JP6665129B2 - Premix composition used for ground strengthening compaction material, ground strengthening compaction material, method for producing the same, and ground strengthening method using the same - Google Patents
Premix composition used for ground strengthening compaction material, ground strengthening compaction material, method for producing the same, and ground strengthening method using the same Download PDFInfo
- Publication number
- JP6665129B2 JP6665129B2 JP2017094062A JP2017094062A JP6665129B2 JP 6665129 B2 JP6665129 B2 JP 6665129B2 JP 2017094062 A JP2017094062 A JP 2017094062A JP 2017094062 A JP2017094062 A JP 2017094062A JP 6665129 B2 JP6665129 B2 JP 6665129B2
- Authority
- JP
- Japan
- Prior art keywords
- ground
- compaction
- aggregate
- parts
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 285
- 238000005056 compaction Methods 0.000 title claims description 123
- 238000000034 method Methods 0.000 title claims description 80
- 239000000203 mixture Substances 0.000 title claims description 41
- 238000005728 strengthening Methods 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000012615 aggregate Substances 0.000 claims description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 71
- 238000007711 solidification Methods 0.000 claims description 55
- 230000008023 solidification Effects 0.000 claims description 55
- 238000002156 mixing Methods 0.000 claims description 46
- 238000011161 development Methods 0.000 claims description 38
- 230000007935 neutral effect Effects 0.000 claims description 29
- 230000002787 reinforcement Effects 0.000 claims description 24
- 239000002689 soil Substances 0.000 claims description 17
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 claims description 13
- 150000002506 iron compounds Chemical class 0.000 claims description 11
- 230000003014 reinforcing effect Effects 0.000 claims description 4
- 239000004575 stone Substances 0.000 claims description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical group [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 3
- 239000011505 plaster Substances 0.000 claims 3
- 239000010440 gypsum Substances 0.000 description 80
- 229910052602 gypsum Inorganic materials 0.000 description 80
- 230000018109 developmental process Effects 0.000 description 35
- 238000010276 construction Methods 0.000 description 29
- 230000003068 static effect Effects 0.000 description 26
- 238000002347 injection Methods 0.000 description 24
- 239000007924 injection Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 16
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 15
- 235000011941 Tilia x europaea Nutrition 0.000 description 15
- 239000004568 cement Substances 0.000 description 15
- 239000004571 lime Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 238000013329 compounding Methods 0.000 description 11
- 239000000395 magnesium oxide Substances 0.000 description 11
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 11
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 8
- 238000007596 consolidation process Methods 0.000 description 8
- 230000002411 adverse Effects 0.000 description 7
- 238000012669 compression test Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000003673 groundwater Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 150000007942 carboxylates Chemical class 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 230000003113 alkalizing effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000011440 grout Substances 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 239000002440 industrial waste Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 3
- 229940038773 trisodium citrate Drugs 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000007712 rapid solidification Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000000979 retarding effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- -1 silt Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000003911 water pollution Methods 0.000 description 2
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000021962 pH elevation Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- 239000003516 soil conditioner Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
本発明は、地盤の密度を増加させて地盤強化を図る地盤強化用締固め材及びその製造方法並びにそれを用いた地盤強化方法に関する。また、その地盤強化用締固め材を作製するにあたり、地上で水を混合させて当該締固め材を作製する前のプレミックス組成物にも関する。 The present invention relates to a compaction material for strengthening ground by increasing the density of the ground, a method of manufacturing the same, and a method of strengthening ground using the same. The present invention also relates to a premix composition before producing the compaction material by mixing water on the ground when producing the compaction material for ground reinforcement.
軟弱な砂質土地盤では、地震が起きると過剰間隙水圧が発生し、土粒子が流動化し、地盤の支持力が一時的に消失する「液状化現象」が発生する。かかる液状化現象の防止対策として種々の地盤強化技術が開発され、実用に供されている(例えば非特許文献1)。 In soft sandy ground, when an earthquake occurs, excessive pore water pressure is generated, soil particles are fluidized, and a "liquefaction phenomenon" occurs, in which the bearing capacity of the ground is temporarily lost. Various ground strengthening techniques have been developed as measures to prevent such liquefaction and have been put to practical use (for example, Non-Patent Document 1).
そのひとつに「締固め工法」と称される(「密度増大工法」とも称される)ものがあり、その代表的なものに「静的圧入締固め工法」がある。当該工法は、動的エネルギー(打撃や振動)を与えることなく、静的な力(ポンプ圧送による静的圧入)で締固めを行う工法である。具体的には、締固め材を地盤中に圧入して固結塊を造成し、この固結塊による締固め効果で周辺地盤を圧縮し、地盤の密度を増大(本明細書では、単に「密度増大」とも称する)させて地盤強化している(例えば特許文献1)。 One of them is called “compaction method” (also called “density increasing method”), and a typical example is “static press-fitting method”. This method is a method of compacting with a static force (static press-fitting by pumping) without applying dynamic energy (hitting or vibration). Specifically, the compacted material is pressed into the ground to form a consolidated mass, the surrounding ground is compressed by the compacting effect of the compacted mass, and the density of the ground is increased (in this specification, simply “ (Also referred to as “density increase”) to reinforce the ground (for example, Patent Document 1).
静的圧入締固め工法(例えばコンパクショングラウチング工法)に用いられる締固め材には、固化材、骨材及び水を混合したものが用いられる。従って、締固め材の混合完了時の性状は、湿潤状態のモルタル状又はスラリー状(セメントペースト状)である。固化材とは締固め材に固結性能(自己硬化性)を付与する成分であり、セメント系や石灰系の材料が広く用いられている(例えば特許文献1、2)。また、固化材として酸化マグネシウムを用いることも提案されている(特許文献3)。 As a compaction material used in the static press-fitting compaction method (for example, compaction grouting method), a mixture of a solidified material, an aggregate, and water is used. Therefore, the properties of the compaction material at the time of completion of mixing are in a wet mortar state or a slurry state (cement paste state). The solidified material is a component that imparts compaction performance (self-hardening) to the compacted material, and cement-based and lime-based materials are widely used (for example, Patent Documents 1 and 2). It has also been proposed to use magnesium oxide as a solidifying material (Patent Document 3).
なお、静的圧入締固め工法以外にも、各種の注入工法(薬液注入、セメント系注入、ジェットグラウトなど)も知られている。薬液注入では、注入材が土粒子間へ浸透し固化(浸透固結)する。セメント系注入では、地盤内でセメントグラウトが脈状に固化(脈状固結)する。ジェットグラウト(排出半置換)では、固化材と土粒子を高圧噴射により強制的に撹拌混合しソイルモルタル状の固結体を形成する。薬液注入工法などの注入工法の地盤強化原理は「固化」であり、静的圧入締固め工法の地盤強化原理の「密度増大」とは全く異なる。一般的に、地盤強化原理として「固化」を利用する液状化対策工法は「固化工法」又は「固結工法」と称され、地盤強化原理として「密度増大」を利用する「密度増大工法」又は「締固め工法」と呼ばれる工法とは技術的に区別されている(例えば非特許文献1)。なお、静的圧入締固め工法(例としてコンパクショングラウチング工法)を他の工法と対比して図1に示す。 Various injection methods (chemical injection, cement injection, jet grout, etc.) are known in addition to the static press-fitting method. In the injection of the chemical solution, the injection material permeates between the soil particles and solidifies (permeates and consolidates). In cement-based injection, cement grout solidifies in the ground in the form of veins (pulse consolidation). In the jet grout (discharge half-replacement), the solidified material and the soil particles are forcibly stirred and mixed by high-pressure injection to form a soil mortar-like compact. The ground reinforcement principle of the injection method such as the chemical liquid injection method is “solidification”, which is completely different from the “density increase” of the ground reinforcement principle of the static press-fitting method. Generally, liquefaction countermeasures using `` solidification '' as the principle of ground reinforcement is called `` solidification method '' or `` consolidation method '', `` density increase method '' using `` density increase '' as the ground reinforcement principle or It is technically distinguished from a method called "compaction method" (for example, Non-Patent Document 1). FIG. 1 shows the static press-fitting method (for example, compaction grouting method) in comparison with other methods.
また、締固め材に特殊石灰(硬焼生石灰)、水砕スラグ(又はセメント)、石膏及び砂を混合した乾燥状態の粒状材料又は粉体状材料を用いる「特殊石灰杭工法」がある(特許文献4)。当該工法は、スパイラル付きのケーシングを回転貫入しながら、その中に粒状又は粉体状(乾燥状態)の締固め材を投入し、ケーシングを引き抜きながら締固め材を地盤中にパイル状に残置させるものである。この乾燥状態の締固め材が地下水を吸水し、水和反応によって膨張する。この膨張圧によって周辺地盤を圧縮し、締固めを行う工法である。他方、静的圧入締固め工法では、地上で水を添加して材料と混練させることによって作製されるモルタル状(湿潤状態)の締固め材を地盤に圧入して固結塊を造成し、この固結塊による締固め効果で周辺地盤を圧縮し、地盤の密度を増大させて地盤を強化させる工法である。そのため、静的圧入締固め工法は締固め材をポンプ圧送による静的な力で地盤を締固めるのに対し、特殊石灰杭工法は締固め材が地下水を吸収して水和反応で膨張し、この膨張圧で地盤を締固めるという違いがある。つまり、特殊石灰杭工法は、静的圧入締固め工法と同じく密度を増大させて周辺地盤を締固める「静的締固め工法」のひとつで「密度増大工法」に分類されるが、使用する締固め材料の性状や締固め原理が全く異なる。 In addition, there is a "special lime pile method" that uses a dry granular material or powdered material obtained by mixing special lime (hard burnt lime), granulated slag (or cement), gypsum and sand as a compacting material (Patent Reference 4). According to this method, a granular or powdery (dry) compaction material is put into a spiral-fitted casing while rotatingly penetrating the casing, and the compaction material is left in a pile shape in the ground while the casing is pulled out. Things. This compacted material in the dry state absorbs groundwater and expands due to the hydration reaction. In this method, the surrounding ground is compressed by this expansion pressure, and compaction is performed. On the other hand, in the static press-in compaction method, a mortar-like (wet state) compacted material produced by adding water on the ground and kneading the material is pressed into the ground to form a consolidated mass. This is a method of compressing the surrounding ground by the compaction effect of the consolidated mass, increasing the density of the ground, and strengthening the ground. For this reason, the static press-fitting compaction method compacts the ground with static force by pumping the compaction material, whereas the special lime pile method absorbs groundwater and expands due to hydration reaction, There is a difference that the ground is compacted by this expansion pressure. In other words, the special lime pile method is one of the "static compaction methods" in which the density is increased and the surrounding ground is compacted, similar to the static press-fit compaction method, and is classified as the "density increase method". The properties of compaction material and compaction principle are completely different.
他にも、水分を多量に含有する汚泥に添加混合して固化させることにより汚泥を再利用可能なものとすることのできる土質改良剤として石膏を用いることが提案されている(特許文献5)。この技術は、汚泥と混合することで汚泥中の水分を石膏で速やかに吸水して固化するという、汚泥そのものの改質を行う技術であり、静的圧入締固め工法に代表される締固め工法のように地盤強化原理として「密度増大」を利用する技術とは根本的に異なる。 In addition, it has been proposed to use gypsum as a soil conditioner capable of making sludge reusable by adding, mixing, and solidifying sludge containing a large amount of water (Patent Document 5). . This technology is a technology for reforming the sludge itself, in which the water in the sludge is quickly absorbed by gypsum and solidified by mixing with the sludge, and the compaction method represented by the static press-in compaction method It is fundamentally different from the technology using "density increase" as the ground strengthening principle.
