JPH03103534A - Countermeasure structure for liquefaction of building - Google Patents

Countermeasure structure for liquefaction of building

Info

Publication number
JPH03103534A
JPH03103534A JP23881589A JP23881589A JPH03103534A JP H03103534 A JPH03103534 A JP H03103534A JP 23881589 A JP23881589 A JP 23881589A JP 23881589 A JP23881589 A JP 23881589A JP H03103534 A JPH03103534 A JP H03103534A
Authority
JP
Japan
Prior art keywords
building
underground wall
wall
subsoil
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23881589A
Other languages
Japanese (ja)
Inventor
Shinji Nishimura
真二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23881589A priority Critical patent/JPH03103534A/en
Publication of JPH03103534A publication Critical patent/JPH03103534A/en
Pending legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

PURPOSE:To control a liquefied phenomenon in the event of an earthquake to stabilize the subsoil by providing an underground wall used as a retaining wall by connecting steel pipes penetrated into a hard subsoil continuously and, at the same time, holding the upper part of the underground wall and a building together as a unit. CONSTITUTION:Steel pipes 8 are driven up to a hard bed 4 in the subsoil 1 around a building 5 to be constructed by continuously connecting them, and an underground wall 7 used as a retaining wall is provided. A driven depth lto the bed 4 increases more than five times as long as a steel pipe diameter (d). After that, a circumferential wall 10 of a building 5 constructed on the foundation piles 6 and the upper parts of the steel pipes forming the underground wall 7 are held together as a unit through studs 11. Then, a construction subsoil of the building 5 is separated from an outside liquefaction dangerous layer 3 through the underground wall 7, and the shearing deformation in the inside subsoil of the underground wall 7 is prevented. According to the constitution, a liquefied phenomenon in the event of an earthquake can be efficiently controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、地震による液状化の危険のある地盤域におけ
る建造物の液状化対策構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a liquefaction countermeasure structure for buildings in ground areas where there is a risk of liquefaction due to earthquakes.

(従来の技術) 一般に、水分を多く含む砂質地盤では、地震による外力
が加わったときに、地盤かあたかも液体のような性状と
なる、いわゆる液状化現象がおこることが知られている
。この現象は、砂質地盤の局部せん断変形により砂質地
盤の間隙水圧が急上昇し、水流を生じて砂粒子が流動す
ることによって起こるものである。
(Prior Art) Generally, it is known that in sandy ground containing a lot of water, when an external force due to an earthquake is applied, the ground becomes liquid-like, a so-called liquefaction phenomenon. This phenomenon occurs when the pore water pressure of the sandy ground rapidly increases due to local shear deformation of the sandy ground, creating water currents that cause sand particles to flow.

従来、このような地盤液状化の対策としては、サンドコ
ンパクションのような締固め工法、セメントや地盤固化
剤などを混入する混合処理工法、液状化しにくい土に換
える置換工法、地盤中に砕石などの柱を多数設置する排
水工法等が知られているが、いずれも施工が大規模とな
るばかりでなく、施工場所の制約を受けることが多い。
Conventionally, countermeasures against ground liquefaction have included compaction methods such as sand compaction, mixed treatment methods that mix cement or soil solidifying agents, replacement methods that replace soil with soil that is less likely to liquefy, and the use of crushed stones or other materials in the ground. Drainage construction methods that involve installing a large number of pillars are known, but not only do they require large-scale construction, but they are often subject to restrictions on the construction site.

そこで、上記とは別の工法として、建造物の基礎杭とし
て、多孔鋼管内に砕石等を充填したものを使用して、過
剰間隔水圧を杭を通して上方へ逃すようにした工法や、
建造物の周囲の地盤中に多孔壁体を埋設して過剰間隙水
圧を消散させるようにした工法が提案されてきた。
Therefore, as a construction method different from the above, there is a construction method in which a perforated steel pipe filled with crushed stone, etc. is used as the foundation pile of a building, and the excess water pressure is released upward through the pile.
Construction methods have been proposed in which porous walls are buried in the ground around buildings to dissipate excess pore water pressure.

