JP4054848B2 - Method for producing fluidized soil - Google Patents
Method for producing fluidized soil Download PDFInfo
- Publication number
- JP4054848B2 JP4054848B2 JP20017897A JP20017897A JP4054848B2 JP 4054848 B2 JP4054848 B2 JP 4054848B2 JP 20017897 A JP20017897 A JP 20017897A JP 20017897 A JP20017897 A JP 20017897A JP 4054848 B2 JP4054848 B2 JP 4054848B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- water
- surplus
- fluidized
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Processing Of Solid Wastes (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Description
【0001】
本発明は、建設現場において発生した残土と、固化材と、泥水または水とを配合してなり、施工後の埋戻し、構造物への裏込め、空洞部への充填等に供される流動化処理土の製造方法に関するものである。
【0002】
【従来の技術】
従来、建設現場における埋戻し、裏込め、充填には主として外部から搬入された砂等が利用されていたが、砂の採掘、運搬および現場で発生した残土の処理等に対して、環境保全の面での問題等が指摘されるようになってきた。
【0003】
そのため、最近、建設現場で発生した残土のリサイクル手段として、この残土と、水、または細粒土(粘土、シルト分を40〜60%以上含む土)と水とを所定の成分に調整した泥水(調整泥水)と、セメント等の固化材とを混合して流動化させた流動化処理土が、施工後の埋め戻し、裏込め、充填のための技術として注目され、その利用が進められている。
【0004】
この流動化処理土の製造、特に泥水の製造においては、泥水密度とフロー値、泥水密度と一軸圧縮強さ、泥水密度とブリージング率等の関係を求め、これらの結果を基に泥水の成分調整を行い、さらにフロー値等の試験を行った後、所望の性質を有する流動化処理土の配合比を決定している。その後、決定した配合比に基づいて流動化処理土を製造している。
【0005】
しかし、こうした従来の製造方法では、上述のように多くの試験および工程を必要とするため、製造、特に調整泥水の作製に時間を要し、その結果工事期間を長期化させる一因ともなる。また、同時に人手をも要するため、近年の建設作業における人手不足への対応が困難である。
【0006】
一方、建物等の構造物の建設において、深層混合処理工法、ソイルセメント柱列壁工法等と称される工法が行われている。これらは、地盤を掘削しつつ、該地盤中にセメント等の固化材と水を注入して土と混合・固化させて、基礎や止水壁等を形成するものである。
【0007】
この工法においては、地盤中に固化材等を注入するため、注入した固化材等の量だけ地盤中の土の体積が増加することとなる。そのため、施工直後に流動性の余剰土が発生する。この余剰土は固化材のスラリーを含有するため自硬性を有し、またこれを他に利用することができないため固結後に廃棄処分せざるを得なかった。しかし、処分のためには相当の費用を要するといった問題がある。
【0008】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決し、簡便かつ効率的に、所望の性質を有する流動化処理土を製造する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の発明者は、建設現場での埋戻し、裏込め、充填等に用いる流動化処理土とその配合方法および施工方法について研究を重ねた結果、前述した、基礎工事等において発生する、固化材スラリーを含有する流動性の余剰土が、これを水で希釈して所定の密度に調整することにより流動化処理土の、泥水としてかつ固化材の一部として利用できることを見いだし、本発明を完成するに至ったものである。
【0010】
すなわち、本発明に係る流動化処理土の製造方法は、建設残土と、固化材と、水または泥水とを配合してなる流動化処理土の製造において、地盤を掘削しつつそこに固化材および水を注入し、これらと原位置土とを混合、固化させて基礎、止水壁等を形成する際に発生する、固化材スラリーを含有する流動性の余剰土を、水で希釈して所定の密度に調整することにより、一定時間経過した後も余剰土が固化することなく流動性を保つことができ、この余剰土を、前記配合する、泥水としてかつ固化材の一部として用いることを特徴とする。
【0011】
本発明に係る流動化処理土は、従来の調整泥水を用いたものと比較してほぼ同等の特性を有する。そのため、埋戻し、裏込め、充填等への利用に際しては、良好な施工性と十分な地山強度とを達成することができる。
【0012】
また、本発明に係る流動化処理土は、その製造において従来は廃棄物として処分せざるを得なかった、固化材スラリーを含有する流動性の余剰土を有効に利用することから、処分に要する費用を低減させるのみならず、環境保全にも寄与しうるものとなる。
【0013】
なお、本発明に係る流動化処理土の製造方法においては、前記余剰土の密度を1.3kg/m3未満に調整しても良い。
【0014】
本発明に係る流動化処理土の製造方法において、前記余剰土を泥水として用いる際に、密度を前記の値に調整することにより、一定の時間が経過した後も、この余剰土が固化することなく流動性を保つことができる。そのため、従来の流動化処理土に用いられてきた調整泥水の代わりに、この余剰土が利用でき、かつ、この余剰土の発生場所から、これを用いる流動化処理土による埋め戻し等を行う施工場所への搬送も可能となる。
【0015】
【発明の実施の形態】
以下、本発明の好適な実施形態について説明する。
【0016】
図1に、本発明による流動化処理土の製造に際しての、建設残土と余剰土の配合比を決定する手順のフローチャートを示す。以下、本図を参照して配合方法について説明する。
【0017】
まず、現場で発生した残土の粒度試験(細粒土の判別分類試験)を行って粒径分布を求め、特に、含まれる細粒土の割合を調べる。このとき、残土が細粒土の場合、流動化処理土の作成の際には残土に水および固化材を添加して混合し、一方残土が砂質土の場合は、残土に泥水および固化材を添加し、混合することとする。
【0018】
一方、泥水として用いる、流動性を有する余剰土については、水で希釈して所定の密度に調整し、その後流動性試験(Pロート試験)および含水比試験を行い、所望の特性を有するように調整する。
【0019】
その後、所定の混合比に従って残土と余剰土とを混合し、得られた混合物について、密度、フロー値等の試験を行い、所望の特性が得られた場合、残土と余剰土との配合比の範囲を決定する。また、所望の特性が得られなかった場合には、混合比を変えて再度混合する。
【0020】
なお、本発明に係る流動化処理土の製造に際しては、余剰土自体が固化材成分を含有しているが、一軸圧縮試験において所望の強度が得られる量の固化材を添加する。
【0021】
以下、本発明により製造した流動化処理土の特性試験の結果について説明する。
【0022】
本試験においては、表1に組成を示す余剰土を使用した。表1において、余剰土Aおよび余剰土Bは採取直後に水により希釈を行い、余剰土Cは余剰土Bと同じ場所で採取し、2時間経過後に希釈を行っている。また表1最下欄の残土は、上述した各余剰土と混合して流動化処理土を作成するためのものである。なお、本表において粒度構成はJIS A 1204、土粒子の密度はJIS A 1202、自然含水比はJIS A 1203に基づく試験法によりそれぞれ求めた。
【0023】
【表1】
【0024】
図2は、本試験に供した余剰土において、その流動性を表すPロート値の経時変化を示すものである。ここで、Pロート値は土木学会基準「プレパックトコンクリートの注入モルタルの流動性試験方法」に基づいて測定した。本図より、密度が1.3kg/m3未満となるように調整した場合、Pロート値の経時変化が非常に小さい、すなわち流動性が失われないことがわかる。
【0025】
次に図3は、本試験に供した余剰土と残土とを混合して作成した流動化処理土における、泥水混合比(希釈した余剰土と残土との比)と一軸圧縮強度との関係を示すものである。ここで、一軸圧縮強度は「コンクリートの圧縮強度試験方法」(JIS A 1216)に基づくものであり、試料作成後28日の時点での測定値である。図では、比較のため、従来方法の、粘性土による調整泥水を用いた地盤改良材の試験値を併せて示す。図より、本発明に係る方法により作成した地盤改良材が、従来方法によるものとほぼ同等の特性を有していることが示されている。
【0026】
図4は、本発明に係る方法により作成した地盤改良材における、地盤改良材の単位体積重量と一軸圧縮強度との関係を示すものである。本図においても、従来方法による流動化処理土の試験値を比較のために併記している。本図においても、本発明に係る方法により作成した地盤改良材が、従来方法によるものとほぼ同等の特性を有していることが理解される。
【0027】
図5は、本発明に係る方法により作成した地盤改良材における、地盤改良材の単位体積重量とフロー値との関係を示すものである。ここで、フロー値は日本道路公団基準(JHS A 313-1992)に基づいて測定している。本図からも、本発明に係る方法により作成した地盤改良材が、従来方法によるものとほぼ同等の特性を有していることは明らかである。
【0028】
さらに図6は、本発明に係る方法により作成した地盤改良材における、泥水混合比とブリージング率との関係を示すものである。ここで、ブリージング率は、土木学会基準「プレパックドコンクリートの注入モルタルのブリージング率及び膨張率試験方法」(JSCE-1986) に準拠して測定している。明らかに、本図からも、本発明に係る方法により作成した地盤改良材が、従来方法によるものとほぼ同等の特性を有していることが示される。
【0029】
以上の結果から、本発明に係る方法、すなわち基礎工事、土止工事等により発生する、固化材スラリーを含有する流動性の余剰土を用いた流動化処理土が、従来の調整泥水を用いた場合と比較して、ほぼ同等の特性を有することが理解される。
【0030】
【発明の効果】
また本発明は、従来は廃棄物として処分せざるを得なかった、固化材スラリーを含有する余剰土を有効利用するものであることから、処分に要する費用を低減させるのみならず、環境保全にも寄与しうるものとなる。
【0031】
本発明により、流動化処理土の製造が簡便に行うことができるようになり、このことは現場での流動化処理土の製造をも可能とする。従って、建設工事の工期の短縮が図れると共に、現場作業員の人手不足にも対応できるようになる。
【図面の簡単な説明】
【図1】本発明による流動化処理土の製造における、残土と余剰土の配合比を決定する手順を示すフローチャートである。
【図2】本発明による流動化処理土の製造に用いる余剰土のPロート試験結果を示す図である。
【図3】本発明による流動化処理土における、泥水混合比と一軸圧縮強度との関係を示す図である。
【図4】本発明による流動化処理土の単位体積重量と一軸圧縮強度との関係を示す図である。
【図5】本発明による流動化処理土のフロー値と一軸圧縮強度との関係を示す図である。
【図6】本発明による流動化処理土における、泥水混合比とブリージング率との関係を示す図である。[0001]
The present invention is a mixture of residual soil generated at a construction site, solidified material, and muddy water or water, and is used for backfilling after construction, backfilling to a structure, filling a cavity, and the like. The present invention relates to a method for producing chlorinated soil.
[0002]
[Prior art]
Conventionally, sand brought in from the outside has been used mainly for backfilling, backfilling, and filling at construction sites. However, it is necessary to protect the environment for mining, transporting sand, and treating residual soil generated at the site. Problems in the field have been pointed out.
[0003]
Therefore, as a means of recycling recently generated soil at construction sites, this remaining soil and muddy water adjusted to water or fine-grained soil (soil containing 40% to 60% or more of clay and silt) and water to prescribed components Fluidized soil obtained by mixing (adjusted muddy water) and solidifying material such as cement and fluidized is attracting attention as a technology for backfilling, backfilling, and filling after construction. Yes.
[0004]
In the production of this fluidized soil, especially in the production of muddy water, the relationship between muddy water density and flow value, muddy water density and uniaxial compressive strength, muddy water density and breathing rate, etc. are obtained, and the components of muddy water are adjusted based on these results. After further testing such as flow value, the mixing ratio of fluidized soil having desired properties is determined. Thereafter, fluidized soil is produced based on the determined blending ratio.
[0005]
However, since such a conventional manufacturing method requires many tests and processes as described above, it takes time to manufacture, in particular, preparation of adjusted mud water, and as a result, it also contributes to prolonging the construction period. At the same time, since it requires manpower, it is difficult to cope with labor shortages in recent construction work.
[0006]
On the other hand, in the construction of a structure such as a building, a construction method called a deep mixing treatment method, a soil cement column wall construction method, or the like is performed. These excavate the ground and inject a solidifying material such as cement and water into the ground to mix and solidify with soil to form a foundation, a water blocking wall, and the like.
[0007]
In this construction method, since the solidified material or the like is injected into the ground, the volume of the soil in the ground increases by the amount of the injected solidified material or the like. Therefore, fluid surplus soil is generated immediately after construction. Since this surplus soil contains a slurry of a solidifying material, it has self-hardening properties, and since it cannot be used elsewhere, it must be disposed of after being consolidated. However, there is a problem that a considerable cost is required for disposal.
[0008]
[Problems to be solved by the invention]
The object of the present invention is to solve the above problems and to provide a method for producing fluidized soil having desired properties in a simple and efficient manner.
[0009]
[Means for Solving the Problems]
The inventor of the present invention, as a result of repeated research on the fluidized soil used for backfilling, backfilling, filling, etc. at the construction site, its blending method and construction method, solidification that occurs in the foundation work, etc. described above. fluidity of surplus soil containing wood slurry, found that this fluidization treated soil by adjusting to a predetermined density by diluting with water, available as part of the mud and solidifying material, the present invention It has come to be completed.
[0010]
That is, the method for producing a fluidized soil according to the present invention includes a method for producing a fluidized soil obtained by blending construction residual soil, a solidified material, and water or mud water, while excavating the ground, The fluid surplus soil containing the solidified material slurry, which is generated when water is injected, and these are mixed with the in-situ soil and solidified to form a foundation, water blocking wall, etc., is diluted with water to give by adjusting the density of, after the predetermined time elapses can also maintain fluidity without excess soil is solidified, the surplus soil, the blending, the use as part of the mud and solidifying material Features.
[0011]
The fluidized soil according to the present invention has substantially the same characteristics as those using conventional conditioned muddy water. Therefore, in use for backfilling, backfilling, filling, etc., good workability and sufficient ground strength can be achieved.
[0012]
In addition, the fluidized soil according to the present invention is required for disposal because it effectively utilizes the fluid surplus soil containing the solidifying material slurry, which has been conventionally disposed of as waste in the production thereof. This not only reduces costs but also contributes to environmental conservation.
[0013]
In the method for producing fluidized soil according to the present invention, the density of the surplus soil may be adjusted to less than 1.3 kg / m 3 .
[0014]
In the method for producing fluidized soil according to the present invention, when the surplus soil is used as muddy water, the surplus soil is solidified even after a certain period of time by adjusting the density to the above value. The fluidity can be maintained. Therefore, this surplus soil can be used in place of the adjusted muddy water that has been used in conventional fluidized soil, and construction is performed such as backfilling with fluidized soil using this surplus soil from where it occurs. Transport to a place is also possible.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0016]
FIG. 1 shows a flowchart of a procedure for determining the blending ratio of construction surplus soil and surplus soil when producing fluidized soil according to the present invention. Hereinafter, the blending method will be described with reference to this drawing.
[0017]
First, the particle size test of the residual soil generated on site (discrimination classification test for fine-grained soil) is performed to determine the particle size distribution, and in particular, the proportion of fine-grained soil contained is examined. At this time, if the remaining soil is fine-grained soil, water and a solidifying material are added to the remaining soil and mixed when creating the fluidized soil, while if the remaining soil is sandy soil, muddy water and a solidifying material are added to the remaining soil. Will be added and mixed.
[0018]
On the other hand, surplus soil with fluidity used as muddy water is diluted with water and adjusted to a predetermined density, and then a fluidity test (P funnel test) and a water content ratio test are performed to have desired characteristics. adjust.
[0019]
Thereafter, the remaining soil and surplus soil are mixed according to a predetermined mixing ratio, and the resulting mixture is tested for density, flow value, etc., and when desired characteristics are obtained, the mixing ratio of the remaining soil and surplus soil is Determine the range. If the desired characteristics cannot be obtained, the mixing ratio is changed and mixing is performed again.
[0020]
Incidentally, in the production of fluidized treated soil according to the present invention, although excess soil itself contains a solidifying material components, the addition of solidifying material having a desired strength can that obtained amounts in uniaxial compression test.
[0021]
Hereinafter, the result of the characteristic test of the fluidized soil manufactured according to the present invention will be described.
[0022]
In this test, surplus soil whose composition is shown in Table 1 was used. In Table 1, surplus soil A and surplus soil B are diluted with water immediately after collection, and surplus soil C is collected at the same location as surplus soil B, and diluted after 2 hours. The remaining soil in the lowermost column of Table 1 is used to create fluidized soil by mixing with each of the above-mentioned surplus soils. In this table, the particle size composition was determined by a test method based on JIS A 1204, the density of soil particles was determined by JIS A 1202, and the natural water content was determined by a test method based on JIS A 1203.
[0023]
[Table 1]
[0024]
FIG. 2 shows the change over time in the P funnel value representing the fluidity of surplus soil subjected to this test. Here, the P funnel value was measured based on the Japan Society of Civil Engineers standard "Method of testing fluidity of pre-packed concrete injection mortar". From this figure, it can be seen that when the density is adjusted to be less than 1.3 kg / m 3 , the change in the P funnel value with time is very small, that is, the fluidity is not lost.
[0025]
Next, FIG. 3 shows the relationship between the muddy water mixing ratio (ratio of diluted surplus soil and residual soil) and uniaxial compressive strength in the fluidized soil prepared by mixing surplus soil and residual soil subjected to this test. It is shown. Here, the uniaxial compressive strength is based on the “Concrete compressive strength test method” (JIS A 1216), and is a value measured on the 28th day after the preparation of the sample. In the figure, for comparison, the test values of the ground improvement material using the adjusted muddy water by the viscous soil of the conventional method are also shown. From the figure, it is shown that the ground improvement material created by the method according to the present invention has almost the same characteristics as those obtained by the conventional method.
[0026]
FIG. 4 shows the relationship between the unit volume weight of the ground improvement material and the uniaxial compressive strength in the ground improvement material created by the method according to the present invention. Also in this figure, the test value of the fluidized soil by the conventional method is shown for comparison. Also in this figure, it is understood that the ground improvement material created by the method according to the present invention has almost the same characteristics as those obtained by the conventional method.
[0027]
FIG. 5 shows the relationship between the unit volume weight of the ground improvement material and the flow value in the ground improvement material created by the method according to the present invention. Here, the flow value is measured based on the Japan Highway Public Corporation Standard (JHS A 313-1992). Also from this figure, it is clear that the ground improvement material created by the method according to the present invention has almost the same characteristics as those obtained by the conventional method.
[0028]
Further, FIG. 6 shows the relationship between the muddy water mixing ratio and the breathing rate in the ground improvement material prepared by the method according to the present invention. Here, the breathing rate is measured according to the Japan Society of Civil Engineers standard "Testing method for breathing rate and expansion rate of pre-packed concrete mortar" (JSCE-1986). Obviously, this figure also shows that the ground improvement material created by the method according to the present invention has almost the same characteristics as those obtained by the conventional method.
[0029]
From the above results, the fluidized soil using the fluid surplus soil containing the solidifying material slurry generated by the method according to the present invention, that is, the foundation work, the earth work, etc., used the conventional conditioned mud. It is understood that it has substantially equivalent characteristics compared to the case.
[0030]
【The invention's effect】
In addition, since the present invention effectively uses surplus soil containing the solidified material slurry, which has been conventionally disposed of as waste, it not only reduces the cost required for disposal, but also protects the environment. Can also contribute.
[0031]
According to the present invention, the fluidized soil can be easily manufactured, which also enables the fluidized soil to be manufactured on site. Therefore, the construction work period can be shortened and the shortage of field workers can be dealt with.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a procedure for determining a mixing ratio of residual soil and surplus soil in the production of fluidized soil according to the present invention.
FIG. 2 is a diagram showing a result of a P funnel test of surplus soil used for production of fluidized soil according to the present invention.
FIG. 3 is a diagram showing the relationship between the muddy water mixing ratio and the uniaxial compressive strength in the fluidized soil according to the present invention.
FIG. 4 is a diagram showing the relationship between unit volume weight and uniaxial compressive strength of fluidized soil according to the present invention.
FIG. 5 is a diagram showing the relationship between the flow value of the fluidized soil according to the present invention and the uniaxial compressive strength.
FIG. 6 is a diagram showing the relationship between the muddy water mixing ratio and the breathing rate in the fluidized soil according to the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20017897A JP4054848B2 (en) | 1997-07-25 | 1997-07-25 | Method for producing fluidized soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20017897A JP4054848B2 (en) | 1997-07-25 | 1997-07-25 | Method for producing fluidized soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1143931A JPH1143931A (en) | 1999-02-16 |
JP4054848B2 true JP4054848B2 (en) | 2008-03-05 |
Family
ID=16420100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20017897A Expired - Lifetime JP4054848B2 (en) | 1997-07-25 | 1997-07-25 | Method for producing fluidized soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4054848B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003024915A (en) * | 2001-07-19 | 2003-01-28 | Yokohama City | Filler using lime sewage sludge incineration ash and method for selecting blend of filler |
JP4098575B2 (en) * | 2002-07-16 | 2008-06-11 | 株式会社熊谷組 | Formulation management method of soil mortar |
JP5302726B2 (en) * | 2009-03-19 | 2013-10-02 | 三谷セキサン株式会社 | Construction method of foundation pile, construction method of cement milk column |
JP5395026B2 (en) * | 2010-10-21 | 2014-01-22 | 株式会社 キヨサト生コン | Method for supplying fluidized soil |
JP5543628B2 (en) * | 2013-02-18 | 2014-07-09 | 三谷セキサン株式会社 | Cement milk solidification strength judgment method, foundation pile construction method, cement milk column construction method, sampling device |
JP6546797B2 (en) * | 2015-07-06 | 2019-07-17 | 株式会社流動化処理工法総合監理 | Production method of fluidization treated soil |
JP6894746B2 (en) * | 2017-04-06 | 2021-06-30 | 大成建設株式会社 | How to manage fluidized soil |
JP7397680B2 (en) * | 2019-03-25 | 2023-12-13 | 積水化学工業株式会社 | Effective use of improved leftover soil |
-
1997
- 1997-07-25 JP JP20017897A patent/JP4054848B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1143931A (en) | 1999-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4054848B2 (en) | Method for producing fluidized soil | |
CN101008178B (en) | Soft base processing construction process using excavating and stirring method | |
JP2728846B2 (en) | Fluidization method | |
JP2002180449A (en) | Method of manufacturing wet foundation improving soil | |
Pons et al. | Development of engineering properties for regular and quick-set flowable fill | |
JP2957939B2 (en) | Simple compounding method of wet ground improvement material | |
JP4109376B2 (en) | Method for producing soil mortar using lime-treated soil and embankment method using the same | |
JP2002371588A (en) | Treated soil for structure direct bearing stratum, method of manufacturing the treated soil, and structure direct bearing stratum | |
JPH06108449A (en) | Method of improving ground | |
JP2882259B2 (en) | Hydraulic material and self-hardening stabilizer | |
JP2004218337A (en) | Soil-cement wall reclamation material | |
JP6496869B1 (en) | W / C setting method and apparatus in deep mixed processing method | |
JPH04182335A (en) | Production of self-hardening filling-back material | |
JP2002180453A (en) | Mixing rate confirming method for land forming body material in soil improvement construction method | |
JPH0615768B2 (en) | Construction method of water blocking wall | |
DE10213396B4 (en) | Mortar and method for the compaction-free filling of trenches, channels and cavities in earthworks, road construction and foundation engineering | |
JP4620824B2 (en) | Manufacturing method of backfill soil | |
JP3721495B2 (en) | Method of manufacturing filler for soil cement column wall construction | |
JP5274776B2 (en) | Construction method of artificial soil material consisting of construction by-products | |
JP2001354960A (en) | Method for utilizing construction surplus soil | |
CN109577124A (en) | Roadbed reinforcement means on the spot under a kind of saturated soft soil geological conditions | |
JP2840879B2 (en) | Self-hardening backfill material | |
JP2744578B2 (en) | Fluidizing backfill solidifying agent and method of using the same | |
Langton et al. | Utilization of SRS pond ash in controlled low strength material. Technical report | |
Howard | The Five Types of Pipeline Trenches |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040722 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060704 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070124 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070124 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20070529 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070706 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |