JP3342000B2 - Liquefaction prevention method for sandy ground by injection method - Google Patents

Liquefaction prevention method for sandy ground by injection method

Info

Publication number
JP3342000B2
JP3342000B2 JP26580799A JP26580799A JP3342000B2 JP 3342000 B2 JP3342000 B2 JP 3342000B2 JP 26580799 A JP26580799 A JP 26580799A JP 26580799 A JP26580799 A JP 26580799A JP 3342000 B2 JP3342000 B2 JP 3342000B2
Authority
JP
Japan
Prior art keywords
consolidation zone
injection
ground
zone
consolidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26580799A
Other languages
Japanese (ja)
Other versions
JP2001090092A (en
Inventor
健二 栢原
Original Assignee
強化土エンジニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 強化土エンジニヤリング株式会社 filed Critical 強化土エンジニヤリング株式会社
Priority to JP26580799A priority Critical patent/JP3342000B2/en
Publication of JP2001090092A publication Critical patent/JP2001090092A/en
Application granted granted Critical
Publication of JP3342000B2 publication Critical patent/JP3342000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、注入工法による砂
質地盤の液状化防止工法に関する。
TECHNICAL FIELD The present invention relates to a method for preventing liquefaction of sandy ground by an injection method.

【0002】[0002]

【従来の技術】砂質地盤の地震による液状化防止工法と
して、セメントや耐久性の優れた薬液を注入して固化す
る工法が知られている。また、固化材と掘削土を攪拌混
合したり、或いは矢板などで地盤中に格子状に壁体を形
成する工法も知られている。
2. Description of the Related Art As a method of preventing liquefaction of sandy ground due to an earthquake, a method of injecting cement or a chemical solution having excellent durability and solidifying it is known. There is also known a method of stirring and mixing the solidified material and excavated soil, or forming a grid-like wall in the ground with a sheet pile or the like.

【0003】[0003]

【発明が解決しようとする課題】例えば図1は、地上に
備蓄タンク等の構造物10が建つ砂質地盤11が地震時
などに液状化を起こす場合を示し、地震による砂質地盤
11の液状化は、図示するように地下水面下の緩い砂質
地盤11が地震によって繰り返し作用する剪断応力によ
り過剰間隙水圧が発生する一方、有効応力が減少するこ
とにより支持力が減少するためと考えられている。
For example, FIG. 1 shows a case where a sandy ground 11 on which a structure 10 such as a storage tank is built on the ground liquefies during an earthquake or the like. This is considered to be due to the fact that as shown in the figure, excessive pore water pressure is generated by the shear stress that repeatedly acts on the loose sandy ground 11 under the groundwater surface due to the earthquake, while the effective stress decreases and the bearing capacity decreases. I have.

【0004】これまで、液状化防止工法として、上述し
た方法などを含めて種々考えられるが、いずれの工法
も、すでに構築された構造物1の地盤改良という条件下
のもとで、可能な限り経済的に行わなくてはならないた
めに施工がきわめて困難である。
Various liquefaction-preventing methods including the above-mentioned methods have been considered so far. However, any of the methods is as far as possible under the condition of ground improvement of the already constructed structure 1. Construction is extremely difficult because it must be done economically.

【0005】ただ、注入工法は既に建っている構造物1
の外側(周囲)から基礎下の地盤中に斜めに削孔・注入
することが可能なため、小さな注入孔から広範囲に浸透
・固結することができれば、特に既存の構造物付近の液
状化対策としてきわめてすぐれた液状化防止工法となり
うる。
[0005] However, the injection method is not applicable to the structure 1 already built.
Drilling and injecting diagonally into the ground under the foundation from the outside (periphery) of the building, if it can penetrate and consolidate widely from small injection holes, especially for liquefaction measures near existing structures It can be a very excellent liquefaction prevention method.

【0006】すなわち、図2に示すように地震によって
負のダイレタンシーが起こるような緩い砂質地盤11の
砂粒子の間隙を、注入工法でゲル化物で填充することに
より充分注入効果が発揮できれば、土粒子の移動が阻止
されて負のダイレタンシーが起こらなくなり、注入工法
による液状化防止が可能になる。
In other words, as shown in FIG. 2, if the gap between the sand particles of the loose sandy ground 11 where negative dilatancy occurs due to the earthquake can be sufficiently filled with the gelled material by the injection method, the soil effect can be improved. The movement of the particles is prevented, so that negative dilatancy does not occur, and liquefaction can be prevented by the injection method.

【0007】この場合の問題点は、液状化が起こりやす
い地盤は細砂であって、特に大きな構造物が建つ地盤の
場合、構造物の直下まで注入液が浸透しにくいことであ
るが、注入効果が不充分だと、砂粒子の間隙に充填され
たゲル化物の充填量が不充分なために液状化が起こりや
すくなる。
The problem in this case is that the ground where liquefaction is liable to occur is fine sand, and especially in the case of a ground where a large structure is built, it is difficult for the injection liquid to penetrate immediately below the structure. If the effect is insufficient, liquefaction tends to occur because the amount of the gelled material filled in the gaps between the sand particles is insufficient.

【0008】一般に液状化対策は、備蓄タンク等の基
礎、空港滑走路、或いは地中埋設管や鉄道のトンネル等
といったきわめて広大な面積と大容量の構造物や工作
物、或いは施設を対象とするため、構造物の存在下にお
ける削孔の作業性と経済性が求められる。
In general, measures against liquefaction target very large structures and large-capacity structures, structures or facilities such as foundations such as storage tanks, airport runways, underground pipes and railway tunnels. Therefore, workability and economy of drilling in the presence of the structure are required.

【0009】これらの地盤改良を注入工法で行うには、
注入孔間隔を広くとり、しかも構造物そのものに注入用
の孔を空けないようにしながら、かつ地盤隆起を防ぎな
がら基礎下の地盤まで耐久性と浸透性の優れた注入液を
確実に浸透させなくてはならない。
In order to improve these grounds by the injection method,
Keep the gap between the injection holes wide and do not leave holes for injection in the structure itself, and prevent the uplift of the ground, and ensure that the injection liquid with excellent durability and permeability is not penetrated to the ground under the foundation must not.

【0010】浸透性が良く耐久性の優れた注入液(注入
材)としては、例えば水ガラスを原料とするシリカ系注
入液、セメントスラグ、或いは粘土系注入液などが適し
ている。特に、劣化要因である水ガラスのアルカリを酸
で中和除去し、或いはイオン交換樹脂やイオン交換膜を
用いた電気透析により水ガラスのアルカリを除去或いは
低減したシリカ系注入材は浸透性にすぐれている。
As an injection liquid (injection material) having good permeability and excellent durability, for example, a silica injection liquid, a cement slag, or a clay injection liquid made from water glass is suitable. In particular, a silica-based injection material in which the alkali of water glass, which is a deterioration factor, is neutralized and removed with an acid, or the alkali of water glass is removed or reduced by electrodialysis using an ion exchange resin or an ion exchange membrane, has excellent permeability. ing.

【0011】また、浸透性を良くするためには、注入液
の濃度を薄くし、固結時間を長くして大きな固結ゾーン
を形成しなくてはならない。例えば、注入間隔を2mの
正方向配置にする場合、 注入管の埋設間隔 P=2m×2mの正方向配置し、 注入速度 f=20リットル/minとし、 注入管1孔当たり改良平面積は Ap=2m×2m=4m2 であり、 1ステージ当たり改良土(m3 )を V=2m(改良高さ)×4m2 =8m3 とし、 1ステージ当たり注入量(kリットル) Q=V×(0.35〜0.04)=2.8m3 〜3.2m3 =3.0m3 (平均) (0.35〜0.04:注入率) 1ステージ当たり注入時間 t1 =3kリットル÷0.02kリットル/min=150m in =2.5時間(注入継続時間) と長時間による注入をおこなわなくてはならない。
Further, in order to improve the permeability, the concentration of the injection solution must be reduced and the consolidation time must be increased to form a large consolidation zone. For example, when the injection interval is set to 2 m in the forward direction, the filling interval of the injection pipe is set to P = 2 m × 2 m in the forward direction, the injection rate is f = 20 liter / min, and the improved plane area per injection pipe hole is Ap = 2m × 2m = 4m 2 , Improved soil (m 3 ) per stage is V = 2m (improved height) × 4m 2 = 8m 3 , Injection amount per stage (k liter) Q = V × ( 0.35~0.04) = 2.8m 3 ~3.2m 3 = 3.0m 3 ( average) (0.35 to 0.04: infusion rate) 1 stage per injection time t 1 = 3k liter ÷ 0 .02 kL / min = 150 min = 2.5 hours (injection continuation time) Infusion must be performed for a long time.

【0012】また、注入間隔を4mの正方向配置にする
場合、注入管1孔当たりの改良面積は、 Ap=4m×4m=16m2 1ステージの改良土量は、 V=2m(改良高さ)×16m2 =32m3 1ステージ注入量(kl)は Q=V×(0.35〜0.4) =32×(0.35〜0.4) =11.2〜12.8kリットル≒12kリットル(平
均) であり、注入速度f=20l/minとすると、1ステ
ージ当たり注入時間 t=12kリットル÷0.02kリットル =600min =10時間 の注入を行わなければならない。
When the injection interval is set to 4 m in the forward direction, the improvement area per injection pipe hole is: Ap = 4 m × 4 m = 16 m 2 The amount of improved soil per stage is V = 2 m (improved height) ) × 16 m 2 = 32 m 3 One stage injection amount (kl) is: Q = V × (0.35 to 0.4) = 32 × (0.35 to 0.4) = 11.2 to 12.8 kL ≒ Assuming that the injection rate is f = 20 l / min and the injection time per stage is t = 12 kL / 0.02 kL = 600 min = 10 hours, injection must be performed for 10 hours.

【0013】すなわち、経済性を考えると、注入孔間隔
を大きくとらなくてはならず、そのためには浸透性にす
ぐれ、しかも経済的でかつ耐久性にすぐれた注入液(固
結材)を用いなくてはならない。
That is, in consideration of economy, it is necessary to increase the interval between the injection holes. For this purpose, an injection liquid (consolidating material) having excellent permeability and being economical and having excellent durability is used. Must-have.

【0014】シリカ系注入液でこのような浸透性を得る
には、シリカ濃度をうすくして長時間にわたって土粒子
間を浸透し、かつ連続注入が可能なように長いゲル化時
間と低粘性を維持させる必要がある。
In order to obtain such a permeability with a silica-based injection solution, a long gelation time and a low viscosity are required so that the silica concentration can be reduced to allow the silica particles to penetrate between the soil particles for a long period of time and allow continuous injection. Need to be maintained.

【0015】シリカ系グラウトは液状化防止のように地
盤中で長時間にわたる浸透中に大量の土粒子表面と接触
するため、土粒子に含まれる微少金属との反応によりゲ
ルタイムが短縮しやすい。このためシリカ濃度を下げて
ゲル時間と低粘性を維持させる必要がある。
The silica-based grout comes in contact with the surface of a large amount of soil particles during a long period of infiltration in the ground to prevent liquefaction, so that the gel time tends to be shortened due to the reaction with the minute metal contained in the soil particles. Therefore, it is necessary to reduce the silica concentration to maintain the gel time and low viscosity.

【0016】しかし、シリカ濃度を薄くすると流動性が
良すぎることから、地表面や地盤の弱い部分を通して地
盤改良をすべき地盤の対象範囲外に逸脱してしまい、そ
の結果、地盤改良をすべき地盤の対象範囲内の固結が不
充分となり、注入目的が充分に達せられないことにな
る。
However, when the silica concentration is reduced, the fluidity is too good, so that the silica deviates from the target area of the ground to be improved through the ground surface or a weak portion of the ground, and as a result, the ground should be improved. The consolidation in the target area of the ground is insufficient, and the injection purpose is not sufficiently achieved.

【0017】一方、強度の強い注入液を用いるとゲル化
時間が短く、粘性が高いため脈状注入になりやすく浸透
距離も短い。また、セメント等の懸濁液も同じく浸透性
が悪いため脈状注入が生じやすい。この場合も浸透不充
分な部分に負のダイレタンシーが生ずることになる。
On the other hand, when an injection solution having a high strength is used, the gelation time is short and the viscosity is high. Also, a suspension of cement or the like is similarly poor in permeability, so that pulse injection is likely to occur. Also in this case, negative dilatancy is generated in a portion where penetration is insufficient.

【0018】また、基礎の下部の地盤中には浸透しきれ
ない領域が生じやすく、また土粒子の間隙はゲル化物で
充分填充されにくいため、地震時の繰り返し剪断応力に
よって負のダイレタンシーを生じて液状化現象を起こし
やすくなる。
In addition, a region that cannot be fully penetrated is easily formed in the ground under the foundation, and the gap between the soil particles is difficult to be sufficiently filled with the gelled material. Therefore, a negative dilatancy is generated due to the repeated shear stress during the earthquake. Liquefaction is likely to occur.

【0019】この場合、図2のように単に構造物10の
基礎付近に注入材(固結材)を注入しても、液状化防止
のための注入効果が充分得られにくいことになる。一
方、液状化防止のためにセメント混合による土中壁を平
面格子状に形成する方法が知られている。この方法は強
固な地中壁(固結壁)で構造物の荷重を支持し、かつ地
震による剪断応力を固結壁で遮断することによって液状
化を防ぐ効果がある。
In this case, even if the injection material (consolidation material) is simply injected near the foundation of the structure 10 as shown in FIG. 2, it is difficult to sufficiently obtain the injection effect for preventing liquefaction. On the other hand, there is known a method in which soil walls are formed into a plane lattice by mixing cement to prevent liquefaction. This method has the effect of preventing the liquefaction by supporting the load of the structure with a strong underground wall (consolidation wall) and blocking the shear stress due to the earthquake by the consolidation wall.

【0020】しかし、そのような効果は格子の巾(L)
と高さ(H)の比と関係があり、L/H=0.5〜0.8で
あることが知られている。即ち、格子の巾を高さより狭
くしなくてはならない。従って、タンク基礎等のように
大きな構造物の基礎の液状化を防止するためには基礎が
邪魔になって狭い間隔で固結壁をつくることができない
という問題が生ずる。
However, such an effect depends on the width (L) of the grating.
And the height (H) ratio, and it is known that L / H = 0.5-0.8. That is, the width of the grating must be smaller than the height. Therefore, in order to prevent liquefaction of the foundation of a large structure such as a tank foundation, there is a problem that the foundation is in the way and a solidified wall cannot be formed at a narrow interval.

【0021】このように、地盤の一部を平面格子状に固
結する場合を図3で説明すると、一般に格子状の固結壁
12は地盤の剛性を高め、内部の地盤を拘束し、かつ地
震による剪断応力を低減させ、さらに過剰間隙水圧の発
生を抑制する。
FIG. 3 illustrates a case where a part of the ground is solidified in a plane lattice shape. Generally, the lattice-like solidified wall 12 increases the rigidity of the ground, restrains the internal ground, and Reduces shear stress caused by earthquakes and suppresses excessive pore water pressure.

【0022】しかし、注入工法の場合、セメント混合工
法に比べ固結壁12の強度は弱いので、固結壁12を密
に(小間隔に)形成するか、壁厚を厚くすることが必要
である。しかし、備蓄タンク等の大規模構造物の基礎の
下に固結壁12を密に、あるいは厚く形成することは注
入作業上不可能であり、かつ経済的にも困難である。
However, in the case of the injection method, since the strength of the consolidation wall 12 is lower than that of the cement mixing method, it is necessary to form the consolidation wall 12 densely (at a small interval) or to increase the wall thickness. is there. However, it is impossible for injection work to form the consolidation wall 12 densely or thickly under the foundation of a large-scale structure such as a storage tank, and it is economically difficult.

【0023】上述したように、大きな構造物の基礎の砂
質地盤の液状化防止を注入工法で効果的に行うために
は、注入工法の特性、注入固結体の特性を生かした技術
の開発を必要とした。なお、図1〜3において、符号1
3は非液状化層であり、支持層である。
As described above, in order to effectively prevent the liquefaction of the sandy ground at the foundation of a large structure by the injection method, the development of a technique utilizing the characteristics of the injection method and the characteristics of the injection consolidated body. Needed. In addition, in FIGS.
Reference numeral 3 denotes a non-liquefied layer, which is a support layer.

【0024】そこで本発明の目的は、注入工法で大きな
構造物の基礎を効果的で液状化防止する工法を提供する
ことにある。
Accordingly, an object of the present invention is to provide a method for effectively preventing the foundation of a large structure from being liquefied by an injection method.

【0025】[0025]

【課題を解決するための手段】請求項1記載の液状化防
止工法は、注入工法による砂質地盤の液状化防止工法で
あって、構造物付近の地盤とその周囲の地盤に固結ゾー
ンAと固結ゾーンBを注入工法によってそれぞれ形成
し、前記固結ゾーンAはゲル化時間の長い注入液を用い
て形成し、前記固結ゾーンBは水ガラスを原料としたシ
リカ系注入液を用いて前記固結ゾーンAより硬質に、
記固結ゾーンAより止水性を有するように、かつ前記固
結ゾーンAの周りを包み込むようにほぼ垂直方向または
斜め下方向に形成することを特徴とするものである。
The liquefaction prevention method according to claim 1 is a method for preventing liquefaction of sandy ground by an injection method, wherein a consolidation zone A is formed on a ground near a structure and a ground around the structure. And a consolidation zone B are respectively formed by an injection method, and the consolidation zone A uses an injection solution having a long gelation time.
Forming Te, the consolidated zone B is rigid than said consolidating zone A using the silica-based injection solution using water glass as a raw material, prior
It is characterized in that it is formed in a substantially vertical or obliquely downward direction so as to have more water blocking property than the consolidation zone A and to wrap around the consolidation zone A.

【0026】請求項2記載の液状化防止工法は、注入工
法による砂質地盤の液状化防止工法であって、構造物付
近の地盤とその周囲の地盤に固結ゾーンAと固結ゾーン
Bをそれぞれ注入工法によって形成し、前記固結ゾーン
Aはゲル化時間の長い注入液を用いて形成し、前記固結
ゾーンBは水ガラスを原料としたシリカ系注入液を用い
てほぼ垂直方向または斜め方向に密実に形成し、かつ前
記固結ゾーンAは前記固結ゾーンBより粗く形成するこ
とを特徴とするものである。
The liquefaction prevention method according to claim 2 is a method for preventing liquefaction of sandy ground by an injection method, wherein a consolidation zone A and a consolidation zone B are formed on the ground near the structure and the surrounding ground. Each is formed by the injection method and the consolidation zone
A is formed using an injection liquid having a long gelation time, and the consolidation zone B is formed in a substantially vertical or diagonal direction using a silica-based injection liquid made of water glass as a raw material. The zone A is formed more coarsely than the consolidation zone B.

【0027】請求項3記載の液状化防止工法は、請求項
2記載の液状化防止工法において、固結ゾーンBの内部
に固結部分と未固結部分を組み合わせて形成することを
特徴とするものである。
The liquefaction prevention method of claim 3, wherein the claim
In the liquefaction prevention method described in 2, the inside of the consolidation zone B
To form a combination of the consolidated and unconsolidated parts
It is a feature.

【0028】請求項4記載の液状化防止工法は、注入工
法による砂質地盤の液状化防止工法であって、構造物付
近の地盤に固結ゾーンAを注入工法によって形成し、こ
の固結ゾーンA内に隔壁として請求項1,2または3記
載の固結ゾーンBを複数形成することを特徴とするもの
である。請求項5記載の液状化防止工法は、請求項1、
2、3または4記載の液状化防止工法において、水ガラ
スを原料としたシリカ系注入液として、水ガラスのアル
カリを酸で中和除去し、或いはイオン交換樹脂やイオン
交換膜を用いた電気透析により水ガラスのアルカリを除
去或いは低減したもの、またはスラグやセメント、或い
は微粒子スラグや微粒子セメントと溶液性シリカの懸濁
液をベースにしたものを用いることを特徴とするもので
ある。
The liquefaction prevention method according to claim 4 is a method for preventing liquefaction of sandy ground by an injection method, wherein a consolidation zone A is formed on the ground near a structure by an injection method. A plurality of consolidation zones B according to claim 1, 2 or 3 are formed as partition walls in A. The liquefaction prevention method according to claim 5 is based on claim 1,
In the liquefaction prevention method described in 2, 3 or 4, as a silica-based injection liquid made of water glass, an alkali of water glass is neutralized and removed with an acid, or electrodialysis using an ion exchange resin or an ion exchange membrane. To remove or reduce alkali of water glass by slag, cement , or
Is characterized by using a fine particle slag or a suspension based on fine particle cement and solution silica.

【0029】[0029]

【発明の実施の形態】以下、本発明を具体的に詳述す
る。図4,図5を用いて本発明を説明する。図4にて固
結ゾーン(低強度固結体)Aと固結ゾーン(高強度固結
体)Bとでは、相対的に前者が低強度、後者が高強度で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The present invention will be described with reference to FIGS. In FIG. 4, in the consolidation zone (low-strength consolidation) A and the consolidation zone (high-strength consolidation) B, the former has relatively low strength and the latter has high strength.

【0030】ここで、低強度と高強度の組み合わせの例
を上げれば、低強度とは一般に、固結土の軸圧縮強度が
0.1〜3kg/cm2 で、高強度とはほぼ1kg/c
2以上でかつ低強度よりも高い強度あって、その組み
合わせは相対的なものであり、限定されるものではな
い。また、低強度と高強度をどのように組み合わせるか
は、地盤条件、施工条件、注入材の特性などを任意に考
慮して定めればよい。
Here, as an example of a combination of low strength and high strength, low strength generally means that the axial compression strength of consolidated soil is 0.1 to 3 kg / cm 2 , and high strength is about 1 kg / cm 2. c
The strength is not less than m 2 and higher than the low strength, and the combination is relative and not limited. In addition, how to combine low strength and high strength may be determined by arbitrarily considering ground conditions, construction conditions, characteristics of the injected material, and the like.

【0031】固結ゾーンAは、備蓄タンク等の構造物1
が建つ付近の地盤中に形成し、固結ゾーンBは固結ゾー
ンAの周囲の地盤中に、固結ゾーンAよりも硬質にかつ
固結ゾーンAの周りをほぼ垂直方向または斜め下方向に
包み込むように形成する。
The consolidation zone A includes a structure 1 such as a storage tank.
Is formed in the ground near the building, and the consolidation zone B is formed in the ground around the consolidation zone A more hardly than the consolidation zone A and around the consolidation zone A substantially vertically or obliquely downward. It is formed so as to enclose it.

【0032】本発明において、構造物1付近の地盤と
は、構造物1の基礎地盤或いは構造物に近い地盤をい
う。さらに、固結ゾーンAとBはともに、地盤中に注入
材(固結材)を注入する注入工法によって形成する。
In the present invention, the ground near the structure 1 refers to the foundation ground of the structure 1 or the ground close to the structure. Further, both the consolidation zones A and B are formed by an injection method in which an injection material (consolidation material) is injected into the ground.

【0033】その際、固結ゾーンAと固結ゾーンBをそ
れぞれ形成するために地盤中に注入される溶液型のシリ
カグラウトの種類や配合の違いによる固結強度の大小の
組み合わせやシリカ分の多いグラウトとシリカ分の少な
いグラウトによる固結強度の大小の組み合わせで、構造
物1が建つ付近の地盤中に強度の大きいグラウトと強度
の小さいグラウトを注入して固結ゾーンAと固結ゾーン
Bをそれぞれ形成する。
At this time, in order to form the consolidation zone A and the consolidation zone B, respectively, combinations of large and small consolidation strengths depending on the type and composition of the solution type silica grout injected into the ground, and the silica content High strength grout and low strength grout are injected into the ground near the structure 1 by a combination of a large grout and a grout with a small amount of silica. Are formed respectively.

【0034】その際、強度の小さいグラウトによる固結
ゾーンAは、その周囲の地盤中にほぼ垂直方向または斜
め下方向に形成された、強度の大きいグラウトによる固
結ゾーンBに包みこまれるようにする。
At this time, the consolidation zone A of the grout having a small strength is wrapped around the consolidation zone B of the grout having a high strength, which is formed substantially vertically or diagonally downward in the surrounding ground. I do.

【0035】また、スラグやセメント(或いは微粒子ス
ラグや微粒子セメント)と溶液性シリカの懸濁液をベー
スにしたグラウトと溶液性シリカをベースにしたグラウ
トの組み合わせで、後者で固結ゾーンAを形成し、前者
で固結ゾーンBを形成する。
The consolidation zone A is formed by a combination of a grout based on a suspension of slag or cement (or fine particle slag or fine particle cement) and a solution silica and a grout based on a solution silica. Then, the consolidation zone B is formed by the former.

【0036】さらに、上記懸濁液をベースにしたグラウ
トであって、懸濁成分の濃いグラウトと懸濁成分の薄い
グラウトの組み合わせで、後者で固結ゾーンAを形成
し、前者で固結ゾーンBを形成する。なお、上記懸濁液
或いは溶液性シリカに、さらにベントナイト等を加えて
もよい。
Further, a grout based on the above-mentioned suspension, wherein a consolidation zone A is formed by the combination of a grout having a high concentration of suspension and a grout having a low concentration of suspension, and the consolidation zone is formed by the former. Form B. In addition, bentonite or the like may be further added to the suspension or the solution silica.

【0037】本発明は、固結ゾーンAの周りにより高強
度の固結ゾーンBをほぼ垂直方向または斜め下方向に包
み込むように形成することで、繰り返し作用する地震に
よって地盤中に伝わる加速度を高強度の固結ゾーンBに
よって減少せしめることができる。このため、固結ゾー
ンBを経て固結ゾーンAに生ずる地震時の剪断応力は大
幅に減少する。
The present invention forms the high-strength consolidation zone B around the consolidation zone A in a substantially vertical or obliquely downward direction, thereby increasing the acceleration transmitted to the ground due to the repeatedly acting earthquake. The strength can be reduced by the consolidation zone B. For this reason, the shear stress at the time of the earthquake generated in the consolidation zone A via the consolidation zone B is greatly reduced.

【0038】このため、固結ゾーンAの土粒子間に填充
されたゲルの強度が弱くてもゲルの構造が破壊されるま
でには至らないため、負のダイレタンシーが生じにく
く、従って過剰間隙水圧の上昇や地盤の有効応力が減少
せず液状化の発生を防ぐことができる。
[0038] For this reason, even if the strength of the gel filled between the soil particles in the consolidation zone A is low, the gel structure is not destroyed, so that negative dilatancy is unlikely to occur, and therefore excessive pore water pressure Liquefaction can be prevented without increasing the rise of the ground or the effective stress of the ground.

【0039】また、固結ゾーンBは固結ゾーンAに比べ
て強度は大きいものの、セメント混合土や矢板等に比べ
て低強度である。しかし、固結ゾーンAの存在により薄
くて済む。
Although the consolidation zone B has a higher strength than the consolidation zone A, it has a lower strength than cement-mixed soil, sheet pile, or the like. However, the presence of the consolidation zone A suffices.

【0040】図5は、本発明による固結地盤の強度特性
モデルを示す。地盤により基礎の外側で液状化が生じて
も、固結ゾーンBは基礎周辺の間隙水圧の変化、地震に
よる加速度を遮断するため、固結ゾーンAにおける加速
度は低減されて固結ゾーンAの強度が低くても、地震に
よる負のダイレタンシーが生じにくいようになる。
FIG. 5 shows a strength characteristic model of the consolidated ground according to the present invention. Even if liquefaction occurs outside the foundation due to the ground, the consolidation zone B blocks changes in pore water pressure around the foundation and acceleration due to earthquake, so the acceleration in the consolidation zone A is reduced and the strength of the consolidation zone A Even if the height is low, the negative dilatancy caused by the earthquake is unlikely to occur.

【0041】一般に注入による固結体は、強度の高いも
のは破壊歪みが小さく、強度の低いものは破壊歪みが大
きい。したがって、固結ゾーンAは固結ゾーンBによっ
て剪断応力が低減されれば、強度が低くてもなかなか破
壊に到らず耐えられることになる。
In general, a consolidated body obtained by injection has a high strength and a small breaking strain, and a low strength body has a large breaking strain. Therefore, if the shearing stress is reduced by the consolidation zone B, the consolidation zone A can easily withstand a break even if the strength is low.

【0042】本発明の効果は、図5(a)に示すような
湯で卵に類似した丈夫さに相当するものと思われる。卵
の殻のみ、或いは卵の中身のみならば外力によって容易
に破壊される。しかし、卵全体では、卵の殻とその中身
とが組み合わさって外力に対して構造的にすぐれた強度
を発現する。おそらく、卵全体では図5(b)の固結ゾ
ーンBよりもせん断強度が大きくかつ大きな歪みに対し
ても破壊にしくく、強度が低減しても強度を保持し続け
る。
The effect of the present invention is considered to correspond to the strength similar to an egg in hot water as shown in FIG. Egg shells alone or egg contents are easily destroyed by external forces. However, in the whole egg, the shell of the egg and its contents combine to exhibit structurally excellent strength against external force. Probably, the whole egg has a higher shear strength than the consolidation zone B of FIG. 5B and is hard to break even with a large strain, and keeps the strength even if the strength is reduced.

【0043】即ち、固結ゾーンAと固結ゾーンBは互い
に組み合わさって地震による過剰間隙水圧の上昇、剪断
応力の増大の低減、地下水及び土粒子の流動性の遮断と
いう液状化の要因に対する防止対策を同時にかつ経済的
に可能にする。このような原理は請求項2,3の発明に
おいても同様に考えることができる。
That is, the consolidation zone A and the consolidation zone B are combined with each other to prevent an increase in excess pore water pressure due to an earthquake, a reduction in an increase in shear stress, and a prevention of liquefaction factors such as interruption of fluidity of groundwater and soil particles. Enable measures simultaneously and economically. Such a principle can be similarly considered in the inventions of claims 2 and 3.

【0044】このため、図6に示すように固結ゾーンB
1 とB2 との間隔を広くとることができ、かつ固結ゾー
ンB1 とB2 の厚みをうすくすることができるため、作
業性と経済性が得られる。
For this reason, as shown in FIG.
Distance between 1 and B 2 can be widened, and since the thickness of the consolidated zone B 1 and B 2 can be thin, the workability and economy can be obtained.

【0045】固結ゾーンAは、例えば数時間〜数十時間
の長いゲル化時間の注入液を大きな注入孔間隔で設置し
た注入管2によって注入することにより形成することが
できる。このため、斜めに注入管2を設置しても固結ゾ
ーンBの拘束性によって構造物1の直下まで注入液を浸
透せしめることが可能になる。
The consolidation zone A can be formed by injecting an injection solution having a long gelling time of, for example, several hours to several tens of hours, by using an injection pipe 2 provided at a large interval between injection holes. For this reason, even if the injection pipe 2 is installed obliquely, it becomes possible to allow the injection liquid to penetrate directly below the structure 1 due to the constraint of the consolidation zone B.

【0046】従って、構造物1の基礎に直接ボーリング
して注入孔をあえて設けなくても済み、また構造物1の
基礎を貫通して注入孔を密に削孔する必要もないし、さ
らに固結ゾーンBを厚くする必要もない。
Accordingly, it is not necessary to bore the injection hole by directly drilling the foundation of the structure 1, and it is not necessary to drill the injection hole densely through the foundation of the structure 1. There is no need to make zone B thicker.

【0047】図7〜図9は他の例を示し、図7は両側の
固結ゾーンB1 とB2 間に形成された固結ゾーンA内
に、隔壁として固結ゾーンB3 を形成した例である。ま
た図8は、構造物が建つ付近の地盤中に形成された固結
ゾーンAの周囲に全周にわたって固結ゾーンBを形成し
た例である。
[0047] Figures 7-9 show another example, FIG. 7 in the consolidated zone formed between both sides of the consolidation zone B 1 and B 2 A, to form a consolidated zone B 3 as a partition wall It is an example. FIG. 8 shows an example in which a consolidation zone B is formed around the entire consolidation zone A formed in the ground near the structure.

【0048】さらに図9は、固結ゾーンAの周囲に固結
ゾーンBを固結ゾーンAの全周をほぼ垂直に包み込むよ
うに形成し、かつ固結ゾーンAの内部に周囲の固結ゾー
ンBと連続する隔壁として固結ゾーンB3 を平面格子状
に形成した例である。
Further, FIG. 9 shows that the consolidation zone B is formed around the consolidation zone A so as to wrap the entire circumference of the consolidation zone A almost vertically, and the consolidation zone A is formed inside the consolidation zone A. consolidating zone B 3 as a partition which is continuous with B is an example of forming a planar grid pattern.

【0049】また、図10(a)は、地上に鉄道、飛行
場、その他の構造物1が建設されて、地上部からの削孔
・注入ができない場合で、構造物1が建つ地盤の周囲に
たて坑(図省略)を掘削し、このたて坑から構造物1が
建つ付近の地盤中に水平削孔し、かつ構造物1が建つ付
近の地盤中とその周囲の地盤中に注入材を注入して固結
ゾーンAとBをそれぞれ形成した例を示したものであ
る。
FIG. 10A shows a case where a railway, an airfield, and other structures 1 are constructed on the ground and drilling and injection from the ground cannot be performed. A vertical shaft (not shown) is excavated, a horizontal hole is drilled in the ground near the structure 1 from the vertical shaft, and the injection material is formed in the ground near the structure 1 and in the surrounding ground. Is shown in which the consolidation zones A and B are respectively formed by injecting the liquid.

【0050】また、図10(b)は、同じく地上に鉄
道、飛行場、その他の構造物1が建設されている場合
で、固結ゾーンAの周りをほぼ垂直方向に包み込むよう
に固結ゾーンBを形成し、かつ固結ゾーンAの上に固結
ゾーンBの上端部から水平に連続する固結ゾーンB4
盤状に形成した例を示したものである。
FIG. 10B shows a case where a railway, an airfield, and other structures 1 are also constructed on the ground, and the consolidation zone B is wrapped around the consolidation zone A in a substantially vertical direction. forming a, and illustrates an example of forming a consolidated zone B 4 in disk-shaped continuous horizontally from the upper end of the consolidation zone B on the consolidation zone a.

【0051】勿論、固結ゾーンBを平面状に任意の層
(複数層)、固結ゾーンAの中または固結ゾーンAの上
端と下端に形成してもよい。図11は、共同溝などとし
て利用される地中管3の周辺部に固結ゾーンAとBを形
成して液状化防止を行う例を示し、このように地中管3
の延長が長い場合、相対する延長方向の両側のみに固結
ゾーンBを形成したとしても、固結ゾーンAの周りを固
結ゾーンBでほぼ垂直方向に包み込むように改良地盤を
形成するとみなすことができる。
Of course, the consolidation zone B may be formed in an arbitrary layer (a plurality of layers) in a plane, in the consolidation zone A, or at the upper end and lower end of the consolidation zone A. FIG. 11 shows an example in which consolidation zones A and B are formed around the underground pipe 3 used as a common trench to prevent liquefaction.
Is considered to form the improved ground so that the consolidation zone A is wrapped almost vertically in the consolidation zone B, even if the consolidation zone B is formed only on both sides in the opposite extension direction. Can be.

【0052】図12は、構造物1が建つ付近の地盤中と
その周囲の地盤中に固結ゾーンAとBをそれぞれ形成
し、かつ固結ゾーンA内に固結ゾーンBの上端部から斜
めに連続する固結ゾーンB5 を形成した例である。
FIG. 12 shows that the consolidation zones A and B are respectively formed in the ground near the structure 1 and in the surrounding ground, and the consolidation zone A is formed obliquely from the upper end of the consolidation zone B. it is an example of forming a consolidated zone B 5 continuous with.

【0053】その際、固結ゾーンB5 を固結ゾーンBに
沿って一方向に連続する断面略V字状に形成してもよ
く、また固結ゾーンBが固結ゾーンAの周囲に平面円形
状、矩形状または多角形状に形成されているときは、固
結ゾーンB5 は固結ゾーンBの形状に従って、逆円錐
状、逆四角錐状または逆多角錐状に形成してもよい。
At this time, the consolidation zone B 5 may be formed to have a substantially V-shaped cross-section that is continuous in one direction along the consolidation zone B. circular, when formed in a rectangular shape or a polygonal shape, consolidation zone B 5 in accordance with the shape of the consolidation zone B, reverse conical, or may be formed in an inverted quadrangular pyramid shape or a reverse pyramidal shape.

【0054】そして、図13と図14はそれぞれ、固結
ゾーンAの中に隔壁として固結ゾーンB3 を所定間隔お
きに形成した例である。また図15は、構造物1が建つ
付近の地盤中に固結ゾーンAを形成し、この固結ゾーン
Aの周囲に固結ゾーンBをほぼ斜め下方に形成して、固
結ゾーンBで固結ゾーンAを包み込むようにした例であ
る。
[0054] Then, Figures 13 and 14, an example of forming a consolidated zone B 3 as a partition wall at predetermined intervals in the consolidation zone A. FIG. 15 shows that a consolidation zone A is formed in the ground near the structure 1, and a consolidation zone B is formed around the consolidation zone A almost diagonally downward. This is an example in which the binding zone A is wrapped.

【0055】その際、固結ゾーンAを一方向に連続する
断面略逆三角形状に形成し、固結ゾーンBを固結ゾーン
Aの外形に沿って断面略V字状に形成してもよく、ま
た、固結ゾーンAを逆円錐状、逆四角錐状または逆多角
錐状に形成し、固結ゾーンBを固結ゾーンAの外形に沿
って断面略V字状に形成してもよい。
At this time, the consolidation zone A may be formed in a substantially inverted triangular cross section continuous in one direction, and the consolidation zone B may be formed in a substantially V-shaped cross section along the outer shape of the consolidation zone A. Alternatively, the consolidation zone A may be formed in an inverted conical shape, an inverted quadrangular pyramid shape, or an inverted polygonal pyramid shape, and the consolidation zone B may be formed in a substantially V-shaped cross section along the outer shape of the consolidation zone A. .

【0056】また図16は、構造物1が建つ付近の地盤
中に固結ゾーンAを形成し、この固結ゾーンAの周囲に
固結ゾーンBをほぼ垂直方向に形成し、さらに固結ゾー
ンBの上端部からほぼ斜め下方に固結ゾーンAを包み込
むように固結ゾーンB5 を形成した例である。
FIG. 16 shows that a consolidation zone A is formed in the ground near the structure 1 and a consolidation zone B is formed around the consolidation zone A in a substantially vertical direction. it is an example of forming a consolidated zone B 5 so as to wrap the consolidation zone a substantially diagonally downward from the upper end of the B.

【0057】その際、両側の固結ゾーンBを一方向に平
行に連続して形成し、固結ゾーンAを固結ゾーンBに沿
って一方向に連続する断面略逆三角形状に形成し、さら
に固結ゾーンB5 を固結ゾーンAの外形に沿って断面略
V字状に形成してもよい。
At that time, the consolidation zones B on both sides are continuously formed in parallel in one direction, and the consolidation zone A is formed in a substantially inverted triangular cross section continuous in one direction along the consolidation zone B; it may be formed in a substantially V-shaped cross section along the outer shape of the further consolidation zone B 5 caking zone a.

【0058】または、固結ゾーンBを固結ゾーンAの周
囲を包み込むように平面円形状、矩形状または多角形状
に形成し、固結ゾーンAを固結ゾーンBの平面形状に沿
って逆円錐状、逆四角錐状または逆多角錐状に形成し、
さらに固結ゾーンB5 を固結ゾーンAの外形に沿って断
面略V字状に形成してもよい。
Alternatively, the consolidation zone B is formed in a plane circular shape, a rectangular shape or a polygonal shape so as to surround the consolidation zone A, and the consolidation zone A is formed into an inverted cone along the plane shape of the consolidation zone B. Shaped, inverted quadrangular pyramid or inverted polygon pyramid,
It may be formed in a substantially V-shaped cross section along the outer shape of the further consolidation zone B 5 caking zone A.

【0059】なお、いずれの例においても、固結ゾーン
1 〜B5 は固結ゾーンBと同じものである。次に、固
結ゾーンBとして固結ゾーンAよりも止水性の高い固結
ゾーンを用いた例を述べる。ここで止水性の高い固結ゾ
ーンとは固結ゾーンAよりも浸透性の良い注入材で固結
し優れた止水ゾーンを形成した注入ゾーンを意味する。
In each case, the consolidation zones B 1 to B 5 are the same as the consolidation zone B. Next, an example in which a consolidation zone having a higher water stopping property than the consolidation zone A is used as the consolidation zone B will be described. Here, the consolidation zone having a high water-stopping property means an injection zone formed by consolidating with an injection material having a higher permeability than the consolidation zone A to form an excellent water-stopping zone.

【0060】例えば、固結ゾーンBは溶液型シリカグラ
ウトで土粒子間浸透を主体として固結したゾーン,固結
ゾーンAはセメントや粘土等の懸濁液やセメントやスラ
グや粘土をベースとした懸濁液グラウト、或いはこれに
ゲル化剤や溶液型シリカを加えた懸濁液グラウト、或い
は溶液型シリカにベントナイト等の粘土を加えた懸濁型
グラウト、或いはゲル化時間の短いグラウトで脈状注入
を主体として固結したゾーンである。
For example, the consolidation zone B is a zone in which solution-type silica grout is consolidated mainly by infiltration between soil particles, and the consolidation zone A is based on a suspension of cement, clay, or the like, or on cement, slag, or clay. A suspension grout, a suspension grout to which a gelling agent or solution-type silica is added, or a suspension grout to which solution-type silica is added with clay such as bentonite, or a pulse having a short gelation time. This zone is solidified mainly by injection.

【0061】この固結ゾーンAは脈状注入等であった
り、土粒子間浸透が不充分であったり、浸透距離が不充
分であったりで、止水性が少ない固結ゾーンである。従
って、土粒子の間隙を充分固結物で充填できていない。
The consolidation zone A is a consolidation zone having a low water-stopping property due to vein injection or the like, insufficient permeation between soil particles, or insufficient permeation distance. Therefore, the gap between the soil particles cannot be sufficiently filled with the solidified matter.

【0062】この組み合わせによれば固結ゾーンBは止
水性に優れているため、負のダイレタンシーの発生を防
ぎ、外部からの過剰間隙水圧の伝播を遮断し、周辺の液
状化現象を遮断する。
According to this combination, since the consolidation zone B is excellent in waterproofness, the occurrence of negative dilatency is prevented, the propagation of excessive pore water pressure from the outside is blocked, and the surrounding liquefaction phenomenon is blocked.

【0063】そしてこのゾーンによって地震による剪断
応力を低減する一方、固結ゾーンA内では土粒子間浸透
は不充分であるものの、固結ゾーンBの拘束効果により
注入液は周辺に逸脱されにくく、注入液が浸透しきれな
かった部分でも圧縮され密になっているため、負のダイ
レタンシーが生じにくくなっている。
While this zone reduces the shear stress caused by the earthquake, the infiltration between the soil particles is insufficient in the consolidation zone A, but the injected liquid is hardly deviated to the periphery due to the restraining effect of the consolidation zone B. Since the portion where the infusate has not completely penetrated is compressed and dense, negative dilatancy is less likely to occur.

【0064】即ち、固結ゾーンBで地震による剪断応力
が低減しているため、固結ゾーンAが土粒子間浸透が不
充分であっても液状化にまで至らないで済むことにな
る。このため、固結ゾーンAは浸透性の悪い、或いはゲ
ル化を伴わない安価な懸濁型注入材や間隙填充率が少な
くなるゲル化時間の短い注入材を用いることができ、し
かも固結ゾーンBによる拘束効果で脈状逸脱することな
く注入でき、極めて経済的に液状化防止効果を挙げるこ
とができる。
That is, since the shearing stress due to the earthquake is reduced in the consolidation zone B, even if the consolidation zone A has insufficient permeation between the soil particles, it does not have to be liquefied. For this reason, in the consolidation zone A, an inexpensive suspension-type injection material having poor permeability or without gelation or an injection material with a short gelation time in which the gap filling rate is reduced can be used. Due to the restraining effect of B, injection can be performed without deviating from the pulse shape, and the effect of preventing liquefaction can be provided extremely economically.

【0065】また、本発明は止水性の余さの程度を示す
要素としてゲルの離奬水の大小も含めるものとする。一
般に、離漿水は、溶液型シリカグラウトではシリカ分以
外のイオンを多く含んでいる場合の方が多い。例えば、
水ガラスをイオン交換樹脂やイオン交換膜で脱塩したシ
リカグラウト、或いはシリカ分の粒径を大きくしたシリ
カグラウトは離漿水がきわめて少ない。
The present invention also includes the size of the gel deionized water as an element indicating the degree of the water stoppage margin. In general, syneresis water in solution-type silica grout often contains a large amount of ions other than silica. For example,
Silica grout obtained by desalting water glass with an ion exchange resin or an ion exchange membrane, or silica grout having a large particle diameter of silica has very little syneresis water.

【0066】当然のことながら、離漿水の少ない方で固
結したゾーンの方が土粒子間のゲルの充填率が高く、透
水性は低い。従って、離漿水の大きい方のグラウトで固
結ゾーンAを形成し、離漿水の少ない方のグラウトで固
結ゾーンBを形成すればよい。その効果は上述したと同
じである。
As a matter of course, the zone solidified with less syneresis water has a higher gel filling rate between soil particles and a lower water permeability. Therefore, the consolidation zone A may be formed with the larger grout of syneresis water, and the consolidation zone B may be formed with the smaller grout of syneresis water. The effect is the same as described above.

【0067】また、 本発明は、注入工法により作業性
と経済性に優れた改良地盤を形成するものであって、固
結ゾーンAをそれよりも強度や止水性の優れた固結ゾー
ンBでほぼ垂直方向に包み込むようにして地盤改良する
ことにより、固結ゾーンBの枠の間隔を大きくとること
ができ、また固結ゾーンAは固結ゾーンBの拘束効果に
よって経済的な材料を大きな削孔間隙で注入すれば良
く、極めて経済的かつ作業性に優れた液状化防止が可能
になる。
Further, the present invention is to form an improved ground excellent in workability and economy by the pouring method, wherein the consolidation zone A is formed by the consolidation zone B which is more excellent in strength and water stopping property. By improving the ground in such a manner that the ground is wrapped in a substantially vertical direction, the space between the frames of the consolidation zone B can be increased, and the consolidation zone A greatly reduces economical material by the restraining effect of the consolidation zone B. The liquefaction can be prevented extremely economically and excellently in operability only by injecting in the pore gap.

【0068】同様の理由で、注入工法により密実に形成
(地盤改良)された固結ゾーンBの内部に注入工法によ
り粗く形成(地盤改良)された固結ゾーンAの例を示
す。前述の例では、浸透しきれない注入材を用いて固結
が不充分な部分が生ずるものであるが、ここにいう粗く
形成(地盤改良)されたとは地盤改良の程度が少ないこ
とをいうことであって、例えば、図17と図18は固結
ゾーンBの内部に意識的に固結部分B6 と未固結部分A
2 を、また図19と図20は固結ゾーンBの内部に固結
部分B6 と未固結部分A2 を意識的に組み合わせて形成
した例である。
For the same reason, an example of the consolidation zone A coarsely formed (ground improvement) by the injection method inside the consolidation zone B densely formed (ground improvement) by the injection method is shown. In the above-mentioned example, an insufficiently consolidated portion is formed by using an infused material that cannot be completely penetrated, but the term “roughly formed” (ground improvement) as used herein means that the degree of ground improvement is small. For example, FIGS. 17 and 18 show that the solidified portion B 6 and the unsolidified portion A
2 and FIGS. 19 and 20 show an example in which a consolidated portion B 6 and an unconsolidated portion A 2 are intentionally combined in a consolidated zone B.

【0069】この場合も、前述と同様に固結ゾーンBの
存在のもとに固結ゾーンBの効果で経済的に液状化防止
が可能になる。本発明において、固結ゾーンAと固結ゾ
ーンBの内容をどのように組み合わせるかについては、
地盤条件に応じて効果と経済性を考慮して決定すればよ
い。
Also in this case, the liquefaction can be economically prevented by the effect of the consolidation zone B in the presence of the consolidation zone B as described above. In the present invention, as to how to combine the contents of the consolidation zone A and the consolidation zone B,
What is necessary is just to determine in consideration of an effect and economic efficiency according to ground conditions.

【0070】また、本発明において、水平方向に浸透性
の大きい層が存在している場合、水平方向に懸濁型グラ
ウトやゲル時間の短いグラウトで固結することを併用で
きることは当然である。
In the present invention, when a layer having a high permeability in the horizontal direction is present, it is natural that the suspension can be combined with the grout having a short gelling time in the horizontal direction.

【0071】[0071]

【発明の効果】この発明は以上説明した通りであり、特
に本発明は固結ゾーンBには、地震による剪断応力の低
減と過剰間隙水圧伝播の遮断,周辺の液状化現象の遮
断,固結ゾーンAを固結する注入液の拘束を分担させ、
固結ゾーンAには負のダイレタンシーの発生を防ぐこと
を分担させることにより、固結ゾーンAと固結ゾーンB
が一体となって砂質地盤の間隙水圧の地震時の繰り返し
剪断応力の上昇によって生ずる間隙水圧の上昇、有効応
力の減少を防ぎ、それによって作業性と経済性を満たす
効果的な液状化防止を可能にしたものである。
The present invention has been described above. In particular, the present invention provides a consolidation zone B in which the shearing stress due to an earthquake is reduced, the excess pore water pressure is blocked, the surrounding liquefaction phenomenon is blocked, and the consolidation is performed. Sharing the constraint of the infusate that solidifies zone A,
The consolidation zone A and the consolidation zone B are assigned to the consolidation zone A to prevent the occurrence of negative dilatancy.
Work together to prevent the rise in pore water pressure and the decrease in effective stress caused by the repeated shear stress increase in the pore water pressure of sandy ground, thereby effectively preventing liquefaction that satisfies workability and economy. It is made possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】液状化現象を生ずる地盤の断面図である。FIG. 1 is a sectional view of a ground where a liquefaction phenomenon occurs.

【図2】構造物の基礎付近のみを注入工法で地盤改良し
た地盤の断面である。
FIG. 2 is a cross section of the ground in which only the vicinity of the foundation of the structure has been ground-improved by an injection method.

【図3】地盤を注入工法によって格子状に地盤改良した
地盤の断面図である。
FIG. 3 is a cross-sectional view of the ground obtained by improving the ground into a lattice shape by an injection method.

【図4】本発明の液状化防止効果を示す注入工法による
改良地盤の断面図である。
FIG. 4 is a sectional view of an improved ground by an injection method showing a liquefaction preventing effect of the present invention.

【図5】(a)は改良地盤の平面図の模式図、(b)は
高強度固結ゾーンと低強度固結ゾーンの剪断特性の傾向
を示す図である。
FIG. 5A is a schematic diagram of a plan view of the improved ground, and FIG. 5B is a diagram showing a tendency of shear characteristics of a high-strength consolidation zone and a low-strength consolidation zone.

【図6】本発明の注入工法による改良地盤の断面図であ
る。
FIG. 6 is a cross-sectional view of the improved ground by the injection method of the present invention.

【図7】本発明の注入工法による改良地盤の断面図であ
る。
FIG. 7 is a cross-sectional view of the improved ground by the pouring method of the present invention.

【図8】本発明の注入工法による改良地盤の断面図であ
る。
FIG. 8 is a cross-sectional view of the improved ground by the injection method of the present invention.

【図9】本発明の注入工法による改良地盤の断面図であ
る。
FIG. 9 is a cross-sectional view of the improved ground by the pouring method of the present invention.

【図10】(a),(b)は本発明の注入工法による改
良地盤の断面図である。
10 (a) and 10 (b) are cross-sectional views of an improved ground by the injection method of the present invention.

【図11】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 11 is a cross-sectional view of the improved ground by the injection method of the present invention.

【図12】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 12 is a cross-sectional view of the improved ground by the injection method of the present invention.

【図13】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 13 is a sectional view of an improved ground by the pouring method of the present invention.

【図14】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 14 is a cross-sectional view of the improved ground by the pouring method of the present invention.

【図15】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 15 is a cross-sectional view of the improved ground by the pouring method of the present invention.

【図16】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 16 is a cross-sectional view of the improved ground by the injection method of the present invention.

【図17】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 17 is a cross-sectional view of an improved ground by the pouring method of the present invention.

【図18】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 18 is a cross-sectional view of the improved ground by the pouring method of the present invention.

【図19】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 19 is a cross-sectional view of the improved ground by the injection method of the present invention.

【図20】本発明の注入工法による改良地盤の断面図で
ある。
FIG. 20 is a cross-sectional view of the improved ground by the injection method of the present invention.

【符号の説明】[Explanation of symbols]

A 固結ゾーン(低強度固結体) A2 未固結部分 B 固結ゾーン(高強度固結体) B1 固結ゾーン(高強度固結体) B2 固結ゾーン(高強度固結体) B3 固結ゾーン(高強度固結体) B4 固結ゾーン(高強度固結体) B5 固結ゾーン(高強度固結体) B6 固結部分 1 構造物 2 注入管 3 地中管A consolidated zone (low intensity Katayuitai) A 2 Not consolidated portion B consolidation zone (high strength Katayuitai) B 1 solidification zone (high strength Katayuitai) B 2 consolidation zone (high strength consolidated body) B 3 solidification zone (high strength Katayuitai) B 4 consolidation zone (high strength Katayuitai) B 5 solidification zone (high strength Katayuitai) B 6 consolidated portion 1 structure 2 injection pipe 3 Underground pipe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) E02D 27/34 E02D 3/12 101 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) E02D 27/34 E02D 3/12 101

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 注入工法による砂質地盤の液状化防止工
法であって、構造物付近の地盤とその周囲の地盤に固結
ゾーンAと固結ゾーンBを注入工法によってそれぞれ形
成し、前記固結ゾーンAはゲル化時間の長い注入液を用
いて形成し、前記固結ゾーンBは水ガラスを原料とした
シリカ系注入液を用いて前記固結ゾーンAより硬質に、
前記固結ゾーンAより止水性を有するように、かつ前記
固結ゾーンAの周りを包み込むようにほぼ垂直方向また
は斜め下方向に形成することを特徴とする液状化防止工
法。
1. A method for preventing liquefaction of sandy ground by an injection method, wherein a consolidation zone A and a consolidation zone B are respectively formed on a ground near a structure and a ground therearound by the injection method. Use the injection solution with long gelation time
The consolidation zone B is harder than the consolidation zone A using a silica-based injection liquid made of water glass,
A liquefaction-preventing method characterized by being formed in a substantially vertical or obliquely downward direction so as to have a more water-blocking property than the consolidation zone A and wrap around the consolidation zone A.
【請求項2】 注入工法による砂質地盤の液状化防止工
法であって、構造物付近の地盤とその周囲の地盤に固結
ゾーンAと固結ゾーンBをそれぞれ注入工法によって形
成し、前記固結ゾーンAはゲル化時間の長い注入液を用
いて形成し、前記固結ゾーンBは水ガラスを原料とした
シリカ系注入液を用いてほぼ垂直方向または斜め方向に
密実に形成し、かつ前記固結ゾーンAは前記固結ゾーン
Bより粗く形成することを特徴とする液状化防止工法。
2. A method for preventing liquefaction of sandy ground by an injection method, wherein a consolidation zone A and a consolidation zone B are respectively formed on a ground near a structure and a ground around the structure by the injection method. In the sintering zone A, use an injection solution with a long gelation time.
The consolidation zone B is formed densely in a substantially vertical or oblique direction using a silica-based injection liquid made of water glass, and the consolidation zone A is formed more coarsely than the consolidation zone B. Liquefaction prevention method characterized by performing.
【請求項3】 固結ゾーンBの内部に固結部分と未固結
部分を組み合わせて形成することを特徴とする請求項2
記載の液状化防止工法。
3. An unconsolidated portion inside the consolidation zone B
3. A combination of parts.
Liquefaction prevention method described.
【請求項4】 注入工法による砂質地盤の液状化防止工
法であって、構造物付近の地盤に固結ゾーンAを注入工
法によって形成し、この固結ゾーンA内に隔壁として請
求項1,2または3記載の固結ゾーンBを複数形成する
ことを特徴とする液状化防止工法。
4. A method for preventing liquefaction of sandy ground by an injection method, wherein a consolidation zone A is formed in the ground near a structure by an injection method, and a partition is formed in the consolidation zone A as a partition. 4. A method for preventing liquefaction, comprising forming a plurality of consolidation zones B according to 2 or 3.
【請求項5】 水ガラスを原料としたシリカ系注入液と
して、水ガラスのアルカリを酸で中和除去し、或いはイ
オン交換樹脂やイオン交換膜を用いた電気透析により水
ガラスのアルカリを除去或いは低減したもの、またはス
ラグやセメント、或いは微粒子スラグや微粒子セメント
溶液性シリカの懸濁液をベースにしたものを用いるこ
とを特徴とする請求項1、2、3または4記載の液状化
防止工法。
5. A silica-based injection liquid made of water glass as a raw material, wherein alkali of water glass is neutralized and removed with an acid, or alkali of water glass is removed by electrodialysis using an ion exchange resin or an ion exchange membrane. Reduced or slag or cement or fine slag or fine cement
5. A liquefaction-preventing method according to claim 1, wherein the suspension is based on a suspension of silica and a solution silica.
JP26580799A 1999-09-20 1999-09-20 Liquefaction prevention method for sandy ground by injection method Expired - Fee Related JP3342000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26580799A JP3342000B2 (en) 1999-09-20 1999-09-20 Liquefaction prevention method for sandy ground by injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26580799A JP3342000B2 (en) 1999-09-20 1999-09-20 Liquefaction prevention method for sandy ground by injection method

Publications (2)

Publication Number Publication Date
JP2001090092A JP2001090092A (en) 2001-04-03
JP3342000B2 true JP3342000B2 (en) 2002-11-05

Family

ID=17422331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26580799A Expired - Fee Related JP3342000B2 (en) 1999-09-20 1999-09-20 Liquefaction prevention method for sandy ground by injection method

Country Status (1)

Country Link
JP (1) JP3342000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162337A (en) * 2005-12-14 2007-06-28 Shimizu Corp Soil improving apparatus and liquefaction preventing method
JP2008063787A (en) * 2006-09-06 2008-03-21 Japan Found Eng Co Ltd Liquefaction preventing structure
JP5569849B1 (en) * 2013-07-12 2014-08-13 強化土株式会社 Liquefaction countermeasure construction method and liquefaction countermeasure improvement ground
JP2018031134A (en) * 2016-08-23 2018-03-01 公益財団法人鉄道総合技術研究所 Composite type liquefaction ground improvement method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002565A (en) * 2005-06-24 2007-01-11 Kajima Corp Local part slide countermeasure work of existing structure
JP4678675B2 (en) * 2005-07-19 2011-04-27 財団法人鉄道総合技術研究所 Basic structure and construction method
JP4788001B2 (en) * 2006-02-17 2011-10-05 国立大学法人九州大学 Liquefaction prevention structure and construction method
JP5062559B2 (en) * 2007-06-20 2012-10-31 清水建設株式会社 Ground improvement method
JP5022203B2 (en) * 2007-12-14 2012-09-12 鹿島建設株式会社 Tank ground improvement method
JP5093734B2 (en) * 2010-10-19 2012-12-12 公益財団法人鉄道総合技術研究所 Basic structure and construction method
JP5869904B2 (en) * 2012-02-15 2016-02-24 株式会社テノックス Basic structure of small buildings
JP5158394B1 (en) * 2012-06-18 2013-03-06 強化土株式会社 Ground improvement device
JP2014084554A (en) * 2012-10-19 2014-05-12 Maeda Corp Ground liquefaction prevention method using high-viscosity fluid material
JP5190615B1 (en) * 2012-11-05 2013-04-24 強化土株式会社 Ground improvement method by desaturation of ground
JP6493834B2 (en) * 2014-04-15 2019-04-03 公益財団法人鉄道総合技術研究所 Ground liquefaction countermeasure method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162337A (en) * 2005-12-14 2007-06-28 Shimizu Corp Soil improving apparatus and liquefaction preventing method
JP4573123B2 (en) * 2005-12-14 2010-11-04 清水建設株式会社 Ground improvement device and liquefaction prevention method
JP2008063787A (en) * 2006-09-06 2008-03-21 Japan Found Eng Co Ltd Liquefaction preventing structure
JP5569849B1 (en) * 2013-07-12 2014-08-13 強化土株式会社 Liquefaction countermeasure construction method and liquefaction countermeasure improvement ground
JP2018031134A (en) * 2016-08-23 2018-03-01 公益財団法人鉄道総合技術研究所 Composite type liquefaction ground improvement method

Also Published As

Publication number Publication date
JP2001090092A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP3342000B2 (en) Liquefaction prevention method for sandy ground by injection method
CN111365005A (en) Reinforcing structure and method for shield tunnel lower-penetrating elevated bridge foundation
CN107386297A (en) Deep weathered rock formation foundation ditch water sealing structure
CN109577322A (en) A kind of constructing device for inside soil body existing pile foundation pile extension
CN107034898A (en) A kind of combined type foundation ditch concrete supporting structure
CN111851512A (en) Construction method of deep foundation pit retaining wall structure and underground space structure
KR19980035289A (en) Prevention method of disaster caused by liquefaction in soft sand or sandy ground during earthquake and restoration method of disaster ground
US20120163923A1 (en) Structure supporting system
CN216339559U (en) Advanced integral curing structure of ultra-soft site foundation pit
CN213897154U (en) Soft soil foundation pit bottom curing structure
CN207032256U (en) Deep weathered rock formation foundation ditch water sealing structure
CN103266624B (en) Method for supporting oil and gas pipeline penetrating through karst active zone
CN112281891A (en) Multi-pile type composite pile foundation structure, pile foundation and construction method thereof
JP3062534B2 (en) Improvement method of foundation ground
CN211950495U (en) Reinforcing structure for short-distance passing through existing elevated bridge foundation by shield tunnel
CN214993745U (en) Be applicable to artifical hole digging pile foundation pile week slip casting and consolidate subassembly
CN217651802U (en) Compound anchor rope supporting construction of double round milling cement soil wall
JP2876471B2 (en) Lateral flow countermeasure structure
JP3841679B2 (en) Ground improvement method
CN218880866U (en) Lifting foot supporting system under condition of broken bedrock of soil-rock binary foundation pit
CN215211065U (en) Supporting structure
CN218346237U (en) Combined bridge foundation structure
CN220908416U (en) Temporary enclosure structure for foundation pit
JPH03103535A (en) Countermeasure structure for liquefaction of building
CN107476328A (en) A kind of prefabricated pier foundation construction of driving into type

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

R150 Certificate of patent or registration of utility model

Ref document number: 3342000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees