JPH0547685B2 - - Google Patents

Info

Publication number
JPH0547685B2
JPH0547685B2 JP1053990A JP5399089A JPH0547685B2 JP H0547685 B2 JPH0547685 B2 JP H0547685B2 JP 1053990 A JP1053990 A JP 1053990A JP 5399089 A JP5399089 A JP 5399089A JP H0547685 B2 JPH0547685 B2 JP H0547685B2
Authority
JP
Japan
Prior art keywords
pile
piles
cylindrical
ground
knotted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1053990A
Other languages
Japanese (ja)
Other versions
JPH02232416A (en
Inventor
Sadao Yabuchi
Kotaro Hirao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIOTOTSUPU KK
Original Assignee
JIOTOTSUPU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIOTOTSUPU KK filed Critical JIOTOTSUPU KK
Priority to JP5399089A priority Critical patent/JPH02232416A/en
Publication of JPH02232416A publication Critical patent/JPH02232416A/en
Publication of JPH0547685B2 publication Critical patent/JPH0547685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Piles And Underground Anchors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、地上構造物を支える基礎杭構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a foundation pile structure that supports above-ground structures.

[従来の技術と解決しようとする課題] 従来より、基礎杭として、構造物下部の地盤内
に、既製のコンクリートパイルや鋼管パイルを複
数本連結して所定深さまで打設し、上部構造物を
支える基礎杭を造成する方法がある。
[Conventional technology and issues to be solved] Conventionally, multiple ready-made concrete piles or steel pipe piles are connected and driven to a predetermined depth in the ground below the structure as foundation piles, and the upper structure is There is a method of creating foundation piles to support it.

このような基礎杭を設計し施工する場合、一般
には、上部構造物の荷重及び構造物に働く水平力
などを検討し、その地盤に適した杭が選択され用
いられるが、これが打設される施工敷地内では、
同一種類の杭が連結使用されるもので、特に杭の
長さ方向で杭性能の異なる異種の杭を連結して、
基礎杭を造成することは全く行なわれていなかつ
た。
When designing and constructing such foundation piles, the load of the superstructure and the horizontal force acting on the structure are generally considered, and a pile suitable for the ground is selected and used. On the construction site,
Piles of the same type are connected together, and in particular, different types of piles with different pile performance in the length direction of the piles are connected.
No foundation piles were constructed at all.

例えば、実際地盤に打設した場合に、大きな周
面支持力は期待できないが、水平耐力が大きい既
製杭として、下記の円筒パイルがあり、 ・ 円筒状のプリストレスコンクリートパイル、
高強度のプリストレスコンクリートパイル
(PC杭、PHC杭) ・ 複合パイル(鋼管コンクリート複合パイル) ・ 鋼管パイル また、水平耐力は余り期待できないが、周面支
持力性能に優れた既製杭として、節付きコンクリ
ートパイル等の摩擦杭があるが、上記のようにそ
れぞれ性能の異なる杭を、地盤の性状に合わせて
適宜連結して打設し、構造物を支える基礎杭とす
ることは全く行なわれていなかつた。
For example, the following cylindrical piles are ready-made piles that cannot be expected to have a large circumferential bearing capacity when actually driven into the ground, but have a large horizontal bearing capacity: - Cylindrical prestressed concrete piles;
High-strength prestressed concrete piles (PC piles, PHC piles) ・ Composite piles (steel pipe concrete composite piles) ・ Steel pipe piles In addition, although the horizontal bearing capacity cannot be expected very much, knotted piles are used as ready-made piles with excellent peripheral bearing capacity. There are friction piles such as concrete piles, but as mentioned above, piles with different performance are connected and driven appropriately according to the characteristics of the ground to form foundation piles that support structures. Ta.

殊に、実際地盤に打設された基礎杭には、軸
力、曲げモーメントのほかに、地盤によつては負
の摩擦力も作用することになり、更に地盤中には
地震時に液状化の虞のある地盤もあり、したがつ
てこれらそれぞれに最適で且つ最も経済的な基礎
杭を造築することが望まれるが、一定種類のパイ
ルを連結して打設する従来方法では、前記の基礎
杭を造築することは到底でき得ないものである。
In particular, in addition to axial force and bending moment, a foundation pile actually driven into the ground is subject to negative frictional force depending on the ground, and there is also a risk of liquefaction in the ground during an earthquake. Therefore, it is desirable to build foundation piles that are optimal and most economical for each type of ground, but the conventional method of connecting and driving certain types of piles It is completely impossible to build a.

例えば、第12図に示す地盤において、地盤の
上層Aは軟弱な粘性の圧密地盤で、それより下層
BはN値も大きく杭の周面支持力、先端支持力が
期待できる地盤であつて、杭に作用する水平力、
曲げモーメントが大きいとする。
For example, in the ground shown in Fig. 12, the upper layer A of the ground is a soft, viscous, consolidated ground, and the lower layer B is a ground with a large N value and can be expected to have sufficient circumferential bearing capacity and tip bearing capacity for piles. horizontal force acting on the pile,
Assume that the bending moment is large.

このような地盤において、曲げモーメント等を
考慮して、水平耐力の大きいPHC杭や鋼管パイ
ル等の円筒パイルPを図のように杭全長に用いた
基礎杭とすると、下層B地盤での周面支持力が不
足することになる。
In such a ground, if a cylindrical pile P such as a PHC pile or a steel pipe pile with a large horizontal bearing capacity is used for the entire length of the pile as shown in the figure, taking into consideration the bending moment, etc., the circumferential surface of the lower layer B ground will be Supporting capacity will be insufficient.

また、前記の地盤において鉛直支持力を考慮し
て、周面支持力の大きい節付きコンクリートパイ
ルを杭全長に用いた基礎杭とすると、上層A地盤
での水平耐力が不足する。さらに周面支持力が大
きいために、上層A地盤が圧密沈下すると、杭体
上部に負の摩擦力が働き、その結果、杭体は構築
物荷重による軸力以外に、前記負の摩擦力による
軸力も負担することとなる。
Furthermore, if the vertical bearing capacity of the above-mentioned ground is taken into account, and if a foundation pile is made of a knotted concrete pile with a large circumferential bearing capacity for the entire length of the pile, the horizontal bearing capacity of the upper layer A of the ground will be insufficient. Furthermore, since the circumferential surface bearing capacity is large, when the upper layer A of the ground consolidates and settles, a negative frictional force acts on the upper part of the pile body, and as a result, in addition to the axial force due to the structure load, the pile body It also takes a lot of energy.

それゆえ、従来は、同一種類の杭の杭径を大き
くしたり、杭長を長くしたり、杭数を増やしたり
するきわめて不経済な方法で基礎杭造成が行なわ
れていた。
Therefore, conventionally, foundation piles have been constructed using extremely uneconomical methods such as increasing the diameter of the same type of pile, increasing the length of the pile, or increasing the number of piles.

本発明は、上記に鑑み、地盤の性状に適合した
支持力を持つた安全でかつ経済的な基礎杭を造成
すべくなしたものである。
In view of the above, the present invention has been made to create a safe and economical foundation pile that has a bearing capacity that is compatible with the properties of the ground.

[課題を解決するための手段] 本発明では、上記の課題を解決するために、比
較的大きな水平耐力が要求される上層地盤に、曲
げ耐力の大きい円筒状のプリストレスコンクリー
トパイルや鋼管パイル等の円筒パイルを、周面支
持力等の鉛直支持力の期待できる下層地盤に、周
面支持力性能に優れた節付きコンクリートパイル
を用いることとし、特に下方部のパイル杭径を大
きくしなくても、水平耐力の向上を図ることがで
きるようにしものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention installs cylindrical prestressed concrete piles, steel pipe piles, etc. with high bending strength in the upper ground where relatively large horizontal strength is required. Instead of using cylindrical piles, we decided to use knotted concrete piles with excellent circumferential bearing capacity in the subsoil where vertical bearing capacity such as circumferential bearing capacity can be expected, without increasing the pile diameter particularly in the lower part. Also, it is possible to improve the horizontal strength.

すなわち、本発明の基礎杭構造は、構造物に働
く水平荷重に支える基礎杭上部に既製の円筒パイ
ルを、これより下方部には、円筒パイルの径と略
同径の節部を有した既製の節付きコンクリートパ
イルを配して、これら両パイルを連結して地盤に
打設してなることを特徴とする。
That is, the foundation pile structure of the present invention includes a ready-made cylindrical pile at the top of the foundation pile that supports the horizontal load acting on the structure, and a ready-made cylindrical pile below this which has a joint having approximately the same diameter as the diameter of the cylindrical pile. It is characterized by the construction of knotted concrete piles, and these two piles are connected and cast into the ground.

前記において、基礎杭上部の既製の円筒パイル
を杭の内外に連通する透水孔を有する孔明きパイ
ルとし、この円筒パイルの内外周に、砂、砂利、
砕石等の充填材を充填しておくのが望ましい。
In the above, the ready-made cylindrical pile on the upper part of the foundation pile is a perforated pile having permeable holes that communicate with the inside and outside of the pile, and sand, gravel,
It is desirable to fill it with a filler such as crushed stone.

[作用] 上記の構成よりなる本発明の基礎杭によれば、
比較的大きい曲げモーメントが作用する上層地盤
においては、曲げ耐力の大きい円筒パイルが用い
られているため、上部構造物に働く水平荷重を該
円筒パイルによつて充分に支えることができる。
しかもこの円筒パイルは周面摩擦支持力が節付き
コンクリートパイルに比して小さいため、上層地
盤が軟弱な粘性地盤であつて圧密沈下することが
あつても、負の摩擦力が生じることがない。
[Function] According to the foundation pile of the present invention having the above configuration,
Cylindrical piles with high bending strength are used in the upper ground where a relatively large bending moment acts, so the horizontal loads acting on the superstructure can be sufficiently supported by the cylindrical piles.
In addition, this cylindrical pile has a smaller circumferential frictional support force than that of a knotted concrete pile, so even if the upper layer is soft and viscous and may undergo consolidation settlement, no negative frictional force will occur. .

また下層地盤では、周面支持力性能の大きい節
付きコンクリートパイルが用いられているため、
胴部の径が円筒パイルより小さくても、節部は円
筒パイルの径と略同径であつて充分な先端支持力
を保有し、これが節部による周面支持力の増大と
相俟つて、不足なく充分な鉛直支持力を得ること
ができる。
In addition, knotted concrete piles with high circumferential bearing capacity are used in the sub-soil, so
Even if the diameter of the trunk is smaller than the cylindrical pile, the knots have approximately the same diameter as the cylindrical pile and have sufficient tip support, and this, together with the increase in circumferential support due to the knots, Sufficient vertical support force can be obtained without any shortage.

特に、節付きコンクリートパイルの杭径が上部
の円筒パイルの径より小さくなつているにも拘ら
ず、円筒パイルの径と略同径の節部を有している
ために、単なる円筒状のパイルに比して水平耐力
が大きく、しかも上部の円筒パイルと下部の節付
コンクリートパイルとの水平力の伝達に大きな段
差が生じずスムースな伝達が行なわれ、基礎杭全
体として大きな水平耐力を保持できる。
In particular, although the pile diameter of a knotted concrete pile is smaller than the diameter of the upper cylindrical pile, it has knots that are approximately the same diameter as the cylindrical pile, so it is not a simple cylindrical pile. The horizontal bearing capacity is larger than that of the foundation pile, and the horizontal force is transmitted smoothly between the upper cylindrical pile and the lower jointed concrete pile without any large step, and the foundation pile as a whole can maintain a large horizontal bearing capacity. .

さらに円筒パイルを孔明きパイルにして、その
内外周に、砂、砂利、砕石等の充填材を充填した
場合には、これによつて水平耐力が増大する上、
内外の砂利や砕石等の充填材の部分が透水性を有
するとともに、杭の内外が透水孔によつて連通す
ることになるため、杭内孔が間隙水の逃水用通路
となつて地震時の過剰間隙水のドレーン作用を果
し、過剰間隙水圧の消散を効果的になし得る。
Furthermore, if the cylindrical pile is made into a perforated pile and its inner and outer peripheries are filled with filler such as sand, gravel, crushed stone, etc., the horizontal bearing capacity increases, and
The inner and outer fillers, such as gravel and crushed stone, have water permeability, and the inside and outside of the pile are connected through permeable holes, so the inner and outer holes of the pile serve as passageways for pore water to escape during an earthquake. It can drain excess pore water and effectively dissipate excess pore water pressure.

[実施例] 次に本発明の実施例を図面に基いて具体的に説
明する。
[Example] Next, an example of the present invention will be specifically described based on the drawings.

図において、Pは上層地盤に用いられる既製の
円筒パイル、Fは前記円筒パイルより下方部に用
いられる既製の節付きコンクリートパイル(以下
節付きパイルという)を示し、これらの円筒パイ
ルPと節付きパイルFとが、地盤性状、要求され
る杭の支持力等に応じて、所要数本連結されて、
第1図および第5図に例示するように地盤に打設
され、基礎杭が造成される。
In the figure, P indicates a ready-made cylindrical pile used in the upper ground, F indicates a ready-made knotted concrete pile (hereinafter referred to as a knotted pile) used below the cylindrical pile, and these cylindrical piles P and knotted The required number of piles F are connected according to the ground properties, required pile bearing capacity, etc.
As illustrated in FIGS. 1 and 5, the foundation piles are driven into the ground to create foundation piles.

前記の円筒パイルPと節付きパイルFとは、節
付きパイルFの胴部3の径と、円筒パイルPの径
とが同径である場合、例えば第2図に示すように
連結される。こうして連結される円筒パイルPと
節付きパイルFの端部には、第3図のように端板
4aと側板4bとよりなる端部金具4が固着され
ており、この端部金具4にパイル内部の主筋5の
端部が係着されている。前記パイルP,Fの連結
は、この端部金具4,4同士を溶着することによ
りなされる。
The cylindrical pile P and the knotted pile F are connected, for example, as shown in FIG. 2, when the diameter of the body 3 of the knotted pile F and the diameter of the cylindrical pile P are the same. As shown in FIG. 3, an end fitting 4 consisting of an end plate 4a and a side plate 4b is fixed to the ends of the cylindrical pile P and the knotted pile F that are connected in this way. The ends of the main reinforcing bars 5 inside are engaged. The piles P, F are connected by welding the end fittings 4, 4 together.

第4図は、節付きパイルFの連結部での曲げ耐
力を増強するために、節付きパイルF上部の杭頭
内部に、パイル主筋とは別に、補強筋5aを設け
た場合を示している。これは、本発明のように胴
部の径を円筒パイルPより小さくした節付きパイ
ルFを使用することにより、上下のパイルの曲げ
耐力が大きく異なる場合に特に有効となる。
Figure 4 shows a case where reinforcing bars 5a are provided inside the pile cap at the top of the knotted pile F, separate from the main pile reinforcement, in order to increase the bending strength at the joints of the knotted pile F. . This is particularly effective when the bending strength of the upper and lower piles differs greatly by using the knotted pile F whose trunk diameter is smaller than that of the cylindrical pile P as in the present invention.

本発明では、上記のように下方部に使用する節
付きパイルFを、その胴部3の径を上部の円筒パ
イルPと同径とするのではなく、第5図および第
6図に示すように、円筒パイルPの径と略同径の
節部2を有する節付きパイルF、つまり胴部2の
径が円筒パイルPより小さいパイルを用いてお
り、この節付きパイルFを円筒パイルPに連結し
て地盤に打設している。
In the present invention, the diameter of the trunk 3 of the knotted pile F used in the lower part is not the same as that of the upper cylindrical pile P as described above, but as shown in FIGS. 5 and 6. In this method, a knotted pile F having knots 2 having approximately the same diameter as the diameter of the cylindrical pile P, that is, a pile whose body part 2 has a smaller diameter than the cylindrical pile P is used, and this knotted pile F is connected to the cylindrical pile P. It is then poured into the ground.

この場合、上下の円筒パイルPと節付きパイル
Fとは、図に示すようにテーパ状継ぎ手パイプT
により連結するもので、この継ぎ手パイプTとし
ては、上部が円筒パイルPの径と同径で、下部が
節杭Fの胴部3と同径のテーパ状のパイプが用い
られる。特にパイプ肉厚が、円筒パイルPの曲げ
耐力と同程度か、もしくはそれより大きいものが
用いられる。
In this case, the upper and lower cylindrical piles P and knotted piles F are connected to the tapered joint pipe T as shown in the figure.
As this joint pipe T, a tapered pipe whose upper part has the same diameter as the diameter of the cylindrical pile P and whose lower part has the same diameter as the body part 3 of the joint pile F is used. In particular, a pipe whose wall thickness is comparable to or larger than the bending strength of the cylindrical pile P is used.

