JP4706994B2 - Foundation pile structure using ready-made piles - Google Patents

Foundation pile structure using ready-made piles Download PDF

Info

Publication number
JP4706994B2
JP4706994B2 JP2003121272A JP2003121272A JP4706994B2 JP 4706994 B2 JP4706994 B2 JP 4706994B2 JP 2003121272 A JP2003121272 A JP 2003121272A JP 2003121272 A JP2003121272 A JP 2003121272A JP 4706994 B2 JP4706994 B2 JP 4706994B2
Authority
JP
Japan
Prior art keywords
pile
ready
made pile
diameter
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003121272A
Other languages
Japanese (ja)
Other versions
JP2004003324A (en
Inventor
好伸 木谷
竜 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitani Sekisan Co Ltd
Original Assignee
Mitani Sekisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Sekisan Co Ltd filed Critical Mitani Sekisan Co Ltd
Priority to JP2003121272A priority Critical patent/JP4706994B2/en
Publication of JP2004003324A publication Critical patent/JP2004003324A/en
Application granted granted Critical
Publication of JP4706994B2 publication Critical patent/JP4706994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

【0001】
【発明の属する技術分野】
杭下端部に、突起、例えば節、スパイラル翼、鋼棒、鋼板等の突起物を形成した既製杭を、所定の根固め部のソイルセメント層に設置し、その突起を利用して高支持力を発現している基礎杭構造に関する。尚、根固め部は拡径の有無の何れでも適用できる。
【0002】
【従来の技術】
従来、杭基礎において、根固め部内に埋設する杭の下端部に突起類を形成して杭穴内に埋設した既製杭と一体で基礎杭全体で支持力を増強させた発明がなされていた。例えば、円筒状コンクリートパイルの下端部外周に複数組の拡開鉄筋を形成し、それら拡開鉄筋の鉄筋間に横筋としてチェーンを連結した構造(特許文献1。特開平11−61811、特許3054389号(以下、従来例A))、また、既製杭の先端部に、フランジ外面に凸部を有するH型鋼を固定した構造(特許文献2。特開2001−271347(以下、従来例B))、また、下端部外周に突起を有するコンクリート製の既製杭を使用した構造(特許文献3。特開平11−280067(以下、従来例C))等が知られている。
【0003】
従来例A公報に記載の実施例の図1〜5等によれば、下部外表面に形成した拡開鉄筋6を折畳んだ既製杭3を、杭穴1の軸部を通して貫入させ、孔底拡開部2に押し込み、その拡開鉄筋6を拡開し、図5のように埋設・固化させることにより高支持力が得られるとしている。杭穴掘削寸法は具体的に記載されていないが、図3、図5によれば、軸部の杭穴1の寸法は少なくとも、「杭径+拡開鉄筋部厚」以上であり、杭外径の約30%以上の大径寸法の杭穴が掘削されている。従って、通常の杭基礎の軸部杭穴の所要寸法の「杭経+30mm(杭径の10%以下)」に比べ杭と杭穴の間隙が余分となっている。根固め部の掘削径も杭径の2倍以上と通常の支持力での(杭径×1.25〜1.5程度)に比べ大径である。
【0004】
また、従来例B公報の3頁の実施例によれば、外径D(500mm)の外殻鋼管コンクリート杭1(通常SC杭と呼称する。)の下端部に鋼材のH鋼が形成されており、軸部の杭穴径Dは650mmで掘削されている。従来の基礎杭での所要軸部掘削径は「杭径+30mm(杭径の10m%以下)」程度であり従来に比べ杭穴内壁と杭外側面との間隔が余分である。また、高支持力を発現させるために拡底根固め部掘削径Dは1000mmで杭径の約2倍と通常支持力での(杭径×1.25〜1.5程度)に比べ大幅な大径掘削が行われている。
【0005】
また、図2(a)によれば、杭1の下端部に形成したH鋼2および補強リブ4が、一見、上部の杭1の外径寸法以下で形成されているようであるが、図1、図3等と対比すると実施例と略同様な寸法で作図されており、実施例同様に、軸部掘削および拡底根固め部掘削共に大径掘削がおこなわれていると推察される。
【0006】
さらに、特開2001−27347の図2等のように、突起が杭下端部を閉栓する構造の場合には、特に根固め部の高濃度のソイルセメントに関して、杭下端中央部および杭穴中空部などでの均一性に不安があり、更にその閉栓形状の各突起の上下の重なり等によりせん断力が充分に利用できない。また、突起により掘削ヘッドが杭穴中空部を貫入できない構造であるため中掘り工法による施工ができない等汎用性に問題があった。
【0007】
また、従来例C公報の図1の実施例1による杭基礎10によれば、杭下部の構造としては、拡底根固め部3に埋設した杭下端部に形成し、高持力発現に寄与させる突起部は環状リブ(節形状)とし3個の環状リブ5、6、7を形成している。この突起部のせん断力を充分発揮させるために、この突起の環状リブ外径D(75cm)は杭4の軸部外径D(60cm)より大径として突起表面積を大きくしている。従って、既製杭の上部の外径は軸部外径寸法Dで杭材が限定されると共に、杭穴軸部2の掘削寸法はその環状リブが貫入し易い寸法D00(80cm)で掘削され杭穴内壁と杭外側面との間隙が広く、かつ、根固め部の拡底寸法D11も従来にない比率の大径掘削が必要とされており、軸部、拡底根固め部共に従来にない大径の掘削工事に対する新たな技術対応が必要であった。
【0008】
その他、従来から既製杭の根固め部に埋設した部分に突起あるいは凹部を形成して支持力を増強した杭基礎が多数提案されているが、その突起部あるいは凹部に近接する突起によるせん断力が充分発現するように突起間隔あるいは凹間隔が充分に取られておらず、またソイルセメント層の所要固化強度なども含め総合的にせん断力が充分発現し支持力が得られるように配慮されておらず多数施工実績のあるものは従来例Cの発明を利用した基礎杭のみのようである。
【0009】
また、総じて、根固め部で発現する高支持力に対し、細い径の軸部杭が使用されており、軸部杭自身の水平耐力などが不足し、杭基礎全体としてバランスを取るのに杭材の選択が限られ鉛直支持力を最大に生かす杭基礎の構築が難しかった。
【0010】
【特許文献1】
特開平11−61811 公報
【0011】
【特許文献2】
特開2001−271347 公報
【0012】
【特許文献3】
特開平11−280067 公報
【0013】
【発明が解決しようとする課題】
前記従来の技術では、以下のような問題点があった。
【0014】
(1) 杭下端部において、ソイルセメント層との付着及びそのせん断力を発現させる突起部の面積を大きくするために、簡便な方法として、その突起を杭の外側面に形成しているので、拡底根固め部掘削径および杭孔軸部径が従来の通常の支持力杭基礎に比べ杭径比で大きくなっている。杭穴軸部の杭径と杭穴軸部径との間隙も余分に広くせざるを得なくなっている。
【0015】
(2) 根固め部で発現する従来の2倍程度の高支持力に対し、杭穴軸部の杭もバランスの取れた大きい耐力(上載荷重伝達および曲げ耐力を共に満たす強度)が必要であるが、杭径が小さいため杭材の選択範囲が限られ、根固め部の高支持力をフルに生かすことに難があった。
【0016】
(3) 杭穴軸部の掘削経が、その杭穴軸部に埋設する杭径の摩擦力を発現するに必要な杭穴径(通常の杭孔内壁と杭の間隔が30mmで杭径の10%以下)より大きく(例えば20%以上)としてあり、掘削面積が無駄(約40%)となっており、また、拡底根固め部の掘削径も従来にくらべ杭径比で相対的に大きくなっており、結果として、掘削時間が長く、掘削排土も多く経済的、環境的に問題である。さらに、掘削装置も従来にない大径の杭穴用の掘削装置の調達が必要など無駄な点が多い。
【0017】
特に、中掘り施工については拡底杭穴が従来にない大径(杭中空部内径に比べ)であるため掘削の安定施工に関し、掘削装置技術上解決すべき課題が多い。
【0018】
【課題を解決するための手段】
然るにこの発明では、接続する既製杭の最大外径と同等又はより小径の突起を形成した先端金具を形成し、あるいは、根固め部に位置する既製杭の下端部を、上部軸部より小径の下部軸部とし、下部軸部に上部軸部の最大外径と同等又はより小さな外径を有する突起等を形成したので、前記問題点を解決した。
【0019】
即ち、この基礎杭構造の発明は、所定軸径の主軸部を有する既製杭の下端に先端金具又は「他の既製杭」を連結し、該先端金具又は「他の既製杭」は、前記既製杭に連結される前記主軸部と略同一径の大径部を有し、前記主軸部より小径の下部軸部を形成し、該下部軸部に突起部を形成し、該突起部の先端が前記主軸部の最大外径と同等又はそれ以下に形成して、かつ前記大径部の下面に段差部を形成して構成し、支持地盤に、根固め液を充填した根固め部を有する杭穴内に、前記既製杭を、前記先端金具又は「他の既製杭」及び前記既製杭の下端部が前記杭穴の根固め部内に位置し、かつ前記先端金具又は「他の既製杭」が一体となって前記支持地盤に支持するように、埋設したことを特徴とする既製杭を使用した基礎杭構造である。
【0020】
また、前記において、突起部は、突起部の上面と、主軸部及び下部軸部との段差部下面とに所定間隙を設け、または隣接する前記突起部の上下面の間に所定間隙を設けるように配置すると共に、杭穴の所定形状の根固め部内に、固化強度が支持地盤の強度以上となるソイルセメントを充填したことを特徴とする既製杭を使用した基礎杭構造である。
【0021】
また、他の基礎杭構造の発明は、所定軸径の主軸部を有する既製杭の下端に先端金具または「他の既製杭」を連結し、該先端金具又は「他の既製杭」は、前記既製杭に連結される前記主軸部と略同一径の大径部を有し、下端部に、側面から軸側に向けての横方向の凹部を形成して、かつ前記大径部の下面に段差部を形成して構成し、支持地盤に、根固め液を充填した根固め部を有する杭穴内に、前記既製杭を、前記先端金具又は「他の既製杭」及び前記既製杭の下端部が、前記杭穴の根固め部内に位置し、かつ前記先端金具又は「他の既製杭」が一体となって前記支持地盤に支持するように、埋設した既製杭を使用した基礎杭構造である。
【0022】
また、前記において、既製杭の下端部及び先端金具又は「他の既製杭」を覆うカバーを取付けて既製杭を構成し、前記カバーは、該既製杭を埋設後に地上に引き上げ可能に構成したことを特徴とする基礎杭構造である。
【0023】
前記における既製杭は、既製杭の下端に突起部又は凹部を有する先端金具を連結して構成するが、1本の既製杭の下端部を加工して突起部又は凹部を有する所定構造とした場合、あるいは、突起部又は凹部を有する所定構造を有する下杭に、1本又は複数の上杭を接合した構造とすることもできる。
【0024】
また、前記における既製杭は、主にコンクリート系の既製杭の先端に鋼製の先端金具を連結して構成するが、既製杭を鋼管系あるいはこれらの複合構造の材質を採用して、更に、先端金具と既製杭とを一体で製造することもできる。
【0025】
また、前記における外径範囲とは、既製杭の最大外径と同等で円筒状の範囲を形成し、その円筒状の側面から放射状に突出しない範囲をいう。
【0026】
また、前記における既製杭の最大外径とは、通常は、ストレート状の既製杭を使用するので、その外径を指すが、外径が異なる既製杭を使用する場合には、大径部や突起部等が先端金具を接続する既製杭の下面より大径の場合には、これら大径部や突起部等の外径をいう。即ち、既製杭の最大外径に応じた口径で杭穴を掘削するので、その杭穴の掘削径の規定する既製杭の最大外径をいう。
【0027】
また、前記における突起部の上面と、主軸部及び下部軸部との段差部下面とに形成する所定間隙、または隣接する前記突起部の上下面の間に形成する所定間隙とは、有効なせん断力の伝搬を図る為には、せん断力の伝搬角度を考慮して、各突起におけるせん断力の伝搬が上下で重ならないような突起間隔とすることが望ましい。例えば、上下に2個の突起が形成されている場合、基礎杭構造の全体に鉛直荷重が作用した場合、段差部下面、各突起部の下面、既製杭(先端金具)の下面から付着しているソイルセメント層(固化)へせん断力が伝搬する。この際、せん断力は、斜め下方に向けて、鉛直方向と成す角度は約30度で伝搬することが、試験により、確認されている。従って、このせん断力がその下方に位置している突起部の上面に当たらないように、伝搬させれば、突起部等によりせん断力を充分に発現させることができるので、所定間隙は、突起部の高さの√3倍以上が好ましい。上記を前提として、実施に当たっては、所要の支持力に応じて、所定間隙に突起部を設定した設計をすれば良いが、通常では、所定間隙を考慮した根固め用の突起部付きの既製杭として予め製造しておくことが望ましい。
【0028】
また、基礎杭構造全体に引抜力が作用した場合には、せん断力は同様に上方に向けて作用し、鉛直荷重が作用した場合と同様の所定間隙が必要になる。
【0029】
また、前記における所定形状の根固め部とは、前記のようなせん断力が下方あるいは上方に伝搬する際に、必要とする固化ソイルセメント層の強度に見合う大きさ(層厚、外径、長さ等)を意味する。既製杭(先端金具)の下面と杭穴底との間のソイルセメント層の層厚としては、既製杭(先端金具)の杭径以上(例えば、50cm程度)、また、根固め径としては、突起部の径の1.5倍弱程度とすることが望ましい。
【0030】
【発明の実施の形態】
(1) この発明の先端金具12は、既製杭14の下端部(端板部等)にボルトなどで装着可能な構造とし、鋼管本体1の上端部に連結用の大径部2とする。鋼管本体1の中間部及び下端部(大径部を除く部分)には、環状突起10、10が形成されている。環状突起10の外径Dは、大径部2即ち既製杭14の最大外径Dと同等又は、小さく形成されている。尚、ここでは環状突起10の先端が、大径部2即ち既製杭14の最大外径から外方に突出しないように形成されている(図1)が、同等の範囲で、かつ杭穴の軸部掘削径以下であれば、多少突出して形成することもできる。
【0031】
先端金具12を連結した既製杭14を、ソイルセメント等の固化物が充填された杭穴32内に下降して、杭穴下端部に形成した根固め部34に先端金具12が位置するように、既製杭14を埋設して、基礎杭構造37とする(図3)。ソイルセメントは、地盤強度以上の所定の固化強度を有することが望ましい。
【0032】
基礎杭構造37の上端に、基礎ベース及び建造物等の上部構造物を構築する。
【0033】
(2)装着する先端金具12の機能、構造等
【0034】
既製杭14から伝達されてくる建造物等の荷重を、先端金具12の環状突起10の表面等からのせん断力等として支持地盤等に伝搬させ、先端金具12は杭穴32内の固化ソイルセメント層と一体となって、支持地盤に支持する機能を有している。
【0035】
先端金具12の上端部の大径部2は、その上面が、既製杭14の下端板17の下面に密着して、既製杭14に装着する連結部として機能する。大径部2は、鋼管本体1に溶接され、あるいは鋼管本体1と一体に成形して形成する。
【0036】
また、鋼管本体1の外側面8は、杭穴32内の固化ソイルセメントと付着して、一体に埋設されるように機能する。尚、環状突起10は、環状突起10の外径Dを基準とすれば、環状突起10、10の間に深さLの凹部40が形成されていることと同じになる。
【0037】
(3)各構成部分の説明
【0038】
(a) 先端金具12の上端部に位置する大径部(連結部)2は、その上方に位置する既製杭14から伝達されてくる建造物等の荷重を鋼管本体1および環状突起10へ伝達する。更に、大径部2の外側縁下面(鋼管本体との段差部分)から杭穴内のソイルセメント層を通じて鉛直方向のせん断力を伝搬させて、環状突起10と共に、支持力を増強する機能も有する。
【0039】
大径部2と鋼管本体1とは溶接あるいは成形加工などにより接続・固着等され、応力の伝達が円滑に伝搬するように、一体化した構造の鋼材を使用する。また、大径部2には、環状の連結板が形成されており、強度上の必要性により、連結板の上に応力分分散を複数積層すること等により厚さを調節することも可能であり、連結板周縁下面と鋼管本体の外側面との間に斜め状の補強リブを複数形成することもできる。
【0040】
(b) 環状突起10は、杭穴32内のソイルセメント層に一体に付着して埋設され、環状突起10の上下表面は所望支持力に見合ったソイルセメント層との付着面積および強度(厚さ、材質)を有することが必要であり、通常、鋼材を使用する。従って、環状突起10は、複数形成され、各環状突起10の上下面42、41、段差部下面43からの上下方向へのせん断力が斜め下方(約30度)へ充分伝搬できるように所定の間隔Lを設けることが望ましい。このような環状突起10が、鋼管本体1の外側面8に溶接等で固着し鋼管本体1と一体的に構成されている。
【0041】
環状突起10の構造は、例えば、鋼板によるドーナツ形状で、鋼管本体1に3個取り付けた構造(図1)、鋼板によるドーナツ形状で2個取り付けた構造(図5(a))とすることができる。この場合、環状突起10の上下面と鋼管本体1の外側面8との間に、補強リブ11、11を形成することもできる(図5(a))。またドーナッツ状の形成は、鋼板に代えて鋼棒を重ねて巻き付けて同様の構造とすることもできる(図示していない)。
【0042】
また、環状突起10は、ドーナッツ状の鋼板を捻って、スパイラル翼形状を2箇所に形成した構造とすることもできる(図5(b))。この場合、ソイルセメント層内でのせん断力の伝搬を考慮して、スパイラル翼の傾斜角度は小さくすると共に、一周より少なく形成することが必要である。
【0043】
また、環状突起10は、肉厚が厚い断面台形状のドーナッツ状に形成することもできる(図5(c))。この場合、環状突起10は中空又は中実いずれでも可能である。
【0044】
(c) 鋼管本体1は、大径部2及び環状突起10と一体となり、更に、埋設した際に、杭穴32内の固化ソイルセメント層と一体となって、上下方向の応力を伝達、支持する基体となる構造体である。従って、鋼管本体1は応力伝達、支持に見合った所要強度の厚さt、材質が必要である。また、鋼管本体1の内部は、接続する既製杭14の中空部と同一内径で連通して、中空部内にソイルセメントが均一に充填できるように形成する。また、接続する既製杭14の中空部と同一内径で形成することにより、中掘り工法に適用する場合、掘削ロッドを支障無く挿通できる。
【0045】
(4)先端金具12の寸法
【0046】
鋼管本体1の内径寸法Dは、上部に位置する既製杭14の中空部内径寸法以上とすれば良いが、突起の有効面積を増すために、既製杭14の中空部内径と略同一寸法の内径とが望ましい(図1)。
【0047】
また、環状突起10の外径Dは、上部に位置する既製杭14の外径D以下の寸法とすれば可能であるが、既製杭14の外径Dと略同一の場合が、強度設計、支持力等の面から望ましい(図1、図4)。また、既製杭14の杭穴への沈設に際して、少なくとも杭穴の軸部への貫入時に支障無く貫入できる範囲の外径寸法以下に限定することが必要である。即ち、杭穴の軸部掘削径以下が望ましい。
【0048】
また、環状突起10の鋼管本体1の外側面からの長さL(=「D−D」の2分の1)と、設置間隔Lとは、下方へのせん断力の伝搬角度θ(≒30度)とした場合、せん断力を充分発現できるように、
<L×tanθ
となるように形成し、かつ、ソイルセメント層へのせん断力の伝搬の面及びソイルセメントとの付着の面の両面から、環状突起10の表面積を確保できるように、できるだけLを大きくすることが望ましい(図1(a))。
【0049】
(5) また、前記のような技術的思想から、先端金具に代わり、既製杭の下端に螺旋翼付きの鋼管杭(取付ける既製杭より小径)を固定して、この発明の既製杭を構成することもできる。
【0050】
【実施例1】
図面に基づきこの発明の先端金具の実施例を説明する。
【0051】
(1) 外径D(=450mm)、内径D(=420)の鋼管本体(厚さt=15mm)1の上端部に、外径D(=600mm)の大径部2を形成し、既製杭14との連結部とする。大径部2の上端側の外周に、連結用のバンド23を嵌装するための環状溝部3を形成する。連結部の外径、即ち、大径部2の外径Dは、接続すべき既製杭14の外径(下端板の外径)と略同一としてある。環状溝部3には、連結用のボルト穴4、4が形成されている。
【0052】
大径部2の外周には、環状溝部3を有する筒状表面材5と、筒状表面材5の上端内側に連続して、既製杭14の下面と当接するドーナッツ状の当接材6とが埋め込まれている。ボルト穴4、4は、筒状表面材3に形成されている。
【0053】
鋼管本体1の中間部及び下端部の外周に、鋼管の外側面8から距離L(=75〜90mm)(即ち外径D=600〜630mm)、厚さt(=10〜40mm)の環状突起10を突設する。環状突起10は、薄い円盤状に形成され、鋼管本体1の下端から、大径部2の下部までの距離を等分するように、間隔L(=500mm)で、3枚形成されている。尚、環状突起10を別な表現すれば、基準径Dから深さLの凹部40が形成されていることになる。
【0054】
以上のようにして、先端金具12を構成する(図1(a)(b)(c))。
【0055】
前記における間隔Lは、環状突起10の下面41、上面42、大径部2の段差部下面43からのせん断力の有効な伝搬を考慮して、
>√3×L
となるように形成されている。
【0056】
(2)次に、前記実施例に基づくこの発明の先端金具12の使用、即ち既製杭14の構成について説明する(図2(a)(b))。
【0057】
コンクリート製の既製杭14の下端部に、鋼製の接続金具16が一体に取り付けられている。接続金具16は、円盤状の下端板17と、下端板17に連結し、既製杭14の側面に周設した筒状の側板18とからなり、側板18は、下端板17に連続した部分に、材厚を厚くした肉厚部19を有する。側板18に、先端金具12の環状溝部3と略同一形状の環状溝部20を形成する。環状溝部20には、先端金具12のボルト穴4に対応したボルト穴21、21が形成されている。環状溝部20、ボルト穴21は、肉厚部19に形成されている。
【0058】
接合用のバンド23は、先端金具12の大径部2と既製杭14の下端板17に嵌装できる内径を有する鋼製で構成される。バンド23には、上側の内面に、環状溝部20に嵌挿できるように内方に向けて突出する環状凸部25が形成され、下側に、環状溝部3に対応した同様の環状凸部26が形成されている。また、バンド23の環状凸部25、26には、ボルト穴4、21に対応した貫通孔27、27が形成され、バンド23の外面で、貫通孔27、27を拡径した収容部28が形成され、接合用のボルト30の頭部を収容できるようになっている。また、バンド23は、連結作業がし易いように、3つのバンド片24、24に等分割されている。
【0059】
既製杭14を縦に吊り上げて、あるいは既製杭14を地面に寝かせた状態で、既製杭14の下端板17に先端金具12の上面(大径部2の上面)を当接して合わせ、両当接部分にバンド片24、24を環状に並べて当接してバンド23とし、バンド23の環状凸部25、26を既製杭14の環状溝部20、先端金具12の環状溝部3に夫々嵌挿する。貫通孔27、27からボルト30を挿通して、ボルト穴21、4にボルト30の先端部を螺合緊結して、バンド23を既製杭14及び先端金具12に固定し、既製杭14に先端金具12を一体に固定する。
【0060】
この状態で既製杭14の内径と、先端金具12の内径は略同径に形成されている。即ち、既製杭14の内側面15と先端金具12の内側面9とは略面一に形成される(図2(b))。
【0061】
(3)他の実施例
【0062】
また、前記実施例において、既製杭14は、下端に先端金具12を固定して、形成したが、先端金具12を既製杭と一体に形成して、既製杭14とすることもできる(図6)。この場合でも、突起部10の間隔Lは、環状突起10の下面41、上面42、段差部下面43からのせん断力の有効な伝搬を考慮して、
>√3×L
となるように形成されている。また、環状突起10を別な表現すれば、基準径Dから深さLの凹部40が形成されていることになる。
【0063】
【実施例2】
次に、この発明の基礎杭構造について説明する。
【0064】
(1) 所定口径D11(D11=D+30mm程度)の杭穴32の軸部33を所定深さLまで掘削し、杭穴32の軸部33に連続して深さLに亘り口径D12に拡底掘削して、杭穴32の根固め部34を形成する。杭穴23内には、根固め部34内に根固め液を、軸部33に杭周固定液を夫々充填する。根固め液、杭周固定液は、セメントミルク等の固化性材料、又は固化性材料を掘削土と撹拌混合して形成したソイルセメントから構成する。根固め液は、支持地盤の地盤強度と同等の固化強度を有するように調整する(図3)。尚、根固め部34の径D12は、設計上で必要とされる支持力により既製杭14の軸部外径Dの1.5倍程度までで調節することが望ましい。
【0065】
(2) 杭穴32内に、下端に先端金具12を取り付けた既製杭(下杭。ストレート形状)14を埋設し、所定深さまで埋設した所で、杭穴32の開口部で、既製杭14を保持して、既製杭14の上端に、他の既製杭(上杭。ストレート形状)14Aを連結する。
【0066】
続いて、既製杭14、14Aを杭穴32内に下降して、先端金具12が完全に根固め部34内に収容され、かつ既製杭14の下端22が所定長さLだけ、根固め部34内に入り、かつ先端金具12の下面13が根固め部34の底35から所定長さLだけ上方に位置するような位置で、既製杭14の下降を停止して、その状態で既製杭14、14Aを保持する(図4)。
【0067】
(3) 根固め液及び杭周固定液が固化発現した状態で、この発明の基礎杭構造37を構成する(図3)。
【0068】
(4)他の実施例
【0069】
前記実例において、杭穴の掘削完了後に既製杭を埋設するいわゆる先掘工法について説明したが、杭穴を掘削しながら既製杭を埋設するいわゆる中掘工法に適用して、従来と同様に基礎杭を構築することもできる。
【0070】
即ち、先端金具12を取り付けた既製杭14の中空部に、中掘用掘削ロッドを挿通し、先端金具の下端から掘削ヘッドを突出して杭穴を掘削しながら、既製杭14を下降させる(図示していない)。掘削した土砂は、圧縮空気を利用しながら、掘削ロッドに周設したスパイラルにより、先端金具12及び既製杭14の中空部を通って、地上に排出される。続いて、既製杭14Aを連結して、掘削ロッドを継ぎ足して、注水しながら掘削し、既製杭14、14Aを下降し、所定位置まで下降したならば、根固め部を形成し、セメントミルクを注入撹拌し、セメントミルク類を吐出しながら掘削ロッドを、既製杭14、14A、先端金具12の中空部内を通って、地上に引き上げる。
【0071】
以下、既製杭14を下降しながら、前記先掘工法と同様に、先端金具12が完全に根固め部34内に収容され、かつ既製杭14の下端22が所定長さLだけ、根固め部34内に入り、かつ先端金具12の下面13が根固め部34の底35から所定長さLだけ上方に位置するような位置で、既製杭14の下降を停止して、その状態で既製杭14、14Aを保持する。以上で、根固め液等が固化発現して、基礎杭構造を構築する。
【0072】
【実施例3】
本願発明の基礎杭構造と、従来例Cの基礎杭構造とを、同じ地盤に適用した場合の比較を説明する(図8)。
【0073】
(1)本願発明
前記実施例1のように、既製杭14の下端に先端金具12を取付け、根固め部34を有する杭穴32内に埋設する(図1、図3)。各部の寸法は、以下の通りとする。
【0074】
既製杭14
SC杭(鋼管被覆コンクリート杭)
杭長13.5m
外径D=600mm
中空部内径D=420mm
先端金具12
鋼管本体1 t=15mm
=450mm
=420mm
大径部2 D=600mm
環状突起10 L=75〜90mm
=600〜630mm
=10〜40mm
=500mmで3枚
【0075】
尚、D=630mmとした場合であっても、杭穴軸部の掘削径D11以下であり、D(=600mm)と同等の範囲である。
【0076】
杭穴32
軸部33 長さL=13500mm
口径D11=D+30mm
=630mm
(尚、少なくとも D11≧Dとなるよう多少調節する)
根固め部34 長さL=3000〜3500mm
口径D12=900mm
【0077】
(2)比較例(従来例C)
同じ既製杭14を上杭14Aとし、先端金具12に代えて、節39付きの下杭14Bを連結した、従来例Cに相当する比較例で、基礎杭構造を構築する(図7)。
【0078】
(a) 上杭14A
SC杭(鋼管被覆コンクリート杭)
杭長=12m
杭の肉厚=80mm
鋼管厚さ=9mm
外径D=500mm
中空部内径=340mm
(b) 下杭14B
節付きコンクリート杭
杭長=4m
杭の肉厚=80mm
杭の軸部外径D=D=500mm
杭の節部外径D=650mm
杭の中空部内径=340mm
(c) 杭穴32
軸部33 長さL=13500mm
口径D11=650mm+30mm
=680mm
根固め部34 長さL=2500mm
口径D12=950mm
【0079】
(3)効果等
【0080】
(a) 載荷試験では、共に最大荷重として、6.5MN以上が得られている。本実施例3においては、環状突起の形成枚数を3枚としたが、この枚数を増減することにより、根固め部内のソイルセメントとの付着面積の増減及びせん断力の伝搬面積の増減が可能であり、更に、加えて根固め部のソイルセメントの固化強度を増加させると共に支持地盤の土質を適切に選定することにより、更に高い耐荷重が可能となる。
【0081】
(b) 同じ支持力を発揮する基礎杭構造とする場合、杭穴の軸部径を従来の10%弱の小径化できる。これに伴い、掘削土の排出量を同様に削減でき、また、施工時間も同様に短縮される。従って、排土量と掘削時間の軽減に比例して、現場から産業廃棄物として排出される排土の軽減、掘削機の排気ガスの軽減を図ることができ、より環境に優しい基礎杭造成となる。
【0082】
また、既製杭と杭穴軸部との間隙が約6分の1に削減され、使用するセメントミルクも40%節減される。
【0083】
(c) 根固め部の高支持力に対し、杭軸部の外径が約20%大径化できるので、既製杭材の曲げモーメント強度として、SC杭で約2倍強い値へと選択範囲が広がる。
【0084】
(d) 既製杭の中空部内径寸法としては、同様な支持力で対比した時、従来高支持力を発揮させる為の既製杭の内径を340mmとした場合、同じ外径の既製杭を使用した場合、本願発明では既製杭の内径は420mmで済む。
【0085】
即ち、通常規格の既製杭を使用する場合、1ランク外径が大きな既製杭を使用した場合と同一な内径となり、内径が20%以上拡大できる。
【0086】
従って、中掘工法においては、中空部に挿入する掘削ロッドの最大外径を大きくできるので、各種構造の掘削ヘッドを有する掘削ロッドを選択できる。また、根固め部の掘削寸法をより拡大できる。従って、その根固め部径を拡大できることにより、更に高支持力の発現が可能である。従来の掘削ロッドを用いて掘削でき高支持力が得られる等設備技術面からも有効である。
【0087】
従来、中掘り工法では拡底掘削が困難であり、また可能であっても、せいぜい既製杭の外径の1.3〜1.4倍程度の拡底部の掘削しかできず、中掘工法では高支持力を発揮する基礎杭構造の構築が困難であったが、本願発明により、従来の施工技術で1ランク上となる既製杭の外径の1.5〜1.6倍迄の拡底部の掘削を可能とし、中掘工法の適用範囲を拡大できる。
【0088】
【実施例4】
前記各実施例において、先端金具12は、鋼管本体1の中間部及び下端部に環状突起10、10を形成したが、他の構造の先端金具12とした実施例である。
【0089】
(1) 外径Dの鋼管本体1の上端に、既製杭との連結部を有する外径Dの大径部を形成し、下端に外径Dの環状突起を連設して構成する(図9)。
【0090】
外径D、内径Dの鋼管本体1の上端部に、外径Dの大径部2を形成し、大径部2を既製杭14との連結部とする。大径部2は、上面を水平平面状とし、下面側を徐々に小径とした部分円錐状の傾斜斜面を有する段差部下面43を形成してある。連結部の外径、即ち、大径部2の外径Dは、接続するべき既製杭14の外径(下端部の外径)と略同一としてある。
【0091】
鋼管本体1の下端部外側面に、外径Dの円盤状(ドーナツ状)の環状突起10を突設する。環状突起10の上面44は、水平面状に形成し、下面45は部分円錐状の傾斜斜面を形成し、傾斜斜面の下端は鋼管本体1の下端に至っている。
【0092】
以上のようにして、先端金具12を構成する(図9(a))。先端金具12の内径Dは、上端(大径部2の上端)から下端まで、既製杭14の内径と略同一で、形成されている。即ち、既製杭14の内側面15と先端金具12の内側面9とは略面一に形成される(図10(b))。
【0093】
また、大径部2と環状突起10との間隔は、前記各実施例と同様に形成され、環状突起10の間に、更に、本実施例又は前記実施例1の環状突起10を連設することもでき、この場合にも前記実施例1と同様に上下方向の間隔が形成される。
【0094】
尚、ここでは、例えば、
=620mm
=580mm
=800mm
=856mm
として、Dに比して、Dを多少大径に形成したので、より大きな支持力が期待できる。また、大径に形成した分、既製杭の埋設作業において、作業性に劣る場合もあるが、所要の支持力が得られれば、D≦D、とすることもできる。尚、上記において、D(=856mm)は、杭穴軸部の掘削径(830mm)以下とし、D(=800mm)と同等の範囲である。
【0095】
(2) 前記先端金具12の大径部2の上面を、前記実施例1と同じ外径Dの既製杭14の下端板17の下面に当て、大径部2と下端板17とをボルトや溶接等で一体に固定して、杭穴に埋設して、基礎杭構造を構成する(図示していない)。
【0096】
既製杭14を埋設する際に、大径部2を含む鋼管本体1の全体及び既製杭1の下端部を覆い、該部に泥土が固着することを防止できる筒状のカバー47を使用することが望ましい。この場合、カバー47の下端を環状突起10の外周部46に、ストッパー5を介して係止仮止めし、カバー47の上端のカプラー48、48にPC鋼棒49の下端をねじ止めし、PC鋼棒49の上端を既製杭14の上端に連設した円盤状治具52にナット51、カプラー50でねじ止めする(図10(a))。この状態で、既製杭14を埋設すれば、後に述べるように、カバー47により保護される環状突起10の上面44及び下面45には、泥土が固着あるいは滞留し難く、先端金具12及び既製杭14の下端部に泥土が固着することなく、該部を杭穴の根固め部内に設置できる。
【0097】
既製杭14を所定の位置に設置したならば、PC鋼棒の上端を引き上げ、カバー47と環状突起10のストッパー53による仮止めを解除して、カバー47及びPC鋼棒49を地上に引き上げる。
【0098】
従って、カバー47を使用した場合、先端金具12及び既製杭14の下端部が根固め部内に形成されるセメントミルク層内に確実に密着して定着でき、高品質の基礎杭構造を構築できる。また、カバー47として、ここでは円筒状の肉厚の薄い鋼管を使用するが、該部をカバーして埋設してその後に引き上げできれば、材質、構造は任意である。また、実施例1の先端金具12にも同様にカバー47を適用できる(図示していない)。
【0099】
保護カバー47を利用することにより、既製杭14の下端部とソイルセメントとの密着性を低下させる粘着性の土泥の固着を防止できるので、既製杭14(下端部)の外径と杭穴軸部の外径と間隙を小さくいても、既製杭14の下端部とソイルセメント層との密着性が土質に関係なく維持でき、基礎杭構造で安定した先端支持力が得られる。
【0100】
(3) この実施例の先端金具12では、前記保護カバー47を使用して安定した支持力が得られるので、同一外径の場合には、前記実施例1の先端金具12(図1、5)に比して、全表面積及びせん断力が伝達する面が少ない分、支持力が多少小さな設計となっているが、施工上取扱い易いと共に、杭穴の根固め部の掘削径を小さく形成できる等の利点がある。
【0101】
即ち、具体的には、前記構造の先端金具12を使用し、更には前記保護カバー47を使用することにより、以下のような利点が安定して得られる。
【0102】
(a) 鋼管本体1(筒状基部)の長さを短くし(長さ1.0m程度。実施例1では、長さ2.5m程度)、先端金具12における支持力の発揮に寄与が少ない、鋼管本体1の側面の面積を減らした。これにより、杭穴の根固め部の拡底掘削する長さを短くし、結果、施工時間の短縮、セメントミルクの使用量を削減する等を実現できる。
(b) また、環状突起10の根付け部分(鋼管本体1に近い側)を厚くし、機械的強度を高めた。
(c) また、環状突起10の下面45を部分円錐状の傾斜斜面としたので、根固め部内のソイルセメント層及び地盤への応力が効率的に伝搬される。
(d) 鉛直支持力の発生に最も寄与すると考えられる先端部に広い表面積の環状突起10を形成したので、外径の小さい突起部で、また少ない数で、より大きな鉛直支持力を発揮できる。
(e) 鉛直支持力の発生に寄与する環状突起10の下面45を傾斜させて形成したので、先端金具を杭穴へ埋設する際に環状突起10の下面45に泥土が固着し難い。従って、ソイルセメント層と下面45との付着を高め、せん断力のソイルセメント層への伝搬を確実になし得る。
(f) 既製杭14の最先端に最も大径な部分が形成してあるので、既製杭14を埋設する際に、既製杭14のセンタリング(杭穴の芯との芯合わせ)が容易となる。
【0103】
【発明の効果】
既製杭の下端部に、突起部を有する先端金具を固定して、あるいは、下端部に突起部又は凹部を形成した既製杭に関し、ソイルセメントとの付着面積を広くして、先端金具の大径部下面、先端金具の突起部上下面、既製杭の主軸部と下部軸部の段差部、突起部の上下壁、凹部の上下壁より、せん断力が障害なく充分に伝搬できるように配置して、支持地盤強度以上の固化強度のソイルセメントを充填した根固め部内に埋設するので、根固め部内で、せん断力を有効に伝搬させ、高い支持力を有する基礎杭構造を形成できる効果がある。
【0104】
また、先端金具の突起部の外径を既製杭の最大外径と同等又はより小径に形成したので、より小さな杭穴軸部の掘削径で、より大きな支持力を発揮できる効果がある。また、杭穴軸部の掘削径に比してより大きな支持力を発揮できるので、同じ支持力で、掘削径を小さくできるので、排土量を削減し、杭穴の掘削時間を削減できる効果が有る。従って、現場から排出される産業廃棄物としての排土を減らし、掘削時間の軽減により掘削機の排気ガスの軽減を図り、より環境に優しく、基礎杭を構築できる。
【0105】
また、杭穴の軸部径、既製杭の外径を同じにして、従来と同等の支持力を発揮させる場合に、既製杭の内径を大きくできるので、既製杭の中空部を有効活用して、中掘工法でより高支持力を有する基礎杭を従来設備で容易に構築できる効果がある。
【0106】
また、先端金具を使用する場合には、同じ口径の既製杭を使用する場合でも、求める先端支持力が異なる場合に、その先端支持力に応じて、先端金具の突起部の形成枚数等を変えて有効面積を増減、あるいはソイルセメントの固化強度を増減すること等により、より効率的な基礎杭構造を簡便に構築できる効果がある。
【0107】
また、先端支持力に関わる既製杭の下端部や先端支持具を保護カバーで覆う場合には、該部に泥土が固着又は滞留せずに、該部とソイルセメント層との密着性が改善される。従って、粘着性の高い地盤でも安定した支持力が得られるので、杭穴の軸部径と、既製杭及び先端金具の外径との間隙を小さくしても、築造される基礎杭構造において安定した高支持力が得られる。
【図面の簡単な説明】
【図1】この発明の先端金具の実施例で、(a)は正面図、(b)は底面図、(c)は縦断面図である。
【図2】この発明の先端金具と既製杭との連結を表す一部拡大縦断面図で、(a)は連結前、(b)は連結後を夫々表す。
【図3】この発明の実施例の基礎杭構造の縦断面図である。
【図4】同じく根固め部の拡大縦断面図である。
【図5】この発明の他の先端金具の正面図である。
【図6】この発明の他の既製杭の正面図である。
【図7】この発明の従来例Cを説明する図で、(a)は上杭及び下杭の縦断面図、(b)既製杭(上下杭)を埋設した基礎杭構造の縦断面図である。
【図8】実施例3を適用する地盤と既製杭設置状況を説明する図である。
【図9】実施例4の既製杭で、(a)は縦断面図、(b)は杭打ち機に装着した状態の正面図である。
【図10】同じく既製杭の一部拡大縦断面図で、(a)は上端部、(b)は下端部を、夫々表す。
【符号の説明】
1 鋼管本体
2 大径部
3 環状溝部
4 ボルト穴
5 筒状表面材
6 当接材
8 外側面
9 内側面
10 環状突起
11 環状突起のリブ
12 先端金具
13 先端金具の下面
14、14A 既製杭
15 既製杭の内側面
16 既製杭の接続金具
17 既製杭の下端板
18 既製杭の側板
19 既製杭の側板の肉厚部
20 既製杭の環状溝部
21 既製杭のボルト穴
22 既製杭の下端
23 連結用のバンド
24 バンド片
25、26 バンドの環状凸部
27 バンドの貫通孔
28 バンドの収容部
30 ボルト
32 杭穴
33 杭穴の軸部
34 杭穴の根固め部
35 杭穴の根固め部の底
37 基礎杭構造
40 凹部
41 突起部下面(凹部の上側側面)
42 突起部上面(凹部の下側側面)
43 段差部下面
44 環状突起11の上面
45 環状突起11の下面
47 カバー
49 PC鋼棒
52 円盤状治具
[0001]
BACKGROUND OF THE INVENTION
  A pre-made pile with protrusions such as nodes, spiral wings, steel rods, steel plates, etc. formed on the bottom end of the pile is installed on the soil cement layer of the predetermined root-clamping part, and the high bearing capacity is utilized using the protrusions. Foundation pile structure expressingTo makeRelated. In addition, any of the presence or absence of a diameter expansion can be applied to a root hardening part.
[0002]
[Prior art]
  Conventionally, in a pile foundation, an invention was made in which protrusions were formed at the lower end portion of a pile embedded in a root-solidified portion, and the supporting force was enhanced with the entire foundation pile integrally with a ready-made pile embedded in a pile hole. For example, a structure in which a plurality of sets of expanded reinforcing bars are formed on the outer periphery of the lower end portion of a cylindrical concrete pile, and a chain is connected as a horizontal reinforcing bar between the reinforcing bars of the expanded reinforcing bars (Patent Document 1, Japanese Patent Laid-Open No. 11-61811, Japanese Patent No. 3054389). (Hereinafter, Conventional Example A)), and a structure in which an H-shaped steel having a convex portion on the outer surface of the flange is fixed to the tip of the ready-made pile (Patent Document 2. JP 2001-271347 A (hereinafter, Conventional Example B)), Further, a structure using a ready-made pile made of concrete having a protrusion on the outer periphery of the lower end (Patent Document 3, Japanese Patent Laid-Open No. 11-280067 (hereinafter, Conventional Example C)) is known.
[0003]
  According to FIGS. 1 to 5 etc. of the embodiment described in the prior art A publication, the ready-made pile 3 in which the expanded reinforcing bar 6 formed on the lower outer surface is folded is penetrated through the shaft portion of the pile hole 1, and the hole bottom It is said that a high supporting force can be obtained by pushing into the expanded portion 2 and expanding the expanded rebar 6 so as to be embedded and solidified as shown in FIG. Pile hole excavation dimensions are not specifically described, but according to FIGS. 3 and 5, the dimension of the shaft hole 1 is at least “pile diameter + expanded rebar thickness” or more, Pile holes with a large diameter of about 30% or more of the diameter are drilled. Accordingly, the gap between the pile and the pile hole is extra as compared with “pile length + 30 mm (10% or less of the pile diameter)” of the required dimension of the shaft pile hole of the normal pile foundation. The excavation diameter of the root-solidified part is twice or more the pile diameter and larger than the normal support force (pile diameter x about 1.25 to 1.5).
[0004]
  Further, according to the example on page 3 of the conventional example B publication, the steel H steel is formed at the lower end of the outer shell steel pipe concrete pile 1 (usually called SC pile) having an outer diameter D (500 mm). And shaft hole diameter D1Is excavated at 650mm. The required shaft excavation diameter in the conventional foundation pile is about “pile diameter + 30 mm (10 m% or less of the pile diameter)”, and the distance between the inner wall of the pile hole and the outer surface of the pile is excessive as compared with the conventional one. Also, in order to develop a high bearing capacity, the bottomed root consolidation part excavation diameter D0Has a large-diameter excavation of 1000 mm, which is approximately twice the diameter of the pile, compared to the normal bearing force (pile diameter x 1.25 to 1.5).
[0005]
  Moreover, according to Fig.2 (a), although H steel 2 and the reinforcement rib 4 which were formed in the lower end part of the pile 1 seem to be formed below the outer diameter dimension of the pile 1 of the upper part at first glance, Compared with FIG. 1, FIG. 3, etc., it is drawn by the dimension substantially the same as an Example, and it is guessed that large-diameter excavation is performed for both axial part excavation and deepening root solidification part excavation like an Example.
[0006]
  Further, as shown in FIG. 2 of JP-A-2001-27347, in the case of a structure in which the projection closes the lower end portion of the pile, the pile lower end central portion and the pile hole hollow portion particularly with respect to the high-concentration soil cement of the root consolidation portion The shearing force cannot be fully utilized due to the upper and lower overlapping of each plug-shaped projection. In addition, there is a problem in versatility such that the excavation head cannot penetrate the hollow part of the pile hole due to the protrusion, so that the construction by the medium excavation method cannot be performed.
[0007]
  Moreover, according to the pile foundation 10 by Example 1 of FIG. 1 of a prior art example C gazette, as a structure of a pile lower part, it forms in the pile lower end part embed | buried under the bottom expansion root-solidifying part 3, and the protrusion part which contributes to high strength expression Is an annular rib (node-shaped), and three annular ribs 5, 6, 7 are formed. In order to sufficiently exhibit the shearing force of the protrusion, the annular rib outer diameter D of the protrusion1(75cm) is the shaft outer diameter D of the pile 40The surface area of the protrusions is larger than (60 cm). Therefore, the outer diameter of the upper part of the ready-made pile is the shaft outer diameter dimension D.0And the pile material is limited, and the excavation dimension of the pile hole shaft part 2 is the dimension D in which the annular rib is easy to penetrate.00(80cm) is excavated and the gap between the inner wall of the pile hole and the outer surface of the pile is wide, and the bottom expansion dimension D of the root consolidation part11However, a large-diameter excavation at an unprecedented ratio is required, and a new technical response to an unprecedented large-diameter excavation work is required for both the shaft portion and the bottomed root solidified portion.
[0008]
  In addition, a number of pile foundations have been proposed in the past, where protrusions or recesses have been formed in the embedded part of the pre-solidified piles to enhance the support force. There is not enough spacing between the protrusions or the recesses so that it can be fully expressed, and it is considered that the shear strength is fully developed and the bearing strength is obtained, including the required solidification strength of the soil cement layer. It seems that only the foundation pile using the invention of Conventional Example C seems to have a lot of construction results.
[0009]
  In general, the shaft piles with a small diameter are used for the high bearing capacity that develops at the root consolidation part, and the horizontal bearing strength of the shaft piles themselves is insufficient. It was difficult to construct a pile foundation that limited the choice of materials and maximized the vertical bearing capacity.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-61811
[0011]
[Patent Document 2]
JP 2001-271347 A
[0012]
[Patent Document 3]
JP-A-11-280067
[0013]
[Problems to be solved by the invention]
  The prior art has the following problems.
[0014]
(1) At the lower end of the pile, because the protrusion is formed on the outer surface of the pile as a simple method in order to increase the area of the protrusion that causes the adhesion with the soil cement layer and the shearing force, The excavation diameter of the deepening root consolidation part and the shaft diameter of the pile hole are larger in the pile diameter ratio than the conventional normal bearing capacity pile foundation. The gap between the pile hole shaft diameter and the pile hole shaft diameter must also be increased.
[0015]
(2) Pile at the pile hole shaft must have a well-balanced and high yield strength (strength that satisfies both the load bearing capacity and bending strength) against the high bearing capacity that is twice as high as the conventional level. However, since the pile diameter is small, the selection range of pile materials is limited, and it is difficult to make full use of the high bearing capacity of the root-solidified part.
[0016]
(3) Pile hole diameter required to develop the frictional force of the pile diameter embedded in the pile hole shaft (when the distance between the normal pile hole inner wall and the pile is 30 mm, 10% or less) (for example, 20% or more), the excavation area is wasted (about 40%), and the excavation diameter of the deepened root consolidation part is relatively large compared to the conventional pile diameter ratio. As a result, the excavation time is long and the excavation and soiling is also a problem economically and environmentally. Furthermore, there are many wasteful points, such as the need to procure a drilling device for a large-diameter pile hole, which is unprecedented.
[0017]
  In particular, for medium digging, large diameters that do not have an expanded bottom pile hole (compared to the inner diameter of the hollow part of the pile)InTherefore, there are many problems to be solved in the excavator technology regarding the stable construction of excavation.
[0018]
[Means for Solving the Problems]
  However, in the present invention, a tip metal fitting having a projection having a diameter equal to or smaller than the maximum outer diameter of the ready-made pile to be connected is formed, or the lower end portion of the ready-made pile located in the root consolidation portion is smaller in diameter than the upper shaft portion. Since the lower shaft portion is formed with a protrusion or the like having an outer diameter equal to or smaller than the maximum outer diameter of the upper shaft portion, the above-described problems have been solved.
[0019]
  That is, the invention of this foundation pile structure is to connect the tip fitting or "other ready-made pile" to the lower end of the ready-made pile having a main shaft portion of a predetermined shaft diameter, the tip fitting or "other ready-made pile"Having a large diameter portion of substantially the same diameter as the main shaft portion connected to the ready-made pile,Forming a lower shaft portion having a smaller diameter than the main shaft portion, forming a protrusion on the lower shaft portion, and forming the tip of the protrusion to be equal to or less than the maximum outer diameter of the main shaft portion;And forming a stepped portion on the lower surface of the large diameter portion,In the pile hole having a root-solidified portion filled with a root-solidifying solution on the supporting ground, the ready-made pile is connected to the tip fitting or "other pre-made pile" and the lower end of the ready-made pile is within the root-solidified portion of the pile hole. It is the foundation pile structure using the ready-made pile characterized by being embedded so that the said front-end metal fitting or "other ready-made pile" might be unitedly supported by the said support ground.
[0020]
  Further, in the above, the protruding portion is provided with a predetermined gap between the upper surface of the protruding portion and the lower surface of the step portion between the main shaft portion and the lower shaft portion, or with a predetermined gap between the upper and lower surfaces of the adjacent protruding portions. It is a foundation pile structure using the ready-made pile characterized by having filled with the soil cement into which the solidification strength becomes more than the intensity | strength of a support ground in the solidified part of the predetermined shape of a pile hole.
[0021]
  Further, the invention of another foundation pile structure is to connect a tip fitting or "other ready-made pile" to the lower end of a ready-made pile having a main shaft portion of a predetermined shaft diameter, and the tip fitting or "other ready-made pile"Having a large diameter portion of substantially the same diameter as the main shaft portion connected to the ready-made pile,At the lower end, form a lateral recess from the side to the shaft side,And forming a stepped portion on the lower surface of the large diameter portion,In the pile hole having a root consolidation part filled with root consolidation liquid on the supporting ground, the ready-made pile is connected to the tip metal fitting or “other ready-made pile” and the lower end portion of the ready-made pile in the root consolidation part of the pile hole. It is a foundation pile structure using a built-in ready-made pile so that the tip metal fitting or "other ready-made pile" may be integrated and supported on the supporting ground.
[0022]
  In addition, in the above, the ready-made pile is configured by attaching a cover that covers the lower end of the ready-made pile and the tip metal fitting or "other ready-made pile",The cover isPull the ready-made pile to the ground after burialConfigure as possibleIt is a foundation pile structure characterized by that.
[0023]
  The ready-made pile in the above is configured by connecting a tip fitting having a protrusion or a recess to the lower end of the ready-made pile, but when processing the lower end of one ready-made pile to have a predetermined structure having a protrusion or a recess. Alternatively, a structure in which one or a plurality of upper piles are joined to a lower pile having a predetermined structure having a protruding portion or a recessed portion may be used.
[0024]
  In addition, the ready-made pile in the above is mainly configured by connecting a steel tip metal fitting to the tip of a concrete-based ready-made pile, and the ready-made pile adopts a steel pipe system or a composite structure material thereof, A tip metal fitting and a ready-made pile can also be manufactured integrally.
[0025]
  Moreover, the outer diameter range in the above refers to a range that is equivalent to the maximum outer diameter of the ready-made pile and forms a cylindrical range and does not protrude radially from the cylindrical side surface.
[0026]
  In addition, the maximum outer diameter of the ready-made pile in the above usually refers to the outer diameter because a straight ready-made pile is used, but when using a ready-made pile having a different outer diameter, When the protrusions have a larger diameter than the bottom surface of the ready-made pile that connects the end fittings, the outer diameters of the large diameter part, the protrusions, and the like are referred to. That is, since the pile hole is excavated with a diameter corresponding to the maximum outer diameter of the ready-made pile, it means the maximum outer diameter of the ready-made pile defined by the excavation diameter of the pile hole.
[0027]
  The predetermined gap formed between the upper surface of the protrusion and the lower surface of the stepped portion between the main shaft portion and the lower shaft portion, or the predetermined gap formed between the upper and lower surfaces of the adjacent protrusions is effective shear. In order to propagate the force, it is desirable to set the projection interval so that the propagation of the shear force in each projection does not overlap in the vertical direction in consideration of the propagation angle of the shear force. For example, when two protrusions are formed on the top and bottom, when a vertical load is applied to the entire foundation pile structure, it adheres from the lower surface of the stepped portion, the lower surface of each protruding portion, and the lower surface of the ready-made pile (tip fitting). Shear force propagates to the soil cement layer (solidification). At this time, it has been confirmed by tests that the shear force propagates obliquely downward and at an angle of about 30 degrees with the vertical direction. Therefore, if this shearing force is propagated so that it does not hit the upper surface of the projecting part located below, the shearing force can be sufficiently expressed by the projecting part or the like. It is preferable that the height is √3 times or more. Based on the above assumptions, it is only necessary to design a projection with a predetermined gap in accordance with the required support force, but in general, a ready-made pile with a projection for consolidation that takes into account the predetermined gap It is desirable to manufacture in advance.
[0028]
  Further, when a pulling force is applied to the entire foundation pile structure, the shearing force is similarly applied upward, and the same predetermined gap as that when a vertical load is applied is required.
[0029]
  In addition, the above-mentioned solidified root portion is a size (layer thickness, outer diameter, long length) that matches the strength of the solidified soil cement layer required when the shearing force propagates downward or upward. Meaning). The layer thickness of the soil cement layer between the lower surface of the ready-made pile (tip fitting) and the bottom of the pile hole is equal to or greater than the pile diameter of the ready-made pile (tip fitting) (for example, about 50 cm). It is desirable that the diameter is about 1.5 times the diameter of the protrusion.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
(1) The tip metal fitting 12 of the present invention has a structure that can be attached to the lower end portion (end plate portion or the like) of the ready-made pile 14 with a bolt or the like, and has a large diameter portion 2 for connection to the upper end portion of the steel pipe main body 1. Annular projections 10 and 10 are formed on the intermediate portion and the lower end portion (the portion excluding the large diameter portion) of the steel pipe main body 1. The outer diameter D of the annular protrusion 104Is the large diameter part 2, that is, the maximum outer diameter D of the ready-made pile 145It is equivalent to or smaller than Here, the tip of the annular protrusion 10 is formed so as not to protrude outwardly from the maximum outer diameter of the large-diameter portion 2, that is, the ready-made pile 14 (FIG. 1). If it is below a shaft part excavation diameter, it can also project a little.
[0031]
  The ready-made pile 14 to which the tip metal fitting 12 is connected is lowered into the pile hole 32 filled with a solidified material such as soil cement so that the tip metal fitting 12 is positioned at the rooting portion 34 formed at the lower end portion of the pile hole. Then, the ready-made pile 14 is buried to form a foundation pile structure 37 (FIG. 3). It is desirable that the soil cement has a predetermined solidification strength equal to or higher than the ground strength.
[0032]
  An upper structure such as a foundation base and a building is constructed on the upper end of the foundation pile structure 37.
[0033]
(2) Function and structure of the end fitting 12 to be mounted
[0034]
  The load of the building or the like transmitted from the ready-made pile 14 is propagated to the supporting ground or the like as a shearing force or the like from the surface of the annular protrusion 10 of the tip fitting 12, and the tip fitting 12 is solidified soil cement in the pile hole 32. It has a function of supporting the supporting ground integrally with the layer.
[0035]
  The upper surface of the large-diameter portion 2 at the upper end of the tip fitting 12 is in close contact with the lower surface of the lower end plate 17 of the ready-made pile 14 and functions as a connecting portion to be attached to the ready-made pile 14. The large-diameter portion 2 is formed by being welded to the steel pipe main body 1 or molded integrally with the steel pipe main body 1.
[0036]
  Moreover, the outer side surface 8 of the steel pipe main body 1 adheres to the solidified soil cement in the pile hole 32 and functions so as to be embedded integrally. The annular protrusion 10 has an outer diameter D of the annular protrusion 10.4Is the depth L between the annular projections 10, 10.7This is the same as the formation of the recess 40.
[0037]
(3) Explanation of each component
[0038]
  (a) The large-diameter portion (connecting portion) 2 positioned at the upper end portion of the tip fitting 12 transmits the load of the building or the like transmitted from the ready-made pile 14 positioned above the steel pipe body 1 and the annular protrusion 10. To do. Furthermore, it has the function of increasing the supporting force together with the annular protrusion 10 by propagating a vertical shearing force from the lower surface of the outer edge of the large-diameter portion 2 (stepped portion with the steel pipe body) through the soil cement layer in the pile hole.
[0039]
  The large-diameter portion 2 and the steel pipe body 1 are connected and fixed by welding or forming process, etc., and a steel material having an integrated structure is used so that the transmission of stress smoothly propagates. In addition, an annular connecting plate is formed in the large diameter portion 2, and the thickness can be adjusted by stacking a plurality of stress dispersions on the connecting plate depending on the necessity for strength. In addition, a plurality of oblique reinforcing ribs can be formed between the lower surface of the peripheral edge of the connecting plate and the outer surface of the steel pipe body.
[0040]
  (b) The annular protrusion 10 is integrally attached and buried in the soil cement layer in the pile hole 32, and the upper and lower surfaces of the annular protrusion 10 are attached to the soil cement layer corresponding to the desired bearing force and the strength (thickness). In general, steel is used. Accordingly, a plurality of annular protrusions 10 are formed, and a predetermined shearing force from the upper and lower surfaces 42 and 41 of each annular protrusion 10 and the stepped portion lower surface 43 can be sufficiently propagated obliquely downward (about 30 degrees). Interval L1It is desirable to provide Such an annular protrusion 10 is fixed to the outer surface 8 of the steel pipe body 1 by welding or the like, and is configured integrally with the steel pipe body 1.
[0041]
  The structure of the annular protrusion 10 may be, for example, a donut shape made of a steel plate and attached to the steel pipe body 1 (FIG. 1), or a structure attached two to a donut shape made of a steel plate (FIG. 5A). it can. In this case, reinforcing ribs 11 can be formed between the upper and lower surfaces of the annular protrusion 10 and the outer surface 8 of the steel pipe main body 1 (FIG. 5A). In addition, the formation of the donut shape can be formed by overlapping a steel rod in place of the steel plate and winding the same (not shown).
[0042]
  Moreover, the annular protrusion 10 can also be made into the structure which twisted the donut-shaped steel plate and formed the spiral wing | blade shape in two places (FIG.5 (b)). In this case, considering the propagation of the shearing force in the soil cement layer, it is necessary to make the inclination angle of the spiral blade smaller and to make it less than one round.
[0043]
  Moreover, the annular protrusion 10 can also be formed in a donut shape having a thick trapezoidal cross section (FIG. 5C). In this case, the annular protrusion 10 can be either hollow or solid.
[0044]
  (c) The steel pipe body 1 is integrated with the large-diameter portion 2 and the annular protrusion 10, and further, when embedded, it is integrated with the solidified soil cement layer in the pile hole 32 to transmit and support stress in the vertical direction. It is the structure used as the base | substrate which carries out. Therefore, the steel pipe body 1 has a required thickness t suitable for stress transmission and support.1, Material is required. Moreover, the inside of the steel pipe main body 1 communicates with the hollow part of the ready-made pile 14 to connect with the same internal diameter, and it forms so that soil cement can be uniformly filled in a hollow part. Moreover, when it forms with the same internal diameter as the hollow part of the ready-made pile 14 to connect, when applying to a medium digging method, a drilling rod can be penetrated without trouble.
[0045]
(4) Dimensions of tip bracket 12
[0046]
  Inside diameter D of steel pipe body 12May be equal to or larger than the inner diameter of the hollow portion of the ready-made pile 14 positioned at the upper portion, but in order to increase the effective area of the protrusion, an inner diameter of approximately the same size as the inner diameter of the hollow portion of the ready-made pile 14 is desirable (FIG. 1). .
[0047]
  Further, the outer diameter D of the annular protrusion 104Is the outer diameter D of the ready-made pile 14 located in the upper part5The following dimensions are possible, but the outer diameter D of the ready-made pile 145Are substantially the same in terms of strength design, support force, etc. (FIGS. 1 and 4). Further, when the ready-made pile 14 is set in the pile hole, it is necessary to limit it to at least an outer diameter dimension within a range in which the pile hole can be penetrated without any trouble when penetrating into the shaft portion. In other words, it is desirable to be less than the shaft excavation diameter of the pile hole.
[0048]
  Further, the length L of the annular protrusion 10 from the outer surface of the steel pipe body 17(= “D4-D1)) And the installation interval L1With the propagation angle θ of the downward shear force (≈30 degrees), so that the shear force can be sufficiently expressed,
  L7<L1× tanθ
In order to secure the surface area of the annular protrusion 10 from both the surface of propagation of shearing force to the soil cement layer and the surface of adhesion to the soil cement, L is as much as possible.7It is desirable to increase (FIG. 1 (a)).
[0049]
(5) Moreover, from the technical idea as described above, a steel pipe pile with a spiral wing (smaller diameter than the ready-made pile to be installed) is fixed to the lower end of the ready-made pile instead of the tip fitting, and the ready-made pile of this invention is configured. You can also
[0050]
[Example 1]
  An embodiment of the tip metal fitting of the present invention will be described based on the drawings.
[0051]
(1) Outer diameter D1(= 450mm), inner diameter D2(= 420) steel pipe body (thickness t1= 15 mm) At the upper end of 1, the outer diameter D3A large-diameter portion 2 of (= 600 mm) is formed and used as a connection portion with the ready-made pile 14. On the outer periphery on the upper end side of the large-diameter portion 2, an annular groove portion 3 for fitting the connecting band 23 is formed. The outer diameter of the connecting portion, that is, the outer diameter D of the large diameter portion 23Is substantially the same as the outer diameter of the ready-made pile 14 to be connected (the outer diameter of the lower end plate). Bolt holes 4 and 4 for connection are formed in the annular groove 3.
[0052]
  On the outer periphery of the large-diameter portion 2, a cylindrical surface material 5 having an annular groove portion 3, a donut-shaped contact material 6 that is in contact with the lower surface of the ready-made pile 14 continuously from the upper end inside the cylindrical surface material 5, Is embedded. The bolt holes 4 and 4 are formed in the cylindrical surface material 3.
[0053]
  The distance L from the outer surface 8 of the steel pipe to the outer periphery of the intermediate part and the lower end part of the steel pipe body 17(= 75 to 90 mm) (ie outer diameter D4= 600-630mm), thickness t2An annular projection 10 (= 10 to 40 mm) is projected. The annular protrusion 10 is formed in a thin disk shape, and the distance L is set so that the distance from the lower end of the steel pipe body 1 to the lower portion of the large diameter portion 2 is equally divided.1Three (= 500 mm) are formed. If the annular protrusion 10 is expressed in another way, the reference diameter D4To depth L7The recess 40 is formed.
[0054]
  As described above, the end fitting 12 is configured (FIGS. 1A, 1B, and 1C).
[0055]
  Interval L in the above1In consideration of effective propagation of the shearing force from the lower surface 41, the upper surface 42 of the annular protrusion 10, and the stepped portion lower surface 43 of the large diameter portion 2,
  L1> √3 × L7
It is formed to become.
[0056]
(2) Next, the use of the tip metal fitting 12 of the present invention based on the above-described embodiment, that is, the configuration of the ready-made pile 14 will be described (FIGS. 2A and 2B).
[0057]
  A steel connection fitting 16 is integrally attached to a lower end portion of the ready-made pile 14 made of concrete. The connection bracket 16 includes a disk-shaped lower end plate 17 and a cylindrical side plate 18 that is connected to the lower end plate 17 and is provided around the side surface of the ready-made pile 14. The side plate 18 is formed at a portion that is continuous with the lower end plate 17. The thick portion 19 has a thicker material. An annular groove portion 20 having substantially the same shape as the annular groove portion 3 of the end fitting 12 is formed on the side plate 18. Bolt holes 21 and 21 corresponding to the bolt holes 4 of the end fitting 12 are formed in the annular groove portion 20. The annular groove portion 20 and the bolt hole 21 are formed in the thick portion 19.
[0058]
  The band 23 for joining is comprised with the steel which has the internal diameter which can be fitted to the large diameter part 2 of the front-end metal fitting 12, and the lower end board 17 of the ready-made pile 14. FIG. The band 23 is formed with an annular convex portion 25 projecting inward so that it can be fitted into the annular groove portion 20 on the upper inner surface, and a similar annular convex portion 26 corresponding to the annular groove portion 3 on the lower side. Is formed. In addition, through holes 27 and 27 corresponding to the bolt holes 4 and 21 are formed in the annular convex portions 25 and 26 of the band 23, and an accommodating portion 28 having an enlarged diameter of the through holes 27 and 27 is formed on the outer surface of the band 23. It is formed and can accommodate the head of the bolt 30 for joining. Further, the band 23 is equally divided into three band pieces 24 and 24 so as to facilitate the connecting operation.
[0059]
  In the state where the ready-made pile 14 is lifted vertically or the ready-made pile 14 is laid on the ground, the upper surface of the tip metal fitting 12 (the upper surface of the large-diameter portion 2) is brought into contact with the lower end plate 17 of the ready-made pile 14, Band pieces 24, 24 are arranged in abutment with the contact portion to form a band 23, and the annular convex portions 25, 26 of the band 23 are inserted into the annular groove portion 20 of the ready-made pile 14 and the annular groove portion 3 of the tip fitting 12, respectively. Bolts 30 are inserted through the through holes 27, 27, the tip portions of the bolts 30 are screwed and fastened to the bolt holes 21, 4, and the band 23 is fixed to the ready-made pile 14 and the tip fitting 12. The metal fitting 12 is fixed integrally.
[0060]
  In this state, the inner diameter of the ready-made pile 14 and the inner diameter of the tip fitting 12 are formed to be substantially the same diameter. That is, the inner side surface 15 of the ready-made pile 14 and the inner side surface 9 of the tip metal fitting 12 are formed substantially flush with each other (FIG. 2B).
[0061]
(3) Other embodiments
[0062]
  Moreover, in the said Example, although the ready-made pile 14 fixed the tip metal fitting 12 to the lower end, it formed, the tip metal fitting 12 was formed integrally with the ready-made pile, and it can also be set as the ready-made pile 14 (FIG. 6). ). Even in this case, the distance L between the protrusions 10 is1In consideration of effective propagation of the shearing force from the lower surface 41, the upper surface 42, and the stepped portion lower surface 43 of the annular protrusion 10,
  L1> √3 × L7
It is formed to become. Further, if the annular protrusion 10 is expressed in another way, the reference diameter D4To depth L7The recess 40 is formed.
[0063]
[Example 2]
  Next, the foundation pile structure of this invention is demonstrated.
[0064]
(1) Predetermined aperture D11(D11= D5The shaft portion 33 of the pile hole 32 of about +30 mm) has a predetermined depth L2Drilled until the shaft portion 33 of the pile hole 32 continues to the depth L3Over the diameter D12The bottom is excavated to form a solidified portion 34 of the pile hole 32. The pile hole 23 is filled with a root-solidifying solution in the root-solidifying portion 34, and a shaft portion 33 is filled with a pile circumference fixing liquid, respectively. The root hardening liquid and the pile circumference fixing liquid are composed of a solidifying material such as cement milk, or a soil cement formed by stirring and mixing a solidifying material with excavated soil. The root hardening liquid is adjusted so as to have a solidification strength equivalent to the ground strength of the supporting ground (FIG. 3). The diameter D of the root hardening part 3412Is the shaft outer diameter D of the ready-made pile 14 due to the supporting force required in the design.5It is desirable to adjust up to about 1.5 times.
[0065]
(2) A prefabricated pile (lower pile, straight shape) 14 having a tip metal fitting 12 attached to the lower end is buried in the pile hole 32, and the prefabricated pile 14 is opened at the opening of the pile hole 32 at a predetermined depth. And the other ready-made pile (upper pile, straight shape) 14 </ b> A is connected to the upper end of the ready-made pile 14.
[0066]
  Subsequently, the ready-made piles 14, 14 </ b> A are lowered into the pile holes 32, the tip metal fitting 12 is completely accommodated in the rooted portion 34, and the lower end 22 of the ready-made pile 14 has a predetermined length L.5Only into the root consolidation part 34, and the lower surface 13 of the end fitting 12 is a predetermined length L from the bottom 35 of the root consolidation part 34.4The descent of the ready-made pile 14 is stopped at such a position as to be located only above, and the ready-made piles 14 and 14A are held in that state (FIG. 4).
[0067]
(3) The foundation pile structure 37 of this invention is comprised in the state which the root hardening liquid and the pile circumference fixing liquid solidified and expressed (FIG. 3).
[0068]
(4) Other embodiments
[0069]
  In the above example, the so-called pre-digging method in which the ready-made pile is buried after the completion of the excavation of the pile hole has been explained, but the foundation pile is applied to the so-called medium excavation method in which the ready-made pile is buried while excavating the pile hole. Can also be built.
[0070]
  That is, the drilling rod for medium digging is inserted into the hollow portion of the ready-made pile 14 to which the tip metal fitting 12 is attached, and the ready-made pile 14 is lowered while the excavation head is protruded from the lower end of the tip metal fitting to excavate the pile hole (see FIG. Not shown). The excavated earth and sand are discharged to the ground through the hollow portion of the tip fitting 12 and the ready-made pile 14 by a spiral provided around the excavating rod while using compressed air. Subsequently, the ready-made pile 14A is connected, the excavation rod is added, excavated while pouring water, the ready-made piles 14 and 14A are lowered and lowered to a predetermined position. The excavation rod is pulled up to the ground through the inside of the hollow portions of the ready-made piles 14 and 14A and the tip fitting 12 while stirring and pouring cement milk.
[0071]
  Thereafter, while lowering the ready-made pile 14, the end fitting 12 is completely accommodated in the rooted portion 34, and the lower end 22 of the ready-made pile 14 has a predetermined length L, as in the pre-digging method.5Only into the root consolidation part 34, and the lower surface 13 of the end fitting 12 is a predetermined length L from the bottom 35 of the root consolidation part 34.4The descent of the ready-made pile 14 is stopped at such a position as to be located only above, and the ready-made piles 14 and 14A are held in this state. With the above, the root hardening liquid is solidified and the foundation pile structure is constructed.
[0072]
[Example 3]
  The comparison when the foundation pile structure of the present invention and the foundation pile structure of the conventional example C are applied to the same ground will be described (FIG. 8).
[0073]
(1) Invention of the present application
  Like the said Example 1, the front-end | tip metal fitting 12 is attached to the lower end of the ready-made pile 14, and it embeds in the pile hole 32 which has the root hardening part 34 (FIG. 1, FIG. 3). The dimensions of each part are as follows.
[0074]
  Ready-made pile 14
      SC pile (steel pipe covered concrete pile)
      Pile length 13.5m
      Outer diameter D5= 600mm
      Hollow part inner diameter D2= 420mm
  Tip bracket 12
    Steel pipe body 1 t1= 15mm
                  D1= 450mm
                  D2= 420mm
    Large diameter part 2 D3= 600mm
    Annular projection 10 L7= 75-90mm
                  D4= 600-630mm
                  t2= 10-40mm
                  L1= 3 pieces at 500mm
[0075]
  D4= Even if it is 630mm, the excavation diameter D of the pile hole shaft11And D3The range is equivalent to (= 600 mm).
[0076]
  Pile hole 32
    Shaft 33 length L2= 13500mm
                  Diameter D11= D5+ 30mm
                            = 630mm
                (At least D11≧ D4Adjust slightly so that
    Rooting part 34 Length L3= 3000-3500mm
                  Diameter D12= 900mm
[0077]
(2) Comparative example (conventional example C)
  A foundation pile structure is constructed in a comparative example corresponding to the conventional example C in which the same ready-made pile 14 is an upper pile 14A, and a lower pile 14B with a joint 39 is connected instead of the end fitting 12 (FIG. 7).
[0078]
(a) Upper pile 14A
    SC pile (steel pipe covered concrete pile)
    Pile length = 12m
    Pile thickness = 80mm
    Steel pipe thickness = 9mm
    Outer diameter D5= 500mm
    Hollow part inner diameter = 340mm
(b) Lower pile 14B
    Knotted concrete pile
    Pile length = 4m
    Pile thickness = 80mm
    Pile shaft outer diameter D6= D5= 500mm
    Pile node outer diameter D7= 650mm
    Pile hollow inner diameter = 340mm
(c) Pile hole 32
    Shaft 33 length L2= 13500mm
                  Diameter D11= 650mm + 30mm
                            = 680mm
    Rooting part 34 Length L3= 2500mm
                  Diameter D12= 950mm
[0079]
(3) Effects
[0080]
  (a) In the loading test, the maximum load is 6.5MN or more. In the third embodiment, the number of annular protrusions formed is three, but by increasing or decreasing this number, it is possible to increase or decrease the adhesion area with the soil cement in the rooting portion and increase or decrease the propagation area of shear force. In addition, by further increasing the solidification strength of the soil cement in the root consolidation portion and appropriately selecting the soil quality of the supporting ground, a higher load resistance can be achieved.
[0081]
  (b) In the case of a foundation pile structure that exhibits the same supporting force, the shaft diameter of the pile hole can be reduced to a little less than 10% of the conventional diameter. Along with this, the amount of excavated soil can be similarly reduced, and the construction time is also shortened. Therefore, in proportion to the reduction of the amount of soil and the excavation time, it is possible to reduce the soil discharged from the site as industrial waste and reduce the exhaust gas of the excavator. Become.
[0082]
  Moreover, the gap between the ready-made pile and the shaft portion of the pile hole is reduced to about 1/6, and the cement milk used is also reduced by 40%.
[0083]
  (c) Since the outer diameter of the pile shaft can be increased by about 20% with respect to the high bearing capacity of the hardened part, the selection range is about twice as strong as that of the SC pile as the bending moment strength of the ready-made pile material. Spread.
[0084]
  (d) As the inner diameter dimension of the hollow portion of the ready-made pile, when the inner diameter of the ready-made pile for demonstrating high supporting force is 340 mm when compared with the same supporting force, the ready-made pile having the same outer diameter is used. In this case, the inner diameter of the ready-made pile is only 420 mm in the present invention.
[0085]
  That is, when using a standard-made ready-made pile, the inner diameter becomes the same as when using a ready-made pile having a large one-rank outer diameter, and the inner diameter can be increased by 20% or more.
[0086]
  Therefore, in the medium excavation method, the maximum outer diameter of the excavation rod inserted into the hollow portion can be increased, and therefore an excavation rod having excavation heads of various structures can be selected. Moreover, the excavation dimension of the root hardening part can be expanded more. Therefore, it is possible to develop a higher support force by expanding the root diameter of the root. It is also effective from the viewpoint of equipment technology, such as the ability to excavate using a conventional excavating rod and high bearing capacity.
[0087]
  Conventionally, it is difficult to expand the bottom with the medium digging method, and even if possible, it is only possible to excavate the bottom of the bottom of 1.3 to 1.4 times the outer diameter of the ready-made piles. Although it was difficult to construct a foundation pile structure that exerts a supporting force, according to the invention of the present application, it is possible to increase the bottom of the bottomed portion up to 1.5 to 1.6 times the outer diameter of a ready-made pile that is one rank higher than conventional construction technology. Drilling is possible, and the application range of the medium digging method can be expanded.
[0088]
[Example 4]
  In each of the above-described embodiments, the tip metal fitting 12 is formed with the annular protrusions 10 and 10 at the intermediate portion and the lower end portion of the steel pipe main body 1.
[0089]
(1) Outer diameter D1Outer diameter D having a connecting portion with a ready-made pile at the upper end of the steel pipe body 13The outer diameter D is formed at the lower end.4These annular projections are connected to each other (FIG. 9).
[0090]
  Outer diameter D1, Inner diameter D2On the upper end of the steel pipe body 1, the outer diameter D3The large-diameter portion 2 is formed, and the large-diameter portion 2 is used as a connection portion with the ready-made pile 14. The large-diameter portion 2 is formed with a stepped portion lower surface 43 having a partially conical inclined slope whose upper surface is a horizontal flat surface and whose lower surface side is gradually reduced in diameter. The outer diameter of the connecting portion, that is, the outer diameter D of the large diameter portion 23Is substantially the same as the outer diameter of the ready-made pile 14 to be connected (the outer diameter of the lower end).
[0091]
  On the outer surface of the lower end of the steel pipe body 1, the outer diameter D4A disc-shaped (doughnut-shaped) annular projection 10 is projected. The upper surface 44 of the annular protrusion 10 is formed in a horizontal plane, the lower surface 45 forms a partially conical inclined slope, and the lower end of the inclined slope reaches the lower end of the steel pipe body 1.
[0092]
  As described above, the end fitting 12 is configured (FIG. 9A). Inner diameter D of end fitting 122Is formed from the upper end (the upper end of the large-diameter portion 2) to the lower end substantially the same as the inner diameter of the ready-made pile 14. That is, the inner side surface 15 of the ready-made pile 14 and the inner side surface 9 of the tip metal fitting 12 are formed substantially flush with each other (FIG. 10B).
[0093]
  Moreover, the space | interval of the large diameter part 2 and the cyclic | annular protrusion 10 is formed similarly to the said each Example, Furthermore, the cyclic | annular protrusion 10 of a present Example or the said Example 1 is further connected between the cyclic | annular protrusions 10. FIG. In this case as well, an interval in the vertical direction is formed as in the first embodiment.
[0094]
  Here, for example,
    D1= 620mm
    D2= 580mm
    D3= 800mm
    D4= 856mm
As D3Compared to D4Is formed to have a slightly larger diameter, so that a greater supporting force can be expected. In addition, in the work of burying ready-made piles, the workability may be inferior due to the large diameter, but if the required supporting force is obtained, D4≦ D3It can also be said. In the above, D4(= 856mm) is less than the excavation diameter (830mm) of the pile hole shaft, and D3The range is equivalent to (= 800 mm).
[0095]
(2) The upper surface of the large-diameter portion 2 of the end fitting 12 is the same outer diameter D as in the first embodiment.3The large-diameter portion 2 and the lower end plate 17 are fixed together with bolts, welding or the like, and embedded in a pile hole to constitute a foundation pile structure (shown) Not)
[0096]
  When embedding the ready-made pile 14, use the cylindrical cover 47 that covers the entire steel pipe body 1 including the large-diameter portion 2 and the lower end of the ready-made pile 1, and prevents mud from adhering to the portion. Is desirable. In this case, the lower end of the cover 47 is temporarily locked to the outer peripheral portion 46 of the annular protrusion 10 via the stopper 5, and the lower end of the PC steel rod 49 is screwed to the couplers 48, 48 at the upper end of the cover 47. The upper end of the steel rod 49 is screwed to the disc-shaped jig 52 provided continuously with the upper end of the ready-made pile 14 with a nut 51 and a coupler 50 (FIG. 10A). In this state, if the ready-made pile 14 is buried, as will be described later, mud soil hardly adheres or stays on the upper surface 44 and the lower surface 45 of the annular protrusion 10 protected by the cover 47, and the tip metal fitting 12 and the ready-made pile 14 This can be installed in the root of the pile hole without mud sticking to the lower end of the pile.
[0097]
  If the ready-made pile 14 is installed in a predetermined position, the upper end of the PC steel bar is pulled up, the temporary fixing of the cover 47 and the annular protrusion 10 by the stopper 53 is released, and the cover 47 and the PC steel bar 49 are pulled up to the ground.
[0098]
  Therefore, when the cover 47 is used, the lower end portions of the end fitting 12 and the ready-made pile 14 can be firmly adhered and fixed in the cement milk layer formed in the rooting portion, and a high-quality foundation pile structure can be constructed. Further, here, a cylindrical thin steel pipe is used as the cover 47. However, the material and the structure are arbitrary as long as the cover can be embedded and buried and then pulled up. Similarly, the cover 47 can be applied to the end fitting 12 of the first embodiment (not shown).
[0099]
  By using the protective cover 47, it is possible to prevent sticky mud from adhering to the lower end of the ready-made pile 14 and the soil cement, so that the outer diameter and the pile hole of the ready-made pile 14 (lower end) can be prevented. Even if the outer diameter and gap of the shaft portion are small, the adhesion between the lower end of the ready-made pile 14 and the soil cement layer can be maintained regardless of the soil quality, and a stable tip support force can be obtained with the foundation pile structure.
[0100]
(3) Since the tip fitting 12 of this embodiment provides a stable support force using the protective cover 47, the tip fitting 12 of the first embodiment (FIGS. Compared to), the total surface area and the surface through which shearing force is transmitted are small, so the supporting force is designed to be somewhat small, but it is easy to handle in construction and the drilling diameter of the pile-solidified part can be made small There are advantages such as.
[0101]
  Specifically, the following advantages can be stably obtained by using the end fitting 12 having the above structure and further using the protective cover 47.
[0102]
    (a) The length of the steel pipe body 1 (cylindrical base) is shortened (about 1.0 m in length. In Example 1, the length is about 2.5 m), and the contribution of the support force in the end fitting 12 is small. The area of the side surface of the steel pipe body 1 was reduced. As a result, the length of the bottom-excavated excavation of the root consolidation portion of the pile hole can be shortened, and as a result, the construction time can be shortened and the amount of cement milk used can be reduced.
    (b) Further, the root portion of the annular protrusion 10 (side closer to the steel pipe body 1) was thickened to increase the mechanical strength.
    (c) Moreover, since the lower surface 45 of the annular protrusion 10 is a partially conical inclined slope, the stress to the soil cement layer and the ground in the root consolidation portion is efficiently propagated.
    (d) Since the annular protrusion 10 having a large surface area is formed at the tip portion considered to contribute most to the generation of the vertical supporting force, a larger vertical supporting force can be exhibited with a small number of protrusions having a small outer diameter.
    (e) Since the lower surface 45 of the annular protrusion 10 that contributes to the generation of the vertical support force is formed to be inclined, mud is difficult to adhere to the lower surface 45 of the annular protrusion 10 when the tip fitting is embedded in the pile hole. Therefore, the adhesion between the soil cement layer and the lower surface 45 can be enhanced, and the propagation of the shearing force to the soil cement layer can be ensured.
    (f) Since the largest-diameter portion is formed at the forefront of the ready-made pile 14, when the ready-made pile 14 is embedded, centering of the ready-made pile 14 (centering with the core of the pile hole) becomes easy. .
[0103]
【The invention's effect】
  For a prefabricated pile with a protruding metal fitting fixed to the lower end of the prefabricated pile, or with a protrusion or recess formed on the lower end, the adhesion area with the soil cement is widened, Arranged so that the shearing force can be sufficiently propagated without hindrance from the lower surface of the head, the upper and lower surfaces of the projection of the tip bracket, the stepped portion of the main shaft and lower shaft of the ready-made pile, the upper and lower walls of the projection, Since it is embedded in the root consolidation part filled with soil cement having a solidification strength equal to or higher than the supporting ground strength, there is an effect that a shear force can be effectively propagated in the root consolidation part and a foundation pile structure having a high bearing capacity can be formed.
[0104]
  Moreover, since the outer diameter of the protrusion part of the tip metal fitting is formed to be equal to or smaller than the maximum outer diameter of the ready-made pile, there is an effect that a larger supporting force can be exhibited with a smaller excavation diameter of the pile hole shaft part. In addition, since the bearing capacity can be increased compared to the drilling diameter of the pile hole shaft, the drilling diameter can be reduced with the same supporting force, reducing the amount of soil removed and reducing the drilling time of the pile hole. There is. Therefore, it is possible to reduce the soil discharged as industrial waste discharged from the site, reduce the exhaust gas of the excavator by reducing the excavation time, and build a foundation pile that is more environmentally friendly.
[0105]
  Also, when the shaft diameter of the pile hole and the outer diameter of the ready-made pile are made the same, and the same support force as before can be demonstrated, the inner diameter of the ready-made pile can be increased. The foundation pile which has higher bearing capacity by the medium digging method can be easily constructed with conventional equipment.
[0106]
  Also, when using a tip fitting, even when using a ready-made pile of the same diameter, if the required tip support force is different, change the number of protrusions formed on the tip fitting according to the tip support force. By increasing or decreasing the effective area or increasing or decreasing the solidification strength of the soil cement, there is an effect that a more efficient foundation pile structure can be easily constructed.
[0107]
  In addition, when covering the lower end of the prefabricated pile related to the tip support force and the tip support with a protective cover, the adhesion between the portion and the soil cement layer is improved without mud soil adhering or staying in the portion. The Therefore, stable support force can be obtained even on highly sticky ground, so even if the gap between the shaft diameter of the pile hole and the outer diameter of the ready-made pile and the tip metal fitting is reduced, it is stable in the built foundation pile structure. High bearing capacity.
[Brief description of the drawings]
1A is a front view, FIG. 1B is a bottom view, and FIG. 1C is a longitudinal sectional view of an embodiment of a tip metal fitting of the present invention.
FIGS. 2A and 2B are partially enlarged longitudinal sectional views showing the connection between the end fitting of the present invention and a ready-made pile, wherein FIG. 2A shows before connection and FIG. 2B shows after connection.
FIG. 3 is a longitudinal sectional view of a foundation pile structure according to an embodiment of the present invention.
FIG. 4 is an enlarged vertical cross-sectional view of the root hardening part.
FIG. 5 is a front view of another tip fitting according to the present invention.
FIG. 6 is a front view of another ready-made pile according to the present invention.
7A and 7B are diagrams for explaining a conventional example C of the present invention, in which FIG. 7A is a longitudinal sectional view of an upper pile and a lower pile, and FIG. 7B is a longitudinal sectional view of a foundation pile structure in which an existing pile (upper and lower piles) is embedded. is there.
FIG. 8 is a diagram for explaining the ground to which Example 3 is applied and the state of ready-made pile installation.
9A and 9B are ready-made piles of Example 4, wherein FIG. 9A is a longitudinal sectional view, and FIG. 9B is a front view of the pile mounted on a pile driving machine.
FIGS. 10A and 10B are partially enlarged longitudinal sectional views of a ready-made pile, in which FIG. 10A shows an upper end portion and FIG. 10B shows a lower end portion.
[Explanation of symbols]
1 Steel pipe body
2 Large diameter part
3 annular groove
4 Bolt holes
5 Tubular surface material
6 Contact material
8 Outside
9 Inner side
10 Annular projection
11 Rib of annular projection
12 Tip bracket
13 Underside of the end fitting
14, 14A Ready-made pile
15 Inside surface of ready-made piles
16 Ready-made pile connection fittings
17 Lower end plate of ready-made pile
18 Side plates of ready-made piles
19 Thick part of side plate of ready-made pile
20 Annular groove of ready-made pile
21 Bolt holes in ready-made piles
22 Lower end of ready-made pile
23 Band for connection
24 Band pieces
25, 26 Banded convex part
27 Band through hole
28 Band housing
30 volts
32 Pile hole
33 Shaft hole shaft
34 Root consolidation part of pile hole
35 Bottom of pile hole root
37 Foundation pile structure
40 recess
41 Lower surface of protrusion (upper side of recess)
42 Top surface of protrusion (lower side of recess)
43 Lower surface of step
44 Upper surface of the annular protrusion 11
45 The lower surface of the annular protrusion 11
47 Cover
49 PC steel bar
52 Disc-shaped jig

Claims (4)

所定軸径の主軸部を有する既製杭の下端に先端金具又は「他の既製杭」を連結し、該先端金具又は「他の既製杭」は、前記既製杭に連結される前記主軸部と略同一径の大径部を有し、前記主軸部より小径の下部軸部を形成し、該下部軸部に突起部を形成し、該突起部の先端が前記主軸部の最大外径と同等又はそれ以下に形成して、かつ前記大径部の下面に段差部を形成して構成し、
支持地盤に、根固め液を充填した根固め部を有する杭穴内に、前記既製杭を、前記先端金具又は「他の既製杭」及び前記既製杭の下端部が前記杭穴の根固め部内に位置し、かつ前記先端金具又は「他の既製杭」が一体となって前記支持地盤に支持するように、埋設したことを特徴とする既製杭を使用した基礎杭構造。
A tip fitting or “other ready-made pile” is connected to the lower end of the ready-made pile having a main shaft portion with a predetermined shaft diameter, and the tip fitting or “other ready-made pile” is substantially the same as the main shaft portion connected to the ready-made pile. Having a large diameter portion of the same diameter, forming a lower shaft portion having a diameter smaller than that of the main shaft portion, forming a projection portion on the lower shaft portion, and a tip of the projection portion being equal to the maximum outer diameter of the main shaft portion or Formed below that, and formed by forming a stepped portion on the lower surface of the large-diameter portion,
In the pile hole having a root-solidified portion filled with a root-solidifying solution on the supporting ground, the ready-made pile is connected to the tip fitting or "other pre-made pile" and the lower end of the ready-made pile is within the root-solidified portion of the pile hole. The foundation pile structure using the ready-made pile characterized by being embedded so that the said front-end metal fitting or "other ready-made pile" might be unitedly supported by the said support ground.
突起部は、突起部の上面と、主軸部及び下部軸部との段差部下面とに所定間隙を設け、または隣接する前記突起部の上下面の間に所定間隙を設けるように配置すると共に、杭穴の所定形状の根固め部内に、固化強度が支持地盤の強度以上となるソイルセメントを充填したことを特徴とする請求項1記載の既製杭を使用した基礎杭構造。  The protrusion is disposed so as to provide a predetermined gap between the upper surface of the protrusion and the lower surface of the stepped portion between the main shaft and the lower shaft, or to provide a predetermined gap between the upper and lower surfaces of the adjacent protrusions. The foundation pile structure using the ready-made pile according to claim 1, wherein a solid cement having a solidification strength equal to or higher than the strength of the supporting ground is filled into a root-solidified portion of a predetermined shape of the pile hole. 所定軸径の主軸部を有する既製杭の下端に先端金具または「他の既製杭」を連結し、該先端金具又は「他の既製杭」は、前記既製杭に連結される前記主軸部と略同一径の大径部を有し、下端部に、側面から軸側に向けての横方向の凹部を形成して、かつ前記大径部の下面に段差部を形成して構成し、
支持地盤に、根固め液を充填した根固め部を有する杭穴内に、前記既製杭を、前記先端金具又は「他の既製杭」及び前記既製杭の下端部が、前記杭穴の根固め部内に位置し、かつ前記先端金具又は「他の既製杭」が一体となって前記支持地盤に支持するように、埋設した既製杭を使用した基礎杭構造。
A tip fitting or “other ready-made pile” is connected to the lower end of a ready-made pile having a spindle portion of a predetermined shaft diameter, and the tip fitting or “other ready-made pile” is substantially the same as the spindle portion connected to the ready-made pile. Having a large diameter portion of the same diameter, forming a concave portion in the lateral direction from the side surface toward the shaft side at the lower end portion, and forming a stepped portion on the lower surface of the large diameter portion;
In the pile hole having a root consolidation part filled with root consolidation liquid on the supporting ground, the ready-made pile is connected to the tip metal fitting or “other ready-made pile” and the lower end portion of the ready-made pile in the root consolidation part of the pile hole. The foundation pile structure which used the embedded ready-made pile so that the said front-end metal fitting or "other ready-made pile" may be unitedly supported by the said support ground.
既製杭の下端部及び先端金具又は「他の既製杭」を覆うカバーを取付けて既製杭を構成し、前記カバーは、該既製杭を埋設後に地上に引き上げ可能に構成したことを特徴とする請求項1乃至請求項3記載の基礎杭構造。A cover covering the lower end of the ready-made pile and the tip metal fitting or “other ready-made pile” is attached to form the ready-made pile, and the cover is configured to be able to be pulled up to the ground after being buried. The foundation pile structure of Claim 1 thru | or 3.
JP2003121272A 2002-04-26 2003-04-25 Foundation pile structure using ready-made piles Expired - Lifetime JP4706994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121272A JP4706994B2 (en) 2002-04-26 2003-04-25 Foundation pile structure using ready-made piles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002126058 2002-04-26
JP2002126058 2002-04-26
JP2003121272A JP4706994B2 (en) 2002-04-26 2003-04-25 Foundation pile structure using ready-made piles

Publications (2)

Publication Number Publication Date
JP2004003324A JP2004003324A (en) 2004-01-08
JP4706994B2 true JP4706994B2 (en) 2011-06-22

Family

ID=30447504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121272A Expired - Lifetime JP4706994B2 (en) 2002-04-26 2003-04-25 Foundation pile structure using ready-made piles

Country Status (1)

Country Link
JP (1) JP4706994B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111519642B (en) * 2020-04-22 2022-01-07 广东裕基建筑工程有限公司 Pile foundation structure and construction method thereof
CN114703842A (en) * 2022-03-30 2022-07-05 中国人民解放军91053部队 Coral sand foundation drilling type prefabricated hollow pipe pile and construction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547685B2 (en) * 1989-03-06 1993-07-19 Jiototsupu Kk
JPH0841870A (en) * 1994-08-02 1996-02-13 Kajima Corp Method of connection precast concrete pile
JP2000178967A (en) * 1998-12-16 2000-06-27 Maeda Seikan Kk Method for coupling foundation pile and node pile
JP2000192456A (en) * 1998-12-28 2000-07-11 Mitani Sekisan Co Ltd Foundation pile structure in soft ground and foundation pile method
JP2001214440A (en) * 2001-01-11 2001-08-07 Nkk Corp Threaded type steel pipe pile and method for constructing the same
JP2002097635A (en) * 1999-08-31 2002-04-02 Mitani Sekisan Co Ltd Method for burying ready-made pile, structure of foundation pile, and ready-made pile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547685B2 (en) * 1989-03-06 1993-07-19 Jiototsupu Kk
JPH0841870A (en) * 1994-08-02 1996-02-13 Kajima Corp Method of connection precast concrete pile
JP2000178967A (en) * 1998-12-16 2000-06-27 Maeda Seikan Kk Method for coupling foundation pile and node pile
JP2000192456A (en) * 1998-12-28 2000-07-11 Mitani Sekisan Co Ltd Foundation pile structure in soft ground and foundation pile method
JP2002097635A (en) * 1999-08-31 2002-04-02 Mitani Sekisan Co Ltd Method for burying ready-made pile, structure of foundation pile, and ready-made pile
JP2001214440A (en) * 2001-01-11 2001-08-07 Nkk Corp Threaded type steel pipe pile and method for constructing the same

Also Published As

Publication number Publication date
JP2004003324A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP5520347B2 (en) Pile digging method
JP4984308B2 (en) Ready-made pile
JP5919675B2 (en) Composite foundation pile and construction method of composite foundation pile
JP3960372B2 (en) Foundation pile structure
JP4863120B2 (en) Foundation pile
JP6166072B2 (en) Earth retaining structure and earth retaining method
JP2011236705A (en) Foundation structure of structure and method of constructing the same
JP4706994B2 (en) Foundation pile structure using ready-made piles
JP5480744B2 (en) Foundation for structure and its construction method
JP4882492B2 (en) Steel pipe pile structure and its construction method
JP3760316B2 (en) Intermediate striking pile and its construction method
JP4724878B2 (en) Foundation pile structure
JP2005139900A (en) Burying method for ready-made pile, foundation pile structure, and ready-made pile
JP4189550B2 (en) Construction method of ready-made pile with spiral blade, casing for propulsion
JP4174414B2 (en) Hybrid pile and method for constructing hybrid pile
JP3899307B2 (en) Cast-in-place concrete filled steel pipe pile and method for constructing cast-in-place concrete filled steel pipe pile
JP4724873B2 (en) Ready-made pile
JP4209314B2 (en) Pile head joint structure and pile body construction method
JP3510988B2 (en) Steel pipe pile
JP6217102B2 (en) Joint structure and method of head and foundation of cast-in-place concrete pile
JP6873613B2 (en) How to build foundation piles, foundation pile structure and double ready-made piles
JP5480745B2 (en) Reinforcement method for existing foundations for structures
KR101613530B1 (en) Precast concrete pile with upper head cutting pipe and the construction method therewith
JP4054903B2 (en) Method of burying ready-made piles, foundation pile structure and ready-made piles
JP2006138096A (en) Jointing structure of pile head, and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

R150 Certificate of patent or registration of utility model

Ref document number: 4706994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term