(発明が解決しようとする課題) しかし、前者の多孔鋼管杭によるものでは、杭としての
強度上に難点があるばかりでなく、多くの孔の存在によ
って側方への流動が生じるため、過剰間隙水圧の消散が
十分行われないという問題がある。また、後者の多孔壁
体を埋設するものでも、やはり過剰間隙水圧を十分消赦
させ得ることにはならない。しかも、それらの工法では
、過剰間隙水圧を上方へ逃すことについてはある程度の
効果を有してはいるが、地震時に生ずる地盤の側方への
流動を抑えるには不十分である。
(Problem to be Solved by the Invention) However, the former type of perforated steel pipe piles not only has problems with the strength of the pile, but also has many holes that cause lateral flow, resulting in excessive gaps. There is a problem that water pressure is not sufficiently dissipated. Moreover, even in the latter case where the porous wall body is buried, excessive pore water pressure cannot be sufficiently alleviated. Moreover, although these construction methods have some effect in releasing excess pore water pressure upward, they are not sufficient to suppress the lateral movement of the ground that occurs during an earthquake.

さらに、液状化の危険のあるところでは地盤自体の支持
力が弱いため、基礎杭に長大なものを要したり、基礎抗
の使用数を多くする等、特別の支持力増強手段が必要と
され、施工費が面倒で多額の経費を要することとなって
いた。
Furthermore, in areas where there is a risk of liquefaction, the bearing capacity of the ground itself is weak, so special measures to increase the bearing capacity are required, such as requiring longer foundation piles or increasing the number of foundation piles. However, the construction cost was troublesome and required a large amount of money.

本発明は、上記従来の問題にかんがみ、建造物の地下室
工事の土留として施設される地中壁を利用し、これと建
造物とを一体的に結合させるようにして、建造物造築地
盤への地震による液状化の波及を抑制すると共に、耐震
性及び支持力の大きな構造物を得ようとするものである
In view of the above-mentioned conventional problems, the present invention utilizes an underground wall installed as earth retaining for construction of the basement of a building, and connects the wall and the building integrally to the building construction ground. The aim is to suppress the spread of liquefaction caused by earthquakes, and to create structures with high earthquake resistance and supporting capacity.

(課題を解決するための手段) 上記の目的を達成するための本発明の構成について、実
施例と対応する図面を参照して説明すると、本発明は、
造築する建造物5を囲んだ地盤中に、下部を液状化の可
能性の低い硬い地層4中に根入れした鋼管8.8の連続
結合による地中壁7を施設し、この地中壁7の上部と建
造物5とを一体的に結合したことを特徴とするものであ
る。
(Means for Solving the Problems) The structure of the present invention for achieving the above object will be described with reference to embodiments and corresponding drawings.
In the ground surrounding the building 5 to be constructed, an underground wall 7 is constructed by continuously connecting steel pipes 8 and 8, the lower part of which is embedded in a hard stratum 4 with a low possibility of liquefaction. The structure is characterized in that the upper part of the structure 7 and the structure 5 are integrally connected.

(作用) 本発明は上記のように構成されており、建造物5の造築
地盤は地中壁7によって外側の地盤と隔離されることに
なる。したがって、地震により生ずる外側地盤からの過
剰間隙水圧の影響を抑制することになると共に、地盤の
側方への流動を抑え、地中壁7の内側地盤のせん断変形
を防止することになる。
(Function) The present invention is configured as described above, and the constructed ground of the building 5 is separated from the outside ground by the underground wall 7. Therefore, the influence of excessive pore water pressure from the outer ground caused by an earthquake is suppressed, and the lateral flow of the ground is suppressed, and shear deformation of the inner ground of the underground wall 7 is prevented.

そして、地中壁7は鋼管を一体的に連結され、建造物5
を囲んだ箱形に形成され、しかも、各鋼管8.8はその
下部を硬い地層に根入れされていると共に、その上部は
建造物5と一体的に結合されているので、剛性が高く大
きな水平対抗力を発揮することになるばかりでなく、建
造物5への大きな支持力が得られることになる。
The underground wall 7 is integrally connected with steel pipes, and the building 5
Furthermore, each steel pipe 8.8 has its lower part rooted in a hard stratum, and its upper part integrally connected to the structure 5, so it is highly rigid and large. Not only will a horizontal counterforce be exerted, but a large supporting force for the structure 5 will be obtained.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図、第2図において、■は地震によって液状化の危
険のある地盤で、一般には表土層2の下に軟弱な液状化
危険層(飽和層)3が相当の深さにわたり形成され、そ
の下は硬い地層3となっている。
In Figures 1 and 2, ■ indicates the ground that is at risk of liquefaction due to an earthquake, and generally a soft liquefaction risk layer (saturated layer) 3 is formed at a considerable depth under the topsoil layer 2. Below that is hard stratum 3.

5は上記の地盤1に造築される建造物で、硬い地盤層4
中の深くまで根入れして沈設した基礎杭6.6によって
支持される。7ほこの建造物5を囲んで形成された鋼管
の連続結合による地中壁で、鋼管矢板におけるように、
多数の鋼管8.8を継手9.9により連結して壁状に形
成されており、各鋼管8はその下部を液状化危険層3の
下にある硬い地層4に相当の深さにわたり根入れして地
盤1中に沈設されている。その根入れの深さ Qは、鋼
管の径dの5倍以上とするのか好適である。
5 is a structure built on the above ground 1, hard ground layer 4
It is supported by foundation piles 6.6 that are deeply rooted and sunk inside. It is an underground wall formed by continuously connecting steel pipes surrounding the building 5, as in steel pipe sheet piles.
It is formed into a wall shape by connecting a large number of steel pipes 8.8 with joints 9.9, and each steel pipe 8 has its lower part rooted to a considerable depth in the hard stratum 4 below the liquefaction danger layer 3. It is sunk into the ground. It is preferable that the depth of penetration Q be five times or more the diameter d of the steel pipe.

また、各鋼管8の上部には、建造物5の周壁10と接す
る制に、周壁■0とのコネクターとして周壁10のコン
クリート中に埋設されるスタッド11.11が突設され
ている。このスタッド11.11は、第3図に示すよう
に、鋼管8に固着した三角形状のスタッド台片12に、
現場でアークスタッド溶接により取付けがなされ、斜め
上方及び下方に向けて突出されることになる。
Furthermore, studs 11 and 11 are protruded from the upper part of each steel pipe 8 so as to be in contact with the peripheral wall 10 of the building 5, and are embedded in the concrete of the peripheral wall 10 as connectors to the peripheral wall 10. As shown in FIG. 3, this stud 11.11 is attached to a triangular stud base piece 12 fixed to the steel pipe 8.
It will be installed in the field by arc stud welding and will project diagonally upward and downward.

建造物は、上記の舖管を連続した地中壁7で囲まれた中
の地盤を堀り下げ、基礎抗6.6を沈設した後、その上
に地f部分を含めて造られる。その際、周壁10の地下
部分は地中壁7と接し、その地下部分に打設されたコン
クリート中に地中壁7を形成ずる各鋳管8の突出したス
タッド11.11が埋設され、それによって地中壁7の
上部と建造物5とが一体的な剛結合となるのである。
The building is constructed by excavating the ground surrounded by the underground wall 7 which is continuous with the above-mentioned pipe, and after sinking the foundation pit 6.6, including the ground part f on top of it. At this time, the underground part of the peripheral wall 10 is in contact with the underground wall 7, and the protruding studs 11, 11 of each cast pipe 8 forming the underground wall 7 are buried in the concrete cast in the underground part, and As a result, the upper part of the underground wall 7 and the building 5 become an integral rigid connection.

(発明の効果) 以上説明したように、本発明は、造築する建造物を囲ん
だ地盤中に、造築する建造物を囲んだ地盤中に、下部を
液状化の可能性の低い硬い地層中に根入れした鋼管の連
続結合による地中壁を施設し、この地中壁の上部と建造
物とを一体的に結合した構成としたので、次のように多
くの優れた効果を奏するものである。
(Effects of the Invention) As explained above, the present invention provides a hard stratum with a low possibility of liquefaction at the bottom of the ground surrounding the building to be constructed. An underground wall is constructed by continuously connecting steel pipes embedded inside the building, and the upper part of this underground wall is integrally connected to the building, resulting in many excellent effects as follows. It is.

(1)建造物を囲んで施設した鋼管連続の地中壁により
、液状化の危険のある地層は建造物造築城の内外で分断
、隔離されることになり、地中壁内側の地盤は外側の地
盤の地震時における液状化危険地盤のせん断歪及び過剰
間隙水圧からの影響を抑制することができ、建造物造築
地盤の安定化を図ることができる。
(1) The underground wall made of continuous steel pipes surrounding the building divides and isolates the strata at risk of liquefaction inside and outside the building, and the ground inside the underground wall is placed on the outside. It is possible to suppress the effects of shear strain and excess pore water pressure on the ground that is at risk of liquefaction during an earthquake, and it is possible to stabilize the ground on which buildings are built.

(2)地中壁は、鋼管の連結体であって、その下部は硬
い地層に根入れされ、上部は建造物と一体結合されてい
るので、剛性が大であり、外力に対して地中壁自体の変
形も抑制されると共に、地中壁も建造物に対して大きな
支持力を発揮することになり、基礎杭の支持力の負担を
大巾に軽減することができる。
(2) An underground wall is a connected body of steel pipes, the lower part of which is rooted in a hard stratum, and the upper part integrally connected to a building, so it has great rigidity and can withstand external forces. Deformation of the wall itself is suppressed, and the underground wall also exerts a large supporting capacity for the building, making it possible to greatly reduce the burden on the supporting capacity of the foundation piles.

(3)従来、建造物の地下部分の造築にあたっては、土
留用の矢板壁等を仮設し、これを埋殺しとしているが、
本発明の地中壁は土留壁として使えるもので、その分だ
け経費の節減が図れる。
(3) Conventionally, when constructing the underground part of a building, sheet pile walls, etc. for earth retention were temporarily installed and buried.
The underground wall of the present invention can be used as an earth retaining wall, and costs can be reduced accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面図、第2図は同
平断面図、第3図は鋼管と建造物との結合状態を示す拡
大縦断面図である。 1・・・地盤  2・・・表土層
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the present invention, FIG. 2 is a plan cross-sectional view thereof, and FIG. 3 is an enlarged vertical cross-sectional view showing a state in which a steel pipe and a building are connected. 1... Ground 2... Topsoil layer

Claims (1)

【特許請求の範囲】[Claims] 造築する建造物を囲んだ地盤中に、下部を液状化の可能
性の低い硬い地層中に根入れした鋼管の連続結合による
地中壁を施設し、この地中壁の上部と建造物とを一体的
に結合したことを特徴とする、建造物の液状化対策構造
In the ground surrounding the building to be constructed, an underground wall is constructed by continuously connecting steel pipes with the lower part embedded in a hard stratum with low possibility of liquefaction, and the upper part of this underground wall is connected to the building. A liquefaction countermeasure structure for a building, characterized by integrally combining the following.
JP23881589A 1989-09-14 1989-09-14 Countermeasure structure for liquefaction of building Pending JPH03103534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23881589A JPH03103534A (en) 1989-09-14 1989-09-14 Countermeasure structure for liquefaction of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23881589A JPH03103534A (en) 1989-09-14 1989-09-14 Countermeasure structure for liquefaction of building

Publications (1)

Publication Number Publication Date
JPH03103534A true JPH03103534A (en) 1991-04-30

Family

ID=17035698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23881589A Pending JPH03103534A (en) 1989-09-14 1989-09-14 Countermeasure structure for liquefaction of building

Country Status (1)

Country Link
JP (1) JPH03103534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048473B2 (en) * 2002-11-05 2006-05-23 Hirokazu Takemiya Vibration-proof construction method
WO2018073412A1 (en) * 2016-10-21 2018-04-26 Imperial Innovations Limited Seismic defence structures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048473B2 (en) * 2002-11-05 2006-05-23 Hirokazu Takemiya Vibration-proof construction method
WO2018073412A1 (en) * 2016-10-21 2018-04-26 Imperial Innovations Limited Seismic defence structures
US11655610B2 (en) 2016-10-21 2023-05-23 Imperial College Innovations Limited Seismic defence structures

Similar Documents

Publication Publication Date Title
CN105089061B (en) Ultra-deep foundation pit supporting method
US4273475A (en) Load supporting structure
JP2645899B2 (en) High horizontal strength foundation method using solidification method
JP5976373B2 (en) Pile foundation reinforcement structure and reinforcement method
CN109577322A (en) A kind of constructing device for inside soil body existing pile foundation pile extension
US4124982A (en) Method of stabilizing soil in pile bearing regions
JPH0547685B2 (en)
JP4029191B2 (en) Subsidence suppression structure, construction method of settlement suppression structure
JP2000136541A (en) Liquefaction preventing construction method
JPH03103535A (en) Countermeasure structure for liquefaction of building
JPH04119837U (en) Underground structures to prevent liquefaction
JPH03103534A (en) Countermeasure structure for liquefaction of building
JPH02213522A (en) Construction method for base of structure
CN103266624B (en) Method for supporting oil and gas pipeline penetrating through karst active zone
JPH0144852B2 (en)
JPS63535A (en) Earthquake-proof fortifying work for existing structure
JPH1129927A (en) Ground subsidence preventive foundation pile using old tire block
JPS60250122A (en) Foundation pile structure for preventing liquefaction of ground
JP3099040B2 (en) Embankment culvert
JPH01226921A (en) Earthquake-proof reinforced revetment construction
JPH1046619A (en) Foundation structure of construction in sand-layer ground
JP3176530B2 (en) Liquefaction countermeasures
JPS58127822A (en) Liquefaction preventive structure of foundation ground
JPS60144412A (en) Liquefaction preventive foundation structure for ground
JPS59429A (en) Foundation structure and its construction for building on soft ground