このようにすることにより、基礎杭上部になる
円筒パイルPの径は、節付きパイルFの胴部3の
径より大きい径であるから、曲げ耐力が増大する
と共に軸方向圧縮耐力も増大する。
By doing this, the diameter of the cylindrical pile P that becomes the upper part of the foundation pile is larger than the diameter of the body 3 of the knotted pile F, so that the bending strength increases and the axial compressive strength also increases.

上記の実施例において、上部に連結される円筒
パイルPとしては、円筒状のコンクリートパイル
(PC杭、PHC杭等)のほか、複合パイル(鋼管
コンクリート複合パイル)、鋼管パイル6等を用
いることができ、構造物を支える杭の鉛直支持
力、水平耐力、地盤性状、施工方法の相違などに
応じて、それぞれ適宜使い分けする。
In the above embodiment, as the cylindrical pile P connected to the upper part, in addition to cylindrical concrete piles (PC piles, PHC piles, etc.), composite piles (steel pipe concrete composite piles), steel pipe piles 6, etc. can be used. Each type is used appropriately depending on the vertical bearing capacity, horizontal bearing capacity, soil properties, construction method, etc. of the piles that support the structure.

また、基礎杭には主として地上近辺の杭上部に
曲げモーメントが作用することから、上記のよう
に連結される杭上部の円筒パイルPとしては、節
付きパイルFよりも曲げ耐力の大きいパイルを用
いることが望ましい。
In addition, since the bending moment mainly acts on the upper part of the pile near the ground on the foundation pile, the cylindrical pile P at the upper part of the pile to be connected as described above should be a pile with a higher bending strength than the knotted pile F. This is desirable.

さらに、円筒パイルPとして、例えば鋼管パイ
ル6を用いる場合には、要求される杭性能に合わ
せ、鋼管内外面に縞状のリブを設けたリブ付き鋼
管パイル(図示せず)を用いたり、第7図に例示
するように鋼管壁面に複数の透水孔7を設けた孔
明きの鋼管パイル6を用いることができる。透水
孔7を設けた孔明きのパイル6は、後記するよう
に上層地盤が砂地盤であつて、地震時に地盤が液
状化するのを防止する基礎杭として特に有効であ
る。
Furthermore, when using, for example, a steel pipe pile 6 as the cylindrical pile P, a ribbed steel pipe pile (not shown) with striped ribs provided on the inner and outer surfaces of the steel pipe may be used, or a As illustrated in FIG. 7, a perforated steel pipe pile 6 in which a plurality of permeable holes 7 are provided in the wall surface of the steel pipe can be used. The perforated pile 6 provided with permeable holes 7 is particularly effective as a foundation pile for preventing the ground from liquefying in the event of an earthquake when the upper ground is sandy ground, as will be described later.

なお第7図では節付きパイルFの胴部3が円筒
パイルPと略同径になつているが、本発明を実施
する場合、この節付きFの節部2を円筒パイルP
と略同径にしておくことになる。
In addition, in FIG. 7, the body 3 of the knotted pile F has approximately the same diameter as the cylindrical pile P, but when carrying out the present invention, the knot 2 of the knotted pile F is connected to the cylindrical pile P.
It will be made to have approximately the same diameter.

また、打設する杭長が長く、複数本のパイル、
例えば4本のパイルを連結して打設する場合に
は、最上部1本のみを円筒パイルPとして、それ
より下方部の3本を節付きパイルFとし、あるい
は上部2本を円筒パイルPで下部2本を節付きパ
イルFとし、あるいは上部3本を円筒パイルPで
最下部のみ節付きパイルFとすることができ、地
盤、水平支持力、鉛直支持力R等により適当なも
のを使用すればよい。
In addition, the pile length to be driven is long, multiple piles,
For example, when four piles are installed in a connected manner, only the top one is made into a cylindrical pile P, the three below it are made into a knotted pile F, or the top two piles are made into a cylindrical pile P. The lower two piles can be made of knotted piles F, or the upper three can be made of cylindrical piles P, and only the lowest part can be made of knotted piles F. Use the appropriate one depending on the ground, horizontal bearing capacity, vertical bearing capacity R, etc. Bye.

上記した連結構造による本発明の基礎杭を地盤
に造成し施工する方法について、以下に説明す
る。
A method for constructing and constructing the foundation pile of the present invention in the ground using the above-mentioned connection structure will be explained below.

まず、打ち込み工法で行うには、第8図に示す
ように、節付きパイルFを所定の地盤上に建て込
み、デイーゼルハンマー10等で打撃を与え地中
に打ち込む。この場合、節付きパイルFの貫入に
伴い杭周より砂利11等を充填する〔同図a〕。
打設する節付きパイル長が長い場合には、さらに
節付きパイルF1を継ぎ足して、同様に打ち込
む。
First, in order to carry out the driving method, as shown in FIG. 8, a knotted pile F is built on a predetermined ground, and then hammered with a diesel hammer 10 or the like and driven into the ground. In this case, as the knotted pile F penetrates, gravel 11 or the like is filled from the circumference of the pile (see figure a).
If the length of the knotted pile to be installed is long, add another knotted pile F1 and drive in the same way.

次に、円筒パイルPを端部金具4部分で溶着等
の手段により継ぎ足し打ち込むが、この際、節付
きパイルFの節部2の打ち込みにより生じた杭周
間隙には砂利11、或は砂等の充填材を充填する
〔同図b〕。また所定長さ打設後、杭の水平耐力を
増強する目的で、円筒パイルP等の杭内孔上部に
砂、砂利等を充填してもよい。
Next, the cylindrical pile P is added to the end fitting 4 by welding or other means, but at this time, gravel 11, sand, etc. Fill it with the filler material [Figure b]. Moreover, after driving a predetermined length, the upper part of the inner hole of the pile, such as the cylindrical pile P, may be filled with sand, gravel, etc., for the purpose of increasing the horizontal strength of the pile.

なお、充填材として、砂利、砕石等を充填した
場合には、充填砂利等のドレーン効果により、地
震時の過剰間隙水圧の消散に有効になり、さらに
上部の円筒パイルPとして、透水孔7を設けた孔
空の鋼管パイル6等を用いた場合には、杭内外の
砂利等の充填部が透水孔7により連通しているた
め、充填砂利等のドレーン効果がさらに増大し、
地震時の過剰間隙水圧の消散に有効となり、地盤
の液状化防止に効果がある。
In addition, when gravel, crushed stone, etc. are filled as a filler, the drainage effect of the filled gravel becomes effective in dissipating excess pore water pressure during an earthquake. When using a steel pipe pile 6 or the like with empty holes provided, the filled portions of gravel, etc. inside and outside the pile are communicated through the permeable holes 7, so the drain effect of the filled gravel, etc. is further increased,
It is effective in dissipating excess pore water pressure during earthquakes and is effective in preventing ground liquefaction.

円筒パイルP部分が長い場合には、さらに円筒
パイルPを前記同様に継ぎ足して打ち込めばよ
い。
If the cylindrical pile P portion is long, additional cylindrical piles P may be added and driven in the same manner as described above.

以上によつて、上層地盤には円筒パイルPを用
い、それより下方部の地盤には節付きパイルFを
用いた基礎杭が地中に造築される〔同図c〕。
As described above, foundation piles are constructed underground using cylindrical piles P in the upper ground and knotted piles F in the ground below [Figure c].

上記の基礎杭を、セメントミルク工法など低騒
音の先掘り工法で行うには次のようにする。
To install the above foundation pile using a low-noise pre-drilling method such as the cement milk method, proceed as follows.

第9図aに示すように、スクリユーオーガー1
2等で、節付きパイルFの節部2の径よりやや大
きい径で、所定深さまで地盤を掘孔する。このス
クリユーオーガー12の引き上げ時に、掘孔内K
にセメントミルク、モルタル等の硬化液Mを充填
する。
As shown in Figure 9a, the screw auger 1
A hole with a diameter slightly larger than the diameter of the knot 2 of the knotted pile F is dug into the ground to a predetermined depth. When pulling up this screw auger 12,
is filled with a hardening liquid M such as cement milk or mortar.

このミルク等の硬化液Mは、節付きパイルFの
周囲や先端根固め部分には強度の大きいものを
〔第10図のM1部分〕、円筒パイルPの周囲には
強度の低い液を〔同図M2部分〕充填する等、杭
の深さ方向で配合を変えることもできる。杭の鉛
直支持力を期待する部分には大きな強度の発現で
きる充填液を用いるのが望ましい。
This hardening liquid M, such as milk, has a high strength around the knotted pile F and the tip hardening part [M1 part in Fig. 10], and a low strength liquid around the cylindrical pile P [the same (Fig. M2 part) It is also possible to change the composition in the depth direction of the pile, such as by filling it. It is desirable to use a filling liquid that can provide high strength in areas where vertical bearing capacity of the pile is expected.

こうして掘孔内Kに節付きパイルFを吊り下げ
圧入する。この際、所定本数の節付きパイルFを
継ぎ足す。次に円筒パイルPを継ぎ足し、上記と
同様に掘孔内K吊り下げ圧入する。
In this way, the knotted pile F is suspended and press-fitted into the borehole K. At this time, a predetermined number of knotted piles F are added. Next, the cylindrical pile P is added and press-fitted into the hole K by suspending it in the same manner as above.

これにより、上層地盤には円筒パイルPを用
い、それより下方部の地盤には節付きパイルFを
用いた基礎杭が地中に造築されることになる。
As a result, foundation piles using cylindrical piles P in the upper ground and knotted piles F in the ground below are constructed underground.

前記の円筒パイルPの周囲には上記のセメント
ミルク等硬化液Mに変え、砂13、砂利11等を
充填する場合もある〔第7図および第11図〕。
この場合は、地上の杭周辺より砂利11等を間隙
に投下充填してもよい。また、円筒パイルPの沈
設圧入後に、杭周囲の間隙に別個にケーシングを
吊り下ろし、ケーシングで突き固めながら砂利等
を充填してもよい。この場合さらに水平耐力の増
強に効果がある。
The periphery of the cylindrical pile P may be filled with sand 13, gravel 11, etc. instead of the hardening liquid M such as cement milk (FIGS. 7 and 11).
In this case, gravel 11 or the like may be dropped into the gap from around the pile on the ground to fill it. Further, after the cylindrical pile P is sunk and press-fitted, a casing may be separately hung into the gap around the pile, and gravel or the like may be filled while compacting with the casing. In this case, it is also effective in increasing the horizontal bearing capacity.

また、杭上部の円筒パイルFが鋼管パイル6等
の場合に、杭の外周のみでなく、パイルの内孔に
も砂利など充填する場合があるのは、上記打ち込
み工法の場合と同様である。
Furthermore, when the cylindrical pile F at the top of the pile is a steel pipe pile 6 or the like, not only the outer periphery of the pile but also the inner hole of the pile may be filled with gravel, as in the case of the driving method described above.

本発明の基礎杭は、上記のほか、地盤の土砂と
注入硬化液とをミキシングしたセメントソイル掘
孔内に、既製のパイルを圧入するミキシング工法
でも実施できる。この場合の方法は先掘り工法と
略同様である。
In addition to the method described above, the foundation pile of the present invention can also be produced by a mixing method in which a ready-made pile is press-fitted into a cement soil excavation hole in which earth and sand in the ground and injection hardening liquid are mixed. The method in this case is almost the same as the pre-drilling method.

なお、上記の造成施工の説明における第8図〜
第11図では、便宜上、節付きパイルFの胴部3
の径を円筒パイルPと略同径にして図示されてい
るが、本発明を実施する場合、当然、下部の節付
きパイルFの節部2の径が円筒パイルPと略同径
のものになる。
In addition, Fig. 8~ in the explanation of the above-mentioned land preparation work
In FIG. 11, for convenience, the body 3 of the knotted pile F is
Although the diameter of the lower knotted pile F is shown to be approximately the same diameter as the cylindrical pile P, when carrying out the present invention, the diameter of the knot portion 2 of the lower knotted pile F is of course approximately the same diameter as the cylindrical pile P. Become.

上記のようにして造築される本発明の基礎杭に
あつては、上層地盤では、曲げ耐力の大きい円筒
パイルPとして、特にPCパイル、PHCパイル等
のプリストレス量の大きいコンクリートパイル、
あるいは曲げ耐力の大きい複合パイル(鋼管コン
クリート複合パイル)や鋼管パイル6等を、基礎
杭に作用する軸力、曲げモーメントの大きさや地
盤性状に応じて、適宜選択して用いており、この
円筒パイルPによつて上部構造物に働く水平荷重
を充分に支えることができる。
In the foundation pile of the present invention constructed as described above, in the upper ground, concrete piles with a large amount of prestress such as PC piles and PHC piles, in particular, are used as cylindrical piles P with a large bending capacity.
Alternatively, composite piles (steel pipe concrete composite piles) or steel pipe piles 6 with high bending capacity are selected and used as appropriate depending on the axial force acting on the foundation pile, the magnitude of the bending moment, and the ground properties. P can sufficiently support the horizontal load acting on the superstructure.

また下層地盤では、節部2の存在によつて大き
な周面支持力Rを期待できる節付きパイルFを用
いているため、不足なく充分な鉛直支持力を得る
ことができ、これにより上部での鉛直支持力の不
足を補い得る。それゆえ、地盤に適合した支持力
を持つ安全、強固な経済的な基礎杭を得ることが
できる。
In addition, in the lower ground, knotted piles F are used that can be expected to have a large circumferential bearing capacity R due to the presence of knots 2, so it is possible to obtain sufficient vertical bearing capacity without any shortage, and this allows the upper part to It can compensate for the lack of vertical support capacity. Therefore, it is possible to obtain a safe, strong, and economical foundation pile that has a bearing capacity that is compatible with the soil.

殊に、節付きパイルFの先端部は通常支持層に
根入れされるが、胴部3の径が円筒パイルPより
小さくても、節部2は円筒パイルPの径と略同径
であつて充分な先端支持力を保有し、一層経済的
でかつ安全な基礎杭となる。
In particular, the tip of the knotted pile F is usually embedded in the support layer, but even if the diameter of the trunk 3 is smaller than the cylindrical pile P, the knot 2 has approximately the same diameter as the cylindrical pile P. It has sufficient tip bearing capacity, making it a more economical and safe foundation pile.

また、節付きパイルFの杭径が上部の円筒パイ
ルPの径より小さくなつているにも拘らず、円筒
パイルPとの径と略同径の節部2を有するため
に、単なる円筒状のパイルに比して水平耐力が大
きく、上部の円筒パイルPと下部の節付きパイル
Fとの水平力の伝達に大きな段差が生じずスムー
スな伝達が行なわれることになり、さらに大きな
水平耐力を保持できる。
Furthermore, although the pile diameter of the knotted pile F is smaller than the diameter of the upper cylindrical pile P, since the knot 2 has approximately the same diameter as the diameter of the cylindrical pile P, it has a simple cylindrical shape. The horizontal force is larger than the pile, and the horizontal force is transmitted smoothly between the cylindrical pile P at the top and the knotted pile F at the bottom, resulting in a smooth transmission of horizontal force. can.

また軟弱な粘性地盤では上層地盤が圧密沈下す
ると、杭体上部に負の摩擦力が働くため、周面支
持力が大きいと、杭体は構築物荷重による軸力以
外に、上記負の摩擦力による軸力も負担すること
となるが、上記の本発明の基礎杭によれば、上層
地盤には周面支持力の小さい円筒パイルが使用さ
れているために、負の摩擦力による軸力を負担す
ることがない。
In addition, in soft and viscous ground, when the upper layer of the ground consolidates and settles, a negative frictional force acts on the upper part of the pile body, so if the circumferential bearing capacity is large, the pile body will be affected by the above negative frictional force in addition to the axial force due to the structure load. Axial force will also be borne, but according to the above-mentioned foundation pile of the present invention, cylindrical piles with small circumferential bearing capacity are used in the upper ground, so axial force due to negative frictional force is borne. Never.

また本発明基礎杭を先掘り工法で実施する場合
において、掘孔内に充填注入するセメントミルク
等の硬化液の強度を変え、下層地盤には強度の高
い硬化液を注入し、上層地盤には強度の低い硬化
液を注入すれば、上記と同様に、円筒パイルにか
かる負の摩擦力が低減され、安全な基礎杭をより
経済的に造築できる。
In addition, when implementing the foundation pile of the present invention using the pre-drilling method, the strength of the hardening liquid such as cement milk that is injected into the hole is changed, and a high-strength hardening liquid is injected into the lower ground, and the hardening liquid is injected into the upper ground. If a hardening liquid with low strength is injected, the negative frictional force applied to the cylindrical pile will be reduced, and safe foundation piles can be constructed more economically, in the same way as described above.

[発明の効果] 上記したように本発明の基礎杭構造によれば、
比較的大きな水平耐力が要求される上層地盤に曲
げ耐力の大きい円筒パイルを、下層地盤に周面支
持力性能の優れる節付きコンクリートパイルを用
いて、これらを連結して打設したことにより、上
層地盤での水平耐力、および下層地盤での鉛直支
持力に優れる安全な基礎杭を造築することができ
る。また上層地盤が軟弱な粘性地盤である場合に
おいて、上層地盤が圧密沈下することがあつて
も、上層地盤には周面支持力の小さい円筒パイル
が使用されているために、負の摩擦力による軸力
を負担することもない。そのため杭上部の水平耐
力および下方部での鉛直支持力とも相俟つて、軟
弱な粘性地盤において特に好適なものとなる。
[Effect of the invention] As described above, according to the foundation pile structure of the present invention,
By connecting and placing cylindrical piles with high bending capacity in the upper ground, which requires relatively large horizontal bearing capacity, and knotted concrete piles with excellent circumferential bearing capacity in the lower ground, the upper ground It is possible to construct safe foundation piles with excellent horizontal bearing capacity in the ground and vertical bearing capacity in the underlying ground. In addition, in cases where the upper layer is soft and viscous, even if the upper layer is consolidated and settles, the upper layer is made of cylindrical piles with a small circumferential bearing capacity, so the negative frictional force There is no need to bear the burden of axial force. Therefore, in combination with the horizontal bearing capacity of the upper part of the pile and the vertical bearing capacity of the lower part, it is particularly suitable for use in soft and viscous ground.

殊に、本発明の場合、節付きコンクリートパイ
ルの杭径が上部の円筒パイルの径より小さくなつ
ているにも拘らず、円筒パイルの径と略同径の節
部を有しているため、単なる円筒状のパイルに比
して水平耐力が大きく、上部の円筒パイルと下部
の節付コンクリートパイルとの水平力の伝達に大
きな段差が生じずスムースな伝達が行なわれるの
で、基礎杭全体としてさらに大きな水平耐力を保
持できることになり、以て節付パイルの径を大き
くすることなく、地盤に適合した支持力を持つ安
全な基礎杭を経済的に造成できる。
In particular, in the case of the present invention, although the pile diameter of the knotted concrete pile is smaller than the diameter of the upper cylindrical pile, it has knots that are approximately the same diameter as the diameter of the cylindrical pile. The horizontal strength is higher than that of a simple cylindrical pile, and the horizontal force is transmitted smoothly between the upper cylindrical pile and the lower knotted concrete pile without creating a large step, so the foundation pile as a whole has a higher Since it is possible to maintain a large horizontal bearing capacity, it is possible to economically construct a safe foundation pile with a bearing capacity suitable for the ground without increasing the diameter of the knotted pile.

さらに円筒パイルを孔明きパイルとして、この
円筒パイルの内外周に、砂、砂利、砕石等の充填
材を充填した場合、これによる締め固めにより周
辺地盤の水平支持力が増大するばかりか、特にこ
の充填材が砂利、砕石等であれば、そのドレーン
効果により、地震時の過剰間隙水圧の消散を効果
的になし、地盤の液状化防止にも効果のある強固
な基礎杭を築造できることになる。
Furthermore, if the cylindrical pile is made into a perforated pile and the inner and outer peripheries of the cylindrical pile are filled with filler such as sand, gravel, crushed stone, etc., the resulting compaction not only increases the horizontal bearing capacity of the surrounding ground, but also If the filling material is gravel, crushed stone, etc., the drain effect will effectively dissipate excess pore water pressure during an earthquake, and it will be possible to construct strong foundation piles that are also effective in preventing ground liquefaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円筒パイルと節付きコンクリートパイ
ルとを連結した基礎杭構造を例示する略示正面
図、第2図は同上の部分拡大正面図、第3図はパ
イル端部の部分断面図、第4図は同上の他の例を
示す部分正面図、第5図は本発明の基礎杭構造の
実施例を示す部分正面図、第6図は同上の部分拡
大正面図、第7図はさらに他の例を示す部分断面
図、第8図a,b,cは本発明基礎杭構造の施工
状態を説明する略示断面図、第9図a,b,cは
本発明基礎杭構造の他の施工状態を説明する略示
断面図、第10図は同上の部分拡大図、第11図
は他の例を示す部分拡大断面図、第12図は従来
例の説明図である。 P……円筒パイル、F……節付きコンクリート
パイル、2……節部、3……胴部、4……端部金
具、5……主筋、5a……補助筋、6……鋼管パ
イル、7……透水孔、11……砂利、13……
砂、M……硬化液。
Fig. 1 is a schematic front view illustrating a foundation pile structure in which a cylindrical pile and a knotted concrete pile are connected, Fig. 2 is a partially enlarged front view of the same as above, Fig. 3 is a partial sectional view of the end of the pile, Fig. 4 is a partial front view showing another example of the same as above, Fig. 5 is a partial front view showing an embodiment of the foundation pile structure of the present invention, Fig. 6 is a partially enlarged front view of the same as the above, and Fig. 7 is still another example. Figures 8a, b, and c are schematic cross-sectional views illustrating the construction state of the foundation pile structure of the present invention, and Figures 9a, b, and c are partial cross-sectional views showing examples of the foundation pile structure of the present invention. 10 is a partially enlarged view of the same as above, FIG. 11 is a partially enlarged sectional view of another example, and FIG. 12 is an explanatory view of a conventional example. P...Cylindrical pile, F...Knotted concrete pile, 2...Knot, 3...Body, 4...End fitting, 5...Main reinforcement, 5a...Auxiliary reinforcement, 6...Steel pipe pile, 7...Water hole, 11...Gravel, 13...
Sand, M... hardening liquid.

Claims (1)

【特許請求の範囲】 1 構造物に働く水平荷重を支える基礎杭上部に
既製の円筒パイルを、これより下方部には、円筒
パイルの径と略同径の節部を有した既製の節付き
コンクリートパイルを配して、これら両パイルを
連結して地盤に打設してなることを特徴とする基
礎杭構造。 2 基礎杭上部の既製の円筒パイルが杭の内外に
連通する透水孔を有する孔明きパイルであつて、
円筒パイルの内外周に、砂、砂利、砕石等充填材
を充填してなる請求項1に記載の基礎杭構造。
[Scope of Claims] 1. A ready-made cylindrical pile is installed at the upper part of the foundation pile that supports the horizontal load acting on the structure, and a ready-made knotted pile having a knot approximately the same diameter as the diameter of the cylindrical pile is installed below this pile. A foundation pile structure characterized by arranging concrete piles, connecting both piles and driving them into the ground. 2. The ready-made cylindrical pile at the top of the foundation pile is a perforated pile with permeable holes that communicate with the inside and outside of the pile,
The foundation pile structure according to claim 1, wherein the inner and outer peripheries of the cylindrical pile are filled with filler such as sand, gravel, crushed stone, etc.
JP5399089A 1989-03-06 1989-03-06 Foundation pile structure Granted JPH02232416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5399089A JPH02232416A (en) 1989-03-06 1989-03-06 Foundation pile structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5399089A JPH02232416A (en) 1989-03-06 1989-03-06 Foundation pile structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6135780A Division JP2651893B2 (en) 1994-06-17 1994-06-17 Foundation pile structure

Publications (2)

Publication Number Publication Date
JPH02232416A JPH02232416A (en) 1990-09-14
JPH0547685B2 true JPH0547685B2 (en) 1993-07-19

Family

ID=12958056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5399089A Granted JPH02232416A (en) 1989-03-06 1989-03-06 Foundation pile structure

Country Status (1)

Country Link
JP (1) JPH02232416A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152744A (en) * 1997-11-21 1999-06-08 Geotop Corp Method for joining joint-pile and sc pile
JP2004003324A (en) * 2002-04-26 2004-01-08 Mitani Sekisan Co Ltd Foundation pile structure using prefabricated pile, prefabricated pile, and tip fitting for prefabricated pile
JP4572284B2 (en) * 1999-04-30 2010-11-04 三谷セキサン株式会社 Method of burying ready-made piles

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129671A (en) * 1998-10-23 2000-05-09 Nippon Steel Corp Steel-pipe pile with knot, manufacture thereof, and bored-pile construction method for steel-pipe pile with knot
JP4724878B2 (en) * 1999-08-31 2011-07-13 三谷セキサン株式会社 Foundation pile structure
JP4724873B2 (en) * 1999-08-31 2011-07-13 三谷セキサン株式会社 Ready-made pile
JP4817156B2 (en) * 1999-08-31 2011-11-16 三谷セキサン株式会社 Ready-made pile
JP4724879B2 (en) * 1999-08-31 2011-07-13 三谷セキサン株式会社 Foundation pile structure
JP6274552B2 (en) * 2013-09-11 2018-02-07 日本コンクリート工業株式会社 Foundation pile structure
JP6391939B2 (en) * 2014-02-17 2018-09-19 前田建設工業株式会社 Pile foundation construction method, pile foundation construction management method
CN104389305B (en) * 2014-11-18 2016-08-17 中淳高科桩业股份有限公司 A kind of back-up sand bamboo joint pile and construction method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632509U (en) * 1986-06-20 1988-01-09

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190823U (en) * 1982-11-12 1985-12-18 佛原 学 Composite pile of steel pipe pile and concrete pile
JPS60151935U (en) * 1984-03-16 1985-10-09 三谷セキサン株式会社 concrete pile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632509U (en) * 1986-06-20 1988-01-09

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152744A (en) * 1997-11-21 1999-06-08 Geotop Corp Method for joining joint-pile and sc pile
JP4572284B2 (en) * 1999-04-30 2010-11-04 三谷セキサン株式会社 Method of burying ready-made piles
JP2004003324A (en) * 2002-04-26 2004-01-08 Mitani Sekisan Co Ltd Foundation pile structure using prefabricated pile, prefabricated pile, and tip fitting for prefabricated pile
JP4706994B2 (en) * 2002-04-26 2011-06-22 三谷セキサン株式会社 Foundation pile structure using ready-made piles

Also Published As

Publication number Publication date
JPH02232416A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
CN108560542A (en) A kind of waste tire cladding builds the two-directed reinforcement and its construction method of slag
CN104988948A (en) Rib plate type retaining wall and construction method thereof
JPH0547685B2 (en)
JP4984308B2 (en) Ready-made pile
JP2645899B2 (en) High horizontal strength foundation method using solidification method
JP3126896B2 (en) Restoration method for uneven settlement structures
JP6158398B1 (en) Composite foundation pile
JP2651893B2 (en) Foundation pile structure
JP3385876B2 (en) Cast-in-place pile construction method just below the existing foundation
JP3448629B2 (en) Seismic retrofitting method for existing structure foundation
JP4724879B2 (en) Foundation pile structure
JP4724878B2 (en) Foundation pile structure
CN104018495B (en) Bilateral haunched beam circular section anti-slide pile and construction method thereof
CN103266624B (en) Method for supporting oil and gas pipeline penetrating through karst active zone
JPH0144852B2 (en)
JP4724873B2 (en) Ready-made pile
JP2001073358A (en) Method for embedding precast pile into pile-pit
CN206495202U (en) A kind of top expansion type cement-soil composite pile
JP3304323B2 (en) Underground fixing method of concrete pile
JPH02190517A (en) Retaining wall structure
JPH03103535A (en) Countermeasure structure for liquefaction of building
JP4159148B2 (en) Construction method of shaft
JP2797066B2 (en) Solid foundation method with stabilizer
JPH0726569A (en) Pile foundation construction method for structure exposed to partial earth pressure
JPH11247203A (en) Reinforcing method of existing building foundation by inclined shaft

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 16