JP6714421B2 - How to set the composition of plastic filler - Google Patents

How to set the composition of plastic filler Download PDF

Info

Publication number
JP6714421B2
JP6714421B2 JP2016085909A JP2016085909A JP6714421B2 JP 6714421 B2 JP6714421 B2 JP 6714421B2 JP 2016085909 A JP2016085909 A JP 2016085909A JP 2016085909 A JP2016085909 A JP 2016085909A JP 6714421 B2 JP6714421 B2 JP 6714421B2
Authority
JP
Japan
Prior art keywords
plastic filler
ground
injection
plastic
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016085909A
Other languages
Japanese (ja)
Other versions
JP2017193907A (en
Inventor
裕泰 石井
裕泰 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2016085909A priority Critical patent/JP6714421B2/en
Publication of JP2017193907A publication Critical patent/JP2017193907A/en
Application granted granted Critical
Publication of JP6714421B2 publication Critical patent/JP6714421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、巨石地盤の注入改良に使用する可塑性充填材の配合設定方法に関する。 TECHNICAL FIELD The present invention relates to a method for setting a blending ratio of a plastic filler used to improve the injection of megalithic ground.

巨石地盤に対して、巨石同士の間隙に可塑性充填材を注入することで、巨石を一体化させた固化体や遮蔽体を形成する場合がある。このような注入改良工事では、注入した可塑性充填材が意図した範囲(球状範囲)に留まることを前提として、注入箇所を設定する。なお、可塑性充填材は、一定水準以上のせん断力が加わると流動性を発現し、せん断力が加わらなければ流動性を発現しない性状を有している。ここで、巨石地盤とは、「護岸構造物の基盤等に設置されるもので、比較的粒径が整った粒径100〜800mm程度の石からなる地盤」をいう。
可塑性充填材の配合は、所望の流動性を確保できるように設定するのが一般的である(例えば、特許文献1、2参照)。
なお、可塑性充填材の流動性が高すぎると巨石の間隙を垂れ流れて意図した範囲に可塑性充填材を留めることができない場合がある。一方、可塑性充填材の流動性が低すぎると注入時の抵抗が大きくなるので、注入設備に過剰な負荷が加わるとともに、粒子間の狭隘な領域に充填されないおそれがある。粒子間に空隙(未充填箇所)が相当量残ると、水みちが形成されてしまい、遮水性が確保できなくなる。そのため、可塑性充填材は適切な流動性(配合)を有している必要がある。
また、巨石が比較的小さく、かつ、巨石同士の間隙が比較的小さい場合には、垂れ流れが生じにくくなるとともに、注入圧が過剰になりやすいため、可塑性充填材の流動性は高めに設定する必要がある。すなわち、可塑性充填材は、注入対象地盤を構成する巨石の大きさに応じて適切に配合調整することで適切な流動性に設定する必要がある。
There is a case where a solidified body or a shield in which megaliths are integrated is formed by injecting a plastic filler into a gap between megaliths in the megalithic ground. In such injection improvement work, the injection point is set on the assumption that the injected plastic filler remains in the intended range (spherical range). It should be noted that the plastic filler has such a property that it exhibits fluidity when a shearing force of a certain level or more is applied, and does not exhibit fluidity when no shearing force is applied. Here, the megalithic ground refers to "a ground that is installed on the foundation of a revetment structure or the like and is made of stone with a relatively uniform particle size of about 100 to 800 mm".
The compounding of the plastic filler is generally set so as to ensure desired fluidity (see, for example, Patent Documents 1 and 2).
If the fluidity of the plastic filler is too high, the plastic filler may not be able to be retained in the intended range by flowing through the gaps between the megaliths. On the other hand, if the fluidity of the plastic filler is too low, the resistance at the time of injection becomes large, so that an excessive load is applied to the injection equipment and the narrow region between particles may not be filled. If a considerable amount of voids (unfilled portions) remain between the particles, water channels will be formed and the water impermeability cannot be secured. Therefore, the plastic filler needs to have appropriate fluidity (blending).
Further, when the megaliths are relatively small and the gap between the megaliths is relatively small, a drooping flow is less likely to occur and the injection pressure tends to become excessive, so the fluidity of the plastic filler is set to be high. There is a need. That is, it is necessary to set the plastic filler to have an appropriate fluidity by appropriately mixing and adjusting it according to the size of the megalith that constitutes the injection target ground.

特開2010−112024号公報JP, 2010-112024, A 特開2010−168421号公報JP, 2010-168421, A

前記従来の可塑性充填材の配合方法では、可塑性充填材の流動性を設定する方法は確立されていなかった。そのため、可塑性充填材の流動性に対しては、実験検討を行うことにより妥当性を確認するのが一般的である。ところが、妥当性の確認実験を行うには手間と費用がかかる。
このような観点から、本発明は、対象となる巨石地盤に応じて適切な流動性に配合調整することを可能とした可塑性充填材の配合設定方法を提案することを課題とする。
In the conventional plastic filler compounding method, a method for setting the fluidity of the plastic filler has not been established. Therefore, the fluidity of the plastic filler is generally confirmed by conducting an experiment. However, it takes a lot of time and money to carry out a validity confirmation experiment.
From such a viewpoint, it is an object of the present invention to propose a method for setting the composition of a plastic filler capable of adjusting the composition to an appropriate fluidity according to the target megalithic ground.

前記課題を解決するために、本発明は、巨石地盤に注入する可塑性充填材の配合設定方法であって、前記可塑性充填材のせん断抵抗値τが式1を満足するように配合を設定することを特徴としている。
前記可塑性充填材のせん断抵抗値τは、ベーンせん断試験によって測定すればよい。
In order to solve the above-mentioned problems, the present invention is a method for setting the composition of a plastic filler to be injected into a megalithic ground, wherein the composition is set so that the shear resistance value τ f of the plastic filler satisfies Expression 1. It is characterized by
The shear resistance value τ f of the plastic filler may be measured by a vane shear test.

τ=10−4.118・ρgL・K−0.588 ・・・式1
τ :せん断抵抗値(N/m
K:注入係数(m2/kPa・s)
ρ:可塑性充填材の密度(kg/m3
g:重力加速度(9.81m/s2
L:巨石の代表粒径(m)
τ f =10 −4.118 ·ρgL·K −0.588 ...Equation 1
τ f : Shear resistance value (N/m 2 )
K: Injection coefficient (m 2 /kPa·s)
ρ: Density of plastic filler (kg/m 3 )
g: Gravitational acceleration (9.81m/s 2 )
L: Representative particle size of megalith (m)

かかる可塑性充填材の配合設定方法によれば、巨石の寸法に応じた流動性となるように、可塑性充填材の配合を設定することができるため、対象となる巨石地盤に応じた可塑性充填材の配合を容易に設定することができる。そのため、配合の妥当性を確認するための実験検討の省略あるいは実験ケースの削減が可能となり、ひいては、時間的負担および金銭的負担の低減化が可能となる。また、適切な配合を確保することで、巨石同士の空隙に対して適切に(例えば、空隙の9割以上)充填することが可能となる。
なお、可塑性充填材には、セメントを含むことで充填後に硬化する可塑性グラウトや、セメントを含んでおらず、充填後も硬化することのない可塑性粘土を含むものとする。
According to the method for setting the composition of such a plastic filler, the composition of the plastic filler can be set so as to have fluidity according to the size of the megalith, so that the plastic filler corresponding to the target megalith ground is The composition can be easily set. Therefore, it is possible to omit the examination of experiments for confirming the adequacy of the composition or to reduce the number of experiment cases, which in turn makes it possible to reduce the time burden and financial burden. Further, by ensuring an appropriate composition, it becomes possible to properly fill the voids between the megaliths (for example, 90% or more of the voids).
It should be noted that the plastic filler includes a plastic grout that hardens after being filled by containing cement, and a plastic clay that does not contain cement and does not harden even after filling.

本発明の可塑性充填材の配合設定方法によれば、可塑性充填材を、対象となる巨石地盤に応じた適切な流動性に配合調整することが可能となる。 ADVANTAGE OF THE INVENTION According to the compounding setting method of the plastic filler of this invention, it becomes possible to mix and adjust a plastic filler to a suitable fluidity according to the target megalithic ground.

時間と可塑性充填材の注入圧の関係の実験データを示すグラフである。It is a graph which shows the experimental data of the relationship between time and the injection pressure of a plastic filler. 無次元量と注入係数の関係を示すグラフである。It is a graph which shows the relationship between a dimensionless amount and an injection coefficient. 注入係数と降伏圧力勾配の関係を示すグラフである。It is a graph which shows the relationship between an injection coefficient and a yield pressure gradient. 巨石の代表粒径とせん断抵抗の関係を示すグラフである。It is a graph which shows the representative particle size of a megalith and the relationship of shear resistance.

本実施形態では、巨石地盤において、巨石同士の間隙に可塑性充填材(可塑性グラウト)を注入することで巨石同士を一体化させた固化体または遮蔽体を形成する場合について説明する。
可塑性充填材の推奨配合は、可塑性充填材が巨石地盤内において意図した範囲に留まるように設定する。ここで、可塑性充填材の流動性が高すぎると可塑性充填材が意図した範囲に留まらず流れだしてしまう。一方、流動性が低すぎると、注入時の抵抗が大きくなり、注入設備に過剰な負荷が加わってしまうほか、巨石同士の間に未充填箇所が残存し、水みちが形成されるおそれがある。また、可塑性充填材は、巨石同士の間隙の大きさや、巨石の粒径によっても、間隙中の流下しやすさが変化する。そのため、本実施形態では、注入対象となる巨石地盤を構成する巨石の大きさに応じた適切な流動性に可塑性充填材を配合調整することで、適切な範囲に施工する。
In the present embodiment, a case will be described in which, in a megalithic ground, a plastic filler (plastic grout) is injected into a gap between megaliths to form a solidified body or a shield in which megaliths are integrated.
The recommended formulation of the plastic filler is set so that the plastic filler stays in the intended range in the megalithic ground. Here, if the fluidity of the plastic filler is too high, the plastic filler will flow beyond the intended range. On the other hand, if the fluidity is too low, the resistance at the time of injection becomes large, an excessive load is applied to the injection equipment, and unfilled parts remain between the megaliths, which may form water channels. .. In addition, the ease with which the plastic filler flows down in the gap varies depending on the size of the gap between the megaliths and the particle size of the megalith. Therefore, in the present embodiment, the plastic filler is compounded and adjusted to have an appropriate fluidity according to the size of the megaliths constituting the megalithic ground to be injected, and thus the construction is performed within an appropriate range.

可塑性充填材の注入圧(P)と、可塑性充填材を注入する範囲(改良領域が球状に広がる場合における半径(R)との関係は、地盤の固有のパラメータK,iに基づいて、式2,3のように定式化できる。ここで、式2は改良領域が球状に広がる場合、式3は改良領域が円盤状に広がる場合である。なお、地盤の固有のパラメータK,iは、図1に示すように、実験検討と文献データに対するフィッティングにより特定することができる。なお、文献データ(ケース1,2)には、「港湾空港技術研究所資料(水谷 他6名、重力式係船岸の新しい増深工法に開発、独立行政法人港湾空港技術研究所、No.1277、2013年12月)」のデータを使用した。また、本実施形態では、実験検討として、実規模試験施工(ケース3)と、小規模試験施工(ケース4)との2ケースについて、試験を行った。表1にケース1〜4の実験の条件を示す。 The relationship between the injection pressure (P) of the plastic filler and the range in which the plastic filler is injected (the radius (R) in the case where the improved area spreads in a spherical shape is calculated based on the parameters K and i c peculiar to the ground. can be formulated as a few. here, if equation 2 that improvements region spread spherically, equation 3 is the case where improvement area spreads in a disk shape. Incidentally, specific parameters K of the ground, i c is As shown in Fig. 1, it can be identified by an experimental study and fitting to the literature data. The data of the new deepening construction method for mooring shores, developed and developed by an independent administrative agency, Port and Airport Technical Research Institute, No. 1277, December 2013) was used. The test was conducted for two cases, (Case 3) and small-scale test construction (Case 4) Table 1 shows the conditions of the experiments of Cases 1 to 4.

Figure 0006714421
Figure 0006714421

Figure 0006714421
Figure 0006714421

図1のデータから、無次元量τと注入係数Kの関係および注入係数Kと降伏圧力勾配iの関係は、それぞれ図2,3に示すようになる。図2,3に示す結果から、可塑性充填材が巨石地盤内に滞留して球状の改良体を形成できる降伏圧力勾配iと注入係数Kとの組み合わせは、幅を持って存在するものと考えられる。図2から無次元量τと注入係数Kの相関式(式4)を求めることができる。無次元量τと注入係数Kの相関式(式4)から、注入対象となる巨石地盤の巨石寸法に応じた可塑性充填材のせん断抵抗値τを求める式5を導くことができる。 From the data in FIG. 1, the relationship between the dimensionless amount τ N and the injection coefficient K and the relationship between the injection coefficient K and the yield pressure gradient i c are as shown in FIGS. 2 and 3, respectively. From the results shown in FIGS. 2 and 3, it is considered that the combination of the yield pressure gradient ic and the injection coefficient K, which allows the plastic filler to stay in the megalithic ground to form the spherical improved body, has a width. To be From FIG. 2, the correlation equation (equation 4) between the dimensionless amount τ N and the injection coefficient K can be obtained. From the correlation equation (equation 4) between the dimensionless amount τ N and the injection coefficient K, it is possible to derive the equation 5 for obtaining the shear resistance value τ f of the plastic filler according to the size of the megalith of the megalith ground to be injected.

K×10=0.001τ −1.7
10・K=(τ/ρgL)−1.7 ・・・式4
10・K=(ρgL/τ1.7
τ 1.7=10−7・(ρgL)1.7/K
τ=10−7/1.7・ρgL/K1/1.7
τ=10−4.118・ρgL・K−0.588 ・・・式5
:注入係数(m2/kPa・s)
ρ :可塑性充填材の密度(kg/m3
:重力加速度(9.81m/s2
:巨石の代表粒径(m)
τ:無次元量(=τ/ρgL)
K×10 4 =0.001τ N −1.7
10 7 ·K=(τ f /ρgL) −1.7 ...Equation 4
10 7 ·K=(ρgL/τ f ) 1.7
τ f 1.7 =10 −7 ·(ρgL) 1.7 /K
τ f =10 −7/1.7 ·ρgL/K 1/1.7
τ f =10 −4.118 ·ρgL·K −0.588 ...Equation 5
K : Injection coefficient (m 2 /kPa・s)
ρ : Density of plastic filler (kg/m 3 )
g : Gravity acceleration (9.81m/s 2 )
L : Representative particle size of megalith (m)
τ N : dimensionless quantity (=τ f /ρgL)

ここで、せん断抵抗に関する無次元量τと注入係数Kとの関係(図2)および注入係数Kと降伏圧力勾配iとの関係(図3)に基づいて、巨石寸法に応じて推奨される可塑性充填材のせん断抵抗を特定する。図3に示された4つの実験結果(ケース1〜4)では、いずれも間隙注入を経て意図した範囲に固化体を形成することができたことから、「降伏圧力勾配icは4つの実験結果の中間的な値となる1である場合に、重力による垂れ流れが生じることなく意図した範囲に固化体を形成することができる」と仮定する。これに基づき、図2,3に示すように、注入係数Kは0.07×10−4(m/kPa・s)、無次元量τは0.1が適正値であると設定する。この結果、間隙注入に適した可塑性充填材の降伏応力τは、対象の巨石地盤の代表粒径Lに対して式6で関連付けることができる。
τ=0.1ρgL ・・・ 式6
Here, based on the relationship between the dimensionless amount τ N relating to the shear resistance and the injection coefficient K (FIG. 2) and the relationship between the injection coefficient K and the yield pressure gradient i c (FIG. 3), it is recommended according to the size of the megalith. Specify the shear resistance of the plastic filler. In all of the four experimental results (Cases 1 to 4) shown in FIG. 3, it was possible to form the solidified body in the intended range through the gap injection. Therefore, “the yield pressure gradient ic is four experimental results”. When the intermediate value of 1 is 1, it is possible to form a solidified body in the intended range without causing a drooping flow due to gravity.” Based on this, as shown in FIGS. 2 and 3, it is set that the injection coefficient K is 0.07×10 −4 (m 2 /kPa·s) and the dimensionless amount τ N is 0.1. .. As a result, the yield stress τ f of the plastic filler suitable for gap injection can be related to the representative particle size L of the target megalithic ground by Expression 6.
τ f =0.1ρgL... Equation 6

式6により、対象となる巨石地盤の巨石の代表粒径とせん断抵抗との関係の範囲を示す図(図4)を作成することができる。この図を利用すれば、巨石地盤内の巨石の寸法に対してせん断抵抗値τを特定できるので、このせん断抵抗値τを目標に可塑性充填材の配合を調整すれば、可塑性充填材の推奨配合を迅速に設定することができる。すなわち、各注入地点周りに略球形の固化体を形成できるので、より効果的かつ効率的な施工が可能となる。なお、推奨配合に基づいて製造された可塑性充填材は、ベーンせん断試験によってせん断抵抗値を測定することで、簡易に配合を確認することができる。
可塑性充填材の推奨配合のせん断抵抗値を算出することで、巨石地盤に応じた可塑性充填材の配合を検証するための実験(試験施工)を省略、あるいは、実験ケースの数を削減することができ、時間的、経済的負担の軽減を図ることができる。
By the expression 6, it is possible to create a diagram (FIG. 4) showing the range of the relationship between the representative particle diameter of the target megalith of the megalith and the shear resistance. By using this figure, the shear resistance value τ f can be specified with respect to the size of the megalith in the megalithic ground. Therefore, if the compounding amount of the plastic filler is adjusted with this shear resistance value τ f as the target, The recommended recipe can be set quickly. That is, since a substantially spherical solidified body can be formed around each injection point, more effective and efficient construction becomes possible. The plastic filler manufactured based on the recommended composition can be easily confirmed for its composition by measuring the shear resistance value by the vane shear test.
By calculating the shear resistance value of the recommended mixture of plastic filler, it is possible to omit the experiment (test execution) to verify the mixture of plastic filler according to the megalithic ground, or reduce the number of experimental cases. Therefore, the time and financial burden can be reduced.

なお、図3の結果から、降伏圧力勾配iは0.3〜4.6(kPa/m)の範囲内で設定するのが望ましく、降伏圧力勾配に応じて注入係数Kは0.012×10−4〜0.300×10−4(m/kPa・s)の範囲で設定することが好ましい。本実施形態では、代表粒径として、注入対象地盤の最大粒径とする。なお、代表粒径の設定方法は限定されるものではなく、例えば、巨石地盤が含有する巨石のうち、平均的な大きさの巨石の粒径を採用してもよい。
また、図2の結果から、可塑性充填材の配合検討において、せん断抵抗τの適正範囲の式7を目安に特定してもよい。
(図2より)0.034<τ<0.26
0.034ρgL<τ<0.26ρgL ・・・ 式7
Note that from the results of FIG. 3, the yield pressure gradient i c preferably be set within a range of 0.3~4.6 (kPa / m), the injection coefficient K in accordance with the breakdown pressure gradient 0.012 × It is preferable to set in the range of 10 −4 to 0.300×10 −4 (m 2 /kPa·s). In the present embodiment, the representative particle diameter is the maximum particle diameter of the injection target ground. Note that the method of setting the representative particle size is not limited, and for example, of the megaliths contained in the megalithic ground, the particle size of a megalith of an average size may be adopted.
In addition, from the results of FIG. 2, in the study of the blending of the plastic filler, it may be specified by using the formula 7 of the appropriate range of the shear resistance τ f as a guide.
(From FIG. 2) 0.034<τ N <0.26
0.034 ρgL<τ f <0.26ρgL (Equation 7)

以上、本発明の実施形態について説明したが、本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
本実施形態の可塑性充填材の配合設定方法が適用可能な巨石地盤は限定されるものではなく、例えば、礫混じり地盤や護岸等の基礎構造として用いられる基礎捨石マウンド等に使用することができる。
また、可塑性充填材のせん断抵抗値の確認方法は、ベーンせん断試験に限定されるものではない。
また、前記実施形態では、可塑性充填材として可塑性グラウトを使用する場合について説明したが、可塑性充填材はこれに限定されるものではなく、例えば、可塑性粘土であってもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and the respective constituent elements described above can be appropriately modified without departing from the spirit of the present invention.
The megalithic ground to which the method for setting the mixing of the plastic filler according to the present embodiment is applicable is not limited, and for example, it can be used for a foundation rubble mound or the like used as a foundation structure such as gravel-mixed ground or revetment.
The method for confirming the shear resistance value of the plastic filler is not limited to the vane shear test.
Further, in the above embodiment, the case where the plastic grout is used as the plastic filler has been described, but the plastic filler is not limited to this, and may be plastic clay, for example.

Claims (2)

巨石地盤に注入する可塑性充填材の配合設定方法であって、
前記可塑性充填材のせん断抵抗値τが式1を満足するように配合を設定することを特徴とする、可塑性充填材の配合設定方法。
τ=10−4.118・ρgL・K−0.588 ・・・式1
τ :せん断抵抗値(N/m
K:注入係数(m2/kPa・s)
ρ:可塑性充填材の密度(kg/m3
g:重力加速度(9.81m/s 2
L:巨石の代表粒径(m)
A method for setting the composition of a plastic filler to be injected into a megalithic ground,
A method for setting a blending ratio of a plastic filler, characterized in that the blending is set so that the shear resistance value τ f of the plastic filler satisfies Expression 1.
τ f =10 −4.118 ·ρgL·K −0.588 ...Equation 1
τ f : Shear resistance value (N/m 2 )
K: Injection coefficient (m 2 /kPa·s)
ρ: Density of plastic filler (kg/m 3 )
g: Gravitational acceleration (9.81m/s 2 )
L: Representative particle size of megalith (m)
前記可塑性充填材のせん断抵抗値を、ベーンせん断試験によって測定することを特徴とする、請求項1に記載の可塑性充填材の配合設定方法。 The blending setting method of the plastic filler according to claim 1, wherein the shear resistance value of the plastic filler is measured by a vane shear test.
JP2016085909A 2016-04-22 2016-04-22 How to set the composition of plastic filler Active JP6714421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085909A JP6714421B2 (en) 2016-04-22 2016-04-22 How to set the composition of plastic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085909A JP6714421B2 (en) 2016-04-22 2016-04-22 How to set the composition of plastic filler

Publications (2)

Publication Number Publication Date
JP2017193907A JP2017193907A (en) 2017-10-26
JP6714421B2 true JP6714421B2 (en) 2020-06-24

Family

ID=60155957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085909A Active JP6714421B2 (en) 2016-04-22 2016-04-22 How to set the composition of plastic filler

Country Status (1)

Country Link
JP (1) JP6714421B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648332B1 (en) * 2019-07-26 2020-02-14 小野田ケミコ株式会社 Determination method of solidification material mix specification

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802777B2 (en) * 2001-05-16 2006-07-26 株式会社テルナイト Deformation following type water shielding material
JP3863006B2 (en) * 2001-11-15 2006-12-27 株式会社奥村組 Soil impermeable layer, its construction method and impermeable material used therefor
CN101063652B (en) * 2006-04-29 2010-09-29 赵文成 Mass-flow instrument
JP5414470B2 (en) * 2009-11-18 2014-02-12 大成建設株式会社 Underwater surface filling method
JP5952034B2 (en) * 2012-03-09 2016-07-13 大成建設株式会社 Evaluation method of plastic fluid

Also Published As

Publication number Publication date
JP2017193907A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
Satyarno et al. Practical method for mix design of cement-based grout
CN108867232B (en) Calculation method for reserved grouting depth of semi-flexible pavement
Cui et al. Washout resistance evaluation of fast-setting cement-based grouts considering time-varying viscosity using CFD simulation
JP5999718B2 (en) Underground impermeable wall construction material
CN106121264A (en) Postinstalled chemically rebar construction technology
JP6714421B2 (en) How to set the composition of plastic filler
JP5979635B2 (en) Underground cavity filling material and method for producing the filling material
Meng-cheng et al. Effect of particle breakage on strength and deformation of modeled rockfills
Reinhardt et al. About the influence of the content and composition of the aggregates on the rheological behaviour of self-compacting concrete
JP5780714B2 (en) Filling the underground cavity
JP4294080B1 (en) Determination method of curing material
JP5952034B2 (en) Evaluation method of plastic fluid
CN105084814B (en) Processing material and preparation method are completely filled out in a kind of self-expanding without husky ceramic tile gap
JP2008031769A (en) Mixing design method and soil cement
JP5875138B2 (en) Foundation pile construction method considering site conditions
Bestuzheva et al. Search for optimal composition and an investigation of special material for the near-face zone of a dam with reinforced concrete face
JP7147351B2 (en) ground improvement method
JP4550103B2 (en) Control method of air permeability coefficient, strength and specific gravity of cured foam mortar
JP2011236080A (en) Production method for medium-fluidity concrete and medium-fluidity concrete produced by the method
CN112513376B (en) Method and apparatus for setting W/C in deep mixing processing method
JP6106836B1 (en) Aging method for existing spray mortar slopes
JP5124747B2 (en) Quality control method for fluidized soil
JP2008013963A (en) Underwater filler, method of producing the same, and method of filling underground cavity
JP2007298434A (en) Method for evaluating elastic paving material
Murali et al. Experimental and analytical modeling of flexural impact strength of preplaced aggregate fibrous concrete beams. Materials 2022, 15, 3857

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200605

R150 Certificate of patent or registration of utility model

Ref document number: 6714421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150