JP2017193907A - Method for setting composition of plastic filler - Google Patents

Method for setting composition of plastic filler Download PDF

Info

Publication number
JP2017193907A
JP2017193907A JP2016085909A JP2016085909A JP2017193907A JP 2017193907 A JP2017193907 A JP 2017193907A JP 2016085909 A JP2016085909 A JP 2016085909A JP 2016085909 A JP2016085909 A JP 2016085909A JP 2017193907 A JP2017193907 A JP 2017193907A
Authority
JP
Japan
Prior art keywords
plastic filler
megalith
ground
plastic
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016085909A
Other languages
Japanese (ja)
Other versions
JP6714421B2 (en
Inventor
裕泰 石井
Hiroyasu Ishii
裕泰 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2016085909A priority Critical patent/JP6714421B2/en
Publication of JP2017193907A publication Critical patent/JP2017193907A/en
Application granted granted Critical
Publication of JP6714421B2 publication Critical patent/JP6714421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for setting the composition of plastic filler, whereby it is possible to adjust the composition to suitable flowability for a target megalithic soil.SOLUTION: The present invention provides a method for setting the composition of plastic filler, which is injected into a megalithic soil. In the method, the composition is set so that a shear resistance τof the plastic filler satisfies formula 1: τ=10ρgL K, with K: injection coefficient (m/ kPa s), ρ: density of plastic filler (kg/m), g: gravitational acceleration, and L: representative particle size of megalith (m)SELECTED DRAWING: Figure 4

Description

本発明は、巨石地盤の注入改良に使用する可塑性充填材の配合設定方法に関する。   The present invention relates to a method for setting and blending a plastic filler used for improving injection of megalithic ground.

巨石地盤に対して、巨石同士の間隙に可塑性充填材を注入することで、巨石を一体化させた固化体や遮蔽体を形成する場合がある。このような注入改良工事では、注入した可塑性充填材が意図した範囲(球状範囲)に留まることを前提として、注入箇所を設定する。なお、可塑性充填材は、一定水準以上のせん断力が加わると流動性を発現し、せん断力が加わらなければ流動性を発現しない性状を有している。ここで、巨石地盤とは、「護岸構造物の基盤等に設置されるもので、比較的粒径が整った粒径100〜800mm程度の石からなる地盤」をいう。
可塑性充填材の配合は、所望の流動性を確保できるように設定するのが一般的である(例えば、特許文献1、2参照)。
なお、可塑性充填材の流動性が高すぎると巨石の間隙を垂れ流れて意図した範囲に可塑性充填材を留めることができない場合がある。一方、可塑性充填材の流動性が低すぎると注入時の抵抗が大きくなるので、注入設備に過剰な負荷が加わるとともに、粒子間の狭隘な領域に充填されないおそれがある。粒子間に空隙(未充填箇所)が相当量残ると、水みちが形成されてしまい、遮水性が確保できなくなる。そのため、可塑性充填材は適切な流動性(配合)を有している必要がある。
また、巨石が比較的小さく、かつ、巨石同士の間隙が比較的小さい場合には、垂れ流れが生じにくくなるとともに、注入圧が過剰になりやすいため、可塑性充填材の流動性は高めに設定する必要がある。すなわち、可塑性充填材は、注入対象地盤を構成する巨石の大きさに応じて適切に配合調整することで適切な流動性に設定する必要がある。
There is a case where a solidified body or a shielding body in which megaliths are integrated is formed by injecting a plastic filler into the gap between megaliths with respect to the megalith ground. In such injection improvement work, the injection location is set on the assumption that the injected plastic filler stays in the intended range (spherical range). The plastic filler exhibits a fluidity when a shearing force of a certain level or more is applied, and does not exhibit a fluidity when the shearing force is not applied. Here, the megalithic ground refers to “a ground made of stone having a particle size of about 100 to 800 mm, which is installed on the base of a revetment structure and the like and has a relatively uniform particle size”.
The blending of the plastic filler is generally set so as to ensure the desired fluidity (see, for example, Patent Documents 1 and 2).
In addition, when the fluidity of the plastic filler is too high, the plastic filler may not be retained within the intended range by flowing down the gap between megaliths. On the other hand, if the fluidity of the plastic filler is too low, the resistance at the time of injection increases, so that an excessive load is applied to the injection equipment and there is a possibility that the narrow region between the particles will not be filled. If a considerable amount of voids (unfilled portions) remain between the particles, a water channel is formed, and water impermeability cannot be ensured. Therefore, the plastic filler needs to have appropriate fluidity (formulation).
Also, when the boulders are relatively small and the gap between the boulders is relatively small, the dripping flow is less likely to occur, and the injection pressure tends to be excessive, so the fluidity of the plastic filler is set high. There is a need. In other words, the plastic filler needs to be set to an appropriate fluidity by appropriately blending and adjusting according to the size of megaliths constituting the ground to be injected.

特開2010−112024号公報JP 2010-112024 A 特開2010−168421号公報JP 2010-168421 A

前記従来の可塑性充填材の配合方法では、可塑性充填材の流動性を設定する方法は確立されていなかった。そのため、可塑性充填材の流動性に対しては、実験検討を行うことにより妥当性を確認するのが一般的である。ところが、妥当性の確認実験を行うには手間と費用がかかる。
このような観点から、本発明は、対象となる巨石地盤に応じて適切な流動性に配合調整することを可能とした可塑性充填材の配合設定方法を提案することを課題とする。
In the conventional method for blending a plastic filler, a method for setting the fluidity of the plastic filler has not been established. Therefore, it is common to confirm the validity of the fluidity of the plastic filler by conducting an experimental study. However, it takes time and money to conduct a validity confirmation experiment.
From such a viewpoint, an object of the present invention is to propose a blending setting method for a plastic filler that can be blended and adjusted to an appropriate fluidity according to the target megalithic ground.

前記課題を解決するために、本発明は、巨石地盤に注入する可塑性充填材の配合設定方法であって、前記可塑性充填材のせん断抵抗値τが式1を満足するように配合を設定することを特徴としている。
前記可塑性充填材のせん断抵抗値τは、ベーンせん断試験によって測定すればよい。
In order to solve the above-mentioned problem, the present invention is a blending setting method for a plastic filler to be injected into a megalithic ground, wherein the blending is set so that the shear resistance value τ f of the plastic filler satisfies Equation 1. It is characterized by that.
The shear resistance value τ f of the plastic filler may be measured by a vane shear test.

τ=10−4.118・ρgL・K−0.588 ・・・式1
K:注入係数(m2/kPa・s)
ρ:可塑性充填材の密度(kg/m3
g:重力加速度(9.81m/s2
L:巨石の代表粒径(m)
τ f = 10 −4.118 · ρgL · K −0.588 Expression 1
K: Injection coefficient (m 2 / kPa · s)
ρ: Density of plastic filler (kg / m 3 )
g: Gravity acceleration (9.81m / s 2 )
L: Representative particle size of megalith (m)

かかる可塑性充填材の配合設定方法によれば、巨石の寸法に応じた流動性となるように、可塑性充填材の配合を設定することができるため、対象となる巨石地盤に応じた可塑性充填材の配合を容易に設定することができる。そのため、配合の妥当性を確認するための実験検討の省略あるいは実験ケースの削減が可能となり、ひいては、時間的負担および金銭的負担の低減化が可能となる。また、適切な配合を確保することで、巨石同士の空隙に対して適切に(例えば、空隙の9割以上)充填することが可能となる。
なお、可塑性充填材には、セメントを含むことで充填後に硬化する可塑性グラウトや、セメントを含んでおらず、充填後も硬化することのない可塑性粘土を含むものとする。
According to the plastic filler composition setting method, since the plastic filler composition can be set so as to be fluid according to the size of the megalith, the plastic filler according to the target megalith ground Formulation can be easily set. Therefore, it is possible to omit an experimental study for confirming the adequacy of the blending or to reduce the number of experimental cases, and thus it is possible to reduce the time burden and the money burden. Moreover, it becomes possible to fill appropriately (for example, 90% or more of a space | gap) with respect to the space | gap between megaliths by ensuring a suitable mixing | blending.
The plastic filler includes a plastic grout that hardens after filling by containing cement, and a plastic clay that does not contain cement and does not harden even after filling.

本発明の可塑性充填材の配合設定方法によれば、可塑性充填材を、対象となる巨石地盤に応じた適切な流動性に配合調整することが可能となる。   According to the plastic filler composition setting method of the present invention, the plastic filler can be blended and adjusted to an appropriate fluidity according to the target megalithic ground.

時間と可塑性充填材の注入圧の関係の実験データを示すグラフである。It is a graph which shows the experimental data of the relationship between time and the injection pressure of a plastic filler. 無次元量と注入係数の関係を示すグラフである。It is a graph which shows the relationship between a dimensionless quantity and an injection coefficient. 注入係数と降伏圧力勾配の関係を示すグラフである。It is a graph which shows the relationship between an injection coefficient and a yield pressure gradient. 巨石の代表粒径とせん断抵抗の関係を示すグラフである。It is a graph which shows the relationship between the representative particle size of a megalith, and shear resistance.

本実施形態では、巨石地盤において、巨石同士の間隙に可塑性充填材(可塑性グラウト)を注入することで巨石同士を一体化させた固化体または遮蔽体を形成する場合について説明する。
可塑性充填材の推奨配合は、可塑性充填材が巨石地盤内において意図した範囲に留まるように設定する。ここで、可塑性充填材の流動性が高すぎると可塑性充填材が意図した範囲に留まらず流れだしてしまう。一方、流動性が低すぎると、注入時の抵抗が大きくなり、注入設備に過剰な負荷が加わってしまうほか、巨石同士の間に未充填箇所が残存し、水みちが形成されるおそれがある。また、可塑性充填材は、巨石同士の間隙の大きさや、巨石の粒径によっても、間隙中の流下しやすさが変化する。そのため、本実施形態では、注入対象となる巨石地盤を構成する巨石の大きさに応じた適切な流動性に可塑性充填材を配合調整することで、適切な範囲に施工する。
In the present embodiment, a case will be described in which a solidified body or a shield body in which megaliths are integrated by injecting a plastic filler (plastic grout) into a gap between megaliths in the megalith ground.
The recommended composition of the plastic filler is set so that the plastic filler remains within the intended range in the megalithic ground. Here, if the fluidity of the plastic filler is too high, the plastic filler will flow out of the intended range. On the other hand, if the fluidity is too low, the resistance at the time of injection will increase, and an excessive load will be applied to the injection equipment, and there will be a possibility that unfilled parts will remain between megaliths and water channels will be formed. . Moreover, the ease of flow of the plastic filler in the gap varies depending on the size of the gap between megaliths and the particle size of the megalith. Therefore, in this embodiment, it constructs in an appropriate range by mix-adjusting a plastic filler to the appropriate fluidity | liquidity according to the magnitude | size of the megalith which comprises the megalith ground used as injection | pouring object.

可塑性充填材の注入圧(P)と、可塑性充填材を注入する範囲(改良領域が球状に広がる場合における半径(R)との関係は、地盤の固有のパラメータK,iに基づいて、式2,3のように定式化できる。ここで、式2は改良領域が球状に広がる場合、式3は改良領域が円盤状に広がる場合である。なお、地盤の固有のパラメータK,iは、図1に示すように、実験検討と文献データに対するフィッティングにより特定することができる。なお、文献データ(ケース1,2)には、「港湾空港技術研究所資料(水谷 他6名、重力式係船岸の新しい増深工法に開発、独立行政法人港湾空港技術研究所、No.1277、2013年12月)」のデータを使用した。また、本実施形態では、実験検討として、実規模試験施工(ケース3)と、小規模試験施工(ケース4)との2ケースについて、試験を行った。表1にケース1〜4の実験の条件を示す。 The relationship between the injection pressure (P) of the plastic filler and the range in which the plastic filler is injected (the radius (R) when the improved region expands in a spherical shape is based on the parameters K and ic inherent to the ground. It can be formulated as 2 and 3. Here, Formula 2 is a case where the improved region spreads in a spherical shape, and Formula 3 is a case where the improved region is spread in a disk shape, where the inherent parameters K and ic of the ground are As shown in Fig. 1, it can be specified by experimental examination and fitting to literature data.In the literature data (cases 1 and 2), "Port and harbor technical laboratory materials (Mizutani et al. 6 people, gravity type The data of “Development of new deepening method on mooring shore, Port and Airport Research Institute, No. 1277, December 2013)” was used. (Case 3) and The two cases of the small scale test construction (case 4), shows the condition of the experimental cases 1 to 4 were tested. Table 1.

Figure 2017193907
Figure 2017193907

Figure 2017193907
Figure 2017193907

図1のデータから、無次元量τと注入係数Kの関係および注入係数Kと降伏圧力勾配iの関係は、それぞれ図2,3に示すようになる。図2,3に示す結果から、可塑性充填材が巨石地盤内に滞留して球状の改良体を形成できる降伏圧力勾配iと注入係数Kとの組み合わせは、幅を持って存在するものと考えられる。図2から無次元量τと注入係数Kの相関式(式4)を求めることができる。無次元量τと注入係数Kの相関式(式4)から、注入対象となる巨石地盤の巨石寸法に応じた可塑性充填材のせん断抵抗値τを求める式5を導くことができる。 From the data in FIG. 1, the relationship between the dimensionless amount τ N and the injection coefficient K and the relationship between the injection coefficient K and the yield pressure gradient ic are as shown in FIGS. From the results shown in FIGS. 2 and 3, it is considered that the combination of the yield pressure gradient ic and the injection coefficient K that allow the plastic filler to stay in the megalith ground and form a spherical improvement body has a width. It is done. From FIG. 2, a correlation equation (Equation 4) between the dimensionless amount τ N and the injection coefficient K can be obtained. From the correlation equation (Equation 4) between the dimensionless amount τ N and the injection coefficient K, Equation 5 can be derived to determine the shear resistance value τ f of the plastic filler according to the megalith size of the megalith ground to be injected.

K×10=0.001τ −1.7
10・K=(τ/ρgL)−1.7 ・・・式4
10・K=(ρgL/τ1.7
τ 1.7=10−7・(ρgL)1.7/K
τ=10−7/1.7・ρgL/K1/1.7
τ=10−4.118・ρgL・K−0.588 ・・・式5
:注入係数(m2/kPa・s)
ρ :可塑性充填材の密度(kg/m3
:重力加速度(9.81m/s2
:巨石の代表粒径(m)
τ:無次元量(=τ/ρgL)
K × 10 4 = 0.001τ N −1.7
10 7 · K = (τ f / ρgL) −1.7.
10 7 · K = (ρgL / τ f ) 1.7
τ f 1.7 = 10 −7 · (ρgL) 1.7 / K
τ f = 10 −7 / 1.7 · ρgL / K 1 / 1.7
τ f = 10 −4.118 · ρgL · K −0.588 Expression 5
K : Injection coefficient (m 2 / kPa · s)
ρ : Density of plastic filler (kg / m 3 )
g : Gravity acceleration (9.81m / s 2 )
L : Representative particle size of megalith (m)
τ N : dimensionless quantity (= τ f / ρgL)

ここで、せん断抵抗に関する無次元量τと注入係数Kとの関係(図2)および注入係数Kと降伏圧力勾配iとの関係(図3)に基づいて、巨石寸法に応じて推奨される可塑性充填材のせん断抵抗を特定する。図3に示された4つの実験結果(ケース1〜4)では、いずれも間隙注入を経て意図した範囲に固化体を形成することができたことから、「降伏圧力勾配icは4つの実験結果の中間的な値となる1である場合に、重力による垂れ流れが生じることなく意図した範囲に固化体を形成することができる」と仮定する。これに基づき、図2,3に示すように、注入係数Kは0.07×10−4(m/kPa・s)、無次元量τは0.1が適正値であると設定する。この結果、間隙注入に適した可塑性充填材の降伏応力τは、対象の巨石地盤の代表粒径Lに対して式6で関連付けることができる。
τ=0.1ρgL ・・・ 式6
Here, based on the relationship between the dimensionless amount τ N related to the shear resistance and the injection coefficient K (FIG. 2) and the relationship between the injection coefficient K and the yield pressure gradient ic (FIG. 3), it is recommended according to the megalith size. Specify the shear resistance of the plastic filler. In all the four experimental results shown in FIG. 3 (cases 1 to 4), the solidified body could be formed in the intended range via gap injection. It is assumed that a solidified body can be formed in an intended range without causing a sagging flow due to gravity when the value is 1 which is an intermediate value of "." Based on this, as shown in FIGS. 2 and 3, the injection coefficient K is set to 0.07 × 10 −4 (m 2 / kPa · s), and the dimensionless amount τ N is set to 0.1 as an appropriate value. . As a result, the yield stress τ f of the plastic filler suitable for the gap injection can be related to the representative particle size L of the target megalith ground by Equation 6.
τ f = 0.1ρgL Equation 6

式6により、対象となる巨石地盤の巨石の代表粒径とせん断抵抗との関係の範囲を示す図(図4)を作成することができる。この図を利用すれば、巨石地盤内の巨石の寸法に対してせん断抵抗値τを特定できるので、このせん断抵抗値τを目標に可塑性充填材の配合を調整すれば、可塑性充填材の推奨配合を迅速に設定することができる。すなわち、各注入地点周りに略球形の固化体を形成できるので、より効果的かつ効率的な施工が可能となる。なお、推奨配合に基づいて製造された可塑性充填材は、ベーンせん断試験によってせん断抵抗値を測定することで、簡易に配合を確認することができる。
可塑性充填材の推奨配合のせん断抵抗値を算出することで、巨石地盤に応じた可塑性充填材の配合を検証するための実験(試験施工)を省略、あるいは、実験ケースの数を削減することができ、時間的、経済的負担の軽減を図ることができる。
By Formula 6, the figure (FIG. 4) which shows the range of the relationship between the representative particle diameter of the megalith of the target megalith ground and the shear resistance can be created. If this figure is used, since the shear resistance value τ f can be specified with respect to the size of the megalith in the megalith ground, if the blending of the plastic filler is adjusted with the shear resistance value τ f as a target, the plastic filler The recommended recipe can be set quickly. That is, since a substantially spherical solid body can be formed around each injection point, more effective and efficient construction is possible. In addition, the plastic filler manufactured based on the recommendation mixing | blending can confirm a mixing | blending easily by measuring a shear resistance value with a vane shear test.
By calculating the shear resistance value of the recommended composition of the plastic filler, the experiment (test construction) for verifying the composition of the plastic filler according to the megalithic ground can be omitted or the number of experiment cases can be reduced. Can reduce the time and economic burden.

なお、図3の結果から、降伏圧力勾配iは0.3〜4.6(kPa/m)の範囲内で設定するのが望ましく、降伏圧力勾配に応じて注入係数Kは0.012×10−4〜0.300×10−4(m/kPa・s)の範囲で設定することが好ましい。本実施形態では、代表粒径として、注入対象地盤の最大粒径とする。なお、代表粒径の設定方法は限定されるものではなく、例えば、巨石地盤が含有する巨石のうち、平均的な大きさの巨石の粒径を採用してもよい。
また、図2の結果から、可塑性充填材の配合検討において、せん断抵抗τの適正範囲の式7を目安に特定してもよい。
(図2より)0.034<τ<0.26
0.034ρgL<τ<0.26ρgL ・・・ 式7
Note that from the results of FIG. 3, the yield pressure gradient i c preferably be set within a range of 0.3~4.6 (kPa / m), the injection coefficient K in accordance with the breakdown pressure gradient 0.012 × It is preferable to set in the range of 10 −4 to 0.300 × 10 −4 (m 2 / kPa · s). In the present embodiment, the representative particle size is the maximum particle size of the ground to be injected. In addition, the setting method of a representative particle size is not limited, For example, you may employ | adopt the particle size of the megalith of an average magnitude | size among the megaliths which a megalith ground contains.
In addition, from the result of FIG. 2, in the blending examination of the plastic filler, the appropriate range of the shear resistance τ f may be specified as a guideline.
(From FIG. 2) 0.034 <τ N <0.26
0.034ρgL <τ f <0.26ρgL Equation 7

以上、本発明の実施形態について説明したが、本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
本実施形態の可塑性充填材の配合設定方法が適用可能な巨石地盤は限定されるものではなく、例えば、礫混じり地盤や護岸等の基礎構造として用いられる基礎捨石マウンド等に使用することができる。
また、可塑性充填材のせん断抵抗値の確認方法は、ベーンせん断試験に限定されるものではない。
また、前記実施形態では、可塑性充填材として可塑性グラウトを使用する場合について説明したが、可塑性充填材はこれに限定されるものではなく、例えば、可塑性粘土であってもよい。
The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and the above-described components can be appropriately changed without departing from the spirit of the present invention.
The megalithic ground to which the plastic filler blending and setting method of the present embodiment is applicable is not limited, and can be used for, for example, a foundation rubble mound used as a foundation structure such as a gravel mixed ground or a seawall.
Moreover, the confirmation method of the shear resistance value of a plastic filler is not limited to a vane shear test.
Moreover, although the said embodiment demonstrated the case where a plastic grout was used as a plastic filler, a plastic filler is not limited to this, For example, a plastic clay may be sufficient.

Claims (2)

巨石地盤に注入する可塑性充填材の配合設定方法であって、
前記可塑性充填材のせん断抵抗値τが式1を満足するように配合を設定することを特徴とする、可塑性充填材の配合設定方法。
τ=10−4.118・ρgL・K−0.588 ・・・式1
K:注入係数(m2/kPa・s)
ρ:可塑性充填材の密度(kg/m3
g:重力加速度
L:巨石の代表粒径(m)
It is a blending setting method of a plastic filler to be injected into megalithic ground,
A blending setting method for a plastic filler, characterized in that the blending is set so that the shear resistance value τ f of the plastic filler satisfies Formula 1.
τ f = 10 −4.118 · ρgL · K −0.588 Expression 1
K: Injection coefficient (m 2 / kPa · s)
ρ: Density of plastic filler (kg / m 3 )
g: acceleration of gravity L: representative particle size of megalith (m)
前記可塑性充填材のせん断抵抗値を、ベーンせん断試験によって測定することを特徴とする、請求項1に記載の可塑性充填材の配合設定方法。   The method for setting the composition of a plastic filler according to claim 1, wherein a shear resistance value of the plastic filler is measured by a vane shear test.
JP2016085909A 2016-04-22 2016-04-22 How to set the composition of plastic filler Active JP6714421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085909A JP6714421B2 (en) 2016-04-22 2016-04-22 How to set the composition of plastic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085909A JP6714421B2 (en) 2016-04-22 2016-04-22 How to set the composition of plastic filler

Publications (2)

Publication Number Publication Date
JP2017193907A true JP2017193907A (en) 2017-10-26
JP6714421B2 JP6714421B2 (en) 2020-06-24

Family

ID=60155957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085909A Active JP6714421B2 (en) 2016-04-22 2016-04-22 How to set the composition of plastic filler

Country Status (1)

Country Link
JP (1) JP6714421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021309A (en) * 2019-07-26 2021-02-18 小野田ケミコ株式会社 Determining method compounding specification of solidification material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336811A (en) * 2001-05-16 2002-11-26 Terunaito:Kk Deformation follow-up type impervious liner material
JP2003145087A (en) * 2001-11-15 2003-05-20 Okumura Corp Soil liner layer, construction method for the same and liner material used for the same
US20080060423A1 (en) * 2006-04-29 2008-03-13 Wen-Chen Jau Measurements of yield stress and plastic viscosity of cement-based materials via concrete rheometer
JP2011106178A (en) * 2009-11-18 2011-06-02 Taisei Corp Method of filling void under water surface
JP2013186026A (en) * 2012-03-09 2013-09-19 Taisei Corp Method for evaluating plastic fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336811A (en) * 2001-05-16 2002-11-26 Terunaito:Kk Deformation follow-up type impervious liner material
JP2003145087A (en) * 2001-11-15 2003-05-20 Okumura Corp Soil liner layer, construction method for the same and liner material used for the same
US20080060423A1 (en) * 2006-04-29 2008-03-13 Wen-Chen Jau Measurements of yield stress and plastic viscosity of cement-based materials via concrete rheometer
JP2011106178A (en) * 2009-11-18 2011-06-02 Taisei Corp Method of filling void under water surface
JP2013186026A (en) * 2012-03-09 2013-09-19 Taisei Corp Method for evaluating plastic fluid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石井裕泰: "大規模充填工事における時間・空間的影響を考慮した可塑性グラウトの粘性特性と施工性に関する研究", 大規模充填工事における時間・空間的影響を考慮した可塑性グラウトの粘性特性と施工性に関する研究, JPN6020004024, May 2016 (2016-05-01), JP, pages 102 - 107, ISSN: 0004208307 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021309A (en) * 2019-07-26 2021-02-18 小野田ケミコ株式会社 Determining method compounding specification of solidification material

Also Published As

Publication number Publication date
JP6714421B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
Mohammed et al. Study of cement-grout penetration into fractures under static and oscillatory conditions
Flora et al. The diameter of single, double and triple fluid jet grouting columns: prediction method and field trial results
Blázquez et al. Analysis and study of different grouting materials in vertical geothermal closed-loop systems
Celik The observation of permeation grouting method as soil improvement technique with different grout flow models
Cui et al. Washout resistance evaluation of fast-setting cement-based grouts considering time-varying viscosity using CFD simulation
JP5999718B2 (en) Underground impermeable wall construction material
JP5979635B2 (en) Underground cavity filling material and method for producing the filling material
JP5753242B2 (en) Soil wet density test method
Moayed et al. Experimental investigation and constitutive modeling of grout–sand interface
Fransson et al. Swedish grouting design: hydraulic testing and grout selection
JP2017193907A (en) Method for setting composition of plastic filler
JP5780714B2 (en) Filling the underground cavity
JP5697228B2 (en) Plastic grout material
KR101066587B1 (en) Construction method of inner filling structure using liquid ultrahigh viscosity and flowable grout material
Ramge et al. Robustness by mix design–a new approach for mixture proportioning of SCC
Assaad et al. Simulation of water pressure on washout of underwater concrete repair
JP2008031769A (en) Mixing design method and soil cement
JP5952034B2 (en) Evaluation method of plastic fluid
JP5875138B2 (en) Foundation pile construction method considering site conditions
Rudnicki Functional Method of Designing Self-Compacting Concrete. Materials 2021, 14, 267
CN112513376B (en) Method and apparatus for setting W/C in deep mixing processing method
JP5863477B2 (en) Self-filling cement-based kneaded material excellent in water inseparability at high temperatures and method for producing the same
Evans et al. Slurry walls for groundwater control: a comparison of UK and US practice
O'Dwyer et al. Critical state shear strength at concrete–sand–bentonite slurry interfaces: mix proportions and rate effects
JP2007197546A (en) Grouting material and grouting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200605

R150 Certificate of patent or registration of utility model

Ref document number: 6714421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150