静的圧入締固め工法で一般的に用いられる固化材であるセメント系や石灰系の材料は、強アルカリ性を呈する。そのため、このような固化材を成分として含む締固め材を中性域の地盤に圧入すると、施工周辺の地盤もアルカリ性を示すようになり、植生や微生物等の生態系に悪影響を及ぼすという問題がある。特に、港湾や海岸、又は河川や湖沼などの水域又はその周辺で施工する場合、周辺地盤や水域のpH9を超えるアルカリ化は、その水質汚染による水生生物等の生態系へ及ぼす悪影響が特に大きい。 Cement-based and lime-based materials, which are solidifying materials generally used in the static press-in compaction method, exhibit strong alkalinity. Therefore, when a compaction material containing such a solidified material as a component is pressed into the ground in a neutral region, the ground around the construction also becomes alkaline, which has a problem of adversely affecting ecosystems such as vegetation and microorganisms. is there. In particular, when construction is performed in or around a water area such as a harbor or coast, or a river or a lake, alkalizing of the surrounding ground or water area exceeding pH 9 has a particularly large adverse effect on ecosystems such as aquatic organisms due to water pollution.
特許文献3で固化材としての使用が提案されている酸化マグネシウムは、セメントに比べて飽和水溶液のpH値は低いものの高アルカリ性の材料である。また、締固め材が固結して形成される固結塊の強度は、酸化マグネシウムの量に比例する。従って、ある程度高強度が求められる地盤改良工事では、必要な強度の発現に充分な量の酸化マグネシウムを用いると、周辺地盤がアルカリ化してしまうという問題がある。しかも、酸化マグネシウムの価格は、セメントのような一般的な固化材と比べて10倍以上とかなり高い。また、最近では材料の安定供給が困難となっており、入手までに多くの時間を要するといった問題がある。 Magnesium oxide, which is proposed to be used as a solidifying material in Patent Document 3, is a highly alkaline material although the pH value of a saturated aqueous solution is lower than that of cement. Further, the strength of the compacted mass formed by compacting the compacting material is proportional to the amount of magnesium oxide. Therefore, in ground improvement work requiring high strength to some extent, there is a problem that if a sufficient amount of magnesium oxide is used to develop the required strength, the surrounding ground becomes alkalized. Moreover, the price of magnesium oxide is 10 times or more that of a general solidifying material such as cement. In addition, recently, it has been difficult to provide a stable supply of materials, and there is a problem that it takes a lot of time to obtain materials.
また、上述のセメント系や石灰系、酸化マグネシウム系の固化材は、固化や強度発現が緩やかで1週間から1ヶ月以上、強度が上昇しつづける。これらを用いた締固め材も、地盤に圧入後に1週間から1ヶ月以上にわたって強度が上昇しつづけて、最終的に所望の強度に達する。つまり最終強度発現が遅い。そのため、例えば以下のような問題がある。
・事前試験において、改良体の最終強度を見積もるのに長時間を要する。
・圧入完了から材齢期間(強度発現が完了するまでの養生期間)経過後に標準貫入試験を実施して地盤改良効果の確認を行う必要があるが、その確認に長期間を要する。そのため、上部工等の施工が開始できない。
・供用中の施設(滑走路等)など、施設を使用しない時間帯での施工(夜間施工等)で対応後早急に再供用が必要な場合の対策として適用できない。
・固結するまでの流動性状の時間が長く、水中下もしくは水際の施工において、締固め材や固化材が水中に流出したり、地下水に浸透したりすることがある。
In addition, the cement, lime, and magnesium oxide-based solidifying materials described above gradually solidify and develop strength, and the strength continues to increase for one week to one month or more. The compacted material using these also continues to increase in strength from one week to one month or more after being pressed into the ground, and finally reaches a desired strength. That is, the final strength expression is slow. Therefore, there are the following problems, for example.
-It takes a long time to estimate the final strength of the improved body in the preliminary test.
-It is necessary to confirm the soil improvement effect by performing a standard penetration test after the aging period (curing period until the completion of strength development) from the completion of press-in, but it takes a long time to confirm. Therefore, the construction of the superstructure or the like cannot be started.
-It cannot be applied as a measure when re-operation is required as soon as possible during construction (nighttime construction, etc.) when facilities are not used, such as facilities in use (runways, etc.).
・ The time required for fluidity to consolidate is long, and compaction materials and solidified materials may flow out into water or penetrate into groundwater during construction under water or near water.
本発明は、このような問題に鑑みてなされたものであって、中性の地盤に圧入しても周辺地盤を中性に維持できるとともに、地盤への圧入が可能で、且つ、圧入後に速やかに固結する地盤強化用締固め材及びそれを用いた地盤強化方法を提供することを目的とする。ここで、本発明で言う「地盤強化」とは、地盤強化原理として「密度増大」を利用するものを意味する。
また、本明細書で言う「中性」とは、特に記述が無い限り、pH5.8以上8.6以下の範囲内を意味する。これは、環境省で定められる一律排水基準(具体的には、「水質汚濁防止法第3条第1項」関連としての一般項目(有害物質以外の項目)である「排水基準を定める省令(昭和46年総理府令第35号別表第二)」に準ずる。)の水素イオン濃度許容限度範囲(海域以外の公共用水域に排出されるもの)に整合する。
The present invention has been made in view of such a problem, and it is possible to maintain the surrounding ground in a neutral state even when press-fitting into a neutral ground, press-fit the ground, and quickly press-fit the ground. It is an object of the present invention to provide a compaction material for ground reinforcement which solidifies in a ground and a ground reinforcement method using the same. Here, the term “ground strengthening” as used in the present invention means a method using “density increase” as a ground strengthening principle.
The term "neutral" as used herein means a pH in the range of 5.8 to 8.6 unless otherwise specified. This is a uniform wastewater standard set by the Ministry of the Environment (specifically, a general ordinance (items other than harmful substances) related to the Article 3 (1) of the Water Pollution Prevention Act). Conforms to the Prime Minister's Ordinance No. 35 Separate Table 2) ").
本発明者らは、前述の課題を解決すべく鋭意検討を行った結果、少なくとも所定量の石膏と骨材を含むプレミックス組成物を水と混合させることによって地盤強化用締固め材を作製すると、強度発現完了後のpHが5.8以上8.6以下であり、強度発現が前記石膏、骨材及び水の混合完了時から24時間以内に完了する地盤強化用締固め材が提供できること等を見出し、本発明を完成した。 The present inventors have conducted intensive studies to solve the above-described problems, and as a result, to produce a ground strengthening compaction material by mixing at least a predetermined amount of a premix composition containing gypsum and aggregate with water. A compaction material for strengthening the ground that has a pH of 5.8 or more and 8.6 or less after completion of strength development and completes strength development within 24 hours after completion of the mixing of the gypsum, aggregate and water. And completed the present invention.
すなわち、本発明は、
(1) 少なくとも石膏と骨材を含み、前記骨材100質量部に対して前記石膏1〜30質量部を含んでなる、地盤強化用締固め材に用いるプレミックス組成物である。
(2) 更に、前記骨材100質量部に対して固化遅延材0.1〜3.0質量部を含む、(1)の組成物である。
(3) 前記固化遅延材が中性である、(2)の組成物である。
(4) 少なくとも石膏、骨材及び水を含む地盤強化用締固め材であって、強度発現完了後のpHが5.8以上8.6以下であり、強度発現が前記石膏、骨材及び水の混合完了時から24時間以内に完了する地盤強化用締固め材である。
(5) 更に固化遅延材を含み、強度発現開始が石膏、骨材、水及び固化遅延材の混合完了時から30分以降である、(4)の締固め材である。
(6) 強度発現完了後の一軸圧縮強度が40〜500kN/m2である、(4)又は(5)の締固め材である。
(7) 骨材と、前記骨材100質量部に対して、石膏1〜30質量部と水10〜30質量部を少なくとも含む、締固め材である。
(8) 更に、前記骨材100質量部に対して固化遅延材0.1〜3.0質量部を含む、(7)の締固め材である。
(9) 前記固化遅延材が中性である、(5)又は(8)の締固め材である。
(10) 前記中性固化遅延材がクエン酸塩である、(9)の締固め材である。
(11) 前記締固め材が、更に鉄化合物を含む、(4)〜(10)のいずれかの締固め材である。
(12) 前記鉄化合物が石膏に含まれる、(11)の締固め材である。
(13) (1)〜(3)のいずれかの組成物と水とを混合して地盤強化用締固め材を製造する方法である。
(14) (4)〜(12)のいずれかの締固め材を地盤に形成した削孔に圧入して固結塊を造成し、周囲地盤を圧縮して地盤の密度を増大させ地盤を強化する地盤強化方法である。
That is, the present invention
(1) A premix composition used for a compaction material for ground reinforcement, comprising at least gypsum and an aggregate, and 1 to 30 parts by mass of the gypsum with respect to 100 parts by mass of the aggregate.
(2) The composition according to (1), further comprising 0.1 to 3.0 parts by mass of a solidification retarder with respect to 100 parts by mass of the aggregate.
(3) The composition according to (2), wherein the solidification retarder is neutral.
(4) A soil compaction material containing at least gypsum, aggregate and water, wherein the pH after completion of strength development is 5.8 or more and 8.6 or less, and the strength development is the gypsum, aggregate and water. Is a compaction material for ground reinforcement that is completed within 24 hours from the completion of mixing.
(5) The compaction material according to (4), further including a solidification delay material, wherein the onset of strength development is 30 minutes or more after the completion of the mixing of the gypsum, the aggregate, the water, and the solidification delay material.
(6) The compacted material according to (4) or (5), which has a uniaxial compressive strength of 40 to 500 kN / m 2 after the completion of strength development.
(7) An aggregate and a compacting material containing at least 1 to 30 parts by mass of gypsum and 10 to 30 parts by mass of water with respect to 100 parts by mass of the aggregate.
(8) The compaction material according to (7), further including 0.1 to 3.0 parts by mass of a solidification retarder with respect to 100 parts by mass of the aggregate.
(9) The compaction material according to (5) or (8), wherein the solidification delay material is neutral.
(10) The compaction material according to (9), wherein the neutral solidification retardant is a citrate.
(11) The compaction material according to any one of (4) to (10), wherein the compaction material further contains an iron compound.
(12) The compacting material according to (11), wherein the iron compound is contained in gypsum.
(13) A method for producing a compaction material for ground reinforcement by mixing any one of the compositions (1) to (3) with water.
(14) The compacted material according to any of (4) to (12) is pressed into a drilled hole formed in the ground to form a consolidated mass, and the surrounding ground is compressed to increase the density of the ground and strengthen the ground. This is a method of strengthening the ground.
本発明の地盤強化用締固め材に用いるプレミックス組成物を利用して、水と混合させて当該締固め材を作製すれば、その締固め材は、強度発現後もpHが5.8以上8.6以下であるため、中性の地盤に圧入しても周辺地盤を中性に維持でき、植生や微生物や水生生物等の生態系に悪影響を与える周辺地盤のアルカリ化を回避できる。そのため、本発明の締固め材によれば、地盤強化における環境適合性を高めることができる。更に、本発明の締固め材を利用して静的圧入締固め工法のような締固め工法による地盤強化方法を実施すると、低強度で中性の使用済み締固め材(廃泥)が得られるため、従来法ではアルカリ性であったために産業廃棄物として処分されていた使用済み締固め材(廃泥)を残土として再利用することができる。このため、産業廃棄物処理費用を低減することができる。更に石膏系固化材の費用が酸化マグネシウム系に比べて安価で、安定供給が可能であることから材料費を低減することができ、経済的効果も得られる。
また、本発明の締固め材は、その強度発現が、石膏、骨材及び水の各材料の混合を完了した時から約24時間以内に完了するので、地盤への圧入が可能で、且つ、圧入後に速やかに固結してその機能を発揮することができる。
If the compaction material is prepared by mixing with water using the premix composition used for the compaction material for ground reinforcement of the present invention, the compaction material has a pH of 5.8 or more even after the development of strength. Since it is 8.6 or less, the surrounding ground can be maintained neutral even when it is injected into the neutral ground, and alkalizing of the surrounding ground, which adversely affects ecosystems such as vegetation, microorganisms, and aquatic organisms, can be avoided. Therefore, according to the compaction material of the present invention, environmental compatibility in ground reinforcement can be enhanced. Furthermore, when the ground strengthening method by the compaction method such as the static press-fit compaction method is performed using the compaction material of the present invention, a low-strength and neutral used compaction material (waste mud) can be obtained. Therefore, the used compacted material (waste mud) that has been disposed of as industrial waste because it was alkaline in the conventional method can be reused as remaining soil. For this reason, industrial waste disposal costs can be reduced. Further, the cost of the gypsum-based solidifying material is lower than that of the magnesium oxide-based material, and stable supply is possible, so that the material cost can be reduced and the economic effect can be obtained.
In addition, the compacting material of the present invention has its strength manifested within about 24 hours from the completion of the mixing of each material of gypsum, aggregate, and water, and can be pressed into the ground, and It can solidify quickly after press-fitting to exhibit its function.
更に固化遅延材も混合することにより、強度発現の開始を必要に応じて遅らせる(例えば、石膏、骨材、水及び固化遅延材の混合完了時から30分以降にする)こともできる。
また、本発明の締固め材によれば、強度発現完了後の一軸圧縮強度を40〜500kN/m2とすることができる。40kN/m2以上の一軸圧縮強度を有するため、地震時に固化した締固め材自体の液状化は発生しない。このため、液状化対策工法として適用することができる。更に、500kN/m2以下の一軸圧縮強度を有するため、低強度材としての使用に好適であるという効果も得られる。低強度材としての使用に好適なので、当該締固め材を用いた地盤改良後にその上部施設の建て替え工事等を行う際、杭等を打設するときの弊害とならずに施工することができ、撤去費用が不要となる。更に、500kN/m2以上の高強度の材料を使用した場合、地震時に固化した締固め材部分に地震波が集中し、上部構造物に対する悪影響が発生することがあるが、本発明の低強度材料では地震波の集中を防ぐことができる。
本発明によれば、例えば以下のような付随的効果も得られる。
・事前試験において最終強度を短期間で見積もることができるため、短期間での設計が可能となる。
・最終強度発現までの時間を短くすることができるため、地盤改良効果確認試験実施までの時間短縮が図れ、速やかに上部工施工にとりかかることも可能となり、工事全体の工期短縮が可能となる。
・圧入後に速やかに固結させることができるので、水中下もしくは水際の施工における締固め材の水中への流出を低減できる。
Further, by mixing the setting retarder, the onset of strength development can be delayed as required (for example, 30 minutes or more after the completion of mixing of gypsum, aggregate, water and the setting retarder).
Further, according to the compacted material of the present invention, the uniaxial compressive strength after completion of strength development can be set to 40 to 500 kN / m 2 . Since it has a uniaxial compressive strength of 40 kN / m 2 or more, liquefaction of the compacted material itself that has solidified during the earthquake does not occur. Therefore, it can be applied as a liquefaction countermeasure method. Furthermore, since it has a uniaxial compressive strength of 500 kN / m 2 or less, an effect that it is suitable for use as a low-strength material can be obtained. Because it is suitable for use as a low-strength material, it can be constructed without adverse effects when driving piles, etc. when rebuilding the upper facilities after ground improvement using the compacted material, Removal costs are not required. Furthermore, when a high-strength material of 500 kN / m 2 or more is used, seismic waves concentrate on the compacted material portion solidified during an earthquake, which may have an adverse effect on the upper structure. Can prevent seismic wave concentration.
According to the present invention, for example, the following additional effects can be obtained.
・ Since the final strength can be estimated in a short time in the preliminary test, the design can be performed in a short time.
・ Because the time required for the final strength to appear can be shortened, the time required for the ground improvement effect confirmation test can be shortened, and it is possible to immediately start the superstructure work, thereby shortening the construction period of the entire work.
-Since compaction can be carried out immediately after press-fitting, it is possible to reduce the outflow of compacted material into water during or underwater construction.
以下、本発明を実施するための形態について詳細に説明する。
本発明の一実施形態は、少なくとも石膏と骨材を含む、地盤強化用締固め材に用いるプレミックス組成物であって、前記骨材100質量部に対して前記石膏1〜30質量部を含んでなる組成物である。
ここで「プレミックス組成物」(本明細書では、「プレミックス材」とも称する)とは、少なくとも石膏、骨材及び水を含む地盤強化用締固め材を作製するにあたり、地上で水を混合させて当該締固め材を作製する前の、その材料となる石膏と骨材とを含む組成物を意味する。骨材と石膏の配合量は、骨材100質量部に対して石膏を1〜30質量部とする。これは、その後、水を混合させて締固め材を作製した際に、骨材100質量部に対する石膏量が1質量部以上であると、地盤強化用締固め材として充分な強度を示すことになり、30質量部以下であると、強度が必要以上に高くなることが無く経済的であるからである。
この「プレミックス組成物」には、必要に応じて固化遅延材を含めてもよい。固化遅延材を含める場合、石膏、骨材、固化遅延材の各材料の配合順序に特に制限はないが、先に石膏と固化遅延材を混合してから骨材を混合させるのが、石膏と固化遅延材の均等な混合という観点から好ましい。この固化遅延材の配合量は、骨材100質量部に対して0.1〜3.0質量部とするのが好ましい。これは、骨材に対する固化遅延材が0.1質量部以上であると、骨材や石膏の各材料とともに混合し水を添加して締固め材を作製したときに、急激な固化を抑止でき、そのため、地盤への充分な圧入時間を確保することが可能であり、また、3.0質量部以下であると、経済的だからである。
また、本発明の別の実施形態は、少なくとも石膏、骨材及び水を含む地盤強化用締固め材であって、強度発現完了後のpHが5.8以上8.6以下であり、強度発現が前記石膏、骨材及び水の混合完了時から24時間以内に完了する地盤強化用締固め材である。この際に使用する石膏と骨材は、個別に加えてもよいが、予め両者が配合されている前記プレミックス組成物として一緒に提供してもよい。水は、石膏と骨材を混合してから、配合するのが好ましい。水の配合方法については特に制限はなく、石膏と骨材を含む混合物に水を加えてもよいし、水に石膏と骨材を含む混合物を加えてもよい。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
One embodiment of the present invention is a premix composition containing at least gypsum and an aggregate, used for a compaction material for ground reinforcement, including 1 to 30 parts by mass of the gypsum with respect to 100 parts by mass of the aggregate. A composition comprising:
Here, the “premix composition” (also referred to as “premix material” in this specification) refers to a method of mixing water on the ground when producing a compaction material for soil reinforcement containing at least gypsum, aggregate and water. Before producing the compacted material, it means a composition containing gypsum and aggregate as the material. The amount of the gypsum is 1 to 30 parts by mass based on 100 parts by mass of the aggregate. This means that, when the compaction material is made by mixing water, if the amount of gypsum is 1 part by mass or more with respect to 100 parts by mass of the aggregate, the compaction material for ground reinforcement shows sufficient strength. When the amount is 30 parts by mass or less, the strength is not increased unnecessarily and it is economical.
The “premix composition” may include a solidification retarder, if necessary. When including a setting retarder, gypsum, aggregate, the order of compounding each material of the setting retarder is not particularly limited, but first, the gypsum and the setting retarder are mixed, and then the aggregate is mixed. It is preferable from the viewpoint of uniform mixing of the solidification retarder. It is preferable that the compounding amount of the solidification retarder is 0.1 to 3.0 parts by mass based on 100 parts by mass of the aggregate. This is because if the solidification delay material for the aggregate is 0.1 parts by mass or more, when the compaction material is made by mixing with each material of the aggregate and the gypsum and adding water, the rapid solidification can be suppressed. Therefore, it is possible to secure a sufficient time for press-into the ground, and when the amount is 3.0 parts by mass or less, it is economical.
Another embodiment of the present invention is a compaction material for ground reinforcement containing at least gypsum, aggregate and water, wherein the pH after completion of strength development is 5.8 or more and 8.6 or less, Is a compaction material for ground reinforcement that is completed within 24 hours after the completion of the mixing of the gypsum, aggregate and water. The gypsum and the aggregate used at this time may be added individually, or may be provided together as the premix composition in which both are previously blended. It is preferable to mix water after mixing gypsum and aggregate. The method of mixing water is not particularly limited, and water may be added to a mixture containing gypsum and aggregate, or a mixture containing gypsum and aggregate may be added to water.
本発明で言う「地盤強化用締固め材」とは、固化材を含んでいることから自己硬化性を有し、地盤中にポンプにより強制的に圧入された際に塊を形成し、この固結塊による締固め効果で周辺地盤を圧縮強化して地盤の密度を増大させる機能を有する材料のことである。ポンプによる強制圧入により密度を増大させるため、地盤強化用締固め材自体が膨張する性能(自己膨張性)は必要としない。本発明による「地盤強化用締固め材」は、通常、静的圧入締固め工法で使用する地盤強化用締固め材のことを指すが、この静的圧入締固め工法で使用する地盤強化用締固め材は、スラリー状やモルタル状の性状を呈しており、ポンプによる圧送が可能なものである。
一方、特殊石灰杭工法で使用する締固め材は、硬焼生石灰が地下水を吸水し、水和反応によって膨張する自己膨張性の材料である。この膨張による締固め効果で周辺地盤を圧縮して密度を増大させる。静的圧入締め工法と特殊石灰杭工法は、いずれも密度増大工法に分類されるが、締固め材の性状及び締固め原理が異なる。
例えば、静的圧入締固め工法で使用する自己膨張性のない締固め材(本発明)を特殊石灰杭工法で使用しても、地盤を圧縮し密度を増大させることができないので、改良効果が期待できない。反対に、特殊石灰杭工法で使用する自己膨張性を有する材料を静的圧入締固め工法で使用すると、水を添加して材料を混合することになるため、地盤圧入前に硬焼生石灰が吸水し、水和反応によって膨張する。このため、注入管及び注入ホース内で締固め材が膨張して詰まり、圧送不能又は圧入不能となる。また、締固め材作製時に水を添加し、吸水・膨張が完了するまで混練した場合、締固め材が固化した状態となるため、ポンプによる圧送ができなくなる。更に水を混練しない乾燥状態の締固め材を適用した場合は、流動性が全くないため、ポンプによる圧送ができない。
以上の理由から静的圧入締固め工法の施工上、特殊石灰杭工法で使用する硬焼石灰等の自己膨張性のある材料は適用できない。
従って、本発明による「地盤強化用締固め材」は、特殊石灰杭工法で使用される地盤強化用締固め材のような、水を含まない粉体状又は粒状といった乾燥状態で地中に圧入し、地下水を吸水する形態の締固め材とは異なるものである。
The “compacting material for ground reinforcement” referred to in the present invention has a self-hardening property because it contains a solidifying material, and forms a lump when forcibly pressed into the ground by a pump. It is a material that has the function of increasing the density of the ground by compressing and strengthening the surrounding ground by the compaction effect of the consolidation. Since the density is increased by forcible press-fitting by a pump, the ability of the compaction material itself to expand itself (self-expanding property) is not required. The “ground compaction material” according to the present invention generally refers to a ground compaction material used in the static press-fitting method, but the ground reinforcement compaction material used in the static press-fitting method is used. The hardening material has a slurry-like or mortar-like property and can be pumped by a pump.
On the other hand, the compacted material used in the special lime pile method is a self-expanding material in which hard burnt lime absorbs groundwater and expands due to a hydration reaction. By the compaction effect of this expansion, the surrounding ground is compressed to increase the density. The static press-fitting method and the special lime pile method are both classified as the density increasing method, but the properties of the compacting material and compacting principle are different.
For example, even if the compaction material without self-expansion (the present invention) used in the static press-fitting compaction method is used in the special lime pile method, the ground cannot be compressed and the density cannot be increased, so that the improvement effect is not obtained. Can't expect. Conversely, if the self-expanding material used in the special lime pile method is used in the static press-in compaction method, water will be added and the material will be mixed. And expands due to the hydration reaction. For this reason, the compaction material expands and is clogged in the injection pipe and the injection hose, and cannot be pumped or pressed. Further, when water is added during the production of the compacted material and kneaded until the water absorption and expansion are completed, the compacted material is in a solidified state, and cannot be pumped by the pump. Further, when a dry compaction material to which water is not kneaded is applied, there is no fluidity, so that it cannot be pumped by a pump.
For the reasons described above, the self-expanding material such as hard-burned lime used in the special lime pile method cannot be applied in the construction of the static press-fitting method.
Accordingly, the “ground compaction material” according to the present invention is pressed into the ground in a dry state, such as a powdery or granular form that does not contain water, such as a ground reinforcement compaction material used in a special lime pile method. However, it is different from the compaction material that absorbs groundwater.
本発明の締固め材は、その中の固化材成分として石膏を使用するものであり、強度発現完了後のpHが5.8以上8.6以下になる。これにより、中性の地盤に圧入しても周辺地盤を中性に維持することができ、植生や微生物や水生生物等の生態系に悪影響を与える周辺地盤のアルカリ化を回避できる。そのため、本発明の締固め材は環境適合性が高い。 The compacted material of the present invention uses gypsum as a solidifying material component therein, and has a pH of 5.8 or more and 8.6 or less after completion of strength development. This makes it possible to maintain the surrounding ground to be neutral even if it is injected into the neutral ground, and to avoid alkalizing of the surrounding ground, which adversely affects ecosystems such as vegetation, microorganisms and aquatic organisms. Therefore, the compacted material of the present invention has high environmental compatibility.
本明細書において、pH試験は地盤工学会基準JGS 0211−2009(土懸濁液のpH試験方法)に基づいて行い、非乾燥試料に、試料の乾燥質量に対する水の質量比が5となるように水を加え、撹拌懸濁後30分以上、3時間以内静置したものを試料液として、ガラス電極式pH計にて25℃で測定することで求める。 In the present specification, the pH test is performed based on JGS 0211-2009 (Soil suspension pH test method) based on the Japanese Geotechnical Society, and the mass ratio of water to the dry mass of the sample is 5 for the non-dry sample. Is added thereto, and the mixture is left standing for 30 minutes or more and 3 hours or less after stirring and suspension. The solution is measured at 25 ° C. with a glass electrode type pH meter.
強度発現完了とは、締固め材の一軸圧縮試験で測定される強度において、ある時点の強度に対し、その時点から更に48時間後の強度の上昇が20%以内となっていることを意味する。一軸圧縮試験の方法及び強度の算出は、JIS A 1216:2009に基づいて行う。 Completion of strength development means that, in the strength measured by the uniaxial compression test of the compacted material, the strength increase at a certain point in time after 48 hours from that point is within 20%. . The method of the uniaxial compression test and the calculation of the strength are performed based on JIS A 1216: 2009.
本発明の締固め材は、強度発現が石膏、骨材及び水の全材料の混合が完了した時から24時間以内に完了する。通常、撹拌しながら前記材料の全ての混合を完了させるのが好ましい。すなわち、締固め材作製後24時間時点での一軸圧縮試験で測定される強度に対し、その測定から48時間後(=石膏、骨材及び水の全材料混合完了時から72時間後)の強度の上昇が20%以内である。後述の実施例からも明らかなように、本発明の締固め材は、公知の締固め材と比較して強度発現完了が早い。このため、本発明の締固め材は、地盤への圧入が可能で、且つ、圧入後に速やかに固結してその機能を発揮できる。そのため、前述のように、短期間での設計、工事全体の工期短縮が可能といった効果も得られる。 The compaction of the present invention completes the strength development within 24 hours from the completion of the mixing of all of the gypsum, aggregate and water. Generally, it is preferred to complete all mixing of the materials with stirring. That is, the strength measured 48 hours after the measurement (= 72 hours after the completion of the mixing of all the materials of gypsum, aggregate and water) with respect to the strength measured by the uniaxial compression test 24 hours after the production of the compacted material. Is within 20%. As is clear from the examples described later, the compacted material of the present invention completes the development of strength earlier than a known compacted material. For this reason, the compacting material of the present invention can be press-fitted into the ground, and can be quickly consolidated after press-fitting to exhibit its function. For this reason, as described above, it is possible to obtain the effect that the design can be performed in a short period of time and the construction period of the entire construction can be shortened.
本発明の締固め材は、その中の固化材成分として石膏と、更にその固化を遅延させる成分として固化遅延材を使用することにより、強度発現開始を石膏、骨材、水及び固化遅延材の全材料の混合完了時から30分以降とすることができる。すなわち、締固め材作製後30分以上経過してから固結が開始し、それまでの間は充分な流動性を維持する締固め材とすることができる。そのため、プラントや圧送ホース、圧入管などの施工設備の中で締固め材が固結してしまうことを避けることができる。また、本発明の締固め材は施工条件に応じて固結時間の調整が可能であり、強度発現開始を上記混合完了時から1時間以降とすることもできる。ただし、強度発現開始を遅くすると強度発現完了時間も長くなるため、強度発現開始は上記混合完了時から5時間以内とすることが好ましい。 The compaction material of the present invention is gypsum as a solidification material component therein, and further uses a solidification delay material as a component for delaying the solidification, thereby starting the development of strength with gypsum, aggregate, water and a solidification delay material. It can be 30 minutes or more after the completion of mixing of all the materials. That is, consolidation starts 30 minutes or more after the production of the compacted material, and until that time, the compacted material can maintain sufficient fluidity. Therefore, it is possible to prevent the compaction material from being consolidated in the construction equipment such as a plant, a pressure feeding hose, and a press fitting pipe. The compaction time of the compacted material of the present invention can be adjusted in accordance with the application conditions, and the start of strength development can be set to one hour or more after the completion of the mixing. However, if the start of strength development is delayed, the time required for completion of strength development is also prolonged. Therefore, the start of strength development is preferably within 5 hours from the completion of the mixing.
強度発現開始時間は、ビカー針装置凝結時間測定器を用い、JIS R 9112を参考に測定することができる。具体的には、作製した締固め材を金属円筒型に流し込んで供試体とし、測定器の標準針が供試体の底から1mmの高さに止まるようになるまでの時間を言う。時間ゼロ点は石膏、骨材、水及び固化遅延材の混合完了時とする。ビカー針装置凝結時間測定器の標準針は、長さ45mm/直径2mmの金属針でその頭を平らに切ったものを用い、これとともに降下するものの全質量は300gとする。 The strength onset time can be measured by using a Vicat needle setting time measuring instrument and referring to JIS R 9112. Specifically, it refers to the time until the standard needle of the measuring instrument stops at a height of 1 mm from the bottom of the test specimen by pouring the produced compacted material into a metal cylindrical mold to form a test specimen. The time zero point is when the mixing of gypsum, aggregate, water, and setting retarder is completed. The standard needle of the Vicat needle setting time measuring device is a metal needle having a length of 45 mm / diameter of 2 mm and the head thereof is cut flat.
本発明の締固め材は、強度発現完了後の一軸圧縮強度を40〜500kN/m2とすることができ、いわゆる低強度材としての使用に好適である。セメント系材料を固化材として用いた従来の締固め材では、一軸圧縮強度が500kN/m2を容易に超えてしまい強度が高すぎるため、構造物直下での施工後の当該構造物の建て替え等の時に、杭打ち工法の選定等で工法が限定されたり、杭を打設する前に締固め材を除去する必要があるなどの問題があった。一方、本発明の締固め材はその一軸圧縮強度を500kN/m2以下とすることができるため、本材を用いた地盤改良後にその上部施設の建て替え工事等を行う際の工法の制限をなくすことができる。また、本発明の締固め材は、その一軸圧縮強度を40kN/m2以上とすることができるため、締固め材それ自体が液状化することもなく、低強度材として好適に用いることができる。セメント系や酸化マグネシウム系の固化材として用いた従来の締固め材では、締固め工法に必要な前記範囲の強度を発現させようとするとアルカリ性になってしまう。このように、本発明の締固め材は、中性域でありながら、締固め材として地盤に圧入して固結塊としたときに周辺地盤を圧縮するのに充分な強度を持たせることができ、pH中性域での配合設計の自由度が高い。本発明の締固め材の強度発現完了後の一軸圧縮強度は、40〜500kN/m2の範囲にすることができ、40〜300kN/m2の範囲であると好ましく、100〜300kN/m2の範囲であることがより望ましい。 The compacted material of the present invention can have a uniaxial compressive strength of 40 to 500 kN / m 2 after completion of strength development, and is suitable for use as a so-called low-strength material. In the conventional compaction material using a cement material as a solidification material, the uniaxial compressive strength easily exceeds 500 kN / m 2 and the strength is too high. At that time, there were problems such as limitations on the construction method due to selection of the pile driving method, and the necessity of removing compaction materials before driving the pile. On the other hand, since the compacted material of the present invention can have a uniaxial compressive strength of 500 kN / m 2 or less, there is no restriction on the construction method when rebuilding the upper facilities after ground improvement using the material. be able to. Further, since the compacted material of the present invention can have a uniaxial compressive strength of 40 kN / m 2 or more, the compacted material itself does not liquefy and can be suitably used as a low-strength material. . A conventional compacting material used as a cement-based or magnesium oxide-based solidifying material becomes alkaline when trying to develop the strength in the above-described range necessary for the compacting method. Thus, the compacted material of the present invention has sufficient strength to compress the surrounding ground when pressed into the ground as a compacted material to form a consolidated mass, even in the neutral region. It has a high degree of freedom in the formulation design in the neutral pH range. Uniaxial compressive strength after strength development completion of the compaction material according to the present invention can be in the range of 40~500kN / m 2, when in the range of 40~300kN / m 2 Preferably, 100~300kN / m 2 Is more preferable.
本発明の締固め材は、固化材、骨材及び水を少なくとも含み、当該固化材は石膏を含む。また、本発明の締固め材は、必要に応じて固化遅延材を含む。 The compacted material of the present invention includes at least a solidified material, an aggregate, and water, and the solidified material includes gypsum. Moreover, the compacting material of the present invention includes a solidification retarding material as necessary.
骨材は、固結塊となったときにその骨格をなす材料であり、固結時の過熱や収縮を抑制する機能も有する。骨材には特に制限は無く、公知の骨材を用いることができる。本発明の効果が得られる範囲で目的に応じて任意の種類、量を選択することができる。具体的には、砂利、砂、砕石、砕砂、シルト、粘土、スラグ骨材、人工軽量骨材、再生骨材等及びこれらの組み合わせが挙げられる。特に珪砂や市販のトチクレー(登録商標)を用いると固結時の過熱や収縮が更に抑制されるという理由で好ましい。 Aggregate is a material that forms a skeleton when formed into a consolidated mass, and also has a function of suppressing overheating and shrinkage during compaction. The aggregate is not particularly limited, and a known aggregate can be used. Any kind and amount can be selected according to the purpose within a range where the effects of the present invention can be obtained. Specific examples include gravel, sand, crushed stone, crushed sand, silt, clay, slag aggregate, artificial lightweight aggregate, recycled aggregate, and the like, and combinations thereof. It is particularly preferable to use silica sand or commercially available Tochiclay (registered trademark) because overheating and shrinkage during consolidation are further suppressed.
骨材の粒度は、特定の粒径に分布が集中していないことが好ましい。これにより、後述の静的圧入締固め工法の施工の際に締固め材を地盤に圧入したときに、浸透や脈状に注入されることが避けられ、圧入点付近で地盤を押し広げて固結し易くなるとともに、圧送ホースや注入管等の配管での脱水や閉塞が起こりづらくなる。特に、粒径加積曲線が図2の上限及び下限のラインの間にあるとより好ましく、上限及び下限のラインに概ね平行であることが更に好ましい。粒径加積曲線は、JIS A 1204(土の粒度試験方法)により求めることができる。 It is preferable that the particle size of the aggregate is not concentrated on a specific particle size. As a result, when the compaction material is pressed into the ground during the construction of the static press-fitting method described later, it is prevented from being penetrated or injected in a pulsating manner. It is easy to tie, and dehydration and blockage in piping such as a pressure feeding hose and an injection pipe are less likely to occur. In particular, the particle size accumulation curve is more preferably between the upper and lower lines in FIG. 2, and even more preferably substantially parallel to the upper and lower lines. The particle size accumulation curve can be obtained according to JIS A 1204 (Soil particle size test method).
固化材とは締固め材に固結性能を付与する成分である。本発明では、固化材とは石膏からなるもの、或いは石膏を含むものを言うが、石膏を含むものである場合、石膏を主成分とする固化材を用いることが好ましい。「石膏を主成分とする」とは、固化材のうち、80質量%以上が石膏であることを意味する。90質量%以上が石膏であると好ましい。
本発明の組成物又は締固め材に含まれる固化材の成分のうち、石膏以外のものとしては、本発明の目的を達成できる範囲で、セメント、石灰、酸化マグネシウム及び有機系吸収剤等を任意成分として単独で或いは組み合わせて用いることも可能である。
The solidified material is a component that imparts compaction performance to the compacted material. In the present invention, the solidified material refers to a material made of gypsum or a material containing gypsum. When the material contains gypsum, it is preferable to use a solidified material containing gypsum as a main component. The phrase "mainly composed of gypsum" means that 80% by mass or more of the solidified material is gypsum. It is preferable that 90% by mass or more is gypsum.
Among the components of the solidification material contained in the composition or compaction material of the present invention, cement, lime, magnesium oxide, an organic absorbent, and the like are optional as long as the purpose other than gypsum can be achieved. They can be used alone or in combination as components.
石膏は、それ自体中性である。従って、中性の地盤に圧入しても周辺地盤を中性に維持できるため、植生や微生物や水生生物等の生態系に周辺地盤のアルカリ化による悪影響を与えることがなく、環境適合性が高い。また、配合量によらず中性を維持することができるので、配合量を調整することにより固結塊の強度を任意に調整することができ、pH中性域での配合設計の自由度が高く幅広い施工対象に用いることができる。 Gypsum is itself neutral. Therefore, the surrounding ground can be maintained neutral even if it is injected into the neutral ground, and the ecological system such as vegetation, microorganisms and aquatic organisms is not adversely affected by the alkalinization of the surrounding ground, and the environmental compatibility is high. . In addition, since the neutrality can be maintained regardless of the blending amount, the strength of the consolidation mass can be arbitrarily adjusted by adjusting the blending amount, and the freedom of blending design in a neutral pH range is increased. Can be used for high and wide construction objects.
石膏とは、具体的には、硫酸カルシウム(CaSO4)を主成分とする化合物を言うが、中でも水と化学反応する焼石膏を用いるのが好ましい。焼石膏は、半水石膏(化学式CaSO4・0.5H2O)及び/又はIII型無水石膏(CaSO4)で表される化合物を指す。また、二水石膏(CaSO4・2H2O)やII型無水石膏(CaSO4)を用いてもよい。これらの石膏には炭酸カルシウム(CaCO3)などが一部含まれていてもよい。焼石膏として商業的に知られているものとしては、例えば、石原産業株式会社製のジプサンダー(登録商標)が挙げられる。 Gypsum specifically refers to a compound containing calcium sulfate (CaSO 4 ) as a main component, and among them, calcined gypsum that chemically reacts with water is preferably used. The calcined gypsum refers to a compound represented by hemihydrate gypsum (chemical formula CaSO 4 .0.5H 2 O) and / or type III anhydrous gypsum (CaSO 4 ). Further, gypsum (CaSO 4 .2H 2 O) or type II anhydrous gypsum (CaSO 4 ) may be used. These gypsums may partially contain calcium carbonate (CaCO 3 ) and the like. Commercially known calcined gypsum includes, for example, Gypsander (registered trademark) manufactured by Ishihara Sangyo Co., Ltd.
石膏の形状や比表面積には特に制限は無く、任意の物を用いることができる。特に、薄片状の粒子形状で且つBET比表面積が2〜70m2/gの焼石膏であると、水との接触面積を大きくすることができるので好ましい。 There is no particular limitation on the shape and specific surface area of the gypsum, and any material can be used. In particular, calcined gypsum having a flaky particle shape and a BET specific surface area of 2 to 70 m 2 / g is preferable because the contact area with water can be increased.
本発明の締固め材に石膏を主成分とする固化材を用いる場合は、固化遅延材を併用することが好ましい。ここで、固化遅延材は石膏の固化を遅らせることができる材料であり、固化遅延材の配合量を調整することで、締固め材の固結時間を制御することができることはすでに説明したとおりである。これにより、圧入作業中には固結せずに流動性を持ち、且つ、圧入後に速やかに固結してその機能を発揮できる。そのため、前述のように、施工設備内での締固め材の固結を防止可能で、且つ、短期間での設計、工事全体の工期短縮が可能といった効果も得られる。 In the case of using a solidified material containing gypsum as a main component in the compaction material of the present invention, it is preferable to use a solidification retardant together. Here, the setting retarder is a material capable of delaying the solidification of gypsum, and by adjusting the compounding amount of the setting retarder, it is possible to control the setting time of the compaction material as already described. is there. Thereby, it has fluidity without being consolidated during the press-fitting operation, and can quickly consolidate after the press-fitting to exhibit its function. For this reason, as described above, it is possible to prevent the compaction of the compacted material in the construction equipment, and it is also possible to obtain the effect that the design in a short period and the construction period of the entire construction can be shortened.
固化遅延材には特に制限は無く、公知の固化遅延材を任意に用いることができる。具体的には、金属塩、カルボン酸及びカルボン酸塩から選ばれる少なくとも1つの成分が挙げられる。金属塩としては、例えば、硫酸カリウム及び硫酸アルミニウムが挙げられる。カルボン酸及びカルボン酸塩としては、例えば、クエン酸、グルコン酸ソーダ、L−酒石酸から選ばれるカルボン酸或いはこれらのカルボン酸塩が挙げられる。 There is no particular limitation on the solidification retarder, and any known solidification retarder can be used. Specifically, at least one component selected from a metal salt, a carboxylic acid, and a carboxylate is used. Examples of the metal salt include potassium sulfate and aluminum sulfate. Examples of the carboxylic acid and the carboxylate include a carboxylic acid selected from citric acid, sodium gluconate, and L-tartaric acid, or a carboxylate thereof.
本発明では、特に中性の固化遅延材が好ましい。固化材としての石膏と中性固化遅延材とを併用することにより、締固め材を中性に維持し易くなる。また、配合量に関係なく中性を維持できることから、締固め材の固結時間の制御範囲を更に広げることが可能になる。中性固化遅延材としては例えば、カルボン酸塩が挙げられる。中でもクエン酸塩が好ましく、クエン酸三ナトリウムがより好ましい。上述のとおり、中性とはpHが5.8以上8.6以下であることを言う。pHは、測定試料に対して、その試料に対する水の質量比を10となるよう水を添加して撹拌し、撹拌後5分静置したものを試料液として、ガラス電極式pH計にて測定を行って求める。 In the present invention, a neutral solidification retarder is particularly preferred. By using gypsum as a solidifying material and a neutral solidification retarding material together, it becomes easy to maintain the compacted material to be neutral. Further, since the neutrality can be maintained irrespective of the compounding amount, the control range of the compaction time of the compacted material can be further expanded. Examples of the neutral solidification retarder include carboxylate. Among them, citrate is preferred, and trisodium citrate is more preferred. As described above, neutral means that the pH is 5.8 or more and 8.6 or less. The pH is measured with a glass electrode type pH meter by adding water to the measurement sample so that the mass ratio of water to the sample becomes 10 and stirring the mixture, and allowing the mixture to stand for 5 minutes after stirring as a sample solution. Go and ask.
本発明の締固め材では、その固化材成分の石膏と、骨材と、水とを、骨材100質量部に対して、石膏を1〜30質量部と水を10〜30質量部で含むものが好ましく、更に固化遅延材を含む場合は、当該骨材100質量部に対して、固化遅延材を0.1〜3.0質量部で含むものが好ましい。そのため、本発明の締固め材を作製するにあたり、石膏と骨材を含むプレミックス組成物を用いる場合には、水を配合する際に、骨材100質量部に対して石膏が1〜30質量部となる配合比を有する上記プレミックス組成物を用いるのが好ましい。固化遅延材も含むプレミックス組成物を用いる場合には、更に骨材100質量部に対して固化遅延材を0.1〜3.0質量部で含むプレミックス組成物を用いるのが好ましい。
骨材100質量部に対する石膏の好ましい量は、前述のとおり1〜30質量部である。骨材100質量部に対する石膏量が1質量部以上であると、地盤強化用締固め材として充分な強度を示し、30質量部以下であれば、強度が必要以上に高くなることが無く、経済的である。骨材100質量部に対する石膏量は、3〜30質量部とするとより好ましく、10〜30質量部とすると更に好ましい。
また、骨材100質量部に対する固化遅延材の好ましい量は、前述のとおり0.1〜3.0質量部である。骨材に対する固化遅延材が0.1質量部以上であると、各材料を混合して締固め材としたときに急激な固化を抑止でき、地盤への充分な圧入時間を確保することができる。多くても問題はないが、3.0質量部以下であれば経済的である。更に、石膏100質量部に対して固化遅延材は、0.7〜12質量部であるのが好ましいが、中でも1〜12質量部であると、締固め材の地盤への圧入時間と強度発現速度のバランスの観点からより好ましい。
また、石膏は、一般的に、水が多いと柔らかくなり、固まる速度も遅い。他方、水が少ないと硬くなり、固まる速度も速い。このため、水の配合量は、強度や固化速度に影響を与える。このような観点から、本発明の締固め材における水の含有量は、骨材100質量部に対して10〜30質量部であることが好ましい。
In the compacted material of the present invention, the gypsum of the solidified component, the aggregate, and water are contained in an amount of 1 to 30 parts by mass of gypsum and 10 to 30 parts by mass of water with respect to 100 parts by mass of the aggregate. Preferably, when the solidification retardant is further included, the solidification retardant is preferably contained in an amount of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the aggregate. Therefore, when producing a compaction material of the present invention, when using a premix composition containing gypsum and aggregate, when mixing water, gypsum is 1 to 30 mass parts per 100 mass parts of aggregate. It is preferable to use the above premix composition having a mixing ratio of parts. When using a premix composition also including a solidification retarder, it is preferable to use a premix composition further containing 0.1 to 3.0 parts by mass of the solidification retarder with respect to 100 parts by mass of the aggregate.
The preferred amount of gypsum relative to 100 parts by mass of the aggregate is 1 to 30 parts by mass as described above. When the amount of gypsum is 1 part by mass or more with respect to 100 parts by mass of the aggregate, sufficient strength is exhibited as a compaction material for reinforcing the ground, and when the amount is 30 parts by mass or less, the strength does not become unnecessarily high and economical. It is a target. The amount of gypsum with respect to 100 parts by mass of the aggregate is more preferably 3 to 30 parts by mass, and even more preferably 10 to 30 parts by mass.
Further, the preferable amount of the solidification retarder to 100 parts by mass of the aggregate is 0.1 to 3.0 parts by mass as described above. When the solidification delay material for the aggregate is 0.1 parts by mass or more, rapid solidification can be suppressed when each material is mixed and used as a compaction material, and a sufficient press-in time to the ground can be secured. . There is no problem at most, but it is economical if it is 3.0 parts by mass or less. Further, the solidification retardant is preferably 0.7 to 12 parts by mass with respect to 100 parts by mass of gypsum, and when it is 1 to 12 parts by mass, the press-fitting time and strength of the compacted material into the ground are exhibited. It is more preferable from the viewpoint of speed balance.
In addition, gypsum generally becomes softer with more water and has a slower setting speed. On the other hand, when the amount of water is small, the material becomes hard and the setting speed is high. Therefore, the amount of water affects the strength and the solidification rate. From such a viewpoint, the content of water in the compacted material of the present invention is preferably 10 to 30 parts by mass with respect to 100 parts by mass of the aggregate.
本発明の締固め材は、上記したような成分を混合して調製することができる。混合する順序について、石膏、骨材、必要に応じて固化遅延材の配合順序には特に制限は無いが、固化遅延材を配合する場合、石膏と固化遅延材を先に混合するのが好ましい。このようにすると、石膏と固化遅延材がより均等に混合され、固化遅延のムラがなくなるからである。水は、石膏、骨材、必要に応じて固化遅延材の混合品に、圧入作業の直前に混合するのが好ましい。 The compacting material of the present invention can be prepared by mixing the above components. There are no particular restrictions on the mixing order of the gypsum, aggregate, and if necessary, the setting retarder. When the setting retarder is mixed, it is preferable to mix the gypsum and the setting retarder first. By doing so, the gypsum and the setting retarder are more evenly mixed, and unevenness in setting delay is eliminated. The water is preferably mixed with the mixture of gypsum, aggregate and, if necessary, the setting retarder immediately before the press-fitting operation.
本発明の締固め材を用いた地盤強化方法として静的圧入締固め工法を実施するにあたり、石膏、骨材、必要に応じて固化遅延材とを配合したプレミックス材の状態で供給することが可能であり、直前に水と混合して締固め材を調製し、地盤への圧入に供することができる。この方法はセメント系や酸化マグネシウム系などの従来の締固め材と同様であり、簡単に置き換えが可能であり、従来と同様の機械設備を使用することができる。また、従来と同様の手順で施工ができることから、水域に近い箇所のみの適用など、施工エリアごとの使い分けができる。 In carrying out the static press-in compaction method as a ground strengthening method using the compaction material of the present invention, gypsum, aggregate, if necessary, may be supplied in the form of a premix material blended with a solidification delay material. It is possible, and it is possible to mix it with water immediately before to prepare a compacting material and to provide it for press-fitting into the ground. This method is similar to a conventional compaction material such as a cement type or a magnesium oxide type, can be easily replaced, and can use the same mechanical equipment as the conventional one. In addition, since the construction can be performed in the same procedure as in the past, it is possible to selectively use each construction area, for example, to apply only to a location close to the water area.
本発明の締固め材は、鉄化合物を含有してもよい。鉄化合物は硫化水素を吸着して固定化することができるため、有害な硫化水素が発生する地盤に適用したときに、その地盤を無害化することができる。含有される鉄化合物としては、含水酸化鉄、酸化鉄、水酸化鉄など種々の化合物が挙げられる。鉄化合物を含有する場合、その含有量をFe2O3として計算したときに焼石膏の質量を基準として0.2〜50質量%とすれば、硫化水素の固定化機能を充分有効に発揮できる。固化速度の点から鉄化合物の含有量は、より好ましくは0.6〜30質量%、更に好ましくは0.6〜10質量%である。鉄化合物を含有させことによる副次的な効果として、その土壌での生物の生育に良好な結果をもたらすことができる。 The compacting material of the present invention may contain an iron compound. Since the iron compound can adsorb and fix hydrogen sulfide, when applied to the ground where harmful hydrogen sulfide is generated, the ground can be rendered harmless. Examples of the iron compound contained include various compounds such as iron oxide hydroxide, iron oxide, and iron hydroxide. When the iron compound is contained, when the content is calculated as Fe 2 O 3 and is 0.2 to 50% by mass based on the mass of calcined gypsum, the function of immobilizing hydrogen sulfide can be sufficiently exhibited. . From the viewpoint of solidification rate, the content of the iron compound is more preferably 0.6 to 30% by mass, and still more preferably 0.6 to 10% by mass. As a side effect of including an iron compound, good results can be obtained for the growth of organisms in the soil.
鉄化合物は、石膏に含まれているのが好ましい。これにより、締固め材の各材料の混合において、鉄成分の締固め材への均一な混合が容易となる。 The iron compound is preferably contained in gypsum. This facilitates uniform mixing of the iron component into the compaction material in mixing each material of the compaction material.
次に、本発明の他の実施形態としては、前述の締固め材を地盤に形成した削孔に圧入して固結塊を造成し、周囲地盤を圧縮して地盤の密度を増大させる地盤強化方法がある。本発明の地盤強化方法について、以下に説明する。 Next, as another embodiment of the present invention, the above-mentioned compaction material is pressed into a drilled hole formed in the ground to form a consolidated compact, and the surrounding ground is compressed to increase the density of the ground. There is a way. The ground strengthening method of the present invention will be described below.
本発明の実施形態である地盤強化方法の施工態様の一例の概略を、図3に示す。本方法では、図示しないボーリングマシンを用いて、ロッド状の注入管11を複数本継ぎ足しながら所定深度まで削孔し、孔内に当該注入管を臨ませる。所定深度まで削孔したら、貫入状態の注入管11に注入管リフト装置13をセットするとともに、当該注入管を流量圧力監視装置15、圧送ホース19を介して特殊注入ポンプ21に接続する。特殊注入プラント23で調製された本発明の第1の発明の締固め材は、特殊注入ポンプ21で強制圧送され、圧送ホース19、流量圧力監視装置15、注入管11を介して地盤中に圧入される。締固め材の圧入工程では、締固め材の圧送と注入管11のステップアップとを繰り返す。通常、注入管は、1mにつき3ステップずつ、ステップアップさせる。 FIG. 3 schematically shows an example of a construction mode of the ground strengthening method according to the embodiment of the present invention. In this method, a plurality of rod-shaped injection pipes 11 are drilled to a predetermined depth using a boring machine (not shown), and the injection pipes face the holes. After drilling to a predetermined depth, the injection pipe lifting device 13 is set to the injection pipe 11 in the penetrating state, and the injection pipe is connected to the special injection pump 21 via the flow pressure monitoring device 15 and the pressure feeding hose 19. The compacted material of the first invention of the present invention prepared in the special injection plant 23 is forcibly pumped by the special injection pump 21 and pressed into the ground via the pressure feeding hose 19, the flow pressure monitoring device 15, and the injection pipe 11. Is done. In the press-fitting step of the compacted material, the press-feeding of the compacted material and the step-up of the injection pipe 11 are repeated. Typically, the injection tube is stepped up three steps per meter.
地盤中に圧入された締固め材は、その低い流動性のため土中で迷走や浸透することなく所定の位置で固結する。従って、上述した特殊注入ポンプによる締固め材の圧送と、注入管のステップアップとを繰り返すことにより、図示するような締固め材から成る球根状の固結体1が連続的に造成される。そして、この固結体1の体積増加により周辺地盤を圧縮し、地盤の密度を増大させることで液状化地盤を非液状化地盤へと改良することができる。 The compacted material pressed into the ground is solidified at a predetermined position without stray or penetrating in the soil due to its low fluidity. Therefore, by repeatedly feeding the compaction material by the above-described special infusion pump and stepping up the injection pipe, the bulb-shaped consolidated body 1 made of the compaction material as shown in the figure is continuously formed. Then, the surrounding ground is compressed by increasing the volume of the consolidated body 1 and the density of the ground is increased, whereby the liquefied ground can be improved to a non-liquefied ground.
施工の際に使用されずに余った締固め材は、次回以降の施工の際に骨材として締固め材に配合することで再利用が可能である。具体的には、余った締固め材と骨材、石膏、水、必要に応じて固化遅延材とを混合し、締固め材として使用することができる。 The remaining compacted material that has not been used during the construction can be reused by blending it as aggregate in the compacted material during the next and subsequent constructions. Specifically, the surplus compaction material, aggregate, gypsum, water, and, if necessary, a solidification retardant material can be mixed and used as a compaction material.
静的圧入締固め工法を実施すると、ロス(具体的には、圧送ホースなどに利用出来ずにロスとして残ってしまう締固め材)や設備洗浄による使用済み締固め材(本明細書では、これらを「廃泥」と称する)が発生する。従来の締固め材を用いた場合、このような廃泥はアルカリ性を示すため、産業廃棄物として処分され、別途費用が発生していた。本発明の締固め材を使用したときに発生する廃泥は中性であり、且つ、低強度であるため、残土として再利用することができ、廃棄物削減、コスト低減の面からも有益である。 When the static press-fitting method is carried out, a loss (specifically, a compaction material that cannot be used as a pressure feeding hose and remains as a loss) or a used compaction material by cleaning equipment (in this specification, Is referred to as “waste mud”). When a conventional compaction material is used, such waste sludge is alkalinized, and thus is disposed of as industrial waste, which incurs additional costs. The waste mud generated when the compacting material of the present invention is used is neutral and has low strength, so that it can be reused as surplus soil, and is advantageous from the viewpoint of waste reduction and cost reduction. is there.
以下、実施例及び比較例を示して、本発明を更に詳細に説明するが、本発明は実施例により何ら限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施し得る。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the Examples, and does not depart from the scope of the claims of the present invention and equivalents thereof. The present invention can be arbitrarily changed within the scope.
実験1
骨材、固化材、固化遅延材をビニール袋に入れ、混合した。この混合物を3L容器に移し、更に所定量の水を加え、ヘラにて泥濘状になるまで混練し、締固め材(実施例1〜8、比較例1〜6)を作製した。骨材には市販の珪砂とトチクレー(登録商標)を配合して用いた。この骨材の粒度分布を、JIS A 1204に従って測定したところ図4の通りであり、図2の粒径加積曲線の上限及び下限のラインの間であった。固化材には表1に記載の固化材のいずれかを用いた。各試料の材料の配合は表2の通りとした。実施例1〜8の固化遅延材には市販のクエン酸三ナトリウム(pH=8.3)を用いた。石膏には、ジプサンダー(登録商標)(石原産業製,比表面積30m2/gの薄片状半水石膏、硫酸カルシウム1/2水和物(CaSO4・1/2H2O)含有量94質量%、酸化鉄含有量1.8質量%)を用いた。なお、締固め材の作製は、概ね容積が2Lとなるようにして行った。また、表2中において、実施例1〜8の固化材の配合比に関しては、そこに含まれる硫酸カルシウム1/2水和物(CaSO4・1/2H2O)成分換算の値も括弧書で併記した。作製した締固め材はφ50mm×100mmのモールドに詰め、水分が蒸発しないようラップでシールし、後述の評価を行うまで養生した。
Experiment 1
Aggregate, solidified material, and solidification retardant were placed in a plastic bag and mixed. This mixture was transferred to a 3 L container, a predetermined amount of water was further added, and the mixture was kneaded with a spatula until the mixture became muddy, thereby producing compacting materials (Examples 1 to 8 and Comparative Examples 1 to 6). As the aggregate, commercially available silica sand and Tocicle (registered trademark) were mixed and used. The particle size distribution of this aggregate was measured according to JIS A 1204, and is as shown in FIG. 4, which was between the upper and lower lines of the particle size accumulation curve of FIG. Any of the solidifying materials shown in Table 1 was used as the solidifying material. The composition of the materials for each sample was as shown in Table 2. Commercially available trisodium citrate (pH = 8.3) was used as the solidification retarder in Examples 1 to 8. Gypsum includes Gypsander (registered trademark) (manufactured by Ishihara Sangyo Co., Ltd., flaky hemihydrate gypsum having a specific surface area of 30 m 2 / g, calcium sulfate hemihydrate (CaSO 4 .1 / 2H 2 O) content 94% by mass. , Iron oxide content 1.8 mass%). The compaction material was manufactured such that the volume was approximately 2 L. In the tables 2, with respect to the mixing ratio of the solidifying material of Example 1-8, also parentheses value of calcium sulfate hemihydrate (CaSO 4 · 1 / 2H 2 O) component terms contained therein It was also described. The compacted material thus produced was packed in a mold having a size of φ50 mm × 100 mm, sealed with a wrap so as not to evaporate water, and cured until an evaluation described later was performed.
(評価1) 一軸圧縮強度
作製から24時間後、72時間後、120時間後、168時間後の締固め材の一軸圧縮強度を測定し、24時間後から72時間後までと、120時間後と72時間後までと、168時間後と120時間後までの強度の上昇率を算出し、強度発現完了時間を決定した。具体的には、算出した各経過時間における強度の上昇率が20%以内となった場合に強度発現が完了したと評価し、20%を超える場合には未完了であると評価した。一軸圧縮試験の方法及び強度の算出は、JIS A 1216:2009に基づいて行った。試験機には篠原製作所製一軸圧縮試験機を用いた。試験片の寸法はφ50mm×100mmとした。結果を表3に示す。
(Evaluation 1) Uniaxial Compressive Strength The uniaxial compressive strength of the compacted material was measured at 24 hours, 72 hours, 120 hours, and 168 hours after preparation, and was measured from 24 hours to 72 hours, 120 hours, and Up to 72 hours, 168 hours, and 120 hours after, the rate of increase in strength was calculated, and the time to complete strength development was determined. Specifically, when the calculated rate of increase in strength at each elapsed time was within 20%, it was evaluated that strength development was completed, and when it exceeded 20%, it was evaluated as incomplete. The method of uniaxial compression test and calculation of the strength were performed based on JIS A 1216: 2009. The test machine used was a single-shaft compression tester manufactured by Shinohara Seisakusho. The dimensions of the test piece were φ50 mm × 100 mm. Table 3 shows the results.
石膏を固化材として用いた実施例1〜8の締固め材は、締固め材作製後24時間時点での一軸圧縮試験で測定される強度に対し、材料混合後72時間(=前測定から48時間後)の強度の上昇率が20%以内であり、24時間の時点で強度発現が完了している。一方、比較例1〜6の締固め材は、24時間の時点でいずれも強度発現が完了していない。このことから、本発明の締固め材は強度発現完了時間が短いことがわかる。なお、石膏の配合量が2質量部と少ない実施例1でも、締固め材作製から24時間後には、低強度材としての使用が可能な50kN/m2で強度発現完了が認められ、実施例2〜8に至っては、同期間において、低強度材として好ましい100〜500kN/m2の範囲内で強度発現完了が認められた。更に、後述するとおり、実施例15〜17における締固め材作製後24時間時点での一軸圧縮試験で測定される強度の結果(表8)も踏まえると、本実施例によれば、締固め材作製から24時間後には、40kN/m2〜500kN/m2の範囲内で強度発現完了が認められることがわかった。 The compacted materials of Examples 1 to 8 using gypsum as a solidified material had a strength measured by a uniaxial compression test at 24 hours after the production of the compacted material, which was 72 hours after material mixing (= 48 from the previous measurement). The increase rate of the intensity (after time) is within 20%, and the intensity expression has been completed at 24 hours. On the other hand, in the compacted materials of Comparative Examples 1 to 6, the strength development was not completed in 24 hours. This indicates that the compaction material of the present invention has a short time to complete strength development. In addition, even in Example 1 in which the blending amount of gypsum was as small as 2 parts by mass, 24 hours after the production of the compacted material, the completion of strength development was recognized at 50 kN / m 2 , which can be used as a low-strength material. From 2 to 8, during the same period, the completion of strength development was observed in the range of 100 to 500 kN / m 2 which is preferable as a low-strength material. Furthermore, as will be described later, according to the present example, based on the results of the strength measured in the uniaxial compression test at 24 hours after the production of the compacted materials in Examples 15 to 17 (Table 8), according to this example, after 24 hours from the formation, it was found that the strength development completion is observed in the range of 40kN / m 2 ~500kN / m 2 .
(評価2)pH
作製から24時間後、72時間後、120時間後、168時間後の締固め材のpHを地盤工学会基準JGS 0211−2009に従い測定した。試料液は、非乾燥試料に、試料の乾燥質量に対する水の質量比が5となるように水を加え、撹拌して懸濁させた後、30分以上、3時間以内静置して調製した。測定にはガラス電極式pH計を用いた。結果を表4に示す。
(Evaluation 2) pH
24 hours, 72 hours, 120 hours, and 168 hours after the preparation, the pH of the compacted material was measured according to JGS0211-2009, JGS0211-2009. The sample solution was prepared by adding water to a non-dried sample such that the mass ratio of water to the dry mass of the sample was 5, stirred and suspended, and allowed to stand for 30 minutes or more and 3 hours or less. . A glass electrode type pH meter was used for the measurement. Table 4 shows the results.
石膏を固化材として用いた実施例1〜8の締固め材はいずれも、強度発現完了後のpHが7.7程度と中性を示し、その後も同程度の中性域のpHを維持していることがわかった。酸化マグネシウムを固化材として用いた比較例1〜3の締固め材は、pH=10程度のアルカリ性を示すことがわかった。また、セメントを固化材として用いた比較例4〜6の締固め材は、いずれも強度発現完了には至っていないうえ、いずれの測定時でもpH=11以上のアルカリ性を示すことがわかった。このことから、本発明の締固め材は配合量によらず中性を維持できることがわかった。 Each of the compacted materials of Examples 1 to 8 using gypsum as a solidifying material shows a neutral pH of about 7.7 after the completion of strength development, and thereafter maintains the same pH in the neutral region. I understood that. It was found that the compacted materials of Comparative Examples 1 to 3 using magnesium oxide as a solidifying material exhibited alkaline of about pH = 10. In addition, it was found that the compacted materials of Comparative Examples 4 to 6 using cement as a solidifying material did not attain the completion of the strength development, and exhibited alkalinity of pH = 11 or more at any measurement. From this, it was found that the compacted material of the present invention can maintain neutrality regardless of the compounding amount.
実験2
骨材、固化材、固化遅延材をビニール袋に入れ、混合した。500mLのPP(ポリプロピレン)容器に所定量の水を入れ、そこに前記混合物を1分間かけて投入した。φ15mmの撹拌棒で、110rpmで1分間撹拌し、締固め材を作製した。各試料の材料の配合は表5の通りとした。各材料は実験1と同じものを用いた。なお、表5中において、表2中の実施例3、6、7、8の固化材の配合比に加え、実施例9〜14の固化材の配合比に関しても、そこに含まれる硫酸カルシウム1/2水和物(CaSO4・1/2H2O)成分換算の値を括弧書で併記した。また、固化遅延材の配合比と固化材の配合比との比についても、固化材の配合比を硫酸カルシウム1/2水和物(CaSO4・1/2H2O)成分換算の値で評価したものを括弧書で併記した。
Experiment 2
Aggregate, solidified material, and solidification retardant were placed in a plastic bag and mixed. A predetermined amount of water was placed in a 500 mL PP (polypropylene) container, and the mixture was poured therein for 1 minute. The mixture was stirred at 110 rpm for 1 minute with a φ15 mm stirring rod to prepare a compacted material. The composition of the material of each sample was as shown in Table 5. The same materials as in Experiment 1 were used for each material. In Table 5, in addition to the compounding ratios of the solidifying materials of Examples 3, 6, 7, and 8 in Table 2, the compounding ratios of the solidifying materials of Examples 9 to 14 also show the calcium sulfate 1 contained therein. The value in terms of a / 2 hydrate (CaSO 4 .1 / 2H 2 O) component is also shown in parentheses. In addition, the ratio of the compounding ratio of the solidification retarder to the compounding ratio of the solidifying agent was evaluated by converting the compounding ratio of the solidifying agent into a calcium sulfate 1/2 hydrate (CaSO 4 • 1 / 2H 2 O) component. The results are shown in parentheses.
(評価3)強度発現開始時間測定
表5中の各実施例に示す配合比(質量部)で、上述のとおりに、各材料を撹拌しながら全て混合することにより締固め材の作製を完了させた後、すみやかに前記締固め材を金属円筒型(上底φ75mm、下底φ85mm、高さ40mm)に流し込み、上部をヘラですり切り、測定試料とした。各試料に対し、特定時間でビカー針を挿入し、強度発現開始時間を測定した。ビカー針装置凝結時間測定器には凝結試験器(丸菱科学機械製作所製)を用い、標準針は、長さ45mm/直径2mmの金属針でその頭を平らに切ったもの、これとともに降下するものの全質量は300gとした。強度発現開始時間のゼロ点は、撹拌しながら前記材料の全ての混合を完了した時点とし、測定器の標準針が供試体の底面から1mmの高さで止まるようになるまでの時間を強度発現開始時間とした。結果を表6に示す。(表中、「−」は、外観がスラリー状を呈し、固結開始の兆候が観察されなかったため測定しなかったこと、又は固結完了したため測定しなかったことを示す。)
(Evaluation 3) Measurement of Strength Onset Time At the compounding ratio (parts by mass) shown in each example in Table 5, as described above, all the materials were mixed with stirring to complete the production of the compacted material. After that, the compacted material was immediately poured into a metal cylinder (upper base φ75 mm, lower base φ85 mm, height 40 mm), and the upper part was cut off with a spatula to obtain a measurement sample. For each sample, a Vicat needle was inserted at a specific time, and the intensity onset time was measured. A coagulation tester (manufactured by Marubishi Kagaku Seisakusho) is used for the setting time measuring device of the Vicat needle device, and the standard needle is a metal needle having a length of 45 mm / diameter of 2 mm, whose head is cut flat, and descends with this. The total mass of the product was 300 g. The zero point of the intensity onset time is defined as the time when all of the above materials have been mixed while stirring, and the time until the standard needle of the measuring instrument stops at a height of 1 mm from the bottom surface of the specimen is expressed as the intensity onset. Start time. Table 6 shows the results. (In the table, "-" indicates that the appearance was in a slurry state, and no sign of the start of consolidation was observed, and thus no measurement was performed, or no measurement was performed because consolidation was completed.)
固化材に対する固化遅延材の配合量の割合を調整することにより、強度発現開始時間を制御できることがわかった。概ね、固化遅延材を固化材に対して1質量%以上配合することで強度発現開始時間を30分以上とすることができ、3質量%以上配合することで強度発現開始時間を1時間以上とすることができた。また、実施例1,2,4,5についても同様の方法で強度発現開始時間を測定した結果、実施例3と類似の挙動を示し2〜3時間で強度発現が開始することを確認した。なお、実施例9〜14の締固め材はいずれも、pHが7.5〜8.0の中性を示し、強度発現が、石膏、骨材、水及び固化遅延材の混合完了時から24時間以内に完了しており、一軸圧縮強度が200〜350kN/m2であった。 It was found that by adjusting the ratio of the amount of the solidification retarder to the solidified material, the strength development start time can be controlled. In general, the incorporation of 1% by mass or more of the solidification retarder with respect to the solidified material can make the strength onset time 30 minutes or more, and the incorporation of 3% by mass or more makes the strength onset time 1 hour or more. We were able to. In addition, the intensity onset time of Examples 1, 2, 4, and 5 was measured by the same method. As a result, it was confirmed that the behavior was similar to that of Example 3 and that the intensity onset started in 2 to 3 hours. In addition, all the compacting materials of Examples 9 to 14 showed neutrality of pH 7.5 to 8.0, and the strength development was 24 hours after the completion of mixing of gypsum, aggregate, water and the solidification retardant. are completed within the time, the uniaxial compressive strength was 200~350kN / m 2.
実験3
骨材、固化材、固化遅延材をビニール袋に入れ、混合した。この混合物に更に所定量の水を加え、ミキサー5分間混練し、締固め材(実施例15〜17)を作製した。骨材には市販の珪砂とトチクレー(登録商標)を配合して用いた。この骨材の粒度分布を、JIS A 1204に従って測定したところ図4の通りであり、図2の粒径加積曲線の上限及び下限のラインの間であった。固化材には表1に記載の固化材のいずれかを用いた。各試料の材料の配合は表7の通りとした。実施例15〜17の固化遅延材には市販のクエン酸三ナトリウム(pH=8.3)を用いた。石膏には、ジプサンダー(登録商標)(石原産業製,比表面積30m2/gの薄片状半水石膏、(硫酸カルシウム1/2水和物(CaSO4・1/2H2O)量)含有量94質量%、酸化鉄含有量1.8質量%)を用いた。なお、締固め材の作製は、概ね容積が3Lとなるようにして行った。また、表7中において、実施例15〜17の固化材の配合比に関しては、そこに含まれる硫酸カルシウム1/2水和物(CaSO4・1/2H2O)成分換算の値も括弧書で併記した。作製した締固め材はφ50mm×100mmのモールドに詰め、水分が蒸発しないようラップでシールし、後述の評価を行うまで養生した。
Experiment 3
Aggregate, solidified material, and solidification retardant were placed in a plastic bag and mixed. A predetermined amount of water was further added to the mixture, and the mixture was kneaded for 5 minutes to produce compaction materials (Examples 15 to 17). As the aggregate, commercially available silica sand and Tocicle (registered trademark) were mixed and used. The particle size distribution of this aggregate was measured according to JIS A 1204, and is as shown in FIG. 4, which was between the upper and lower lines of the particle size accumulation curve of FIG. Any of the solidifying materials shown in Table 1 was used as the solidifying material. Table 7 shows the composition of the materials for each sample. Commercially available trisodium citrate (pH = 8.3) was used as the solidification retarder in Examples 15 to 17. The gypsum contains Gypsander (registered trademark) (manufactured by Ishihara Sangyo Co., Ltd., flaky hemihydrate gypsum having a specific surface area of 30 m 2 / g, content of (calcium sulfate hemihydrate (CaSO 4 .1 / 2H 2 O)). 94% by mass and an iron oxide content of 1.8% by mass). The compaction material was manufactured such that the volume was approximately 3 L. In the tables 7, regarding the mixing ratio of the solidifying material of Examples 15 to 17, also parentheses value of calcium sulfate hemihydrate (CaSO 4 · 1 / 2H 2 O) component terms contained therein It was also described. The compacted material thus produced was packed in a mold having a size of φ50 mm × 100 mm, sealed with a wrap so as not to evaporate water, and cured until an evaluation described later was performed.
(評価4) 一軸圧縮強度に対する液状化強度比
作製から24時間後に、締固め材の一軸圧縮強度を算出した。一軸圧縮試験の方法及び強度の算出は、JIS A 1216:2009に基づいて行った。試験片の寸法はφ50mm×100mmとした。
更に、固化した締固め材の液状化強度を確認するため、作製から24時間後に、締固め材の液状化強度比を算出した。液状化強度比は、地盤工学会基準 JGS−0541の繰返し非排水三軸試験に基づいて行った。試験片の寸法はφ50mm×100mmとした。これらの結果を表8に示す。一般的にN値が25以上あれば大規模地震でも液状化しないと言われている。ここで、飽和土壌の液状化条件として知られている液状化強度比と補正N値との関係を示す図(日本建築学会(編集)による「建築基礎構造設計指針」、丸善株式会社(発売元)、昭和63年1月25日(第1版発行)の図4.5.1)によれば、その図の5%せん断ひずみ振幅曲線において補正N値が25のときの液状化強度比は0.44程度となっている。このことから、表8の何れの結果も締固め工法により当該液状化対策を行った地盤と同程度以上の液状化強度を有していることが認められた。
以上の結果から、一軸圧縮強度が約40kN/m2以上あれば、地震が発生した場合でも固化した締固め材料自体が液状化しないことが認められた。
(Evaluation 4) Liquefaction Strength Ratio to Uniaxial Compressive Strength Twenty-four hours after the preparation, the uniaxial compressive strength of the compacted material was calculated. The method of uniaxial compression test and calculation of the strength were performed based on JIS A 1216: 2009. The dimensions of the test piece were φ50 mm × 100 mm.
Further, in order to confirm the liquefaction strength of the solidified compact, the liquefaction strength ratio of the compact was calculated 24 hours after the production. The liquefaction strength ratio was determined based on a repeated undrained triaxial test of the Japan Geotechnical Society standard JGS-0541. The dimensions of the test piece were φ50 mm × 100 mm. Table 8 shows the results. It is generally said that if the N value is 25 or more, it will not liquefy even in a large-scale earthquake. Here, a diagram showing the relationship between the liquefaction intensity ratio, which is known as the liquefaction condition of the saturated soil, and the corrected N value (“Guidelines for Building Basic Structure Design” by the Architectural Institute of Japan (edited), Maruzen Co., Ltd. According to Fig. 4.5.1) on January 25, 1988 (first edition), the liquefaction strength ratio when the corrected N value is 25 in the 5% shear strain amplitude curve of the figure is as follows. It is about 0.44. From this, it was confirmed that all the results in Table 8 have liquefaction strength equal to or higher than that of the ground on which the liquefaction countermeasures were taken by the compaction method.
From the above results, it was confirmed that when the uniaxial compressive strength was about 40 kN / m 2 or more, the solidified compacted material itself did not liquefy even when an earthquake occurred.
本発明によれば、固化材として石膏を用いた地盤強化用締固め材であって、強度発現完了後のpHが5.8以上8.6以下であり、強度発現が24時間以内に完了する締固め材を提供することができることから、静的圧入締固め工法等を用いて、地盤への圧入が可能で、且つ、圧入後に速やかに固結することができる。このようなことから、軟弱な砂質土地盤の液状化現象等の防止対策としての産業上の利用可能性がある。 According to the present invention, it is a compaction material for ground reinforcement using gypsum as a solidifying material, wherein the pH after completion of strength development is 5.8 or more and 8.6 or less, and strength development is completed within 24 hours. Since the compaction material can be provided, it is possible to press-fit the ground by using a static press-fitting compaction method or the like, and it is possible to quickly compact after the press-fitting. For this reason, there is industrial applicability as a measure for preventing the liquefaction phenomenon of soft sandy ground.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017094062A JP6665129B2 (en) | 2017-05-10 | 2017-05-10 | Premix composition used for ground strengthening compaction material, ground strengthening compaction material, method for producing the same, and ground strengthening method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017094062A JP6665129B2 (en) | 2017-05-10 | 2017-05-10 | Premix composition used for ground strengthening compaction material, ground strengthening compaction material, method for producing the same, and ground strengthening method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018188909A JP2018188909A (en) | 2018-11-29 |
JP6665129B2 true JP6665129B2 (en) | 2020-03-13 |
Family
ID=64479345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017094062A Active JP6665129B2 (en) | 2017-05-10 | 2017-05-10 | Premix composition used for ground strengthening compaction material, ground strengthening compaction material, method for producing the same, and ground strengthening method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6665129B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7231492B2 (en) * | 2019-06-11 | 2023-03-01 | 東洋建設株式会社 | Method for producing improved soil |
JP2021161833A (en) * | 2020-04-03 | 2021-10-11 | 横浜ライト工業株式会社 | Buried pile backfill method |
KR20240057678A (en) | 2022-10-25 | 2024-05-03 | 주식회사 웨스코일렉트로드 | Method for removing lead materials on anode of electrolytic copper foil |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4107825B2 (en) * | 2001-10-16 | 2008-06-25 | 電気化学工業株式会社 | Slug injection slurry |
JP5270819B2 (en) * | 2005-06-02 | 2013-08-21 | 強化土エンジニヤリング株式会社 | Ground strengthening method |
JP4808241B2 (en) * | 2008-09-03 | 2011-11-02 | 強化土エンジニヤリング株式会社 | Ground improvement method and ground improvement equipment |
-
2017
- 2017-05-10 JP JP2017094062A patent/JP6665129B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018188909A (en) | 2018-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2006129884A1 (en) | Plastic gel injection material and ground reinforcement method | |
CN102344813A (en) | Curing agent for curing marine poor subsoil | |
JP6665129B2 (en) | Premix composition used for ground strengthening compaction material, ground strengthening compaction material, method for producing the same, and ground strengthening method using the same | |
CN102518126A (en) | Method for preparing cement-soil mixing pile | |
JP4689556B2 (en) | Ground consolidation method using plastic gel injection material | |
JP3452330B2 (en) | Solidified material mixed with crushed stone powder and construction method using solidified material mixed with crushed stone powder | |
JP6981797B2 (en) | Hydraulic composition and anchor element fixing method using the same | |
CN108396737A (en) | The Soil-cement pile material of Strengthening Wet soil base | |
JP5390060B2 (en) | Ground strengthening method | |
JP2006257281A (en) | Plastic grouting material, method of toughening ground and method and device for controlling grouting to ground | |
JP4972661B2 (en) | Ground injection method | |
JP2006056909A (en) | Plastic grout and grouting technique | |
JPS6197381A (en) | Injectable curable fine grout | |
JP2008223475A (en) | Grouting method | |
JPH10168451A (en) | Suspension grout and method for grouting and solidifying ground by using it | |
JP5533690B2 (en) | Granular materials for civil engineering work | |
JP2007239443A (en) | Suck-out preventive injection method | |
JP2007321005A (en) | Cement-based solidifying material, and conditioning method of ground by using the solidifying material | |
JP2007077794A (en) | Plastic gel grout, ground reinforcing method, ground injection control method, and injection control device | |
JP7265498B2 (en) | Ground improvement method | |
JP3678732B2 (en) | Partially hydrated molded body of hydraulic composition, method for producing the same and method for using the same | |
KR101067662B1 (en) | Eco friendly, early strength, extensive grout additive and grout material and reinforcing earth anchor method using the grout material | |
JP3926273B2 (en) | Soil-stabilized soil and method for producing the same | |
WO2021068235A1 (en) | High-strength curing agent application method for peat soil | |
CN106082842A (en) | A kind of unique construction agent for deep-layer stirring construction and special clay hardening liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190327 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6665129 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |