JPH03103535A - Countermeasure structure for liquefaction of building - Google Patents

Countermeasure structure for liquefaction of building

Info

Publication number
JPH03103535A
JPH03103535A JP23881689A JP23881689A JPH03103535A JP H03103535 A JPH03103535 A JP H03103535A JP 23881689 A JP23881689 A JP 23881689A JP 23881689 A JP23881689 A JP 23881689A JP H03103535 A JPH03103535 A JP H03103535A
Authority
JP
Japan
Prior art keywords
building
subsoil
underground wall
ground
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23881689A
Other languages
Japanese (ja)
Other versions
JPH089867B2 (en
Inventor
Shinji Nishimura
真二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23881689A priority Critical patent/JPH089867B2/en
Publication of JPH03103535A publication Critical patent/JPH03103535A/en
Publication of JPH089867B2 publication Critical patent/JPH089867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Abstract

PURPOSE:To control a liquefied phenomenon and to stabilize the subsoil by loading a soil cement layer to the outside of an underground wall consisting of steel pipes driven up to a hard bed in the subsoil around a building and, at the same time, filling the insides of the steel pipes with cement. CONSTITUTION:Steel pipes 8 are driven in succession up to a hard bed 4 in the subsoil 1 around a building 5 to be constructed, and an underground wall 7 used as a retaining wall is provided. After that, a soil cement layer 10 is loaded to the outside of the underground wall 7 and, at the same time, the inside of each steel pipe 18 is filled with soil cement 11. Then, a circumferential wall 14 of the building 5 constructed on the foundation piles 6 and the upper parts of the steel pipes 8 are held together as a unit through studs 14. The subsoil of the building 5 is separated from an outside liquefaction dangerous layer 3 through the underground wall 7, and the shearing deformation in the inside subsoil is prevented. According to the constitution, the constructed subsoil can be stabilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、地震による液状化の危険のある地盤域におけ
る建造物の肢状化対策構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a structure for preventing limbs of buildings in ground areas where there is a risk of liquefaction due to earthquakes.

(従来の技術) 一般に、水分を多く含む砂質地盤では、地震による外力
が加わったときに、地盤があたかも液体のような性状と
なる、いわゆる液状化現象がおこることが知られている
。この現象は、砂質地盤の局部せん断変形により砂質地
盤の間隙水圧が急上昇し、水流を生じて砂粒子が流動す
ることによって起こるものである。
(Prior Art) Generally, it is known that in sandy ground containing a lot of water, when an external force due to an earthquake is applied, the ground becomes liquid-like, a so-called liquefaction phenomenon. This phenomenon occurs when the pore water pressure of the sandy ground rapidly increases due to local shear deformation of the sandy ground, creating water currents that cause sand particles to flow.

従来、このような地盤液状化の対策としては、サンドコ
ンパクションのような締固め工法、セメントや地盤固化
剤などを混入する混合処理工法、肢状化しにくい土に換
える置換工法、地盤中に砕石などの柱を多数設置する排
水工法等が知られているが、いずれも施工が大規模とな
るばかりでなく、施工場所の制約を受けることが多い。
Conventionally, countermeasures against ground liquefaction include compaction methods such as sand compaction, mixed treatment methods that incorporate cement or soil solidifying agents, replacement methods that replace soil with soil that is less likely to form limbs, and the use of crushed stone in the ground. Drainage construction methods that install a large number of pillars are known, but not only do they require large-scale construction, but they are often subject to restrictions on the construction site.

そこで、上記とは別の工法として、建造物の基礎杭とし
て、多孔鯛管内に砕石等を充填したものを使用して、過
剰間隔水圧を杭を通して上方へ逃すようにした工法や、
建造物の周囲の地盤中に多孔壁体を埋設して過剰間隙水
圧を消散させるようにした工法が提案されてきた。
Therefore, as a construction method different from the above, a construction method in which a porous sea bream pipe filled with crushed stone etc. is used as the foundation pile of the building, and the excess water pressure is released upward through the pile.
Construction methods have been proposed in which porous walls are buried in the ground around buildings to dissipate excess pore water pressure.

(発明が解決しようとする課題) しかし、前者の多孔鋼管杭によるものでは、杭としての
強度上に難点があるばかりでなく、多くの孔の存在によ
って側方への流動が生じるため、過剰間隙水圧の消散が
十分行われないという問題がある。また、後者の多孔壁
体を埋設するものでも、やはり過剰間隙水圧を十分消散
させ得ることにはならない。しかも、それらの工法では
、過剰間隙水圧を上方へ逃すことについてはある程度の
効果を有してはいるが、地震時に生ずる地盤の側方への
流動を抑えるには不十分である。
(Problem to be Solved by the Invention) However, the former type of perforated steel pipe piles not only has problems with the strength of the pile, but also has many holes that cause lateral flow, resulting in excessive gaps. There is a problem that water pressure is not sufficiently dissipated. Furthermore, even in the case where the porous wall is buried, excess pore water pressure cannot be sufficiently dissipated. Moreover, although these construction methods have some effect in releasing excess pore water pressure upward, they are not sufficient to suppress the lateral movement of the ground that occurs during an earthquake.

さらに、液状化の危険のあるところでは地盤自体の支持
力が弱いため、基礎杭に長大なものを要したり、基礎杭
の使用数を多くする等、特別の支持力増強手段が必要と
され、施工費が面倒で多額の経費を要することとなって
いた。
Furthermore, in areas where there is a risk of liquefaction, the bearing capacity of the ground itself is weak, so special measures to increase the bearing capacity are required, such as requiring longer foundation piles or increasing the number of foundation piles. However, the construction cost was troublesome and required a large amount of money.

本発明は、上記従来の問題にかんがみ、建造物の地下室
工事の土留として施設される地中壁を利用し、これと建
造物とを一体的に結合させるようにして、建造物造築地
盤への地震による液状化の波及を抑制すると共に、耐震
性及び支持力の大きな構造物を得ようとするものである
In view of the above-mentioned conventional problems, the present invention utilizes an underground wall installed as earth retaining for construction of the basement of a building, and connects the wall and the building integrally to the building construction ground. The aim is to suppress the spread of liquefaction caused by earthquakes, and to create structures with high earthquake resistance and supporting capacity.

(課題を解決するための手段) 上記の目的を達成するための本発明の構或について、実
施例と対応する図面を参照して説明すると、本発明は、
造築する建造物5を囲んだ地盤中に、鋼管8.8を連続
して結合し、その外側にフィルセメント層IOを被着す
ると共に、各鋼管8内にフィルセメントl1を充填した
地中壁7を施設し、この地中壁7に内接して建造物5を
造築し、地中壁7の上部と建造物5とを一体的に結合し
たことを特徴とするものである。
(Means for Solving the Problems) The structure of the present invention for achieving the above object will be described with reference to embodiments and corresponding drawings.
Steel pipes 8.8 are continuously connected in the ground surrounding the building 5 to be constructed, a fill cement layer IO is applied on the outside, and each steel pipe 8 is filled with fill cement l1. The structure is characterized in that a wall 7 is installed, a structure 5 is constructed inscribed in this underground wall 7, and the upper part of the underground wall 7 and the structure 5 are integrally connected.

(作用) 本発明は上記のように構成されており、建造物5の造築
地盤は地中壁7によって外側の地盤と隔離されることに
なる。したがって、地震により生ずる外側地盤からの過
剰間隙水圧の影響を抑制することになると共に、地盤の
側方への流動を抑え、地中壁7の内側地盤のせん断変形
を防止することになる。
(Function) The present invention is configured as described above, and the constructed ground of the building 5 is separated from the outside ground by the underground wall 7. Therefore, the influence of excessive pore water pressure from the outer ground caused by an earthquake is suppressed, and the lateral flow of the ground is suppressed, and shear deformation of the inner ground of the underground wall 7 is prevented.

そして、地中壁7は鋼管を一体的に連結して、その周囲
にフィルセメント層10を被着すると共に、各鯛管内に
もソイルセメントIIを充填したので、剛強に形成され
、建造に対し大きな支持力を発揮することになる。また
、地中壁は重1構造物となるため、液状化発生時におけ
る建造物の浮上りに対しても、その抑制力としてイT用
することにもなる。
The underground wall 7 is formed by integrally connecting steel pipes, and a fill cement layer 10 is applied around the steel pipes, and soil cement II is also filled in each sea bream pipe, so it is made strong and strong enough to withstand construction. It will provide great support. In addition, since the underground wall is a heavy structure, it is also used as a restraining force against the floating of the building when liquefaction occurs.

(尖施例) 以下、本発明の実施例について図面を参照して説明する
(Point Embodiment) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図、第2図において、■は地震によって液状化の危
険のある地盤で、一般には表土層2の下に軟弱な液状化
危険層(飽和層)3が相当の深さにわたり形威され、そ
の下は硬い地層3となっている。
In Figures 1 and 2, ■ indicates the ground that is at risk of liquefaction due to an earthquake, and generally a soft liquefaction risk layer (saturated layer) 3 is formed under the topsoil layer 2 over a considerable depth. , and below that is hard stratum 3.

5は上記の地盤lに造築される建造物で、硬い地盤層4
中の深くまで根入れして沈設した基礎抗6.6によって
支持される。7はこの建造物5を囲んで形成された鋼管
の連続結合とソイルセメントとの複合による地中壁で、
第3図、第4図にも示すように、多数の鋼管8.8をそ
の下部が液状化危険層3の下にある硬い地層4に根入れ
するように地盤I中に沈設して互に継手9.9により結
合し、それらの外側にはソイルセメント層IOを被着す
ると共に、各鋼管8内にも中詰ソイルセメント11を充
填した構成となっている。なお、この場合、鋼管8には
、外周に多数の突条l2を螺設した縞鋼管を使用すれば
、鋼管8とソイルセメントlOとの結合が強化される。
5 is a structure built on the above-mentioned ground l, with hard ground layer 4
It is supported by a foundation shaft 6.6 that is deeply rooted and sunk inside. 7 is an underground wall formed around this building 5, which is a combination of continuous steel pipes and soil cement;
As shown in Figs. 3 and 4, a large number of steel pipes 8.8 are sunk into the ground I so that their lower parts are rooted in the hard stratum 4 below the liquefaction danger layer 3. They are connected by joints 9, 9, and a soil cement layer IO is applied to the outside thereof, and each steel pipe 8 is also filled with filling soil cement 11. In this case, if the steel pipe 8 is a striped steel pipe with a large number of protrusions 12 threaded around its outer periphery, the bond between the steel pipe 8 and the soil cement 10 will be strengthened.

また、各鋼管8の上部には、建造物5の周壁l3と接す
る側に、周壁l2とのコネクターとして周壁l3のコン
クリート中に埋設されるスタッド14.14が突設され
ている。このスタッド14.14は、第3図に示すよう
に、鋼管8に固着した三角形状のスタツド台片l5に、
現場でアークスタッド溶接により取付けがなされ、斜め
上方及び下方に向けて突出されることになる。
Further, on the upper part of each steel pipe 8, on the side in contact with the peripheral wall l3 of the building 5, a stud 14, 14 is provided to protrude and be buried in the concrete of the peripheral wall l3 as a connector with the peripheral wall l2. As shown in FIG. 3, this stud 14.14 is attached to a triangular stud plate l5 fixed to the steel pipe 8.
It will be installed in the field by arc stud welding and will project diagonally upward and downward.

地中壁7は建造物5の造築に先立って施設するが、その
際、周壁l3と接する地中壁7の上部内側にはフィルセ
メント層IOを被着しないで、鋼管8.8が周壁l3と
直接当るようにする。地中壁7の施設後は、その内側の
地盤を堀り下げ、基礎杭6,6を沈設し、そ・の上に建
造物5を造築する。建造物5はその地下部分の周壁I3
が地中壁7の鋼管8.8と接し、その打設したコンクリ
ート中に各鋼管8より突出したスタッド14.14が埋
設され、地中壁7の上部と建造物5の地下部分とが一体
的な剛結合となるのである。
The underground wall 7 is installed prior to the construction of the structure 5, but at that time, the fill cement layer IO is not applied to the upper inner side of the underground wall 7 in contact with the surrounding wall l3, and the steel pipes 8.8 are installed on the surrounding wall. Make it directly contact l3. After constructing the underground wall 7, the ground inside it is excavated, foundation piles 6, 6 are sunk, and the structure 5 is constructed on top of the foundation piles 6, 6. Building 5 is the surrounding wall I3 of the underground part.
are in contact with the steel pipes 8.8 of the underground wall 7, and studs 14.14 protruding from each steel pipe 8 are buried in the poured concrete, so that the upper part of the underground wall 7 and the underground part of the structure 5 are integrated. This results in a rigid connection.

(発明の効果) 以上説明したように、本発明は、造築する建造物を囲ん
だ地盤中に、jt[を連続して結合し、その外側にフィ
ルセメント層を被着すると共に、各鋼管内にフィルセメ
ントを充填した地中壁を施設し、この地中壁に内接して
建造物を造築し、地中壁の上部と建造物とを一体的に結
合した構成としたので、次のように多くの優れた効果を
奏するものである。
(Effects of the Invention) As explained above, the present invention connects the JT continuously in the ground surrounding the building to be constructed, coats the fill cement layer on the outside, and We installed an underground wall filled with fill cement, built a building inscribed in this underground wall, and integrated the upper part of the underground wall with the building. It has many excellent effects such as:

(])tUt造物を囲んで施設した地中壁により、液状
化の危険のある地層は建造物造築城の内外で分断、隔離
されることになり、地中壁内側の地盤は外側の地盤の地
震時における液状化危険地盤のせん断歪及び過剰間隙水
圧からの影響を抑制することができ、建造物造築地盤の
安定化を図ることができる。
(]) The underground wall built around the tUt structure divides and isolates the strata at risk of liquefaction inside and outside the building, and the ground inside the underground wall is separated from the ground outside. It is possible to suppress the effects of shear strain on the liquefaction-prone ground and excessive pore water pressure during an earthquake, and it is possible to stabilize the ground on which buildings are built.

(2)地中壁は、鋼管の連結体にソイルセメントを被着
して剛強に構成されているので、それ自体、地盤の側方
への変動に対ずる抗力が大きいと共に、建造物への大き
な支持力を発揮することになり、基礎杭の支持力の負担
を大巾に軽減することができる。また、地中壁に鋼管と
フィルセメントとによる重量構造であると共に、地盤中
に強固に施設されるので、液状化発生時におこる浮力に
対しても大きな抵抗力を発揮することになる。
(2) Since underground walls are made of steel pipes covered with soil cement to make them strong, they have a large resistance against lateral movement of the ground, and they also have a strong resistance to the lateral movement of the ground. It will exhibit a large bearing capacity, and the load on the bearing capacity of the foundation piles can be greatly reduced. In addition, since it has a heavy structure with steel pipes and fill cement on the underground wall, and is firmly installed in the ground, it will exhibit great resistance against buoyancy that occurs when liquefaction occurs.

(3)建造物の造築にあたって要していた土留用の施設
が不要となり、その分だけ経費の節減が図れる。
(3) The earth retaining facilities required when constructing a building are no longer necessary, and costs can be reduced accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

第I図は本発明の一実施例を示す縦断面図、第2図は同
平断而図、第3図は鋼管と建造物との結合状態を示す拡
大縦断面図、第4図は地中壁の要部を示す拡大平断面図
である。 ■・・・地盤  2・・・表土層 3・・液状化危険層  4・・・硬い地層5・・建造物
  6・・・基礎杭  7・・・地中壁8・・・鋼管 
 10,I1・・・フィルセメントl3・・・周壁  
14・・・スタッド第1図
Fig. I is a vertical sectional view showing one embodiment of the present invention, Fig. 2 is a cross-sectional view of the same, Fig. 3 is an enlarged longitudinal sectional view showing the state of connection between the steel pipe and the building, and Fig. 4 is a vertical sectional view showing the connection state between the steel pipe and the building. FIG. 3 is an enlarged plan cross-sectional view showing a main part of the inner wall. ■...Ground 2...Topsoil layer 3...Liquefaction risk layer 4...Hard soil layer 5...Building 6...Foundation pile 7...Underground wall 8...Steel pipe
10, I1... Fill cement l3... Peripheral wall
14...Stud figure 1

Claims (1)

【特許請求の範囲】[Claims] 造築する建造物を囲んだ地盤中に、鋼管を連続して結合
し、その外側にソイルセメント層を被着すると共に、各
鋼管内にソイルセメントを充填した地中壁を施設し、こ
の地中壁に内接して建造物を造築し、地中壁の上部と建
造物とを一体的に結合したことを特徴とする、建造物の
液状化対策構造。
Steel pipes are connected continuously into the ground surrounding the building to be constructed, a layer of soil cement is applied to the outside of the pipes, and an underground wall filled with soil cement is installed inside each steel pipe. A liquefaction-resistant structure for a building, characterized by building the building inscribed in the middle wall and integrally connecting the upper part of the underground wall and the building.
JP23881689A 1989-09-14 1989-09-14 Liquefaction countermeasure structure for buildings Expired - Fee Related JPH089867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23881689A JPH089867B2 (en) 1989-09-14 1989-09-14 Liquefaction countermeasure structure for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23881689A JPH089867B2 (en) 1989-09-14 1989-09-14 Liquefaction countermeasure structure for buildings

Publications (2)

Publication Number Publication Date
JPH03103535A true JPH03103535A (en) 1991-04-30
JPH089867B2 JPH089867B2 (en) 1996-01-31

Family

ID=17035711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23881689A Expired - Fee Related JPH089867B2 (en) 1989-09-14 1989-09-14 Liquefaction countermeasure structure for buildings

Country Status (1)

Country Link
JP (1) JPH089867B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088586A (en) * 1996-09-12 1998-04-07 Tenox Corp Method of constructing soil improving composite foundation and its foundation
JP2007211542A (en) * 2006-02-13 2007-08-23 Mitsubishi Heavy Ind Ltd Antiseismic structure of quaywall, and its construction method and device
JP2007277831A (en) * 2006-04-03 2007-10-25 Ohbayashi Corp Soil cement wall and foundation structure
JP2013155560A (en) * 2012-01-31 2013-08-15 Shimizu Corp Liquefaction damage reduction structure for structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234080B (en) * 2014-09-15 2016-08-24 上海市政工程设计研究总院(集团)有限公司 For preventing the underground pipe gallery structure deformed in high water level liquefaction site

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088586A (en) * 1996-09-12 1998-04-07 Tenox Corp Method of constructing soil improving composite foundation and its foundation
JP2007211542A (en) * 2006-02-13 2007-08-23 Mitsubishi Heavy Ind Ltd Antiseismic structure of quaywall, and its construction method and device
JP2007277831A (en) * 2006-04-03 2007-10-25 Ohbayashi Corp Soil cement wall and foundation structure
JP2013155560A (en) * 2012-01-31 2013-08-15 Shimizu Corp Liquefaction damage reduction structure for structure

Also Published As

Publication number Publication date
JPH089867B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US4273475A (en) Load supporting structure
JP2645899B2 (en) High horizontal strength foundation method using solidification method
GB2501123A (en) Submerged foundation with ballast
CN109577322A (en) A kind of constructing device for inside soil body existing pile foundation pile extension
US4124982A (en) Method of stabilizing soil in pile bearing regions
JPH0547685B2 (en)
JPH03103535A (en) Countermeasure structure for liquefaction of building
JPH02213522A (en) Construction method for base of structure
JPH04119837U (en) Underground structures to prevent liquefaction
CN103266624B (en) Method for supporting oil and gas pipeline penetrating through karst active zone
JPS62215727A (en) Foundation work for structure
JPH0144852B2 (en)
JPH01278612A (en) Method of taking countermeasure against liquefaction of linear structure buried in ground
JPH03103534A (en) Countermeasure structure for liquefaction of building
JPS63535A (en) Earthquake-proof fortifying work for existing structure
JPH1046619A (en) Foundation structure of construction in sand-layer ground
JPH0536044Y2 (en)
JP2668922B2 (en) Seismic structure of excavated road
JP2003253662A (en) Work method for measures against liquefaction of ground
JPS58127822A (en) Liquefaction preventive structure of foundation ground
JP3176530B2 (en) Liquefaction countermeasures
CN217974507U (en) Protection system of subway tunnel structure crouches down during soft soil foundation ditch excavation
JPH0765315B2 (en) Embankment structure
JPS60250122A (en) Foundation pile structure for preventing liquefaction of ground
Ho et al. Jet grouting for the mitigation of excavation wall movements in glacial silts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees