JP4905296B2 - Method for constructing retaining wall and retaining wall - Google Patents

Method for constructing retaining wall and retaining wall Download PDF

Info

Publication number
JP4905296B2
JP4905296B2 JP2007223021A JP2007223021A JP4905296B2 JP 4905296 B2 JP4905296 B2 JP 4905296B2 JP 2007223021 A JP2007223021 A JP 2007223021A JP 2007223021 A JP2007223021 A JP 2007223021A JP 4905296 B2 JP4905296 B2 JP 4905296B2
Authority
JP
Japan
Prior art keywords
water
joint
retaining wall
steel material
stopping steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007223021A
Other languages
Japanese (ja)
Other versions
JP2009057682A (en
Inventor
義彦 森尾
正 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007223021A priority Critical patent/JP4905296B2/en
Publication of JP2009057682A publication Critical patent/JP2009057682A/en
Application granted granted Critical
Publication of JP4905296B2 publication Critical patent/JP4905296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

本発明は、地盤内の地下水の流動阻害を防止可能な山留め壁に関するものである。   The present invention relates to a mountain retaining wall that can prevent the flow of groundwater from being blocked in the ground.

地下構造物を開削工法等にて構築する際は、遮水性の土留め壁が地盤内に形成され、作業領域内への地下水の浸入を防止している。しかし、土留め壁を形成することにより、地盤内の地下水の流動を阻害するので、土留め壁の下流側に地下水が流れなくなり、下流側の井戸の水位が低下したり、地盤沈下が生じるという問題点があった。そこで、土留め壁の帯水層に位置する部分に開口部を設けて、地下水を下流に通水させている。   When constructing an underground structure by the open-cut method or the like, a water-impervious earth retaining wall is formed in the ground to prevent entry of groundwater into the work area. However, by forming a retaining wall, the flow of groundwater in the ground is obstructed, so that groundwater does not flow downstream of the retaining wall, and the water level of the well on the downstream side decreases, or ground subsidence occurs. There was a problem. Therefore, an opening is provided in a portion of the earth retaining wall located in the aquifer to allow groundwater to flow downstream.

例えば、特許文献1には、帯水層よりも深い所定の深度までの止水壁と、帯水層よりも浅い深度までの壁とからなる土留め壁を形成するとともに、帯水層を含む地盤を凍結させて地下水の流れを遮断し、地下構造物を構築すると、凍結した地盤を解凍して地下水を下流側に通水する方法が開示されている。   For example, Patent Document 1 forms a retaining wall composed of a water stop wall up to a predetermined depth deeper than the aquifer and a wall up to a depth shallower than the aquifer, and includes the aquifer. A method is disclosed in which when the ground is frozen to block the flow of groundwater and the underground structure is constructed, the frozen ground is thawed and the groundwater is passed downstream.

また、特許文献2には、ソイルセメントからなる土留め壁に、その構築時又は構築後に、所望の間隔を隔てて縦向きの作業孔を形成し、その作業孔に水等の衝撃伝達材を注入するとともにプラズマ発生用電力を供給するためのプローブを挿入し、これに電力を供給してプラズマによる衝撃波を発生させて遮水性土留め壁を破砕し、この破砕により生じた隙間を介して地下水を下流側に通水する方法が開示されている。
特開2000−136528号公報 特開2004−124575号公報
Further, in Patent Document 2, a vertical working hole is formed at a desired interval on the earth retaining wall made of soil cement at the time of or after the construction, and an impact transmission material such as water is formed in the work hole. A probe for supplying electric power for plasma generation is inserted, and electric power is supplied to generate a shock wave by the plasma to crush the impermeable earth retaining wall. Through the gap generated by this crushing, groundwater A method of passing water downstream is disclosed.
JP 2000-136528 A JP 2004-124575 A

しかしながら、特許文献1に記載の方法では、帯水層を含む広い範囲の地盤を凍結するので、地盤内に生息する生き物や植物に悪影響をおよぼす可能性があるという問題点があった。さらに、広い範囲を長期間にわたって凍結しなければならないので、設備投資費及び維持管理費がかかり、施工費が高くなるという問題点もあった。   However, the method described in Patent Document 1 has a problem in that since a wide range of ground including the aquifer is frozen, it may adversely affect living creatures and plants that inhabit the ground. Furthermore, since a wide range has to be frozen over a long period of time, there is a problem in that capital investment and maintenance costs are incurred and construction costs are high.

また、特許文献2に記載の方法では、プラズマ電力を発生させるための装置が高額なので設備投資費が高くなるという問題点があった。さらに、雨天時等には周囲に漏電する可能性があるという問題点もあった。   Further, the method described in Patent Document 2 has a problem that the equipment investment cost is high because the apparatus for generating plasma power is expensive. In addition, there is a problem that electric leakage may occur in the vicinity when it rains.

そこで、本発明は、上記のような従来の問題に鑑みなされたものであって、環境に与える影響が少なく、かつ、低コストで安全に施工できる山留め壁及びその構築方法を提供することを目的とする。   Therefore, the present invention has been made in view of the conventional problems as described above, and has an object to provide a retaining wall and a construction method thereof that can be safely constructed at a low cost with little influence on the environment. And

前記目的を達成するため、本発明の山留め壁の構築方法は、地下水の流動阻害を防止する山留め壁の構築方法において、前記山留め壁の構築予定位置の所定の箇所の地盤内に、継手を有する第1の止水用鋼材を打設する第1の設置工程と、前記第1の止水用鋼材を打設した箇所を除く前記構築予定位置に、時間が経過すると硬化して前記山留め壁を構成する硬化材を流動状態で、前記第1の止水用鋼材の継手が前記山留め壁に入り込まないように打設する打設工程と、継手を有する第2の止水用鋼材をその継手が前記山留め壁の外側で前記第1の止水用鋼材の継手と係合するように、流動状態の前記硬化材内に打設する第2の設置工程と、前記第1の止水用鋼材を地下水が通水可能な所定の深度まで引き上げる引上工程とを備えることを特徴とする(第1の発明)。 In order to achieve the above object, a method for constructing a retaining wall according to the present invention is a method for constructing a retaining wall that prevents the flow of groundwater from being hindered, and has a joint in the ground at a predetermined location of the planned construction position of the retaining wall. The first installation step of placing the first water-stopping steel material, and the planned construction position excluding the place where the first water-stopping steel material is placed, hardens over time, and the mountain retaining wall The hardened material to be configured is in a fluidized state, and a placing step for placing the joint of the first water-stopping steel material so as not to enter the mountain retaining wall ; and a second water-stopping steel material having a joint, A second installation step of placing in the hardened material in a fluidized state so as to engage with a joint of the first water-stopping steel material outside the mountain retaining wall; and the first water-stopping steel material. And a pulling-up process for raising the groundwater to a predetermined depth that allows water to flow. To (first invention).

本発明による山留め壁の構築方法によれば、第1の止水用鋼材を帯水層の存在する深度よりも浅い所定の深度まで引き上げるので、工事終了後は、地下水が帯水層を通水可能となり、土留め壁の上流側の地下水を下流側へ通水することができる。
また、第1の止水用鋼材は地盤内に設置されており、土留め壁の内部に設置されていないので、容易に引き上げることができる。
According to the method for constructing a retaining wall according to the present invention, since the first water-stopping steel material is pulled up to a predetermined depth shallower than the depth where the aquifer exists, the groundwater passes through the aquifer after the construction is completed. It becomes possible, and the groundwater upstream of the retaining wall can be passed downstream.
Moreover, since the 1st water stop steel material is installed in the ground and is not installed in the inside of the earth retaining wall, it can be pulled up easily.

さらに、第1及び第2の設置工程や引上工程は、一般的な土留め壁の構築時に使用される打設機やクレーン等の機械を用いて行うことができるので、新たに設備投資費がかからない。また、これらの作業は、手間がかからず短時間で施工することができるので、従来の流動阻害を防止可能な土留め壁よりも短期間で構築できる。したがって、工期が短くなり、施工費を低減することができる。   Furthermore, since the first and second installation steps and the lifting step can be performed by using a machine such as a placement machine or a crane used when constructing a general retaining wall, a new capital investment cost is newly provided. It does not take. Moreover, since these operations can be carried out in a short time without trouble, they can be constructed in a shorter period of time than a conventional retaining wall capable of preventing flow hindrance. Therefore, the construction period is shortened and the construction cost can be reduced.

第2の発明は、第1の発明において、前記係合した継手に遮水性を有する止水材を設ける止水工程を更に備えることを特徴とする。
本発明による山留め壁の構築方法によれば、第1の止水用鋼材の継手と第2の止水用鋼材の継手とが係合した継手に遮水性を有する止水材を設けるので、継手を遮水することができる。
According to a second aspect of the present invention, in the first aspect of the present invention, the method further comprises a water stop step of providing a water stop material having a water shielding property to the engaged joint.
According to the method for constructing a retaining wall according to the present invention, a water-stopping material having a water blocking property is provided in a joint in which a joint of a first water-stopping steel material and a joint of a second water-stopping steel material are engaged. Can be impermeable.

第3の発明は、第2の発明において、前記止水材は、固化することなく変形自在な性状を維持することを特徴とする。
本発明による山留め壁の構築方法によれば、止水材は、固化することなく変形自在な性状を維持するので、止水用鋼材を鉛直方向や水平方向へ移動させても、移動後の止水用鋼材の継手の形状に追随して変形し、継手を確実に遮水することができる。
A third invention is characterized in that, in the second invention, the waterstop material maintains a deformable property without solidifying.
According to the method for constructing the retaining wall according to the present invention, the water stop material maintains a deformable property without solidifying, so even if the water stop steel material is moved in the vertical direction or the horizontal direction, The joint can be deformed following the shape of the joint of the water steel material, and the joint can be reliably insulated.

また、止水材は変形自在なので、第1の止水用鋼材を引き上げる際にも抵抗を生じることなく容易に引き上げることができる。したがって、第1の止水用鋼材を引き上げるときに第2の止水用鋼材に振動や衝突等の衝撃を与えないので、第2の止水用鋼材が埋設されている土留め壁を傷つけることがない。   Moreover, since the water stop material is freely deformable, it can be easily pulled up without causing resistance even when the first water stop steel material is pulled up. Therefore, when pulling up the first water-stopping steel material, the second water-stopping steel material is not subjected to an impact such as vibration or collision, so that the earth retaining wall in which the second water-stopping steel material is embedded is damaged. There is no.

第4の発明の山留め壁は、地下水の流動阻害を防止する山留め壁であって、時間の経過とともに硬化する硬化材を所定の間隔で地盤内に打設して構築された壁部と、継手を有し、隣接する前記壁部間の地盤内の所定の帯水層よりも浅い深度に、前記継手が前記壁部に入り込まないように設置された第1の止水用鋼材と、継手を有し、その継手が前記壁部の外側で前記第1の止水用鋼材の継手に係合されるとともに、前記壁部内に設置された第2の止水用鋼材とを備えることを特徴とする。 A mountain retaining wall according to a fourth aspect of the present invention is a mountain retaining wall that prevents the flow of groundwater from being hindered. The wall is constructed by placing a hardening material that hardens over time into the ground at a predetermined interval, and a joint. A first water-stopping steel material installed so that the joint does not enter the wall portion at a depth shallower than a predetermined aquifer in the ground between the adjacent wall portions, and a joint And the joint is engaged with the joint of the first water-stopping steel material on the outside of the wall portion, and includes a second water-stopping steel material installed in the wall portion. To do.

第5の発明は、第4の発明において、前記係合する継手内は、固化することなく変形自在な性状を維持するとともに、遮水性を有する止水材が設けられていることを特徴とする。   The fifth invention is characterized in that, in the fourth invention, the engaging joint is provided with a water-stopping material having a water shielding property while maintaining a deformable property without solidifying. .

本発明の山留め壁の構築方法を用いることにより、環境に与える影響が少なく、かつ、低コストで地下水の流動阻害を防止可能な土留め壁を構築することができる。   By using the mountain retaining wall construction method of the present invention, it is possible to construct a retaining wall that has little influence on the environment and that can prevent the flow of groundwater from being hindered at low cost.

以下、本発明の山留め壁の構築方法の好ましい実施形態について図面を用いて詳細に説明する。なお、以下の実施形態では、山留め壁であるソイルセメント柱列壁を地山に設置した場合について説明するが、本発明は、RC等の山留め壁にも適用することができる。   Hereinafter, a preferred embodiment of a method for constructing a retaining wall according to the present invention will be described in detail with reference to the drawings. In addition, although the following embodiment demonstrates the case where the soil cement pillar row wall which is a retaining wall is installed in a natural mountain, this invention is applicable also to retaining walls, such as RC.

図1及び図2は、それぞれ本発明の実施形態に係るソイルセメント柱列壁1を示す斜視断面図及び縦断面図である。   1 and 2 are a perspective sectional view and a longitudinal sectional view, respectively, showing a soil cement column wall 1 according to an embodiment of the present invention.

図1及び図2に示すように、ソイルセメント柱列壁1は、時間の経過とともに硬化する硬化材を所定の間隔で地盤内に打設して構築されたソイルセメント柱列部1Aと、継手を有し、隣接するソイルセメント柱列部1A間の地盤内の帯水層の砂層4よりも浅い深度で不通水層の粘土層3に設置された第1の止水用鋼材9と、継手を有し、第1の止水用鋼材9の継手に係合されるとともに、ソイルセメント柱列部1A内に設置された第2の止水用鋼材7a、7bとを備える。   As shown in FIGS. 1 and 2, the soil cement column wall 1 includes a soil cement column 1A constructed by placing a hardened material that hardens with time in the ground at a predetermined interval, and a joint. A first water-stopping steel material 9 installed on the clay layer 3 of the water-impervious layer at a depth shallower than the sand layer 4 of the aquifer in the ground between the adjacent soil cement column arrays 1A, and a joint And is engaged with a joint of the first water-stopping steel material 9 and includes second water-stopping steel materials 7a and 7b installed in the soil cement column array 1A.

ソイルセメント柱列部1Aは、粘土層3及び砂層4を貫通して不通水層の土丹層5の上部に到達するように構築されている。   The soil cement column 1A is constructed so as to penetrate the clay layer 3 and the sand layer 4 and reach the upper part of the Dotan layer 5 which is a water-impervious layer.

第2の止水用鋼材7a、7bは、ソイルセメント柱列部1Aとほぼ同じ深さになるように設置されている。   The second water-stopping steel materials 7a and 7b are installed so as to have substantially the same depth as that of the soil cement column 1A.

第1の止水用鋼材9は、砂層4よりも浅い深度の粘土層3に設置されているので、ソイルセメント柱列壁1の上流側の地下水は、ソイルセメント柱列部1A間の砂層4を通過して下流側に流れることができる。   Since the first water-stopping steel material 9 is installed in the clay layer 3 having a shallower depth than the sand layer 4, the groundwater upstream of the soil cement column wall 1 is the sand layer 4 between the soil cement column columns 1A. Can flow downstream.

第2の止水用鋼材7a、7bの継手と第1の止水用鋼材9の継手とが係合した継手部10内は、地下水がこの継手部10内を通過してソイルセメント柱列壁1で囲まれた内側、つまり、掘削予定箇所6に流入しないように止水材12で充填されている。   In the joint portion 10 where the joints of the second water-stopping steel materials 7a and 7b and the joints of the first water-stopping steel material 9 are engaged, the ground water passes through the joint portion 10 and the soil cement column wall. 1 is filled with a water blocking material 12 so as not to flow into the planned excavation site 6.

本実施形態においては、第1の止水用鋼材9及び第2の止水用鋼材7a、7bとして、両端に継手を有するシートパイルを用いたが、これに限定されるものではなく、鋼管矢板、鋼矢板等を用いてもよい。   In the present embodiment, sheet piles having joints at both ends are used as the first water-stopping steel material 9 and the second water-stopping steel materials 7a and 7b. However, the present invention is not limited to this. A steel sheet pile or the like may be used.

なお、第1の止水用鋼材9は、ソイルセメント柱列壁1で囲まれた内側に地下構造物2を構築する際は、この内側への地下水の流入を防止するために粘土層3及び砂層4を貫通して土丹層5に到達するように設置されており、地下構造物2を構築した後に、砂層4の地下水を通水するために粘土層3まで引き上げたものである(詳細は後述する)。第1の止水用鋼材9の設置位置等は、設計により決定され、各現場により異なる。   In addition, when constructing the underground structure 2 on the inner side surrounded by the soil cement column wall 1, the first water-stopping steel material 9 includes the clay layer 3 and the It is installed so as to penetrate the sand layer 4 and reach the Dotan layer 5, and after constructing the underground structure 2, it is pulled up to the clay layer 3 in order to pass the ground water of the sand layer 4 (details) Will be described later). The installation position and the like of the first water-stopping steel material 9 are determined by design and differ depending on each site.

次に、上述したソイルセメント柱列壁1の構築方法について説明する。
図3〜図9は、本実施形態に係るソイルセメント柱列壁1の構築手順を示す図である。
Next, the construction method of the soil cement column wall 1 described above will be described.
3-9 is a figure which shows the construction procedure of the soil cement column wall 1 which concerns on this embodiment.

まず、図3に示すように、地上に設置された打設機8で、ソイルセメント柱列壁1の構築予定位置18の所定の箇所に、第1の止水用鋼材9を打設する。
第1の止水用鋼材9の打設は、その止水用鋼材の下端が土丹層5に到達するまで行う。
First, as shown in FIG. 3, a first water-stopping steel material 9 is placed at a predetermined location of a planned construction position 18 of the soil cement column wall 1 with a placement machine 8 installed on the ground.
The first water-stopping steel material 9 is placed until the lower end of the water-stopping steel material reaches the Dotan layer 5.

次に、図4に示すように、第1の止水用鋼材9の両側の構築予定位置18に、柱列状の孔を削孔し、この孔にセメントミルクを充填して、土中に土を骨材とするソイルセメント柱列部1Aを構築する。
ソイルセメント柱列部1Aは、粘土層3及び砂層4を貫通して土丹層5の上部に到達するように構築される。
Next, as shown in FIG. 4, columnar holes are drilled at the planned construction positions 18 on both sides of the first water-stopping steel material 9, and the holes are filled with cement milk. A soil cement column 1A with the soil as an aggregate is constructed.
The soil cement column 1A is constructed so as to penetrate the clay layer 3 and the sand layer 4 and reach the upper part of the Dotan layer 5.

次に、図5A及び図5Bに示すように、打設機8で、第2の止水用鋼材7aを第1の止水用鋼材9の継手と係合するように、流動状態のソイルセメント内に打設する。第2の止水用鋼材7aの打設は、第1の止水用鋼材9の一方の継手と第2の止水用鋼材7aの継手とを係合しつつ、第2の止水用鋼材7aの下端がソイルセメント柱列部1Aの下端とほぼ同じ深さに到達するまで行う。   Next, as shown in FIG. 5A and FIG. 5B, the soil cement in a fluidized state so that the second water-stopping steel material 7 a is engaged with the joint of the first water-stopping steel material 9 by the driving machine 8. Place in. The second water-stopping steel material 7a is formed by engaging one joint of the first water-stopping steel material 9 and the joint of the second water-stopping steel material 7a while the second water-stopping steel material 7a is engaged. The process is performed until the lower end of 7a reaches almost the same depth as the lower end of the soil cement column 1A.

また、上述した第2の止水用鋼材7aと同様に、第2の止水用鋼材7bを設置する。第2の止水用鋼材7bも、第1の止水用鋼材9の他方の継手と第2の止水用鋼材7bの継手とを係合しつつ、第2の止水用鋼材7bの下端がソイルセメント柱列部1Aの下端とほぼ同じ深さに到達するまで打設する。   Moreover, the 2nd water stop steel material 7b is installed similarly to the 2nd water stop steel material 7a mentioned above. The second water-stopping steel material 7b is also engaged with the other joint of the first water-stopping steel material 9 and the joint of the second water-stopping steel material 7b, and the lower end of the second water-stopping steel material 7b. Is driven until it reaches substantially the same depth as the lower end of the soil cement column 1A.

次に、図6A及び図6Bに示すように、第2の止水用鋼材7a、7bの打設されているソイルセメント柱1aに隣接するソイルセメント柱1bにH型鋼11を建て込む。H型鋼11の建て込みは、H型鋼11の下端がソイルセメント柱列壁1の下端とほぼ同じ深さに到達するまで行う。   Next, as shown in FIGS. 6A and 6B, the H-shaped steel 11 is built in the soil cement column 1b adjacent to the soil cement column 1a in which the second water-stopping steel materials 7a and 7b are placed. The H-shaped steel 11 is built until the lower end of the H-shaped steel 11 reaches substantially the same depth as the lower end of the soil cement column wall 1.

次に、継手部10内に止水材12を充填する。図示しないが、止水材12を注入する注入管を継手部10内の孔底まで挿入し、注入管を徐々に引き上げながら管先端から継手部10内に止水材12を充填する。止水材12は継手部10内に充填され、両継手の内周面に押し付けられて密着し、止水性を発揮する。   Next, the water stop material 12 is filled in the joint portion 10. Although not shown, an injection pipe for injecting the water-stopping material 12 is inserted to the bottom of the hole in the joint portion 10, and the water-stopping material 12 is filled into the joint portion 10 from the tip of the pipe while gradually raising the injection pipe. The water blocking material 12 is filled in the joint portion 10 and pressed against and closely contacts the inner peripheral surfaces of both the joints to exhibit water blocking properties.

なお、本実施形態においては、第1の止水用鋼材9及び第2の止水用鋼材7a、7bを打設した後に、止水材を継手部10内に充填して継手部10を止水する方法について説明したが、これに限定されるものではなく、例えば、第2の止水用鋼材7a、7bを打設する前に、予めそれらの継手に水膨潤性遮水材を塗布し、すでに先行して地盤に打設された第1の止水用鋼材9の継手と係合するように第2の止水用鋼材7a、7bを打設し、打設した後に、水膨潤性遮水材が地中の水分を吸収して膨潤し、第1の止水用鋼材9の継手の内周面又は外周面等に密着することにより止水する方法を用いてもよい。   In this embodiment, after the first water-stopping steel material 9 and the second water-stopping steel materials 7a and 7b are placed, the water-stopping material is filled into the joint portion 10 to stop the joint portion 10. Although the method for watering has been described, the present invention is not limited to this. For example, before placing the second water-stopping steel materials 7a and 7b, a water-swellable water-insulating material is applied to the joints in advance. After the second water-stopping steel materials 7a and 7b are driven so as to be engaged with the joint of the first water-stopping steel material 9 that has already been driven in the ground, the water swelling property A method may be used in which the water shielding material swells by absorbing moisture in the ground, and stops water by contacting the inner peripheral surface or the outer peripheral surface of the joint of the first water-stopping steel material 9.

止水材12は、砂と水と高膨潤性ベントナイトとを混合してなるものであり、適度の粘性を有するとともに比重が大きいので(1.8〜2.0t/m)、充填性にも優れており、良好な施工性を有する。また、止水材12は、砂を含んでいるので、圧密されても体積が小さくなりにくく、しかも膨潤した高膨潤性ベントナイトの粒子を介して砂の粒子同士が擦れ合って、変形追随性を有するので、第1の止水用鋼材9を引き上げても(後述する)継手部10は止水性能を維持する。 The water blocking material 12 is formed by mixing sand, water, and highly swellable bentonite, and has an appropriate viscosity and a large specific gravity (1.8 to 2.0 t / m 3 ). Is also excellent and has good workability. Further, since the water-stopping material 12 contains sand, the volume is hardly reduced even when consolidated, and the sand particles are rubbed with each other through the swollen particles of highly swellable bentonite, so that the deformation followability is improved. Since it has, even if it pulls up the 1st steel material 9 for water stop, the joint part 10 (after-mentioned) maintains water stop performance.

次に、図7に示すように、ソイルセメント柱列壁1Aが硬化した後に、地下構造物2の構築工事中の地下水を下流側に通水するための送水手段14をソイルセメント柱列壁1の周囲に構築し、上流側の地下水を下流側に通水する。   Next, as shown in FIG. 7, after the soil cement column wall 1 </ b> A is hardened, the water supply means 14 for passing the groundwater under construction of the underground structure 2 downstream is provided with the soil cement column wall 1. The groundwater on the upstream side is passed downstream.

送水手段14は、上流側の地下水を揚水する揚水井15と、揚水井15から揚水した地下水を下流側に復水するための復水井16と、揚水井15から揚水した地下水を復水井16に送給するための送水管17とから構成される。   The water supply means 14 includes a pumping well 15 for pumping up the groundwater on the upstream side, a condensate well 16 for returning the groundwater pumped from the pumping well 15 to the downstream side, and a groundwater pumped from the pumping well 15 to the condensate well 16. It consists of a water pipe 17 for feeding.

揚水井15は、図示しないが、揚水ポンプと、この揚水ポンプから吐出する吐出量を測定するための揚水流量計と、地下水位を測定するための水位計とを備えている。
復水井16には、図示しないが、復水される復水量を測定するための復水流量計と、地下水位を測定するための水位計とを備えている。
送水管17は、揚水井15と復水井16とを接続し、揚水井15から揚水される地下水を大気に触れさせることなく復水井16に送水する。ある揚水井15から揚水された地下水は送水管17を介してすべての復水井16へ復水できるように連結されている。
Although not shown, the pumping well 15 includes a pumping pump, a pumping flow meter for measuring the discharge amount discharged from the pumping pump, and a water level meter for measuring the groundwater level.
Although not shown, the condensate well 16 includes a condensate flow meter for measuring the amount of condensate to be condensed and a water level meter for measuring the groundwater level.
The water supply pipe 17 connects the pumping well 15 and the condensate well 16 and supplies the groundwater pumped from the pumping well 15 to the condensate well 16 without exposing it to the atmosphere. Groundwater pumped from a certain pumping well 15 is connected to all the condensate wells 16 via a water pipe 17 so that the water can be condensed.

次に、図8に示すように、ソイルセメント柱列壁1に取り囲まれた掘削予定箇所6を掘削して空洞部を形成し、この空洞部に地下構造物2を構築する。   Next, as shown in FIG. 8, the excavation planned location 6 surrounded by the soil cement column wall 1 is excavated to form a cavity, and the underground structure 2 is constructed in this cavity.

最後に、図9に示すように、第1の止水用鋼材9の下端が粘土層3内に到達するまで第1の止水用鋼材9をクレーン19で引き上げて、上流側の砂層4内の地下水が下流側に流通できるようにする。そして、揚水井15からの揚水を停止し、揚水井15の地下水位と復水井16の地下水位を比較して、ソイルセメント柱列壁1の上流側の地下水のすべてが下流側に流水していることを確認し、通水手段14を撤去する。   Finally, as shown in FIG. 9, the first water-stopping steel material 9 is pulled up by the crane 19 until the lower end of the first water-stopping steel material 9 reaches the clay layer 3, and the inside of the upstream sand layer 4 Of groundwater can be circulated downstream. Then, the pumping from the pumping well 15 is stopped, the groundwater level of the pumping well 15 and the groundwater level of the condensate well 16 are compared, and all the groundwater on the upstream side of the soil cement column wall 1 flows downstream. The water passing means 14 is removed.

以上説明した本実施形態における山留め壁の構築方法によれば、第1の止水用鋼材9を粘土層3まで引き上げるので、工事終了後は、ソイルセメント柱列壁1の上流側の地下水を下流側へ通水することができる。   According to the construction method of the mountain retaining wall in the present embodiment described above, the first water-stopping steel material 9 is pulled up to the clay layer 3, so that the groundwater on the upstream side of the soil cement column wall 1 is downstream after the construction. Water can be passed to the side.

また、第1の止水用鋼材9は地盤内に設置されており、ソイルセメント柱列部1A内に設置されていないので、容易に引き上げることができる。   Moreover, since the first water-stopping steel material 9 is installed in the ground and is not installed in the soil cement column array 1A, it can be easily pulled up.

さらに、第1及び第2の止水用鋼材9、7a、7bを打設する作業や第1の止水用鋼材9を引き上げる作業は、一般的な土留め壁の構築時に使用される打設機8やクレーン19等の重機を用いて行うことができるので、新たに設備投資費がかからない。また、これらの作業は、手間がかからず短時間で施工することができるので、従来の流動阻害を防止可能な土留め壁よりも短期間で構築できる。したがって、工期が短くなり、施工費を低減することができる。   Furthermore, the work for placing the first and second water-stopping steel materials 9, 7a, 7b and the work for pulling up the first water-stopping steel material 9 are performed when constructing a general retaining wall. Since it can be carried out using heavy machinery such as the machine 8 and the crane 19, no new capital investment cost is required. Moreover, since these operations can be carried out in a short time without trouble, they can be constructed in a shorter period of time than a conventional retaining wall capable of preventing flow hindrance. Therefore, the construction period is shortened and the construction cost can be reduced.

そして、継手部10内に充填される止水材12は、固化することなく変形自在な性状を維持するので、第1の止水用鋼材9を引き上げても、止水材12が移動後の第1の止水用鋼材9の継手部10の形状に追随して変形して、継手部10を確実に遮水することができる。   And since the water stop material 12 with which the joint part 10 is filled maintains the property which can deform | transform freely without solidifying, even if it pulls up the 1st steel material 9 for water stop, The joint portion 10 can be deformed following the shape of the joint portion 10 of the first water-stopping steel material 9, and the joint portion 10 can be reliably insulated.

また、止水材12は変形自在なので、第1の止水用鋼材9を引き上げる際にも抵抗を生じることなく容易に引き上げることができる。したがって、第1の止水用鋼材9を引き上げるときに第2の止水用鋼材7a、7bに振動や衝突等の衝撃を与えないので、第2の止水用鋼材7a、7bが埋設されているソイルセメント柱列部1Aを傷つけることがない。   Moreover, since the water stop material 12 is freely deformable, it can be easily pulled up without causing resistance even when the first water stop steel material 9 is pulled up. Accordingly, when the first water-stopping steel material 9 is pulled up, the second water-stopping steel materials 7a and 7b are not subjected to impacts such as vibration and collision, so that the second water-stopping steel materials 7a and 7b are embedded. The soil cement column 1A is not damaged.

さらに、ソイルセメント柱列壁1に近接するように地下構造物2が構築されていても、この地下構造物2を損傷することなく第1の止水用鋼材9を引き上げることができる。   Furthermore, even if the underground structure 2 is constructed so as to be close to the soil cement column wall 1, the first water-stopping steel material 9 can be pulled up without damaging the underground structure 2.

なお、本実施形態においては、粘土層3と砂層4と土丹層5とからなる地盤に本発明を適用した場合について説明したが、この地層に限定されるものではなく、例えば、すべて砂層4、つまり帯水層からなる地盤であってもよい。   In addition, in this embodiment, although the case where this invention was applied to the ground which consists of the clay layer 3, the sand layer 4, and the Dotan layer 5 was demonstrated, it is not limited to this ground layer, For example, all are the sand layers 4 That is, the ground which consists of an aquifer may be sufficient.

また、本実施形態においては、第1の止水用鋼材9を1本のみ使用する場合について説明したが、これに限定されるものではなく、複数本を連結してもよく、隣接するソイルセメント柱列部1A間を通過させる地下水の通水量等に応じて適宜変更する。   Moreover, in this embodiment, although the case where only one 1st water-stopping steel material 9 was used was demonstrated, it is not limited to this, A plurality may be connected and adjacent soil cement It changes suitably according to the amount of groundwater flow etc. which pass between 1 A of column row parts.

さらに、本実施形態においては、第1の止水用鋼材9及び第2の止水用鋼材7a、7bの継手の形状が略C字型の管状の場合について説明したが、この形状に限定されるものではなく、例えば、コ字型やT字型等の板状の形状でもよく、一般的な継手形状を用いることができる。   Furthermore, in this embodiment, although the case where the shape of the joint of the 1st water-stopping steel material 9 and the 2nd water-stopping steel materials 7a and 7b was a substantially C-shaped tubular shape was demonstrated, it is limited to this shape. For example, a plate shape such as a U-shape or a T-shape may be used, and a general joint shape can be used.

本発明の実施形態に係るソイルセメント柱列壁を示す斜視図である。It is a perspective view which shows the soil cement pillar row wall which concerns on embodiment of this invention. 本実施形態に係るソイルセメント柱列壁を示す縦断面図である。It is a longitudinal cross-sectional view which shows the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の構築手順を示す図である。It is a figure which shows the construction procedure of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の構築手順を示す図である。It is a figure which shows the construction procedure of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の構築手順を示す図である。It is a figure which shows the construction procedure of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の構築手順を示す図である。It is a figure which shows the construction procedure of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の構築手順を示す図である。It is a figure which shows the construction procedure of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の構築手順を示す図である。It is a figure which shows the construction procedure of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の構築手順を示す図である。It is a figure which shows the construction procedure of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の構築手順を示す図である。It is a figure which shows the construction procedure of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の構築手順を示す図である。It is a figure which shows the construction procedure of the soil cement pillar row wall which concerns on this embodiment.

符号の説明Explanation of symbols

1 ソイルセメント柱列壁
1A ソイルセメント柱列部
1a、1b ソイルセメント柱
2 地下構造物
3 粘土層
4 砂層
5 土丹層
6 掘削予定箇所
7a、7b 第2の止水用鋼材
8 打設機
9 第1の止水用鋼材
10 継手部
11 H型鋼
12 止水材
14 送水手段
15 揚水井
16 復水井
17 送水管
18 構築予定位置
19 クレーン
DESCRIPTION OF SYMBOLS 1 Soil cement pillar row wall 1A Soil cement pillar row | line | column part 1a, 1b Soil cement pillar 2 Underground structure 3 Clay layer 4 Sand layer 5 Dotan layer 6 Drilling planned part 7a, 7b 2nd steel material 8 for water stop 8 First water-stopping steel material 10 Joint portion 11 H-shaped steel 12 Water-stopping material 14 Water supply means 15 Pumping well 16 Condensate well 17 Water supply pipe 18 Construction planned position 19 Crane

Claims (5)

地下水の流動阻害を防止する山留め壁の構築方法において、
前記山留め壁の構築予定位置の所定の箇所の地盤内に、継手を有する第1の止水用鋼材を打設する第1の設置工程と、
前記第1の止水用鋼材を打設した箇所を除く前記構築予定位置に、時間が経過すると硬化して前記山留め壁を構成する硬化材を流動状態で、前記第1の止水用鋼材の継手が前記山留め壁に入り込まないように打設する打設工程と、
継手を有する第2の止水用鋼材をその継手が前記山留め壁の外側で前記第1の止水用鋼材の継手と係合するように、流動状態の前記硬化材内に打設する第2の設置工程と、
前記第1の止水用鋼材を地下水が通水可能な所定の深度まで引き上げる引上工程とを備えることを特徴とする山留め壁の構築方法。
In the method of constructing the retaining wall to prevent the flow of groundwater,
A first installation step of placing a first water-stopping steel material having a joint in the ground of a predetermined location of the planned construction position of the retaining wall;
The hardened material that hardens over time and forms the mountain retaining wall at the planned construction position excluding the place where the first water-stopping steel material is placed, in a fluidized state , the first water-stopping steel material. A placing step for placing a joint so as not to enter the retaining wall ;
Secondly, a second water-stopping steel material having a joint is placed in the hardened material in a fluid state so that the joint engages with the joint of the first water-stopping steel material outside the retaining wall . The installation process of
A method for constructing a retaining wall, comprising: a pulling-up step of pulling up the first water-stopping steel material to a predetermined depth through which groundwater can flow.
前記係合した継手に遮水性を有する止水材を設ける止水工程を更に備えることを特徴とする請求項1に記載の山留め壁の構築方法。   The method for constructing a mountain retaining wall according to claim 1, further comprising a water stopping step of providing a water blocking material having water shielding properties to the engaged joint. 前記止水材は、固化することなく変形自在な性状を維持することを特徴とする請求項2に記載の山留め壁の構築方法。   The method for constructing a retaining wall according to claim 2, wherein the water blocking material maintains a deformable property without solidifying. 地下水の流動阻害を防止する山留め壁であって、
時間の経過とともに硬化する硬化材を所定の間隔で地盤内に打設して構築された壁部と、
継手を有し、隣接する前記壁部間の地盤内の所定の帯水層よりも浅い深度に、前記継手が前記壁部に入り込まないように設置された第1の止水用鋼材と、
継手を有し、その継手が前記壁部の外側で前記第1の止水用鋼材の継手に係合されるとともに、前記壁部内に設置された第2の止水用鋼材とを備えることを特徴とする山留め壁。
A retaining wall to prevent the flow of groundwater,
A wall portion constructed by placing a hardening material that hardens over time into the ground at a predetermined interval;
A first water-stopping steel material that has a joint and is installed so that the joint does not enter the wall part at a depth shallower than a predetermined aquifer in the ground between the adjacent wall parts;
Having a joint, the joint being engaged with the joint of the first water-stopping steel material on the outside of the wall portion, and comprising a second water-stopping steel material installed in the wall portion. Characteristic mountain retaining wall.
前記係合した継手内は、固化することなく変形自在な性状を維持するとともに、遮水性を有する止水材が設けられていることを特徴とする請求項4に記載の山留め壁。   5. The mountain retaining wall according to claim 4, wherein the engaged joint maintains a deformable property without solidifying and is provided with a water blocking material having a water blocking property.
JP2007223021A 2007-08-29 2007-08-29 Method for constructing retaining wall and retaining wall Expired - Fee Related JP4905296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223021A JP4905296B2 (en) 2007-08-29 2007-08-29 Method for constructing retaining wall and retaining wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223021A JP4905296B2 (en) 2007-08-29 2007-08-29 Method for constructing retaining wall and retaining wall

Publications (2)

Publication Number Publication Date
JP2009057682A JP2009057682A (en) 2009-03-19
JP4905296B2 true JP4905296B2 (en) 2012-03-28

Family

ID=40553682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223021A Expired - Fee Related JP4905296B2 (en) 2007-08-29 2007-08-29 Method for constructing retaining wall and retaining wall

Country Status (1)

Country Link
JP (1) JP4905296B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969901B2 (en) * 2017-05-24 2021-11-24 清水建設株式会社 Co-fall suppression structure and caisson sinking method
CN112442991B (en) * 2020-11-20 2021-09-07 中国长江三峡集团有限公司 Method for supporting foundation pit under condition of stone block included in soil layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253868B2 (en) * 1996-10-17 2002-02-04 株式会社奥村組 Forming method of water passage section in continuous underground wall
JPH1121877A (en) * 1997-06-30 1999-01-26 Kubota Corp Restoring method for underground water vein using sheathing wall with steel pipe columns
JP3802777B2 (en) * 2001-05-16 2006-07-26 株式会社テルナイト Deformation following type water shielding material
JP4074313B2 (en) * 2005-10-05 2008-04-09 東急建設株式会社 Structure of steel sheet pile for water flow and water retaining wall, and its construction method.

Also Published As

Publication number Publication date
JP2009057682A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP6166264B2 (en) How to build a retaining wall
KR20130081971A (en) Precast concrete wall and method for constructing underground permanent wall using the precast concrete wall
KR20100068597A (en) A shoring method using arch plate pile and h-pile
KR101011169B1 (en) Precast Concrete Wall and Construction Method using the same
KR101065017B1 (en) A shoring method using arch plate pile and H-Pile
US10669687B1 (en) Systems and methods for constructing retaining wall structure and well point in granular soils under groundwater level
JP4867861B2 (en) Method for preventing fluidization inhibition of groundwater, method for constructing retaining wall to prevent inhibition of groundwater flow, retaining wall constructed by the method, and method for constructing water passage
KR100975033B1 (en) Construction method of a soil retaining wall using PHC pile
KR100779988B1 (en) Method for constructing micropile
JP6225458B2 (en) Retaining wall and its construction method
JP4905296B2 (en) Method for constructing retaining wall and retaining wall
JP4486136B2 (en) Caisson connection method
KR100963880B1 (en) Excavating method for underground plaza using steel casing retaining wall
JP2007046343A (en) Liquefaction preventive construction method of ground just under existing building
JP5959094B2 (en) Method for forming ground improvement body
JP4888293B2 (en) Earth retaining wall made of parent pile sheet pile, water stop structure of earth retaining wall made of parent pile side sheet pile, construction method of earth retaining wall made of parent pile side sheet pile, and retaining wall of earth retaining wall made of parent pile side sheet pile Water method
JP4992769B2 (en) Method for preventing fluidization inhibition of groundwater, Construction method of water flow section preventing inhibition of groundwater flow
KR102059051B1 (en) Method for excavating vertical shaft
JP6259271B2 (en) Caisson installation method and underground column body group
JP2017197910A (en) Construction method of earth retaining wall structure, and earth retaining wall structure
WO2009139510A1 (en) Construction method for continuous cut-off wall using overlap casing
JPH03281826A (en) Excavation method in cohesive soil ground
JP2008045367A (en) Ground consolidation construction method and ground-subsidence correction construction method
JP2005146756A (en) Earth retaining impervious wall construction method and earth retaining impervious wall formed by it
JP6340248B2 (en) Mountain retaining wall, how to construct a mountain retaining wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees