JP2021021309A - Determining method compounding specification of solidification material - Google Patents

Determining method compounding specification of solidification material Download PDF

Info

Publication number
JP2021021309A
JP2021021309A JP2019160186A JP2019160186A JP2021021309A JP 2021021309 A JP2021021309 A JP 2021021309A JP 2019160186 A JP2019160186 A JP 2019160186A JP 2019160186 A JP2019160186 A JP 2019160186A JP 2021021309 A JP2021021309 A JP 2021021309A
Authority
JP
Japan
Prior art keywords
solidifying material
compounding
determining
soil
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019160186A
Other languages
Japanese (ja)
Other versions
JP6648332B1 (en
Inventor
経 西尾
Kyo Nishio
経 西尾
行弘 山根
Yukihiro Yamane
行弘 山根
文彦 木村
Fumihiko Kimura
文彦 木村
幸生 竹山
Yukio Takeyama
幸生 竹山
拡司 西野
Hiroshi Nishino
拡司 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemico Co Ltd
Original Assignee
Onoda Chemico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemico Co Ltd filed Critical Onoda Chemico Co Ltd
Application granted granted Critical
Publication of JP6648332B1 publication Critical patent/JP6648332B1/en
Publication of JP2021021309A publication Critical patent/JP2021021309A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

To provide a determining method for the compounding specification of a solidification material, which can determine the compounding specifications of the solidifying material, which can prevent the occurrence of a co-rotation phenomenon at high probability without significantly increasing the amount of the solidifying material used.SOLUTION: A determining method for the compounding specification of a solidification material for the soil to be improved in a deep mixing treatment method, comprises: a step of performing a vane shear test and determining a vane shear value τ for the unsolidification mixed soil in which the solidification material is mixed with the soil to be improved at a plurality of compounding levels and stirred, and determining a liquid dropping frequency N in the item of a liquid limit test: and the step of determining a target compounding specification of the solidification material based on the correlation between the vane shear value τ and the liquid dropping frequency N.SELECTED DRAWING: Figure 1

Description

本発明は、深層混合処理工法におけるセメント系固化材スラリーの配合仕様を決定する方法に関する。 The present invention relates to a method for determining a blending specification of a cement-based solidifying material slurry in a deep mixing treatment method.

深層混合処理工法は、攪拌翼を土中に貫入させながら、スラリー状の固化材などを土に混合して攪拌し、固結した円柱状パイルを土中に形成することにより、軟弱地盤の支持力等を増加させる工法である。深層混合処理工法において、改良対象土が高塑性である場合や、粘性やせん断強さが大きいなどの場合、撹拌翼に土が付着して撹拌翼が土と一体となって回転する共回り現象が発生し、固化材が土に良好に混合されず、所望の支持力を得られないことがある。 In the deep mixing treatment method, while the stirring blade penetrates into the soil, a slurry-like solidifying material is mixed with the soil and stirred to form a consolidated columnar pile in the soil to support the soft ground. It is a construction method that increases the force. In the deep mixing treatment method, when the soil to be improved is highly plastic, or when the viscosity and shear strength are high, the soil adheres to the stirring blade and the stirring blade rotates together with the soil. May occur and the solidifying material may not mix well with the soil and the desired bearing capacity may not be obtained.

共回り現象を発生させないために、例えば特許文献1には、共回り防止翼を備えた深層混合処理機が開示されている。しかし、共回り現象は地中で発生するので、施工中に実際に共回り現象が発生しているか否かは、地上の管理者は知りえない。 In order not to generate the co-rotation phenomenon, for example, Patent Document 1 discloses a deep mixing processor provided with co-rotation prevention blades. However, since the co-rotation phenomenon occurs underground, the manager on the ground cannot know whether or not the co-rotation phenomenon actually occurs during construction.

そこで、例えば特許文献2には、回転ロッドの回転数に対する共回り防止翼の相対回転数を検出するカウントセンサを設け、共回り防止翼の相対回転数と回転ロッドの回転数を比較することによって、施工中に共回り現象の発生を検知できるようにした攪拌・混合装置が開示されている。 Therefore, for example, Patent Document 2 provides a count sensor that detects the relative rotation speed of the co-rotation prevention blade with respect to the rotation speed of the rotating rod, and compares the relative rotation speed of the co-rotation prevention blade with the rotation speed of the rotating rod. , A stirring / mixing device capable of detecting the occurrence of a co-rotation phenomenon during construction is disclosed.

しかし、上記の撹拌・混合装置を使用しても、共回り現象の発生自体を防止することはできない。よって、固化材の配合仕様の決定段階から、固化材混合直後の混合土の性状が共回り現象が発生しないようなものとなるように、水固化材比W/Cを設定し、混合土のコンシステンシーを調整する対策を行うことが考えられる。 However, even if the above-mentioned stirring / mixing device is used, the occurrence of the co-rotation phenomenon itself cannot be prevented. Therefore, from the stage of determining the compounding specifications of the solidifying material, the water solidifying material ratio W / C is set so that the properties of the mixed soil immediately after mixing the solidifying material do not cause the co-rotation phenomenon, and the mixed soil is mixed. It is conceivable to take measures to adjust the consistency.

例えば特許文献3には、配合仕様の決定段階で固化材混合直後の混合土のコンシステンシーを調整することが開示されている。これは、いわゆるトレンチャー工法において、混合撹拌後に転圧が不要となる性状とするために、改良目標強度を満足する前提で水固化材比W/Cを調整し、コンシステンシー指数Icを望ましくは0以下としている。 For example, Patent Document 3 discloses that the consistency of the mixed soil immediately after mixing the solidifying material is adjusted at the stage of determining the compounding specifications. This is because in the so-called trencher method, the water solidifying material ratio W / C is adjusted on the premise that the improvement target strength is satisfied, and the consistency index Ic is preferably 0 in order to make the property that rolling compaction is not required after mixing and stirring. It is as follows.

コンシステンシー指数Icが0以下ということは、自然含水比Wnが液性限界WLより大きいことを意味し、固化材混合直後の混合土の含水比が液性限界WLを上回ることになる。これにより、混合土の性状は流動性を呈し、転圧を行わなくても混合土内に空隙が残存せず、混合斑の少ない固化処理土層を造成することができる。 When the consistency index Ic is 0 or less, it means that the natural water content ratio Wn is larger than the liquid limit WL, and the water content ratio of the mixed soil immediately after mixing the solidifying material exceeds the liquid limit WL. As a result, the properties of the mixed soil are fluid, no voids remain in the mixed soil even without compaction, and a solidified soil layer with few mixed spots can be created.

特開昭56−153013号公報Japanese Unexamined Patent Publication No. 56-153013 特開2000−144703号公報JP-A-2000-144703 特開2003−239275号公報Japanese Unexamined Patent Publication No. 2003-239275

上記特許文献3には、コンシステンシー指数Icを0より小さくすることによって混合抵抗が小さくなる旨が記載されているが、このようにすれば混合土は著しい流動性を呈するので、混合土は撹拌翼に付着し難くなり、深層混合処理工法における共回り現象の発生の解消を図ることができると推察される。 The above-mentioned Patent Document 3 describes that the mixing resistance is reduced by making the consistency index Ic smaller than 0. However, since the mixed soil exhibits remarkable fluidity in this way, the mixed soil is stirred. It is presumed that it becomes difficult to adhere to the blades and that the occurrence of the co-rotation phenomenon in the deep mixing treatment method can be eliminated.

深層混合処理工法では、通常、固化材スラリーの水固化材比W/Cを0.8〜1.2程度に設定する場合が多い(陸上工事における深層混合処理工法設計・施工マニュアル 改訂版 財団法人土木研究センター 平成16年3月、60頁参照)。しかし、これに加えて固化材混合直後の混合土のコンシステンシー指数Icが0以下となる条件を付加すると、固化材混合直後の混合土の含水比Wnが液性限界WLを上回るものとするためには、特に高塑性の粘性土では水を多量に加えることになる。 In the deep mixing treatment method, the water solidifying material ratio W / C of the solidifying material slurry is usually set to about 0.8 to 1.2 (Revised version of the Deep Mixing Treatment Method Design and Construction Manual for Land Works). Public Works Research Center, March 2004, see page 60). However, in addition to this, if the condition that the consistency index Ic of the mixed soil immediately after mixing the solidifying material is 0 or less is added, the water content ratio Wn of the mixed soil immediately after mixing the solidifying material is made to exceed the liquidity limit WL. In particular, a large amount of water will be added to the highly plastic cohesive soil.

しかし、水分を加えると目標強度を満足するために固化材の使用量を増加させる必要があるので、コストが増加する。また、施工現場においては、地盤中に注入するスラリーの量が増加するから施工中に発生する排泥量が増加し、この増加する排泥を処分する必要が生じる。さらに地盤中に注入するスラリーの量が多くなるので、施工時に排泥が増加し施工機械足場が軟弱化し易くなり、施工機械の安定性が低下するおそれもある。 However, the addition of water increases the cost because it is necessary to increase the amount of the solidifying material used in order to satisfy the target strength. Further, at the construction site, since the amount of slurry injected into the ground increases, the amount of mud generated during construction increases, and it becomes necessary to dispose of the increased mud. Furthermore, since the amount of slurry injected into the ground increases, mud drainage increases during construction, the scaffolding of the construction machine tends to soften, and the stability of the construction machine may decrease.

本発明は、かかる事情に鑑みてなされたものであり、固化材の使用量を大きく増加させることなく、共回り現象の発生を高い確率で防止することが可能な固化材の配合仕様を決定することが可能な固化材の配合仕様決定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and determines a compounding specification of a solidifying material capable of preventing the occurrence of a co-rotation phenomenon with a high probability without significantly increasing the amount of the solidifying material used. It is an object of the present invention to provide a method for determining a compounding specification of a solidifying material.

本発明の固化材の配合仕様決定方法は、深層混合処理工法における改良対象土に対する固化材の配合仕様を決定する方法であって、前記固化材を複数の配合水準で前記改良対象土に混合して撹拌した未固化の混合土に対して、ベーンせん断試験を行ってベーンせん断値を求めると共に、液性限界試験の項目中の液性落下回数を求める工程と、前記ベーンせん断値と前記液性落下回数との相関関係に基づいて前記固化材の目標配合仕様を決定する工程とを備えることを特徴とする。 The method for determining the blending specifications of the solidifying material of the present invention is a method for determining the blending specifications of the solidifying material for the soil to be improved in the deep mixing treatment method, in which the solidifying material is mixed with the soil to be improved at a plurality of blending levels. A vane shear test is performed on the uncured mixed soil that has been stirred and the vane shear value is obtained, and the number of liquid drops in the items of the liquid limit test is obtained, and the vane shear value and the liquid property are obtained. It is characterized by including a step of determining a target compounding specification of the solidifying material based on a correlation with the number of drops.

本発明の固化材の配合仕様決定方法は、後述するように、ベーンせん断値と液性落下回数との相関関係に基づいて、未固化の混合土のベーンせん断値とコンシステンシーの両方を考慮しながら共回りが発生しないような、固化材の目標配合仕様を決定する。これにより、共回り現象が発生しない限界における固化材の配合仕様を、ベーンせん断値だけで判断する場合と比較して高精度で共回り現象が発生する限界の配合仕様を定めることが可能となる。これにより、必要以上の固化材の添加を抑制することができ、コストの削減などを図ることが可能となり、経済的となる。 As will be described later, the method for determining the blending specifications of the solidifying material of the present invention considers both the vane shear value and the consistency of the uncured mixed soil based on the correlation between the vane shear value and the number of liquid drops. However, determine the target compounding specifications of the solidifying material so that co-rotation does not occur. This makes it possible to determine the compounding specifications of the solidifying material at the limit where the co-rotation phenomenon does not occur, with higher accuracy than when judging only by the vane shear value. .. As a result, it is possible to suppress the addition of the solidifying material more than necessary, and it is possible to reduce the cost and the like, which is economical.

本発明の固化材の配合仕様決定方法において、前記ベーンせん断値と前記液性落下回数との相関関係を示す指定相関曲線における曲率が大きな大曲率部の代表点を推定し、前記代表点に相当する前記固化材の配合仕様を前記固化材の目標配合仕様として決定することを特徴とすることが好ましい。 In the method for determining the compounding specifications of the solidifying material of the present invention, a representative point of a large curvature portion having a large curvature in the designated correlation curve showing the correlation between the vane shear value and the number of liquid drops is estimated and corresponds to the representative point. It is preferable that the compounding specification of the solidifying material is determined as the target compounding specification of the solidifying material.

この場合、後述するように、共回り現象が発生するか否かにおける固化材の経済的な目標配合仕様を高精度で求めることが可能となる。 In this case, as will be described later, it is possible to obtain with high accuracy the economical target compounding specifications of the solidifying material depending on whether or not the co-rotation phenomenon occurs.

本発明の固化材の配合仕様決定方法において、例えば、前記複数の配合水準は、前記改良対象土の単位体積当たりの前記固化材の添加量が一定であって、水固化材比が異なるものであればよい。 In the method for determining the compounding specifications of the solidifying material of the present invention, for example, the plurality of compounding levels are such that the amount of the solidifying material added per unit volume of the soil to be improved is constant and the ratio of the water solidifying material is different. All you need is.

また、本発明の固化材の配合仕様決定方法において、例えば、前記複数の配合水準は、水固化材比が一定であって、前記改良対象土の単位体積当たりの前記固化材の添加量が異なるものであってもよい。なお、配合仕様は、前記改良対象土の単位体積当たりの固化材の添加量、および水固化材比で表される。 Further, in the method for determining the compounding specifications of the solidifying material of the present invention, for example, the water solidifying material ratio is constant at the plurality of compounding levels, and the amount of the solidifying material added per unit volume of the soil to be improved is different. It may be a thing. The compounding specifications are represented by the amount of the solidifying material added per unit volume of the soil to be improved and the ratio of the water solidifying material.

さらに、本発明の固化材の配合仕様決定方法において、固化した前記混合土の目標強度に基づいて求めた前記固化材の配合仕様に相当する前記液性落下回数である第1指定液性落下回数N0を決定する工程と、前記第1指定液性落下回数N0が前記代表点に相当する液性落下回数である第2指定液性落下回数N1以下の場合、目標強度に基づいて求めた前記固化材の配合仕様を前記固化材の目標配合仕様として決定し、前記第1指定液性落下回数N0が前記第2指定液性落下回数N1を超える場合、前記代表点に相当する前記固化材の配合仕様を前記固化材の目標配合仕様として決定する工程とを備えることが好ましい。 Further, in the method for determining the compounding specifications of the solidifying material of the present invention, the number of liquid drops corresponding to the compounding specifications of the solidifying material obtained based on the target strength of the solidified mixed soil is the number of first designated liquid drops. The step of determining N0 and the solidification obtained based on the target strength when the first designated liquid drop count N0 is the second designated liquid drop count N1 or less, which is the number of liquid drops corresponding to the representative point. When the compounding specification of the material is determined as the target compounding specification of the solidifying material and the first designated liquid drop count N0 exceeds the second designated liquid drop count N1, the solidifying material corresponding to the representative point is blended. It is preferable to include a step of determining the specifications as the target compounding specifications of the solidifying material.

この場合、固化した混合土が目標強度を有すると共に、共回り現象が発生する可能性が低い固化材の目標配合仕様となるように固化材を追加することなどが可能となる。 In this case, it is possible to add the solidifying material so that the solidified mixed soil has the target strength and the target blending specifications of the solidifying material are less likely to cause the co-rotation phenomenon.

また、本発明の固化材の配合仕様決定方法において、固化した前記混合土に対して一軸圧縮試験を行って、一軸圧縮強度を求める工程と、複数の前記液性落下回数の区間において、前記ベーンせん断値の減少に対する前記一軸圧縮強度の減少が最も少ない区間を求める工程と、前記求めた区間における前記液性落下回数の最小値に基いて前記固化材の目標配合仕様を補正する工程と備えることが好ましい。 Further, in the method for determining the blending specifications of the solidifying material of the present invention, the vane is used in a step of performing a uniaxial compression test on the solidified mixed soil to obtain a uniaxial compression strength and in a section of a plurality of liquid drops. It is provided with a step of obtaining the section in which the decrease in the uniaxial compressive strength is the smallest with respect to the decrease in the shear value, and a step of correcting the target compounding specification of the solidifying material based on the minimum value of the number of liquid drops in the obtained section. Is preferable.

この場合、固化した混合土が一軸圧縮強度を満足させると同時に、共回り現象が発生する可能性を大きく減少させる固化材の目標配合仕様を決定することが可能となる。 In this case, it is possible to determine the target compounding specifications of the solidifying material, which satisfies the uniaxial compressive strength of the solidified mixed soil and at the same time greatly reduces the possibility of the co-rotation phenomenon occurring.

実施例1におけるベーンせん断値と液性落下回数との関係を示すグラフ。The graph which shows the relationship between the vane shear value and the number of liquid drops in Example 1. FIG. 実施例2におけるベーンせん断値と液性落下回数との関係を示すグラフ。The graph which shows the relationship between the vane shear value and the number of liquid drops in Example 2. FIG. 実施例3における一軸圧縮強度と固化材の添加量との関係を示すグラフ。The graph which shows the relationship between the uniaxial compression strength and the addition amount of a solidifying material in Example 3. FIG. 実施例3におけるベーンせん断値と液性落下回数との関係を示すグラフであり、一軸圧縮強度quが500kN/m2である場合を示す。It is a graph which shows the relationship between the vane shear value and the number of liquid drops in Example 3, and shows the case where the uniaxial compression strength qu is 500 kN / m 2 . 実施例3におけるベーンせん断値と液性落下回数との関係を示すグラフであり、一軸圧縮強度quが400kN/m2である場合を示す。It is a graph which shows the relationship between the vane shear value and the number of liquid drops in Example 3, and shows the case where the uniaxial compression strength qu is 400 kN / m 2 . 実施例4におけるベーンせん断値および一軸圧縮強度と液性落下回数との関係を示すグラフ。The graph which shows the relationship between the vane shear value and the uniaxial compressive strength in Example 4 and the number of liquid drops.

本願発明者は、深層混合処理工法を用いた多数の施工現場において、共回り現象の発生の有無を試験、調査した。この試験、調査は、固化材の配合仕様と施工中の共回り現象の発生の関連性、および共回り現象が発生した混合土の性状を確認する試験などを含むものである。 The inventor of the present application has tested and investigated the presence or absence of the co-rotation phenomenon at a large number of construction sites using the deep mixing treatment method. This test and survey include a test to confirm the relationship between the compounding specifications of the solidifying material and the occurrence of the co-rotation phenomenon during construction, and the properties of the mixed soil in which the co-rotation phenomenon has occurred.

本願発明者は、当初、前記の試験、調査を通じて、固化材混合直後の未固化の混合土の施工時における共回り現象の有無に関する判定指標としてベーンせん断値τを採用することを考えた。これは、ベーンせん断試験器を用い、混合土のせん断強さを指標とする方法である。ベーンせん断試験は、十字型の羽根(ベーン)をつけたロッドを地中に押し込んで回転させ、羽根によって形成される円筒形のせん断面に沿うせん断抵抗(粘着力)を回転抵抗から求める試験であり、室内配合試験中に未固化土に対して実施できること、試験結果が試験実施直後に直ちに判明すること、現場の共回り現象との関連性が大きいと考えられることなどの多くの利点を有するからである。 Initially, the inventor of the present application considered through the above-mentioned tests and investigations to adopt the vane shear value τ as a judgment index regarding the presence or absence of the co-rotation phenomenon at the time of construction of the unsolidified mixed soil immediately after the solidifying material is mixed. This is a method using a vane shear tester and using the shear strength of the mixed soil as an index. The vane shear test is a test in which a rod with cross-shaped blades (vanes) is pushed into the ground and rotated, and the shear resistance (adhesive force) along the cylindrical shear surface formed by the blades is obtained from the rotational resistance. It has many advantages such as being able to be performed on unsolidified soil during an indoor compounding test, the test results being immediately revealed immediately after the test is performed, and being considered to be highly related to the on-site co-rotation phenomenon. Because.

そして、ベーンせん断値τが6kN/m2を超えると共回り現象が発生する可能性が大きく、ベーンせん断値τが5〜6kN/m2である場合には共回り現象が発生する可能性が少なからずあることを見出した。 When the vane shear value τ exceeds 6 kN / m 2 , the co-rotation phenomenon is likely to occur, and when the vane shear value τ is 5 to 6 kN / m 2 , the co-rotation phenomenon may occur. I found that there was not a little.

なお、本発明の実施形態におけるベーンせん断値τを求めるベーンせん断試験は、2012年に改正された地盤工学会基準JGS1411−2012「原位置ベーンせん断試験」に基づき、この試験を室内において「安定処理土の締固めをしない供試体作成」「安定処理土の突固めによる供試体作成方法(JGS0811−2009)に基づく「5.3.3.供試体作製器具および養生器具(1)混合器具に例示されているような機能を有する電動ミキサーに付属するステンレスボールに試料土を計量し、この中に固化材を指定添加量配合となるよう計量〜添加〜混合撹拌したまだ固まらない固化材混合土に対し、「原位置ベーンせん断試験」に用いる小型ベーンせん断試験機を用いて実施した試験をいう。 The vane shear test for obtaining the vane shear value τ in the embodiment of the present invention is based on the Japanese Geotechnical Society standard JGS1411-2012 "Direct Shear Test", and this test is performed indoors for "stable treatment". Examples of "5.3.3. Specimen preparation equipment and curing equipment (1) Mixing equipment" based on "Preparation of specimen without soil compaction" and "Stable treatment method for preparation of specimen by compaction of soil (JGS0811-2009)" Weigh the sample soil into a stainless steel ball attached to an electric mixer that has the same function as the above, and weigh-add-mix and stir the solidifying material so that the specified amount of solidified material is mixed. On the other hand, it refers to a test carried out using a small vane shear tester used for the "in-situ vane shear test".

しかしながら、前記ベーンせん断試験により共回り現象が発生する可能性がある場合、これを抑制するために、固化材スラリーの増量、水固化材比の増加、先行削孔して水を吐出させる施工法の採用、固化材への減粘材の混入など、固化材混合直後の混合土の粘性を低減させる必要がある。そして、これらは全て高コストとなる要因であり、経済的からは好ましいものではない。 However, if there is a possibility that a co-rotation phenomenon may occur due to the vane shear test, in order to suppress this, a construction method in which the amount of solidifying material slurry is increased, the ratio of water solidifying material is increased, and water is discharged by pre-drilling. It is necessary to reduce the viscosity of the mixed soil immediately after mixing the solidifying material, such as by adopting the above and mixing the thickening material into the solidifying material. And these are all factors that increase the cost, which is not preferable from the economical point of view.

さらに、実際の施工現場では、固化材混合直後の混合土のベーンせん断値τが6kN/m2を超えても共回り現象が発生しない場合もあれば、ベーンせん断値τが5kN/m2未満であっても共回り現象が発生する場合があった。 Furthermore, at the actual construction site, even if the vane shear value τ of the mixed soil immediately after mixing the solidifying material exceeds 6 kN / m 2 , the co-rotation phenomenon may not occur, and the vane shear value τ is less than 5 kN / m 2. Even so, the co-rotation phenomenon sometimes occurred.

そこで、本願発明者は、配合仕様の決定段階で施工現場での共回り現象の有無をより確実に推定することができるように、混合土の力学的特性に関するベーンせん断値τだけで判定するのではなく、固化材混合直後の混合土の物理的特性に関する指標であるコンシステンシーも判定指標に追加することを想到した。 Therefore, the inventor of the present application determines only the vane shear value τ regarding the mechanical properties of the mixed soil so that the presence or absence of the co-rotation phenomenon at the construction site can be more reliably estimated at the stage of determining the compounding specifications. Instead, I came up with the idea of adding consistency, which is an index related to the physical characteristics of the mixed soil immediately after mixing the solidifying material, to the judgment index.

そして、このために、JIS A 1205:2009「土の液性限界・塑性限界試験方法」に規定されている液性限界試験の項目中の液性落下回数Nを求める液性落下回数試験を採用した。これは、固化材混合直後の混合土をへらを用いて黄銅皿に最大厚さが約1cmとなるように入れて形を整え、黄銅皿の直径に沿って溝を切り、これを落下試験器に取り付け1秒に2回の割合で黄銅皿を持ち上げては落とし、黄銅皿の溝切り部分の底部の混合土が1.5cm合流する落下回数を液性落下回数Nとして求めるものである。この液性落下回数試験を、ベーンせん断試験と併せて行い、ベーンせん断値τと液性落下回数Nとの相関関係に基づいて共回り現象の有無を判定する指標を見出した。 For this purpose, a liquid drop count test is adopted to obtain the liquid drop count N in the liquid limit test items specified in JIS A 1205: 2009 "Soil liquid limit / plastic limit test method". did. This is done by putting the mixed soil immediately after mixing the solidifying material into a brass dish using a spatula so that the maximum thickness is about 1 cm, shaping it, cutting a groove along the diameter of the brass dish, and using this as a drop tester. The number of drops in which the mixed soil at the bottom of the grooved portion of the brass dish merges by 1.5 cm is calculated as the number of liquid drops N by lifting and dropping the brass dish twice per second. This liquid drop frequency test was performed together with the vane shear test, and an index for determining the presence or absence of the co-rotation phenomenon was found based on the correlation between the vane shear value τ and the liquid drop frequency N.

なお、本発明において、液性限界試験は、上述したものに限定されない。例えば、地盤工学会基準JGS 0142−2009「フォールコーンを用いた土の液性限界試験方法」を準用し、フォールコーンの貫入量を混合土の液性落下回数Nに相当する値として対応付けて用いてもよい。その他、上記JISおよびJGSに規定されている液性限界試験に類似した試験などを用いて、上述の液性落下回数Nまたはこれに準じたものを求めてもよい。 In the present invention, the liquid limit test is not limited to the above. For example, the Japanese Geotechnical Society standard JGS 0142-2009 "Soil liquid limit test method using fall cone" is applied mutatis mutandis, and the intrusion amount of fall cone is associated with the value corresponding to the number of liquid fall N of mixed soil. You may use it. In addition, a test similar to the liquid limit test specified in JIS and JGS may be used to obtain the above-mentioned number of liquid drops N or a similar test.

以下、この新規な判定指標に関して実施例を挙げて説明する。 Hereinafter, examples of this new determination index will be described.

実施例1においては、改良対象土として、粘性土であり、湿潤密度ρtが1.65g/cm3、含水比Wnが62.7%であるものを用いた。固化材はセメント系固化材ジオセット200(太平洋セメント株式会社製)をスラリー状として用い、水固化材比W/Cを0.8,0.9,1.0,1.2,1.5,2.0,2.5の7種類、固化材の添加量は320kg/m3とした。これら7種類の水固化材比W/Cの配合試料土においてベーンせん断試験と液性落下回数試験を行った。結果を表1に示した。 In Example 1, as the soil to be improved, a cohesive soil having a wet density ρt of 1.65 g / cm 3 and a water content Wn of 62.7% was used. As the solidifying material, cement-based solidifying material Geoset 200 (manufactured by Taiheiyo Cement Co., Ltd.) is used as a slurry, and the water solidifying material ratio W / C is 0.8, 0.9, 1.0, 1.2, 1.5. , 2.0, 2.5, and the amount of solidifying material added was 320 kg / m 3 . A vane shear test and a liquid drop frequency test were performed on the mixed sample soil having a water solidifying material ratio of W / C for these seven types. The results are shown in Table 1.

図1には、縦軸にベーンせん断値τを横軸にとり、液性落下回数Nをそれぞれとって、複数の実験結果のそれぞれを表わすプロットが示されている。各プロットの横の数字は水固化材比W/Cを表わしている。図1には、N−τ平面において、複数の実験結果を表わす複数のプロットに基づいて近似曲線として定義される指定相関曲線が実線で示されている。Nは正の整数であるが、Nを連続変数とみなした場合に、指定相関曲線が凹関数として定義される定義域を有し、当該定義域においてNによる2次微分可能な曲線として定義されることが好ましい。凹関数f(x)は、その定義域における任意のx=x1およびx=x2(≠x1)について、不等式f((1−α)x1+αx2)≧(1−α)f(x1)+αf(x2)(0≦α≦1)で表わされる関係が成り立つ関数を意味する。 In FIG. 1, a plot showing each of a plurality of experimental results is shown, with the vane shear value τ on the vertical axis and the number of liquid drops N on the horizontal axis. The numbers next to each plot represent the water solidified material ratio W / C. In FIG. 1, a designated correlation curve defined as an approximate curve based on a plurality of plots representing a plurality of experimental results is shown by a solid line in the N-τ plane. N is a positive integer, but when N is regarded as a continuous variable, the designated correlation curve has a domain defined as a concave function, and is defined as a quadratic differentiable curve by N in the domain. Is preferable. The concave function f (x) has an inequality f ((1-α) x1 + αx2) ≧ (1-α) f (x1) + αf (x2) for any x = x1 and x = x2 (≠ x1) in its domain. ) (0 ≤ α ≤ 1) means a function that holds the relationship.

指定相関曲線は、例えば、当該複数のプロットに基づく2次以上の多項式近似曲線、指数近似曲線、対数近似曲線および累乗近似曲線、ならびにこれらの任意の組み合わせ(重み付け和)として定義される。例えば、多項式近似曲線f1および指数近似曲線f2の重み付け和は、重み係数γ(0<γ<1)を用いて、γf1+(1−γ)f2と表現される。指定相関曲線の一部または全部が、当該複数のプロットのそれぞれを制御点とする、ベジエ曲線またはB−スプライン曲線のような補間曲線により定義されていてもよい。 The designated correlation curve is defined as, for example, a polynomial approximation curve of degree 2 or higher based on the plurality of plots, an exponential approximation curve, a logarithmic approximation curve and a power approximation curve, and an arbitrary combination (weighted sum) thereof. For example, the weighted sum of the polynomial approximation curve f1 and the exponential approximation curve f2 is expressed as γf1 + (1-γ) f2 using the weighting coefficient γ (0 <γ <1). Part or all of the designated correlation curve may be defined by an interpolated curve such as a Bezier curve or a B-spline curve, with each of the plurality of plots as a control point.

図1のグラフから、ベーンせん断値τが6kN/m2に対応する液性落下回数Nは33回程度であること、ベーンせん断値τが5kN/m2に対応する液性落下回数Nは28回程度であること、および、固化材混合直後の混合土の含水比Wnが液性限界WL(Wn=WL)となる液性落下回数NLである25回に相当するベーンせん断値τは4.2kN/m2程度であることが分かった。 From the graph of FIG. 1, the number of liquid drops N corresponding to the vane shear value τ of 6 kN / m 2 is about 33, and the number of liquid drops N corresponding to the vane shear value τ of 5 kN / m 2 is 28. The vane shear value τ corresponding to 25 times, which is about 25 times and the water content ratio Wn of the mixed soil immediately after mixing the solidifying material is the liquid limit WL (Wn = WL), is 4. It was found to be about 2 kN / m 2 .

これより、共回り現象の発生の防止を図る目的に限定すると、ベーンせん断値τが6kN/m2に対応する液性落下回数Nは33回程度であることから考えて、少なくとも固化材混合直後の混合土の液性落下回数Nを液性限界に相当する25回(または水固化材比W/Cを液性限界に相当する1.2〜1.5(1.3程度))までにする必要はないと考えられる。 From this, if limited to the purpose of preventing the occurrence of the co-rotation phenomenon, considering that the number of liquid drops N corresponding to the vane shear value τ of 6 kN / m 2 is about 33 times, at least immediately after mixing the solidifying material. The number of liquid drops N of the mixed soil is 25 times, which corresponds to the liquid limit (or the water solidifying material ratio W / C is 1.2 to 1.5 (about 1.3), which corresponds to the liquid limit). It is considered unnecessary to do so.

そして、本願発明者は、図1のグラフにおける指定相関曲線において、両側の直線に近い部分よりも曲率が大きな大曲率部Qが存在することに注目した。 Then, the inventor of the present application noted that in the designated correlation curve in the graph of FIG. 1, there is a large curvature portion Q having a larger curvature than the portion close to the straight line on both sides.

なお、曲率が大きな大曲率部Qとは、他の箇所と比較して大きな曲率を有する部分がある程度の長さ以上だけ連続する部分を意味する。そして、大曲率部Qには、代表点(以下、急曲点という)Pが存在する。この急曲点Pは、例えば、大曲率部Qの長さの中間点、または大曲率部Qの両外側に位置する曲線の大曲率部Qの両端における接線の交点とすればよい。また、指定相関曲線が最大曲率を示す点が急曲点Pとして定義されていてもよい。指定相関曲線が連続変数N(前記のように実際にはNは正の整数である。)を主変数とする従変数(関数)τ=f(N)により定義された場合、N=aにおける曲率κは関係式(01)により表わされる。 The large curvature portion Q having a large curvature means a portion in which a portion having a large curvature as compared with other portions is continuous by a certain length or more. A representative point (hereinafter referred to as a sharp turning point) P exists in the large curvature portion Q. The sharp curve point P may be, for example, an intermediate point of the length of the large curvature portion Q or an intersection of tangents at both ends of the large curvature portion Q of the curve located on both outer sides of the large curvature portion Q. Further, the point where the designated correlation curve shows the maximum curvature may be defined as the sharp turning point P. When the designated correlation curve is defined by the dependent variable (function) τ = f (N) whose principal variable is the continuous variable N (N is actually a positive integer as described above), then N = a. The curvature κ is expressed by the relational expression (01).

κ=(d2f/dN2)|N=a/{1+(df/dN)2N=a3/2 ‥(01)。 κ = (d 2 f / dN 2 ) | N = a / {1+ (df / dN) 2 | N = a } 3/2 ‥ (01).

図1に戻って、急曲点Pは第2指定液性落下回数N1が35回付近である位置に存在し、この第2指定液性落下回数N1の値はベーンせん断値τが6kN/m2に対応する液性落下回数Nに相当する33回よりも少し大きな値である。これは、上述したように、ベーンせん断値τが6kN/m2以上であれば共回り現象が発生する可能性が高いので、急曲点Pに着目することにより、共回り現象の発生の有無を推定するための判定指標となり得ると本願発明者は推察した。 Returning to FIG. 1, the sharp turning point P exists at a position where the second designated liquid drop count N1 is around 35 times, and the value of the second designated liquid fall count N1 is a vane shear value τ of 6 kN / m. It is a value slightly larger than 33 times, which corresponds to the number of liquid drops N corresponding to 2 . This is because, as described above, if the vane shear value τ is 6 kN / m 2 or more, the co-rotation phenomenon is likely to occur. Therefore, by paying attention to the sharp turning point P, the presence or absence of the co-rotation phenomenon occurs. The inventor of the present application inferred that it could be a judgment index for estimating.

そこで、急曲点Pに相当する液性落下回数Nが35回に相当する水固化材比W/Cを、液性落下回数Nが35回の上下に近接する液性落下回数Nが30回(水固化材比W/Cは1.2)および37回(水固化材比W/Cは1.0)を参照して、比例配分して、以下の式のように求めた。このように求めた水固化材比W/Cは本発明の固化材の目標配合仕様に相当する。 Therefore, the water-solidifying material ratio W / C corresponding to the sharp turning point P and the liquid drop number N corresponding to 35 times is set, and the liquid drop number N corresponding to the liquid drop number N is 35 times and the liquid fall number N is 30 times. With reference to (water solidified material ratio W / C is 1.2) and 37 times (water solidified material ratio W / C is 1.0), proportional distribution was performed and calculated as the following formula. The water-solidifying material ratio W / C thus obtained corresponds to the target compounding specification of the solidifying material of the present invention.

W/C=1.0+(1.2−1.0)×(37−35)/(37−30)=1.1‥(02)。 W / C = 1.0 + (1.2-1.0) × (37-35) / (37-30) = 1.1 ... (02).

W/C(水固化材比)、液性落下回数および固化材添加量の計算数値の端数処理は、通常は室内配合試験における室内目標強度(qul)の設定の際に設計基準強度(quck)に対する割り増し(例えばqul=(3〜4)quck)を考慮していることから、四捨五入とする。 Rounding of the calculated values of W / C (water solidified material ratio), number of liquid drops and solidified material addition amount is usually the design standard strength (q ul ) when setting the indoor target strength (q ul ) in the indoor compounding test. Since the surcharge for ( uck ) (for example, q ul = (3-4) q uck ) is taken into consideration, it is rounded off.

そして、水固化材比W/Cを1.1として施工したところ、共回り現象は発生しなかった。これより、ベーンせん断値τと液性落下回数Nとの関係を示す指定相関曲線における急曲点Pを、共回り現象の発生の有無の判定指標とするほうが、ベーンせん断値τが6kN/m2に対応する指標である液性落下回数Nが33回の場合よりも経済的に好ましくなる。 Then, when the water solidifying material ratio W / C was set to 1.1, the co-rotation phenomenon did not occur. From this, it is better to use the sharp curve point P in the designated correlation curve showing the relationship between the vane shear value τ and the number of liquid drops N as a judgment index for the presence or absence of the co-rotation phenomenon, so that the vane shear value τ is 6 kN / m. It is economically preferable to the case where the number of liquid drops N, which is an index corresponding to 2 , is 33 times.

なお、急曲点Pと共回り現象の発生の有無との関係を明確に示す根拠は定かではないが、急曲点Pは撹拌翼などに付着する土の付着の有無、または付着力の大幅な増減境界を示す指標ではないかとも推察される。なお、様々な改良対象土に対して試験を行ったところ、このような急曲点Pは、明確に表れるか否かは別にして、概ね存在することが分かった。 Although the basis for clearly showing the relationship between the sharp turning point P and the presence or absence of the co-rotation phenomenon is not clear, the sharp turning point P is the presence or absence of soil adhering to the stirring blade or the like, or the adhesive force is large. It is inferred that this is an index that indicates the boundary of increase and decrease. In addition, when tests were conducted on various soils to be improved, it was found that such a sharp turning point P generally exists regardless of whether or not it clearly appears.

そして、上述した実施形態と同様にして、様々な改良対象土に対して試験施工や現場確認を行ったところ、急曲点Pは共回り現象の発生の有無を示す指標として非常に有効であることが分かった。すなわち、急曲点Pを指標として固化材の配合仕様を決定すれば、ベーンせん断値τだけを指標とした場合と比較して、共回り現象が発生しないような水固化材比W/Cをより高精度に推定することが可能となった。 Then, in the same manner as in the above-described embodiment, when test construction and site confirmation were performed on various soils to be improved, the sharp turning point P is very effective as an index indicating the presence or absence of the co-rotation phenomenon. It turned out. That is, if the compounding specifications of the solidifying material are determined using the sharp bending point P as an index, the water solidifying material ratio W / C that does not cause the co-rotation phenomenon is obtained as compared with the case where only the vane shear value τ is used as an index. It has become possible to estimate with higher accuracy.

なお、急曲点Pに相当する固化材の配合仕様に対して安全を見れば、さらに高い確率で共回り現象の発生を抑制することが可能となる。例えば、急曲点Pに相当する第2指定液性落下回数N1に所定数、例えば1〜3などを減少させた液性落下回数Nに基づいて、固化材の配合仕様を決定することなどが考えられる。 If safety is taken with respect to the compounding specifications of the solidifying material corresponding to the sharp bending point P, it is possible to suppress the occurrence of the co-rotation phenomenon with a higher probability. For example, the compounding specifications of the solidifying material may be determined based on the number of liquid drops N, which is obtained by reducing a predetermined number, for example, 1 to 3, from the second designated number of liquid drops N1 corresponding to the sharp bending point P. Conceivable.

例えば、実施例2においては、改良対象土が腐植土であり、湿潤密度ρtは1.276g/cm3、含水比Wnは154.1%であるものを用いた。固化材はセメント系固化材ジオセット225(太平洋セメント株式会社製)をスラリー状として用い、水固化材比W/Cを1.0の1種類とし、添加量は100kg/m3、200kg/m3、300kg/m3とし、これらの配合水準で液性落下回数試験およびベーンせん断試験を行った。図2のグラフは、縦軸にベーンせん断値τを横軸に液性落下回数Nをそれぞれとって試験結果を表したものである。黒丸はそれぞれの実験結果を表わし、その横の数字は添加量を表わしている。結果を表2に示した。 For example, in Example 2, the soil to be improved was humus soil, the wet density ρt was 1.276 g / cm 3 , and the water content Wn was 154.1%. As the solidifying material, cement-based solidifying material Geoset 225 (manufactured by Taiheiyo Cement Co., Ltd.) is used as a slurry, the water solidifying material ratio W / C is 1.0, and the addition amounts are 100 kg / m 3 and 200 kg / m. At 3 , 300 kg / m 3 , a liquid drop frequency test and a vane shear test were performed at these blending levels. The graph of FIG. 2 shows the test results with the vane shear value τ on the vertical axis and the number of liquid drops N on the horizontal axis. The black circles represent the results of each experiment, and the numbers next to them represent the amount added. The results are shown in Table 2.

図2のグラフにおいては、図1のグラフに見られるような明瞭な急曲点Pは存在しないが、曲率が最大と考えられる点を急曲点Pと考えると、この急曲点Pに相当する第2指定液性落下回数N1は38回程度である。この第2指定液性落下回数N1はベーンせん断値τが6.0kN/m2に相当する液性落下回数Nである約55回よりは小さいが、液性限界WLに相当する液性落下回数NLである25回よりは大きい。 In the graph of FIG. 2, there is no clear sharp turning point P as seen in the graph of FIG. 1, but if the point where the curvature is considered to be the maximum is considered as the sharp turning point P, it corresponds to this sharp turning point P. The number of second designated liquid drops N1 is about 38 times. The second designated number of liquid drops N1 is smaller than about 55 times, which is the number of liquid drops N corresponding to the vane shear value τ of 6.0 kN / m 2 , but the number of liquid drops corresponding to the liquid limit WL. Greater than 25 times, which is NL.

この場合、前述した、ベーンせん断値τが6kN/m2であるとの基準に従うと、液性落下回数Nが55回以下に相当する固化材の添加量で共回りを防止することができることになるが、液性落下回数Nが55回ではその試料土の性状は液性限界には程遠く流動性を帯びる状態ではないために、共回りが発生する可能性が大きいものと考えられる。共回りの発生の可能性を確実に解消するには、液性落下回数Nが25回に対応するベーンせん断値τが4.2kN/m2程度まで、加水または固化材の増量が必要になると考えられる。 In this case, according to the above-mentioned standard that the vane shear value τ is 6 kN / m 2 , the co-rotation can be prevented by the addition amount of the solidifying material corresponding to the liquid drop frequency N of 55 times or less. However, when the number of liquid drops N is 55, the properties of the sample soil are far from the liquid limit and are not in a fluid state, so it is considered that there is a high possibility that co-rotation will occur. In order to eliminate the possibility of co-rotation, it is necessary to increase the amount of water or solidifying material until the vane shear value τ corresponding to 25 liquid drops N is about 4.2 kN / m 2. Conceivable.

そして、第2指定液性落下回数N1が38回に相当する固化材の添加量を、液性落下回数Nが38回の上下に近接する液性落下回数Nが18回(添加量は300kg/m3)および39回(添加量は200kg/m3)を参照して、比例配分して、以下の式のように求めた。このようにして求めた添加量が本発明の固化材の目標配合仕様に相当する。 Then, the amount of the solidifying material added corresponding to the second designated liquid drop number N1 is 38 times, and the liquid drop number N close to the top and bottom of 38 times is 18 times (addition amount is 300 kg /). With reference to m 3 ) and 39 times (addition amount is 200 kg / m 3 ), proportional distribution was performed, and the formula was calculated as follows. The amount of addition thus obtained corresponds to the target compounding specification of the solidifying material of the present invention.

添加量=200+(300−200)×(39−38)/(39−18)=205‥(03)。 Addition amount = 200+ (300-200) × (39-38) / (39-18) = 205 ... (03).

そして、固化材の添加量を205kg/m3として施工したところ、共回り現象は発生しなかった。このように、本発明によれば、少なくとも3つ以上の配合水準でベーンせん断試験と液性落下回数試験を行うことによって、固化材の適切な配合仕様を求めることが可能である。 Then, when the amount of the solidifying material added was set to 205 kg / m 3 , the co-rotation phenomenon did not occur. As described above, according to the present invention, it is possible to obtain an appropriate compounding specification of the solidifying material by performing a vane shear test and a liquid drop frequency test at at least three compounding levels.

なお、図2の曲線のように急曲点Pが明確でない場合には、急曲点Pに相当する固化材の配合仕様に対して少し大きな安全を見れば、高い確率で共回り現象の発生を抑制することが可能となる。実際の施工においては、改良土の強度目標を満たすことが重要である。そこで、このような強度目標を満足したうえで共回り現象が発生しないような固化材の配合仕様を決定する方法について、以下、実施例3を例に挙げて説明する。 If the sharp turning point P is not clear as shown in the curve of FIG. 2, a co-rotation phenomenon will occur with a high probability if a little greater safety is seen with respect to the compounding specifications of the solidifying material corresponding to the sharp turning point P. Can be suppressed. In actual construction, it is important to meet the strength target of the improved soil. Therefore, a method of determining the compounding specifications of the solidifying material so that the co-rotation phenomenon does not occur while satisfying such a strength target will be described below by taking Example 3 as an example.

実施例3においては、改良対象土が粘性土であり、湿潤密度ρtは1.488g/cm3、含水比Wnは84.7%であるものを用いた。改良土の室内目標一軸圧縮強度quは400kN/m2および500kN/m2とした。固化材はセメント系固化材ジオセット200(太平洋セメント株式会社製)をスラリー状として用いた。 In Example 3, the soil to be improved was cohesive soil, the wet density ρt was 1.488 g / cm 3 , and the water content Wn was 84.7%. Indoor target uniaxial compressive strength qu modified soil was 400 kN / m 2 and 500 kN / m 2. As the solidifying material, cement-based solidifying material Geoset 200 (manufactured by Taiheiyo Cement Co., Ltd.) was used as a slurry.

水固化材比W/Cを1.0の1種類とし、添加量は100kg/m3、130kg/m3、160kg/m3、190kg/m3とし、まず、これらの配合水準で通常の試験に従って改良土の一軸圧縮試験を行った。結果を表3に示した。 The water solidification material ratio W / C is set to 1.0, and the addition amounts are 100 kg / m 3 , 130 kg / m 3 , 160 kg / m 3 , 190 kg / m 3, and first, a normal test is performed at these compounding levels. The uniaxial compression test of the improved soil was carried out according to the above. The results are shown in Table 3.

図3のグラフは、縦軸に一軸圧縮強度をとり、横軸に固化材の添加量をそれぞれとって試験結果を表したものである。このグラフから、改良土の室内目標一軸圧縮強度quが400kN/m2である場合の固化材の添加量は123kg/m3であり、一軸圧縮強度quが500kN/m2である場合の固化材の添加量は137kg/m3であることが分かる。 In the graph of FIG. 3, the vertical axis represents the uniaxial compressive strength, and the horizontal axis represents the amount of the solidifying material added, respectively. From this graph, the amount of the solidifying material added when the indoor target uniaxial compressive strength qu of the improved soil is 400 kN / m 2 is 123 kg / m 3 , and the solidifying material when the uniaxial compressive strength qua is 500 kN / m 2. It can be seen that the addition amount of is 137 kg / m 3 .

次に、前記の固化材の配合水準で液性落下回数試験およびベーンせん断試験を行った。結果を表4に示した。 Next, a liquid drop frequency test and a vane shear test were performed at the compounding level of the solidifying material. The results are shown in Table 4.

図1および図2と同様に、図4のグラフを作成した。このグラフから急曲点Pに相当する第2指定液性落下回数N1は35回程度であることが分かる。 Similar to FIGS. 1 and 2, the graph of FIG. 4 was created. From this graph, it can be seen that the number of second designated liquid drops N1 corresponding to the sharp turning point P is about 35 times.

一軸圧縮強度quが500kN/m2である場合の固化材の添加量が137kg/m3に相当する第1指定液性落下回数N0は、添加量が137kg/m3の上下に近接する添加量が130kg/m3(液性落下回数Nは36回)と添加量が160kg/m3(液性落下回数Nは23回)を参照して、比例配分して、以下の式のように求めた。 When the uniaxial compressive strength qu is 500 kN / m 2 , the amount of the solidifying material added corresponds to 137 kg / m 3, and the number of first designated liquid drops N0 is the amount of addition close to the top and bottom of 137 kg / m 3 . Is 130 kg / m 3 (the number of liquid drops N is 36 times) and the amount added is 160 kg / m 3 (the number of liquid drops N is 23 times), and is proportionally distributed and calculated by the following formula. It was.

N0=23+(160−137)×(36−23)/(160−130)=33‥(04)。 N0 = 23+ (160-137) × (36-23) / (160-130) = 33 (04).

これより、一軸圧縮強度quが500kN/m2に相当する第1指定液性落下回数N0である33回は、急曲点Pに相当する第2指定液性落下回数N1の35回より小さいので、固化材の配合仕様を一軸圧縮強度quが500kN/m2に相当する添加量である137kg/m3とすることにより、共回り現象の発生を非常に高い確率で無くすことが可能となる。このようにして求めた添加量が本発明の固化材の目標配合仕様に相当する。 From this, 33 times, which is the first designated liquid drop number N0 corresponding to the uniaxial compression strength qu of 500 kN / m 2 , is smaller than 35 times of the second designated liquid drop number N1 corresponding to the sharp turning point P. By setting the compounding specification of the solidifying material to 137 kg / m 3 which is an addition amount corresponding to a uniaxial compressive strength qu of 500 kN / m 2 , it is possible to eliminate the occurrence of the co-rotation phenomenon with a very high probability. The amount of addition thus obtained corresponds to the target compounding specification of the solidifying material of the present invention.

一方、図5を参照して、一軸圧縮強度quが400kN/m2である場合の固化材の添加量が123kg/m3に相当する第1指定液性落下回数N0は、添加量が123kg/m3の上下に近接する添加量が100kg/m3(液性落下回数Nは67回)と添加量が130kg/m3(液性落下回数Nは36回)を参照して、比例配分して、以下の式のように求めた。 On the other hand, referring to FIG. 5, when the uniaxial compressive strength qu is 400 kN / m 2 , the addition amount of the solidifying material is 123 kg / m 3, and the addition amount of the first designated liquid drop frequency N0 corresponds to 123 kg / m 3. Proportionate distribution with reference to the addition amount of 100 kg / m 3 (the number of liquid drops N is 67 times) and the addition amount of 130 kg / m 3 (the number of liquid drops N is 36 times) that are close to the top and bottom of m 3. Then, it was calculated as the following formula.

N0=36+(130−123)×(67−36)/(130−100)=43‥(05)。 N0 = 36+ (130-123) × (67-36) / (130-100) = 43 ... (05).

これより、一軸圧縮強度quが400kN/m2に相当する第1指定液性落下回数N0である43回は、急曲点Pに相当する第2指定液性落下回数N1である35回より大きいので、第1指定液性落下回数N0に相当する固化材の配合仕様、すなわち添加量を123kg/m3とすれば、共回り現象が発生する確率が高い。そのため、急曲点Pに相当する第2指定液性落下回数N1に相当するように固化材の添加量を変更する必要がある。なお、指定相関曲線が最大曲率を示す急曲点PにおけるN(前記のように連続変数とみなした場合のN)がN0より小さく、かつ、整数ではない場合、小数点以下が切り捨てられた液性落下回数に相当するように固化材の添加量が定められてもよい。例えば、急曲点PにおけるNがN0(=43)より小さい「34.9」である場合、小数点以下が切り捨てられた液性落下回数「34」に相当するように固化材の添加量が定められてもよい。 From this, 43 times, which is the first designated liquid drop number N0 corresponding to the uniaxial compression strength qu of 400 kN / m 2 , is larger than 35 times, which is the second designated liquid drop number N1 corresponding to the sharp turning point P. Therefore, if the compounding specification of the solidifying material corresponding to the first designated liquid drop frequency N0, that is, the addition amount is 123 kg / m 3 , the probability that the co-rotation phenomenon occurs is high. Therefore, it is necessary to change the amount of the solidifying material added so as to correspond to the second designated liquid drop frequency N1 corresponding to the sharp bending point P. If N at the sharp turning point P where the designated correlation curve shows the maximum curvature (N when regarded as a continuous variable as described above) is smaller than N0 and is not an integer, the liquid property with the decimal point truncated. The amount of the solidifying material added may be determined so as to correspond to the number of drops. For example, when N at the sharp turning point P is "34.9" smaller than N0 (= 43), the amount of the solidifying material added is determined so as to correspond to the number of liquid drops "34" with the decimal point truncated. May be done.

この添加量は、実施例2と同様に求めればよい。具体的には、第2指定液性落下回数N1が35回に相当する固化材の添加量を、液性落下回数Nが35回の上下に近接する液性落下回数Nが23回(添加量は160kg/m3)および36回(添加量は130kg/m3)を参照して、比例配分して、以下の式のように求めた。 This addition amount may be obtained in the same manner as in Example 2. Specifically, the amount of the solidifying material added corresponding to the second designated number of liquid drops N1 is 35, and the number of liquid drops N close to the top and bottom of 35 times is 23 (addition amount). Was calculated as the following formula by proportional distribution with reference to 160 kg / m 3 ) and 36 times (addition amount was 130 kg / m 3 ).

添加量=130+(160−130)×(36−35)/(36−23)=132‥(06)。 Addition amount = 130+ (160-130) × (36-35) / (36-23) = 132 ... (06).

これより、固化材の添加量を132kg/m3とすることにより、一軸圧縮強度quが400kN/m2以上であると共に、共回り現象の発生を非常に高い確率で無くすことが可能となる。このようにして求めた添加量が本発明の固化材の目標配合仕様に相当する。 From this, by setting the addition amount of the solidifying material to 132 kg / m 3 , the uniaxial compressive strength qu is 400 kN / m 2 or more, and the occurrence of the co-rotation phenomenon can be eliminated with a very high probability. The amount of addition thus obtained corresponds to the target compounding specification of the solidifying material of the present invention.

さらに、発明者は、ベーンせん断値τおよび液性落下回数Nと一軸圧縮強度quとの関係についても検討した。 Furthermore, the inventor also examined the relationship between the vane shear value τ and the number of liquid drops N and the uniaxial compressive strength qu.

例えば、実施例4においては、改良対象土が粘性土であり、湿潤密度ρtは1.65g/cm3、含水比Wnは62.7%であるものを用いた。固化材はセメント系固化材ジオセット200(太平洋セメント株式会社製)をスラリー状として用い、水固化材比W/Cを0.8,0.9,1.0,1.2,1.5,2.0,2.5の7種類とし、固化材の添加量は320kg/m3とし、これらの配合水準で液性落下回数試験、ベーンせん断試験および材齢28日における一軸圧縮試験を行った。 For example, in Example 4, the soil to be improved was cohesive soil, the wet density ρt was 1.65 g / cm 3 , and the water content Wn was 62.7%. As the solidifying material, cement-based solidifying material Geoset 200 (manufactured by Taiheiyo Cement Co., Ltd.) is used as a slurry, and the water solidifying material ratio W / C is 0.8, 0.9, 1.0, 1.2, 1.5. , 2.0, 2.5, and the amount of solidifying material added was 320 kg / m 3, and a liquid drop frequency test, a vane shear test, and a uniaxial compression test at a material age of 28 days were performed at these blending levels. It was.

図6のグラフは、縦軸にベーンせん断値τおよび28日材齢一軸圧縮強度quを横軸に液性落下回数Nをそれぞれとって試験結果を表している。そして、ベーンせん断値τと液性落下回数Nとの関係を実線で示し、一軸圧縮強度quと液性落下回数Nとの関係を点線で示したものである。結果を表5に示した。 In the graph of FIG. 6, the vertical axis represents the vane shear value τ and the 28-day-old uniaxial compression strength qu, and the horizontal axis represents the number of liquid drops N, respectively. The relationship between the vane shear value τ and the number of liquid drops N is shown by a solid line, and the relationship between the uniaxial compressive strength qu and the number of liquid drops N is shown by a dotted line. The results are shown in Table 5.

図6のグラフから、液性落下回数Nの減少に伴って、ベーンせん断値τおよび一軸圧縮強度quが共に減少していることが分かる。ただし、液性落下回数Nの区間において、ベーンせん断値τの減少割合と一軸圧縮強度quの減少割合とは相違する。特に区間Aにおいては、ベーンせん断値τの減少割合に比較して、一軸圧縮強度quの減少割合は小さい。これより、区間Aは、共回り現象の発生が生じる可能性は大きく減少するが、一軸圧縮強度はある程度維持されるような液性落下回数Nに係る区間であると考えられる。 From the graph of FIG. 6, it can be seen that both the vane shear value τ and the uniaxial compression strength qu decrease as the number of liquid drops N decreases. However, the reduction rate of the vane shear value τ and the reduction rate of the uniaxial compression strength qu are different in the section where the number of liquid drops N is N. Especially in the section A, the decrease rate of the uniaxial compressive strength qu is smaller than the decrease rate of the vane shear value τ. From this, it is considered that the section A is a section related to the number of liquid drops N such that the uniaxial compressive strength is maintained to some extent, although the possibility that the co-rotation phenomenon occurs is greatly reduced.

そこで、このような区間Aが存在する場合には、上述した実施例において求めた固化材の目標配合仕様を、区間Aの下限である液性落下回数Nにおける配合仕様を考慮して補正することが好ましい。 Therefore, when such a section A exists, the target compounding specification of the solidifying material obtained in the above-described embodiment is corrected in consideration of the compounding specification at the liquid drop frequency N, which is the lower limit of the section A. Is preferable.

具体的な固化材の目標配合仕様の補正方法は、例えば、区間Aにおける最小の液性落下回数Nminを求め、実施工の固化材の添加量を液性落下回数Nが(Nmin+α)回に相当する値とする。このαは、補正後の添加量が室内目標一軸圧縮強度を満足する添加量となることを確認して設定することが必要である。例えば、実施工におけるαの範囲は概略1〜3程度である。 As a specific method for correcting the target compounding specifications of the solidifying material, for example, the minimum number of liquid drops N min in the section A is obtained, and the amount of the solidifying material added in the work is such that the number of liquid drops N is (N min + α). The value corresponds to the number of times. It is necessary to confirm that the added amount after correction is an addition amount that satisfies the indoor target uniaxial compression strength. For example, the range of α in the implementation work is about 1 to 3.

図6を参照して具体的な固化材の添加量の求め方を説明する。図6の実施例4においては、固化材の添加量は320kg/m3と一定である。図6から、Nminは30回であり、αを3とすると、(Nmin+α)は33回である。これより、液性落下回数Nが33回に近い液性落下回数Nが30回および37回における水固化材比W/Cから、液性落下回数Nが33回に相当する修正後の水固化材比W/Cmodは、以下のように求めることができる。 A specific method for obtaining the amount of the solidifying material added will be described with reference to FIG. In Example 4 of FIG. 6, the amount of the solidifying material added is constant at 320 kg / m 3 . From FIG. 6, N min is 30 times, and if α is 3, (N min + α) is 33 times. From this, from the water solidifying material ratio W / C when the number of liquid drops N is close to 33 times and the number of liquid drops N is 30 and 37 times, the modified water solidification corresponding to the number of liquid drops N is 33 times. The material ratio W / C mod can be obtained as follows.

W/Cmod=1.0+(1.2−1.0)×(37−33)/(37−30)=1.1‥(07)。 W / C mod = 1.0 + (1.2-1.0) x (37-33) / (37-30) = 1.1 ... (07).

以上、本発明の実施形態を実施例に基づき説明したが、本発明は上述した実施形態に限定されない。 Although the embodiments of the present invention have been described above based on the examples, the present invention is not limited to the above-described embodiments.

例えば、上述した実施形態においては、図1,図2および図4,図5に示すように、縦軸にベーンせん断値τを横軸に液性落下回数Nをそれぞれとったグラフにおける急曲点Pを指標として固化材の配合仕様を決定する方法について説明した。しかし、固化材の配合仕様の決定方法はこれに限定されない。 For example, in the above-described embodiment, as shown in FIGS. 1, 2, 4, and 5, a sharp turning point in a graph in which the vertical axis is the vane shear value τ and the horizontal axis is the number of liquid drops N, respectively. The method of determining the compounding specifications of the solidifying material using P as an index has been described. However, the method for determining the compounding specifications of the solidifying material is not limited to this.

具体的には、例えば、一方の軸にベーンせん断値τの対数値またはべき乗値をとったり、他方の軸に液性落下回数Nの対数値またはべき乗値をとった指定相関曲線における急曲点Pまたは変曲点を指標としてもよい。また、一方の軸にベーンせん断値τと液性落下回数Nの関係を表わす値、例えばτ/NやlogN/τをとって、他方の軸に固化材の配合水準を示す値、例えば、水固化材比W/Cや配合量をとったグラフにおける急曲点Pや変曲点を指標としてもよい。 Specifically, for example, an inflection point P in a designated correlation curve in which the logarithmic value or exponentiation value of the vane shear value τ is taken on one axis and the logarithmic value or exponentiation value of the number of liquid drops N is taken on the other axis. Alternatively, the inflection point may be used as an index. Further, a value indicating the relationship between the vane shear value τ and the number of liquid drops N, for example, τ / N or logN / τ, is taken on one axis, and a value indicating the compounding level of the solidifying material is taken on the other axis, for example, water. The sharp bending point P or the inflection point in the graph in which the solidifying material ratio W / C or the blending amount is taken may be used as an index.

また、これらのグラフにおける曲線や急曲点Pの決定方法は、公知の技術を用いればよく何ら限定されない。しかし、例えば、縦軸にベーンせん断値τを横軸に液性落下回数Nをそれぞれとったグラフの場合、図1,図2および図4,図5に示すように、液性落下回数Nが小さい領域、例えば25回以下では、ある程度の範囲で正の傾斜を有した略直線状または少し上方に膨らむような曲線(凹曲線)であり、液性落下回数Nが大きな領域、例えば40回以下では、ある程度の範囲で正の傾斜を有するが前記の液性落下回数Nが小さな領域における傾斜よりも小さな傾斜を有した略直線状または少し上方に膨らむような曲線となり、これらの領域の間に大曲率部Qひいては急曲点Pが存在する可能性が高い。そこで、このような事項を前提において曲線および急曲点Pを定めることが好ましい。 Further, the method for determining the curve and the sharp turning point P in these graphs may be limited to any known technique. However, for example, in the case of a graph in which the vane shear value τ is on the vertical axis and the number of liquid drops N is on the horizontal axis, the number of liquid drops N is as shown in FIGS. 1, 2, 4 and 5. In a small region, for example, 25 times or less, it is a substantially straight line having a positive inclination within a certain range or a curve (concave curve) that bulges slightly upward, and a region in which the number of liquid drops N is large, for example, 40 times or less. Then, a curve having a positive inclination in a certain range but having a smaller inclination than the inclination in the above-mentioned liquid fall frequency N becomes a substantially straight line or a curve bulging slightly upward, and between these regions. There is a high possibility that the large curvature portion Q and thus the sharp curve point P exists. Therefore, it is preferable to determine the curve and the sharp turning point P on the premise of such a matter.

さらに、このような曲線および急曲点Pを求めることができない場合には、固化材の配合水準を追加して実験を行うことにより、精度を高めことが好ましい。 Further, when such a curve and a sharp bending point P cannot be obtained, it is preferable to improve the accuracy by performing an experiment by adding a blending level of a solidifying material.

なお、本発明においては、固化材を添加した直後の未固化の混合土に対して、ベーンせん断試験および液性落下回数試験を行っている。ここで、固化材を添加した直後の未固化の混合土とは、固化材を添加して撹拌が完了してから数分以内、例えば約1〜3分以内の混合土を意味しており、液性落下回数試験において黄銅皿に未固化の混合土をJISA1205:2009「土の液性限界・塑性限界試験方法」に定められている所定の形状に整形できる程度、かつ、ベーンせん断試験用にステンレスボールに試料土を計量から平滑化するまでの性状を保つことが必要である。ただし、この時間は、固化材、改良対象土の種類などによって相違する。 In the present invention, a vane shear test and a liquid drop frequency test are performed on the unsolidified mixed soil immediately after the solidifying material is added. Here, the unsolidified mixed soil immediately after adding the solidifying material means a mixed soil within a few minutes, for example, about 1 to 3 minutes after the solidifying material is added and stirring is completed. In the liquid drop frequency test, the mixed soil that has not been solidified on the brass sample can be shaped into the predetermined shape specified in JIS A1205: 2009 "Soil liquid limit / plastic limit test method", and for the vane shear test. It is necessary to maintain the properties of the sample soil in a stainless steel ball from weighing to smoothing. However, this time differs depending on the solidifying material, the type of soil to be improved, and the like.

なお、W/Cおよび固化材添加量等が補正計算される際、2つの場合に分けて数値処理されてもよい。(場合1)は、数値処理に係わる数値が目標強度(一軸圧縮強さ等)を満足するか否かの様な設計性能事項に関する場合である。(場合2)は、数値処理に係わる数値が施工性(共回りするか否か等)、現場の施工能率、作業容易性などの設計性能事項に直接には関連しない場合である。 When the W / C, the amount of the solidifying material added, and the like are corrected and calculated, they may be numerically processed in two cases. (Case 1) is a case related to design performance items such as whether or not the numerical value related to the numerical processing satisfies the target strength (uniaxial compressive strength, etc.). (Case 2) is a case where the numerical values related to the numerical processing are not directly related to the design performance items such as workability (whether or not they rotate together), on-site construction efficiency, and workability.

(場合1)では、端数が出た場合には工学的見地から安全側になるように端数処理(例えば、W/Cは切り捨て、添加量は切り上げ)を原則とする。理由としては、得られた数値の端数を切り捨てた場合に、目標強度を満足するには足りない数値となってしまう恐れがあるからである。例えば、計算上添加量が137.12kg/m3の場合、切り捨てして137kg/m3とすれば、計算上は目標強度を満足する添加量に0.12kg/m3だけ満たないことになる。そこで、この場合は計算数値を切り上げして138kg/m3を施工仕様とする。 In (Case 1), in principle, if a fraction is found, the fraction is rounded (for example, W / C is rounded down and the addition amount is rounded up) so as to be on the safe side from an engineering point of view. The reason is that if the obtained numerical value is rounded down, the numerical value may not be sufficient to satisfy the target strength. For example, when computationally amount of 137.12kg / m 3, if 137kg / m 3 and truncated, so that the computationally less than the amount that satisfies the target intensity by 0.12 kg / m 3 .. Therefore, in this case, the calculated value is rounded up to 138 kg / m 3 as the construction specification.

(場合2)では、端数が出た場合には四捨五入を原則とする。理由としては、施工性等に関する数値の場合は、端数を切り捨ててもその切り捨て部分が設計性能に直接寄与することがなく、端数程度であれば寧ろ経済性を優先するほうが妥当である場合が多いと考えられるからである。 In (Case 2), in principle, rounding is performed when a fraction is found. The reason is that in the case of numerical values related to workability, even if the fraction is rounded down, the rounded down part does not directly contribute to the design performance, and if it is about the fraction, it is often more appropriate to prioritize economic efficiency. This is because it is considered.

もちろん上記原則を機械的に適用するべきではなく、その数値処理が(場合1)のように設計性能に係わるものであるか、(場合2)のように施工性に係わるものであるかを適宜判断して、(場合1)に該当するならば安全側を考慮し、(場合2)に該当するならばならば経済性も考慮しつつ、それぞれ決定されるべきであると考えられる。 Of course, the above principle should not be applied mechanically, and it is appropriate to determine whether the numerical processing is related to design performance as in (Case 1) or workability as in (Case 2). Judging, it is considered that each decision should be made while considering the safety side if it corresponds to (Case 1) and considering the economic efficiency if it corresponds to (Case 2).

図1に示されている例は、添加量が一定(320kg/m3)でW/Cが変化する例である。この場合、W/Cが大きくなる方向は強度発現が小さくなる方向となるので、前記(場合1)の考え方にしたがい、端数が切り捨てられてW/C=1.0と定められてもよい(計算式(02)参照)。 The example shown in FIG. 1 is an example in which the W / C changes when the addition amount is constant (320 kg / m 3 ). In this case, since the direction in which the W / C increases is the direction in which the intensity development decreases, the fraction may be rounded down and W / C = 1.0 may be determined according to the above (case 1) concept (case 1). (See formula (02)).

図2に示されている例は、W/Cは一定で固化材添加量が変化している場合であり、固化材添加量の端数を切り捨てることは、目標強度を満足しなくなる可能性があるので、前記(場合1)の考え方にしたがい、端数が切り上げられて、固化材添加量は205kg/m3と定められてもよい(計算式(03)参照)。
図4に示されている例は、図2に示されている例と同じくW/Cは一定で固化材添加量が変化している場合であるが、液性落下回数はどちらかというと設計性能事項に直接には関連しない数値であり、前記(場合2)の考え方にしたがい、端数が四捨五入されてN0=33と定められてもよい(計算式(05)参照)。
The example shown in FIG. 2 is a case where the W / C is constant and the amount of the solidifying material added is changed, and rounding down the fraction of the amount of the solidifying material added may not satisfy the target strength. Therefore, according to the idea of the above (case 1), the fraction may be rounded up and the solidifying material addition amount may be determined to be 205 kg / m 3 (see calculation formula (03)).
The example shown in FIG. 4 is the case where the W / C is constant and the amount of the solidifying material added is changed as in the example shown in FIG. 2, but the number of liquid drops is rather designed. It is a numerical value that is not directly related to performance items, and may be rounded off to N0 = 33 according to the concept of (Case 2) above (see formula (05)).

図5に示されている例は、図4に示されている例と同じくW/Cは一定で固化材添加量が変化している場合であるため、液性落下回数はどちらかというと設計性能事項に直接には関連しない数値であり、前記(場合2)の考え方にしたがい、端数が四捨五入されてN0=43と定められてもよい(計算式(06)参照)。図5に示されている例では、添加量の端数に関する処理であるが、目標強度は123kg/m3だけの添加で既に満足する前提で、共回り防止を目的とした急曲点Pに相当する添加量を求める計算における端数処理なので、前記(場合2)の考え方にしたがい、端数が四捨五入されて固化材添加量は132kg/m3と定められてもよい(計算式(07)参照)。 Since the example shown in FIG. 5 is the case where the W / C is constant and the amount of the solidifying material added is changed as in the example shown in FIG. 4, the number of liquid drops is rather designed. It is a numerical value that is not directly related to the performance item, and may be rounded off to N0 = 43 according to the concept of (Case 2) above (see formula (06)). In the example shown in FIG. 5, the processing is related to the fraction of the addition amount, but the target strength corresponds to the sharp turning point P for the purpose of preventing co-rotation on the premise that the addition of only 123 kg / m 3 is already satisfactory. Since this is a fractional process in the calculation for determining the amount to be added, the amount of the solidifying material added may be determined to be 132 kg / m 3 by rounding off the fractions according to the concept of (Case 2) above (see formula (07)).

図6に示されている例は、図1に示されている例と同じく、添加量が一定(320kg/m3)でW/Cが変化する例であり、W/Cが大きくなる方向は発現強度が小さくなる方向となるので、前記(場合1)の考え方にしたがい、端数が切り捨てられてW/C=1.1と定められてもよい(計算式(08)参照)。 The example shown in FIG. 6 is an example in which the W / C changes when the addition amount is constant (320 kg / m 3 ), as in the example shown in FIG. 1, and the direction in which the W / C increases is Since the expression intensity tends to decrease, the fraction may be rounded down and W / C = 1.1 may be determined according to the concept of (Case 1) above (see formula (08)).

本発明の固化材の配合仕様決定方法は、深層混合処理工法における改良対象土に対する固化材の配合仕様を決定する方法であって、前記固化材を複数の配合水準で前記改良対象土に混合して撹拌した未固化の混合土に対して、ベーンせん断試験を行ってベーンせん断値を求めると共に、液性限界試験の項目中の液性落下回数を求める工程と、前記ベーンせん断値と前記液性落下回数との相関関係に基づいて前記固化材の目標配合仕様を決定する工程とを備え、前記決定する工程は、前記ベーンせん断値と前記液性落下回数とを、縦軸と横軸とにとってプロットした際に定義される指定相関曲線における急曲点に相当する前記固化材の配合仕様を前記固化材の目標配合仕様として決定する工程であることを特徴とする。 The method for determining the compounding specifications of the solidifying material of the present invention is a method for determining the compounding specifications of the solidifying material for the soil to be improved in the deep mixing treatment method, in which the solidifying material is mixed with the soil to be improved at a plurality of compounding levels. A vane shear test is performed on the uncured mixed soil that has been stirred and the vane shear value is obtained, and the number of liquid drops in the items of the liquid limit test is obtained, and the vane shear value and the liquid property are obtained. The step of determining the target compounding specification of the solidifying material based on the correlation with the number of drops is provided , and the step of determining the vane shear value and the number of liquid drops are taken on the vertical and horizontal axes. It is characterized in that it is a step of determining the compounding specification of the solidifying material corresponding to the sharp curve point in the designated correlation curve defined at the time of plotting as the target compounding specification of the solidifying material .

さらに、本発明の固化材の配合仕様決定方法において、固化した前記混合土の目標強度に基づいて求めた前記固化材の配合仕様に相当する前記液性落下回数である第1指定液性落下回数N0を決定する工程と、前記第1指定液性落下回数N0が前記急曲点に相当する液性落下回数である第2指定液性落下回数N1以下の場合、目標強度に基づいて求めた前記固化材の配合仕様を前記固化材の目標配合仕様として決定し、前記第1指定液性落下回数N0が前記第2指定液性落下回数N1を超える場合、前記急曲点に相当する前記固化材の配合仕様を前記固化材の目標配合仕様として決定する工程とを備えることが好ましい。 Further, in the method for determining the compounding specifications of the solidifying material of the present invention, the number of liquid drops corresponding to the compounding specifications of the solidifying material obtained based on the target strength of the solidified mixed soil is the number of first designated liquid drops. The step of determining N0 and the case where the first designated liquid drop count N0 is the second designated liquid drop count N1 or less, which is the number of liquid drops corresponding to the sharp turning point , the above is obtained based on the target strength. When the compounding specification of the solidifying material is determined as the target compounding specification of the solidifying material and the first designated liquid drop count N0 exceeds the second designated liquid drop count N1, the solidifying material corresponding to the sharp bending point. It is preferable to include a step of determining the compounding specification of the above as the target compounding specification of the solidifying material.

Claims (6)

深層混合処理工法における改良対象土に対する固化材の配合仕様を決定する方法であって、
前記固化材を複数の配合水準で前記改良対象土に混合して撹拌した未固化の混合土に対して、ベーンせん断試験を行ってベーンせん断値を求めると共に、液性限界試験の項目中の液性落下回数を求める工程と、
前記ベーンせん断値と前記液性落下回数との相関関係に基づいて前記固化材の目標配合仕様を決定する工程とを備えることを特徴とする固化材の配合仕様決定方法。
It is a method of determining the compounding specifications of the solidifying material for the soil to be improved in the deep mixing treatment method.
A vane shear test is performed on the unsolidified mixed soil in which the solidifying material is mixed with the soil to be improved at a plurality of compounding levels and stirred to obtain the vane shear value, and the liquid in the liquid limit test item. The process of determining the number of sex drops and
A method for determining a solidifying material compounding specification, which comprises a step of determining a target compounding specification of the solidifying material based on a correlation between the vane shear value and the number of liquid drops.
前記ベーンせん断値と前記液性落下回数との相関関係を示す指定相関曲線における曲率が大きな大曲率部の代表点を推定し、前記代表点に相当する前記固化材の配合仕様を前記固化材の目標配合仕様として決定することを特徴とする請求項1に記載の固化材の配合仕様決定方法。 A representative point of a large curvature portion having a large curvature in a designated correlation curve showing a correlation between the vane shear value and the number of liquid drops is estimated, and the compounding specifications of the solidifying material corresponding to the representative point are set to the solidifying material. The method for determining a compounding specification of a solidifying material according to claim 1, wherein the compounding specification is determined as a target compounding specification. 前記複数の配合水準は、前記改良対象土の単位体積当たりの前記固化材の添加量が一定であって、水固化材比が異なるものであることを特徴とする請求項1または2に記載の固化材の配合仕様決定方法。 The plurality of compounding levels according to claim 1 or 2, wherein the amount of the solidifying material added per unit volume of the soil to be improved is constant, and the ratio of the water solidifying material is different. Method for determining the compounding specifications of the solidifying material. 前記複数の配合水準は、水固化材比が一定であって、前記改良対象土の単位体積当たりの前記固化材の添加量が異なるものであることを特徴とする請求項1または2に記載の固化材の配合仕様決定方法。 The plurality of blending levels according to claim 1 or 2, wherein the ratio of the water solidifying material is constant, and the amount of the solidifying material added per unit volume of the soil to be improved is different. Method for determining the compounding specifications of the solidifying material. 固化した前記混合土の目標強度に基づいて求めた前記固化材の配合仕様に相当する前記液性落下回数である第1指定液性落下回数N0を決定する工程と、
前記第1指定液性落下回数N0が前記代表点に相当する液性落下回数である第2指定液性落下回数N1以下の場合、目標強度に基づいて求めた前記固化材の配合仕様を前記固化材の目標配合仕様として決定し、前記第1指定液性落下回数N0が前記第2指定液性落下回数N1を超える場合、前記代表点に相当する前記固化材の配合仕様を前記固化材の目標配合仕様として決定する工程とを備えることを特徴とする請求項1から4の何れか1項に記載の固化材の配合仕様決定方法。
A step of determining the first designated liquid drop number N0, which is the number of liquid drops corresponding to the compounding specifications of the solidifying material obtained based on the target strength of the solidified mixed soil, and
When the first designated liquid drop count N0 is the number of liquid drops corresponding to the representative point N1 or less, the compounding specifications of the solidifying material obtained based on the target strength are solidified. When the target compounding specification of the material is determined and the first designated liquid drop count N0 exceeds the second designated liquid drop count N1, the compounding specification of the solidifying material corresponding to the representative point is the target of the solidifying material. The method for determining a compounding specification of a solidifying material according to any one of claims 1 to 4, further comprising a step of determining the compounding specification.
固化した前記混合土に対して一軸圧縮試験を行って、一軸圧縮強度を求める工程と、
複数の前記液性落下回数の区間において、前記ベーンせん断値の減少割合に対する前記一軸圧縮強度の減少割合が最も少ない区間を求める工程と、
前記求めた区間における前記液性落下回数の最小値に基いて前記固化材の目標配合仕様を補正する工程と備えることを特徴とする請求項1から5の何れか1項に記載の固化材の配合仕様決定方法。
A step of performing a uniaxial compression test on the solidified mixed soil to obtain a uniaxial compressive strength, and
A step of obtaining a section in which the reduction rate of the uniaxial compressive strength is the smallest with respect to the reduction rate of the vane shear value in a plurality of sections of the liquid drop times.
The solidifying material according to any one of claims 1 to 5, further comprising a step of correcting a target compounding specification of the solidifying material based on the minimum value of the number of liquid drops in the obtained section. Formulation specification determination method.
JP2019160186A 2019-07-26 2019-09-03 Determination method of solidification material mix specification Active JP6648332B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019137579 2019-07-26
JP2019137579 2019-07-26

Publications (2)

Publication Number Publication Date
JP6648332B1 JP6648332B1 (en) 2020-02-14
JP2021021309A true JP2021021309A (en) 2021-02-18

Family

ID=69568182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019160186A Active JP6648332B1 (en) 2019-07-26 2019-09-03 Determination method of solidification material mix specification

Country Status (1)

Country Link
JP (1) JP6648332B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189303B (en) * 2021-04-27 2023-04-25 青岛市勘察测绘研究院 Intelligent liquid limit instrument and liquid limit measuring method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153013A (en) * 1980-04-28 1981-11-26 Tenotsukusu:Kk Stirring blade device for composite head in subsoil improvement
JP2000144703A (en) * 1998-11-17 2000-05-26 Tenox Corp Stirring/mixing device
JP2001311134A (en) * 2000-05-01 2001-11-09 Railway Technical Res Inst Flowable earth containing water with added hardener, decision method for additive quantity of hardener, and production method and device therefor
JP2003170033A (en) * 2001-12-10 2003-06-17 Maki Korogi Agitation capacity judging method of agitating device
JP2003239275A (en) * 2001-12-11 2003-08-27 Kato Construction Co Ltd Construction method for soil improvement
JP2007211527A (en) * 2006-02-10 2007-08-23 Estec:Kk Excavating head and soil improving machine
JP2009174305A (en) * 2007-12-26 2009-08-06 Chemical Grouting Co Ltd Mixing determination method for hardening material
JP2017193907A (en) * 2016-04-22 2017-10-26 大成建設株式会社 Method for setting composition of plastic filler

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153013A (en) * 1980-04-28 1981-11-26 Tenotsukusu:Kk Stirring blade device for composite head in subsoil improvement
JP2000144703A (en) * 1998-11-17 2000-05-26 Tenox Corp Stirring/mixing device
JP2001311134A (en) * 2000-05-01 2001-11-09 Railway Technical Res Inst Flowable earth containing water with added hardener, decision method for additive quantity of hardener, and production method and device therefor
JP2003170033A (en) * 2001-12-10 2003-06-17 Maki Korogi Agitation capacity judging method of agitating device
JP2003239275A (en) * 2001-12-11 2003-08-27 Kato Construction Co Ltd Construction method for soil improvement
JP2007211527A (en) * 2006-02-10 2007-08-23 Estec:Kk Excavating head and soil improving machine
JP2009174305A (en) * 2007-12-26 2009-08-06 Chemical Grouting Co Ltd Mixing determination method for hardening material
JP2017193907A (en) * 2016-04-22 2017-10-26 大成建設株式会社 Method for setting composition of plastic filler

Also Published As

Publication number Publication date
JP6648332B1 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP2021021309A (en) Determining method compounding specification of solidification material
Adewuyi et al. Empirical evaluation of construction material waste generated on sites in Nigeria
WO2019213349A1 (en) Methods for determining fresh concrete discharge volume and discharge flow rate and system using same
JP4885326B1 (en) Ground improvement method
Pang et al. Characterizing gas bubble size distribution of laboratory foamed cement using X-ray micro-CT
WO2012161282A1 (en) Ground improvement method, and system for managing construction in ground improvement method
CN113836630B (en) Method and system for rapidly predicting river bank collapse by considering vegetation root influence
JP4294080B1 (en) Determination method of curing material
JP6207149B2 (en) Underground continuous water barrier method
Giampa et al. A simple method for assessing the peak friction angle of sand at very low confining pressures
JP2008302507A (en) Method for determining compounding ratio of fine shotcrete powder and method for determining addition ratio between shotcrete and thickener for shotcrete determined by the method
JP5820651B2 (en) Cement slurry with fiber
JP2016218031A (en) Method for designing blending of soil cement
JP5875138B2 (en) Foundation pile construction method considering site conditions
JP4555744B2 (en) Method and apparatus for blending design of cement and fine particles for ground improvement method
Barmpopoulos et al. The large displacement shear characteristics of granular media against concrete and steel interfaces
JP2009002027A (en) Method of creating aerated lightweight soil
JP7231492B2 (en) Method for producing improved soil
JP3944508B2 (en) Ground improvement method
JP4703575B2 (en) Mixing design method for solidification material of impermeable wall
Cherry et al. Helical pile capacity to torque ratios, current practice, and reliability
JP4970547B2 (en) Preparation method of bubble stabilizer and bubble drilling method
JP2019183419A (en) Manufacturing method of solidification soil
JP2007197546A (en) Grouting material and grouting method
Spagnoli et al. Comparison of two calcareous sands in relation to a novel offshore mixed-in-place pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190903

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190910

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6648332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250