have a predetermined particle size distribution.

このように行う補給材の製造方法においては、一旦固化体とした後、破砕するので、原材料である土砂の性状によらず所望の粒度分布とすることができる。したがって、得られた補給材は、従来汎用の砂や礫と同様、動的締固め杭工法にはもちろん、静的締固め杭工法に適用しても、ケーシングからの排出性は良好となり、しかも、造成後の杭強度の確保にも十分に寄与するものとなる。   In the replenisher manufacturing method performed in this way, the solidified body is once crushed and then crushed, so that a desired particle size distribution can be obtained regardless of the properties of the earth and sand as the raw material. Therefore, the obtained replenishment material, as well as conventional general-purpose sand and gravel, can be applied to the static compaction pile method as well as the dynamic compaction pile method, and the discharge from the casing is good. It will also contribute to securing pile strength after construction.

本製造方法において、上記撹拌混合、締固めおよび破砕の各作業はバックホウに持たせたアタッチメントにより行うようにしてもよい。この場合は、特別の機械に頼ることなく簡単にかつコスト安に各作業を行うことができる。   In the present manufacturing method, the agitation mixing, compaction and crushing operations may be performed by an attachment provided on the backhoe. In this case, each operation can be performed easily and at low cost without relying on a special machine.

本製造方法において、上記撹拌混合および締固めの各作業は土砂の発生場所またはその周辺で行い、前記締固め後の固化体を地盤改良現場へ運搬して、該地盤改良現場で破砕を行うようにしてもよい。このように土砂の発生場所またはその周辺で固化体とし、該固化体を地盤改良現場へ運搬することで、乾燥土砂を用いる場合に該土砂の飛散する機会が著しく低減し、周辺環境の改善に役立つ。また、締固めによって混合物が減容化するので、発生場所から地盤改良現場への運搬に要するコストが低減しかつその集積保管に要するスペースも削減する。   In this manufacturing method, the above-described stirring and mixing and compacting operations are performed at or near the place where the earth and sand are generated, and the solidified body after the compacting is transported to the ground improvement site and is crushed at the ground improvement site. It may be. In this way, the solidified material is generated at or around the place where the sediment is generated, and the solidified material is transported to the ground improvement site, so that when the dry soil is used, the chance of scattering of the sediment is remarkably reduced, and the surrounding environment is improved. Useful. Moreover, since the volume of the mixture is reduced by compaction, the cost required for transportation from the place of occurrence to the ground improvement site is reduced, and the space required for the accumulation storage is also reduced.

本発明に係る地盤改良工法用補給材は、上記した製造方法により製造された補給材であって、土砂が建設発生土であることを特徴とする。このような補給材によれば、廃棄物となる建設発生土の有効利用が可能になるので、コスト的に有利であり、しかも廃棄物の最終処分量の削減に大きく寄与する。   The ground improvement method supplementary material according to the present invention is a supplementary material manufactured by the above-described manufacturing method, characterized in that earth and sand are construction generated soil. According to such a replenishment material, it is possible to effectively use construction-generated soil as waste, which is advantageous in terms of cost and greatly contributes to reduction of the final disposal amount of waste.

本発明に係る地盤改良工法用補給材の製造方法によれば、種々の性状の土砂を広範に使用できるばかりか、静的、動的とを問わず締固め杭工法に簡便にかつ安定して適用でき、得られた補給材は砂や礫の代替物としてきわめて有用となる。   According to the method for manufacturing a supplement for ground improvement method according to the present invention, not only can soil of various properties be used extensively, but also easily and stably in a compacting pile method regardless of whether it is static or dynamic. Applicable and the resulting supplements are extremely useful as a substitute for sand and gravel.

また、本発明に係る補給材によれば、廃棄物となる建設発生土の有効利用が可能になるので、コスト的に有利であるばかりか、廃棄物の最終処分量の削減にも寄与し、その利用価値は大なるものがある。   In addition, according to the replenishment material according to the present invention, it is possible to effectively use construction generated soil that becomes waste, which is not only advantageous in terms of cost, but also contributes to reduction of the final disposal amount of waste, Its utility value is great.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の1つの実施形態としての補給材の製造工程を示したものである。本実施形態は、建設発生土を原材料として補給材を製造するもので、建設発生土を集積する工程A、この建設発生土の含水比を調整する工程B、含水比を調整した建設発生土に水と固化材とを配合し、撹拌混合して混合物を得る工程C、前記混合物を締固める工程D、締固めた状態で所定期間養生して固化体とする工程E、前記固化体を破砕して所定の粒度分布の補給材を得る工程Fおよびこのようにして得られた補給材を集積する工程Gからなっている。   FIG. 1 shows a manufacturing process of a replenishment material as one embodiment of the present invention. In the present embodiment, the supply material is manufactured using the construction generated soil as a raw material. The process A for accumulating the construction generated soil, the process B for adjusting the water content ratio of the construction generated soil, and the construction generated soil with the adjusted water content ratio. Mixing water and solidifying material, stirring and mixing to obtain a mixture C, step D for compacting the mixture, step E for curing for a predetermined period in a compacted state to form a solidified body, crushing the solidified body The process F includes a process F for obtaining a replenishment material having a predetermined particle size distribution and the process G for accumulating the replenishment material obtained in this manner.

本実施形態において、上記建設発生土の種類は任意であり、地山の掘削土、シールド工事での発生残土、地盤改良工事での排出土、浚渫土等を選択することができる。これら建設発生土(土砂)は、ここでは発生場所またはその周辺に集積され(工程A)、シールド工事の発生残土や浚渫土のように多量の水分を含むものを選択する場合は、そのまま天日により乾燥して所定の含水比とする(工程B)。土砂に対する水および固化材の配合量は、後の工程Eで得られる固化体の強度を考慮して決定する。この強度は、その後の工程Fにおける破砕の難易度に影響し、あまり固化体の強度が高いと、後の破砕が困難となって製造性が悪化する。本実施形態においては、一週間の養生(材令一週間)で、5〜10MPa程度の強度を発現する固化体が得られるように土砂に対する水および固化材の配合量を決定する。なお、土砂に配合する固化材の種類は任意であり、普通ポルトランドセメントはもちろん、早強ポルトランドセメント、高炉セメント等を用いることができる。   In this embodiment, the kind of construction generated soil is arbitrary, and it is possible to select ground excavated soil, generated residual soil in shield work, discharged soil in dredging work, dredged soil, and the like. These construction-generated soils (earth and sand) are collected here or in the vicinity of them (process A), and when selecting soil containing a large amount of water, such as residual soil generated from shield construction or dredged soil, the sun is left as it is. To obtain a predetermined water content ratio (step B). The blending amount of water and solidifying material with respect to the earth and sand is determined in consideration of the strength of the solidified body obtained in the subsequent step E. This strength affects the difficulty of crushing in the subsequent process F. If the strength of the solidified body is too high, the subsequent crushing becomes difficult and the productivity deteriorates. In this embodiment, the blending amount of water and solidifying material is determined so that a solidified body exhibiting a strength of about 5 to 10 MPa can be obtained by curing for one week (one week of material age). In addition, the kind of solidification material mix | blended with earth and sand is arbitrary, As well as normal Portland cement, early strong Portland cement, blast furnace cement, etc. can be used.

本実施形態においては、上記工程Cの撹拌混合、工程Dの締固めおよび工程Eの養生の各作業(処理)は、前記建設発生土の集積場所(建設発生土の発生場所またはその周辺)で行い、一方、上記工程Fの粉砕は地盤改良現場で行うようにする。また、前記撹拌混合、締固めおよび破砕の各作業は、図2または図4に示すように、地表に形成したピット1内で、バックホウ2のアーム3の先端に持たせた後述のアタッチメント4または5により行う。ピット1の大きさは、一例として5〜10m四方で、30〜50cm深さに設定される。   In the present embodiment, the operations (processing) of the stirring and mixing in the step C, the compaction in the step D, and the curing in the step E are performed at the location where the construction generated soil is accumulated (where the construction generated soil is generated or in the vicinity thereof). On the other hand, the pulverization of the process F is performed at the ground improvement site. Further, as shown in FIG. 2 or FIG. 4, the agitation mixing, compaction, and crushing operations are performed by an attachment 4 or a later-described attachment 4 provided at the tip of the arm 3 of the backhoe 2 in the pit 1 formed on the ground surface. 5 is performed. As an example, the size of the pit 1 is 5 to 10 m square and is set to a depth of 30 to 50 cm.

図2は、撹拌混合(工程C)の実施状況を示したもので、ピット1内には、予め上記土砂と、水と(含水比を調整した場合は水は不要)、固化材とが所定の割合となるように投入される。バックホウ2に持たせるアタッチメント4は、図3に示すように、バケット部4aの底部にモータ駆動の切削スクリュ4bを多軸に配列してなるもので、撹拌混合兼破砕機として、ウエダ産業株式会社から市販されている。撹拌混合に際しては、バックホウ2のアーム3を操作して、前記アタッチメント4のバケット部4aにピット1内の土砂(水および固化材を含む)を掬い上げ、この状態で切削スクリュ4bを回転させる。すると、バケット部4b内の土砂が切削スクリュ4bの間隙を解されながら通過し、この間、土砂と、水と固化材とが撹拌混合される。そして、バックホウ2による前記処理の繰返しで、ピット1内は土砂と、水と固化材との混合物で満たされるようになる。   FIG. 2 shows the state of implementation of stirring and mixing (step C). In the pit 1, the above earth and sand, water (no water is required when the water content ratio is adjusted), and a solidified material are predetermined. It is thrown to become the ratio of As shown in FIG. 3, the attachment 4 to be provided to the backhoe 2 is formed by arranging motor-driven cutting screws 4b on the bottom of the bucket portion 4a in multiple axes. Commercially available. When stirring and mixing, the arm 3 of the backhoe 2 is operated to scoop up the earth and sand (including water and solidified material) in the pit 1 into the bucket portion 4a of the attachment 4, and the cutting screw 4b is rotated in this state. Then, the earth and sand in the bucket portion 4b pass through the gap between the cutting screws 4b, and during this time, the earth and sand, water, and the solidifying material are agitated and mixed. The pit 1 is filled with a mixture of earth and sand, water, and a solidifying material by repeating the above-described treatment with the backhoe 2.

図4は、締固め(工程D)の実施状況を示したものである。この締固めに用いられるアタッチメント5は、バケット部5aの基端部に起振機5bを有する振動転圧機として構成されており、前記バケット部5aの背面が転圧面となっている。締固めに際しては、バックホウ2のアーム3を操作して、上記撹拌混合を終えたピット1内の混合物Mにバケット5aの背面を所定の押圧力で接触させ、起振機5bを起動させながらアタッチメント5をピット1内で移動させる。すると、このアタッチメント5の移動によりピット1内の混合物Mが締固められる。   FIG. 4 shows the implementation status of compaction (process D). The attachment 5 used for compaction is configured as a vibration compactor having a vibration generator 5b at the base end of the bucket part 5a, and the back surface of the bucket part 5a serves as a compaction surface. At the time of compaction, the arm 3 of the backhoe 2 is operated so that the back surface of the bucket 5a is brought into contact with the mixture M in the pit 1 after the stirring and mixing with a predetermined pressing force, and the exciter 5b is activated while being attached. 5 is moved in the pit 1. Then, the mixture M in the pit 1 is compacted by the movement of the attachment 5.

本実施形態においては、上記締固め(工程D)を終えた後、そのままピット1内で所定期間養生して固化体とする(工程E)。このように固化した固化体は、上記したように材令一週間の発現強度が5〜10MPa程度であるので、外部から衝撃を加えると容易に破断する。ここでは、上記締固めに用いたアタッチメント5をそのまま用い、そのバケット先端の爪部5cを利用して固化体を適当な大きさに破断し、これを地盤改良現場へ運搬して、所定の場所に集積する。   In this embodiment, after finishing the above-mentioned compaction (process D), it hardens | cures for a predetermined period in the pit 1 as it is, and is set as a solidified body (process E). Since the solidified body solidified in this way has an expression strength of about 5 to 10 MPa for one week as described above, it easily breaks when an impact is applied from the outside. Here, the attachment 5 used for the compaction is used as it is, the solidified body is broken to an appropriate size using the claw portion 5c at the tip of the bucket, and this is transported to the ground improvement site, and a predetermined place Accumulate in

地盤改良現場には、上記ピット1と同様のピットが形成されており、破砕(工程F)の実施に際しては、上記集積場所から該ピット内に所定量の固化体破片を投入する。そして、上記撹拌混合に用いたアタッチメント4と同じアタッチメントを、図2に示した態様でバックホウに持たせ、ピット内から固化体の破片をバケット部4aに掬い上げ、この状態で切削スクリュ4bを回転させる。すると、バケット部4b内の固化体の破片が切削スクリュ4bの間隙を破砕されながら通過し、この繰返しにより所定の粒度分布を有する補給材が得られるようになる。   A pit similar to the pit 1 is formed at the ground improvement site, and when the crushing (step F) is performed, a predetermined amount of solidified fragments are introduced into the pit from the accumulation location. Then, the same attachment as the attachment 4 used for the agitation and mixing is attached to the backhoe in the manner shown in FIG. 2, and the solidified fragments are scooped up from the pit to the bucket portion 4a, and the cutting screw 4b is rotated in this state. Let Then, the fragments of the solidified body in the bucket portion 4b pass through the gaps of the cutting screw 4b while being crushed, and a replenishment material having a predetermined particle size distribution can be obtained by repeating this process.

このようにして得られた補給材は、所望の粒度分布となっているので、動的締固め杭工法にはもちろん、静的締固め杭工法に使用しても、ケーシング内壁に付着堆積することはなく、造成後の杭強度の確保にも十分となる。また、廃棄物となる建設発生土の再生利用が可能になるので、撹拌混合、締固め、破砕等の処理コストを考慮しても、高価な砂や礫を使用する場合に比べて補給材のコストは低減する。また、廃棄物の再生利用により最終処分量が削減するので、環境負荷の低減に大きく寄与するものとなる。本実施形態においては特に、撹拌混合、締固めおよび破砕の各作業をバックホウに持たせたアタッチメントにより行うので、簡単にかつコスト安に各作業を行うことができる。また、建設発生土の発生場所またはその周辺で固化体とし、これを地盤改良現場へ運搬するので、建設発生土が乾燥土砂であっても、その飛散が防止され、周辺環境の改善に役立つ。さらに、締固めにより土砂混合物が減容化するので、発生場所から地盤改良現場への運搬に要するコストが低減しかつその集積保管に要するスペースも削減する。   Since the replenishment material thus obtained has a desired particle size distribution, it will adhere to and accumulate on the inner wall of the casing, not only for the dynamic compaction pile method but also for the static compaction pile method. No, it will be sufficient for securing pile strength after construction. In addition, since it is possible to recycle construction generated soil that becomes waste, even if processing costs such as agitation mixing, compaction, and crushing are taken into consideration, the amount of replenishment material is less than when expensive sand or gravel is used. Cost is reduced. Moreover, since the final disposal amount is reduced by recycling the waste, it greatly contributes to the reduction of the environmental load. Especially in this embodiment, since each operation | work of stirring mixing, compaction, and crushing is performed by the attachment which gave the backhoe, each operation | work can be performed simply and at low cost. In addition, since the solidified material is produced at or near the site where the construction generated soil is generated and transported to the ground improvement site, even if the construction generated soil is dry soil, it is prevented from being scattered and helps to improve the surrounding environment. Further, since the volume of the earth and sand mixture is reduced by compaction, the cost required for transportation from the generation site to the ground improvement site is reduced, and the space required for the accumulation and storage is also reduced.

鹿児島県谷山における地盤改良工事(静的締固め杭工法)での排出土(土砂)を原材料として用い、その含水比を調整した後、表1に示すように土砂(S)と、水(W)とセメント(C)とを種々の配合比となるように撹拌混合し、得られた混合物を直径10cm、高さ20cmの型枠に充填して突固め、そのまま養生して固化体とし、これを一軸圧縮試験に供した。次に、前記固化体を、前出図3に示した撹拌混合兼破砕機としてのアタッチメント4により破砕して(1回通し)、補給材を得、得られた補給材につき、粒度分布を測定した。なお、前記排出土の性状は、密度が2.3t/m3、吸水率5.36%、含水比22.9%であった。 After using the discharged soil (sediment) in the ground improvement work (static compaction pile method) in Taniyama, Kagoshima Prefecture as a raw material and adjusting its water content ratio, as shown in Table 1, soil (S) and water (W ) And cement (C) are stirred and mixed so as to have various blending ratios, and the resulting mixture is filled into a mold having a diameter of 10 cm and a height of 20 cm, and then solidified and cured as it is to obtain a solidified body. Was subjected to a uniaxial compression test. Next, the solidified body is crushed (attached once) by the attachment 4 as a stirring and mixing and crushing machine shown in FIG. 3 to obtain a replenishment material, and the particle size distribution of the obtained replenishment material is measured. did. The discharged soil had a density of 2.3 t / m 3 , a water absorption rate of 5.36%, and a water content ratio of 22.9%.

Figure 2006328902
Figure 2006328902

表2は、一軸圧縮試験の結果を、図5、図6は、前記一軸圧縮試験の結果をセメント水比(C/W)、単位セメント量(C)でそれぞれ整理して示したものである。これらに示す結果より、圧縮強度はセメント水比(C/W)の増加並びに単位セメント量(C)の増加に従って直線的に増大するが、セメント水比(C/W)が0.75程度、単位セメント量(C)が250kg程度までは、圧縮強度が10MPa以下に収まっており、この程度であれば、後の破砕が困難になることはない。   Table 2 shows the results of the uniaxial compression test, and FIGS. 5 and 6 show the results of the uniaxial compression test arranged in terms of cement water ratio (C / W) and unit cement amount (C), respectively. . From these results, the compressive strength increases linearly as the cement water ratio (C / W) increases and the unit cement amount (C) increases, but the cement water ratio (C / W) is about 0.75, When the unit cement amount (C) is about 250 kg, the compressive strength is within 10 MPa or less, and if it is this level, subsequent crushing will not be difficult.

Figure 2006328902
Figure 2006328902

図7は、粒度分布の測定結果を示したものである。同図中、実線は、本実施例で得られた補給材の粒度分布を、破線は、本補給材の製造に用いた土砂(排出土)の粒度分布をそれぞれ表わしている。一般的に、静的締固め杭工法に用いる補給材としては、10%通過粒径D10が0.1mm以上、均等係数Uc(D60/D10)が5以上であることが望ましいとされているが、本補給材は、多少礫分が多くなっているものの、前記条件を十分に満足し、静的締固め杭工法に安定して使用できることが明らかである。なお、原材料としての土砂は、細粒分が多く、そのまま使用したのでは、ケーシングからの排出性に問題が残る、といえる。 FIG. 7 shows the measurement result of the particle size distribution. In the figure, the solid line represents the particle size distribution of the replenishment material obtained in this example, and the broken line represents the particle size distribution of the earth and sand (discharged soil) used for the production of the replenishment material. In general, as the supply material used in the static compaction pile method, is 10% pass diameter D 10 of 0.1mm or more, it is desirable that the uniformity coefficient Uc (D 60 / D 10) of 5 or more However, although this replenishment material has a little more gravel, it is clear that the above conditions are sufficiently satisfied and can be stably used in the static compaction pile method. In addition, it can be said that the earth and sand as a raw material has many fine particles, and if it is used as it is, a problem remains in the discharge property from the casing.

本発明の1つの実施形態としての補給材の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the supplementary material as one Embodiment of this invention. 本製造工程内における撹拌混合処理の実施状況を示す模式図である。It is a schematic diagram which shows the implementation condition of the stirring mixing process in this manufacturing process. 図2に示した撹拌混合処理に用いる、バックホウのアタッチメントの構造を示す斜視図である。It is a perspective view which shows the structure of the attachment of a backhoe used for the stirring mixing process shown in FIG. 本製造工程内における締固め処理の実施状況を示す模式図である。It is a schematic diagram which shows the implementation condition of the compaction process in this manufacturing process. 本発明の実施例における固化後の圧縮試験の結果をセメント水比(C/W)で整理して示すグラフである。It is a graph which arranges and shows the result of the compression test after solidification in the example of the present invention by the cement water ratio (C / W). 本発明の実施例における固化後の圧縮試験の結果を単位セメント量(C)で整理して示すグラフである。It is a graph which arrange | positions and shows the result of the compression test after the solidification in the Example of this invention by unit cement amount (C). 本発明の実施例で得られた補給材の粒度分布を排出土のそれと対比して示すグラフである。It is a graph which shows the particle size distribution of the supplementary material obtained in the Example of this invention in contrast with that of discharge soil.

符号の説明Explanation of symbols

1 ピット
2 バックホウ
4 アタッチメント(撹拌混合兼破砕機)
4b 切削スクリュ
5 アタッチメント(転圧用)
5b 起振機

1 pit 2 backhoe 4 attachment (mixing and crushing machine)
4b Cutting screw 5 Attachment (for rolling)
5b vibrator

Claims (4)

土砂と、水と固化材とを撹拌混合して混合物を得る撹拌混合工程、前記混合物を締固めてそのまま固化体とする締固め工程、および前記固化体を所定の粒度分布となるように破砕する破砕工程を含むことを特徴とする地盤改良工法用補給材の製造方法。   Agitation and mixing step of stirring and mixing earth and sand, water and solidifying material to obtain a mixture, compacting step of compacting the mixture into a solidified body, and crushing the solidified body to have a predetermined particle size distribution A method for producing a replenishment material for ground improvement method, comprising a crushing step. 撹拌混合、締固めおよび破砕の各作業をバックホウに持たせたアタッチメントにより行うことを特徴とする請求項1に記載の地盤改良工法用補給材の製造方法。   The method for producing a replenishment material for ground improvement method according to claim 1, wherein the operations of stirring, mixing, compacting, and crushing are performed by an attachment provided on a backhoe. 撹拌混合および締固めの各作業を土砂の発生場所またはその周辺で行い、前記締固め後の固化体を地盤改良現場へ運搬して、該地盤改良現場で破砕を行うことを特徴とする請求項1または2に記載の地盤改良工法用補給材の製造方法。   The mixing and compacting operations are carried out at or near the place where the earth and sand are generated, the solidified body after the compacting is transported to the ground improvement site, and crushing is performed at the ground improvement site. A method for producing a supplement for ground improvement according to 1 or 2. 請求項1乃至3の何れか1項に記載の製造方法により製造された補給材であって、土砂として建設発生土を用いたことを特徴とする地盤改良工法用補給材。

A supply material manufactured by the manufacturing method according to any one of claims 1 to 3, wherein construction-generated soil is used as earth and sand.

JP2005157635A 2005-05-30 2005-05-30 Method of manufacturing replenishing material for ground improvement construction method and replenishing material Pending JP2006328902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157635A JP2006328902A (en) 2005-05-30 2005-05-30 Method of manufacturing replenishing material for ground improvement construction method and replenishing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157635A JP2006328902A (en) 2005-05-30 2005-05-30 Method of manufacturing replenishing material for ground improvement construction method and replenishing material

Publications (1)

Publication Number Publication Date
JP2006328902A true JP2006328902A (en) 2006-12-07

Family

ID=37550863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157635A Pending JP2006328902A (en) 2005-05-30 2005-05-30 Method of manufacturing replenishing material for ground improvement construction method and replenishing material

Country Status (1)

Country Link
JP (1) JP2006328902A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106233A (en) * 2010-10-27 2012-06-07 Tokiwa Kogyo Co Ltd Contaminated laying material treatment method
JP2017089340A (en) * 2015-11-17 2017-05-25 五洋建設株式会社 Lightweight banking material and method for using the same
KR101960361B1 (en) * 2018-11-01 2019-03-20 쏘일텍 주식회사 Agitator for excavator and method for solidfying soft ground using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106233A (en) * 2010-10-27 2012-06-07 Tokiwa Kogyo Co Ltd Contaminated laying material treatment method
JP2017089340A (en) * 2015-11-17 2017-05-25 五洋建設株式会社 Lightweight banking material and method for using the same
KR101960361B1 (en) * 2018-11-01 2019-03-20 쏘일텍 주식회사 Agitator for excavator and method for solidfying soft ground using it

Similar Documents

Publication Publication Date Title
JP5130359B2 (en) Counter weight
JP2007131804A (en) Soil backfilling material
JP2006226000A (en) Compounding method of solidification material in improved soil, and compounding method of solidification material and auxiliary agent in improved soil
WO2014024828A1 (en) Construction filler
JP5536260B2 (en) Construction filler
JP2006328902A (en) Method of manufacturing replenishing material for ground improvement construction method and replenishing material
JP2013136938A (en) Underground continuous cut-off wall method
JP5894057B2 (en) Low strength concrete for pumping and manufacturing method of low strength concrete for pumping
JP4109376B2 (en) Method for producing soil mortar using lime-treated soil and embankment method using the same
WO2001004426A1 (en) Lime-improved soil mortar and method for production thereof and fluidization treatment method using the same
JP2001200537A (en) Soil improving method and support pile for soil improvement
JP4054848B2 (en) Method for producing fluidized soil
JP2004218337A (en) Soil-cement wall reclamation material
JP2911412B2 (en) Filling material for construction work, method of manufacturing the same, and method of filling construction site using the filler
JP2015127050A (en) Granulation solidification method of liquid mud
JP2007131805A (en) Improved ground material
JP5192186B2 (en) Cement mixture containing concrete glass and method for producing the same
JP2002180453A (en) Mixing rate confirming method for land forming body material in soil improvement construction method
JP2005113651A (en) Reinforced embankment construction method
JP2011080207A (en) Method of improving subsurface layer and method of improving columnar ground
JP2019181351A (en) Method of producing fluidized soil
JP2886512B2 (en) Improvement and reinforcement of soft ground
JP6999253B1 (en) How to build a sabo dam
JP4625333B2 (en) Fluidized soil and fluidized method
JP2004339801A (en) Fluid filler manufacturing method and plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100203