JP6492827B2 - 光受信器および光受信方法 - Google Patents

光受信器および光受信方法 Download PDF

Info

Publication number
JP6492827B2
JP6492827B2 JP2015056231A JP2015056231A JP6492827B2 JP 6492827 B2 JP6492827 B2 JP 6492827B2 JP 2015056231 A JP2015056231 A JP 2015056231A JP 2015056231 A JP2015056231 A JP 2015056231A JP 6492827 B2 JP6492827 B2 JP 6492827B2
Authority
JP
Japan
Prior art keywords
wavelength
signal
optical
optical filter
transmission band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015056231A
Other languages
English (en)
Other versions
JP2016178426A (ja
Inventor
節生 吉田
節生 吉田
剛二 中川
剛二 中川
智裕 山内
智裕 山内
恭介 曽根
恭介 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015056231A priority Critical patent/JP6492827B2/ja
Priority to US15/051,745 priority patent/US9698929B2/en
Publication of JP2016178426A publication Critical patent/JP2016178426A/ja
Application granted granted Critical
Publication of JP6492827B2 publication Critical patent/JP6492827B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0779Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光信号に重畳されている信号を検出する機能を有する光受信器および光受信方法に係わる。
光分岐挿入装置および/または波長クロスコネクトを備えるフォトニックネットワークが提案および開発されている。光分岐挿入装置(ROADM:Reconfigurable Optical Add/Drop Multiplexer)は、WDM信号から所望の波長の光信号を分岐してクライアントに導き、また、任意の波長のクライアント信号をWDM信号に挿入することができる。波長クロスコネクト(WXC:Wavelength Cross ConnectまたはPXC:Photonic Cross Connect)は、光信号を電気信号に変換することなく、光信号のルートを波長ごとに制御することができる。
上述のようなフォトニックネットワークにおいては、同一の波長を使用する複数の光パス(ここでは、波長パス)が設定されることがある。このため、ネットワークを確実に構築および運用するために、例えば、各光パスを識別するパスIDを光信号に重畳して伝送する方式が提案されている。この場合、フォトニックネットワーク上の光ノード装置(ここでは、光分岐挿入装置、波長クロスコネクトなど)は、光信号に重畳されているパスIDを検出する機能を備える。そうすると、光ノード装置において、各光パスを確実に識別することができるので、光ファイバを誤ったポートに接続する等の障害を監視・検出・回避することが可能となる。
なお、特許文献1、2には、光信号に重畳されている信号を検出する構成および方法が記載されている。
特開2013−9238号公報 特開2014−150447号公報
既存のWDM伝送システムでは、100GHz間隔または50GHz間隔で波長チャネルが配置されることが多い。これに対して、通信容量を大きくするために、波長チャネルが配置される間隔を狭くする方式が提案されている。例えば、ナイキストフィルタを利用して各波長チャネルの光信号を生成する方式が提案されている。
ところが、波長チャネルが配置される間隔を狭くすると、各波長チャネルの光信号に重畳されている信号を検出することが困難になる。すなわち、隣りの波長チャネルの光信号に重畳されている信号の影響により、指定された波長チャネルの光信号に重畳されている信号を検出できないことがある。或いは、検出回路は、指定された波長チャネルの隣りの波長チャネルの光信号に重畳されている信号を誤って検出してしまうことがある。
本発明の1つの側面に係わる目的は、WDM伝送システムにおいて、指定された波長チャネルの光信号に重畳されている周波数変調信号を精度よく検出することである。
本発明の1つの態様の光受信器は、複数の波長チャネルにそれぞれ周波数変調信号が重畳されている波長多重光信号を受信する。光受信器は、前記波長多重光信号をフィルタリングする光フィルタと、前記光フィルタの透過帯の波長を制御するフィルタ制御部と、前記光フィルタの出力光の強度の変化を表す強度信号を生成する受光器と、前記受光器から出力される強度信号の振幅を検出する振幅検出部と、前記受光器から出力される強度信号に基づいて、指定された波長チャネルに重畳されている周波数変調信号を検出する信号検出部と、前記信号検出部により前記強度信号から検出される周波数変調信号の誤りを検出する誤り検出部とを備える。前記フィルタ制御部は、前記振幅検出部により検出される前記強度信号の振幅が大きくなるように前記光フィルタの透過帯の波長を制御し、その後、前記信号検出部により前記強度信号から検出される周波数変調信号の誤りが少なくなるように前記光フィルタの透過帯の波長を制御する。
上述の態様によれば、WDM伝送システムにおいて、指定された波長チャネルの光信号に重畳されている周波数変調信号を精度よく検出できる。
光伝送システムの一例を示す図である。 WDM伝送装置の送信回路の一例を示す図である。 パスID信号の一例を示す図である。 光送信器の実施例を示す図である。 周波数変調重畳について説明する図である。 FSK信号を検出する回路の一例を示す図である。 FSK信号を検出する方法を説明する図である。 所望の波長チャネルからFSK信号を検出する方法を示す図である。 WDMの波長間隔が狭いシステムにおける課題を説明する図である。 第1の実施形態の光受信器の一例を示す図である。 第1の実施形態の光受信方法の一例を示すフローチャートである。 透過帯波長の制御の一例を示す図である。 光フィルタの透過帯の配置と検出されるFSK信号の位相との関係を示す図である。 第2の実施形態の光受信器の一例を示す図である。 第2の実施形態の光受信方法の一例を示すフローチャートである。
図1は、本発明の実施形態に係わる光伝送システムの一例を示す。図1に示す光伝送システム1は、WDM伝送装置2〜5、光分岐挿入装置(ROADM:Reconfigurable Optical Add/Drop Multiplexer)6〜8、光クロスコネクト(PXC:Photonic Cross Connect又はWXC:Wavelength Cross Connect)9、ネットワーク管理システム(NMS)10を有する。
WDM伝送装置2、3、5は、それぞれ、光ファイバ回線を介して光分岐挿入装置6、7、8に接続されている。光分岐挿入装置6、7、8は、それぞれ、光ファイバ回線を介して光クロスコネクト9に接続されている。WDM伝送装置4は、光ファイバ回線を介して光クロスコネクト9に接続されている。なお、各光ファイバ回線上には、1または複数の光アンプが設けられていてもよい。
WDM伝送装置2〜5は、WDM信号を送信することができ、また、WDM信号を受信することができる。WDM信号には、複数の波長チャネルが多重化されている。即ち、WDM信号は、波長の異なる複数の光信号を含む。光分岐挿入装置6〜8は、波長選択スイッチ(WSS:Wavelength Selective Switch)12を有し、波長チャネルごとに光信号を処理することができる。すなわち、光分岐挿入装置6〜8は、受信WDM信号の中から指定された波長チャネルを通過させる。また、光分岐挿入装置6〜8は、受信WDM信号の中から指定された波長の光信号を分岐してクライアント回線に導く。さらに、光分岐挿入装置6〜8は、クライアント回線から受信する光信号をWDM信号に挿入する。光クロスコネクト9は、複数の入力ポートおよび複数の出力ポートを備え、指定された光パスを実現するように、受信光信号を出力ポートに導く。なお、光クロスコネクト9は、光分岐挿入装置6〜8と同様に、WDM信号から光信号を分岐する機能およびWDM信号に光信号を挿入する機能を有していてもよい。
ネットワーク管理システム10は、光伝送システム1の状態を管理し、WDM伝送装置2〜5、光分岐挿入装置6〜8、および光クロスコネクト9を制御する。例えば、ネットワーク管理システム10は、ユーザから指示される光パスを実現するように、WDM伝送装置2〜5、光分岐挿入装置6〜8、および光クロスコネクト9を制御する。
図1に示す例では、光伝送システム1には、光パスP1〜P3が設定されている。各光パスは、それぞれ破線で表されている。光パスP1は、WDM伝送装置2から光分岐挿入装置6および光クロスコネクト9を介してWDM伝送装置4へ光信号を伝送する。光パスP2は、WDM伝送装置2から光分岐挿入装置6を介してクライアント11へ光信号を伝送する。光パスP3は、WDM伝送装置3から光分岐挿入装置7、光クロスコネクト9、光分岐挿入装置8を介してWDM伝送装置5へ光信号を伝送する。なお、各光パスP1〜P3は、双方向に光信号を伝送してもよい。
上記構成の光伝送システム1において、ネットワーク管理システム10は、通信資源を効率的にまたは柔軟に利用するために、異なる光パスに対して同じ波長を割り当てることができる。図1に示す例では、光パスP1、P2、P3に対して、それぞれ、波長λ1、λ3、λ1が割り当てられている。
ユーザあるいはネットワーク管理者は、光パスが正しく設定されていることを確認したいことがある。ところが、複数の光パスに対して同じ波長が割り当てられているときは、各波長チャネルのスペクトルをモニタするだけでは、各光パスを識別することは困難である。例えば、光クロスコネクト9において、各波長チャネルのスペクトルをモニタするだけでは、光パスP1、P3を識別することは困難である。
そこで、ネットワーク管理システム10は、各光パスに対してパスIDを割り当てる。そして、光パスの送信元装置は、光パスを介して伝送する光信号に、パスIDを表すパスID信号を重畳する。例えば、WDM伝送装置2は、光パスP1を介して伝送する光信号に対して「パスID=1」を表すパスID信号を重畳し、光パスP2を介して伝送する光信号に対して「パスID=2」を表すパスID信号を重畳する。
各光伝送装置(図1では、WDM伝送装置2〜5、ROADM6〜8、光クロスコネクト9)は、光信号に重畳されているパスID信号を検出してパスIDを取得するための信号検出回路を備える。ただし、信号検出回路は、必ずしもすべてのWDM伝送装置に設ける必要はない。また、1つの光伝送装置に対して複数の信号検出回路を設けてもよい。さらに、信号検出回路は、光伝送装置内に内蔵されていてもよいし、光伝送装置に接続されるようにしてもよい。
図2は、WDM伝送装置の送信回路の一例を示す。WDM送信回路20は、図2に示すように、光送信器21−1〜21−nおよびマルチプレクサ22を有する。なお、WDM送信回路20は、例えば、WDM伝送装置2〜5に設けられる。
各光送信器21−1〜21−nは、入力データ列でキャリア光を変調することにより光信号を生成する。ここで、光送信器21−1〜21−nが使用するキャリア光の波長λ1〜λn(すなわち、光周波数f1〜fn)は、互いに異なっている。また、光送信器21−1〜21−nには、ネットワーク管理システム10により、光パスを識別するパスIDが与えられる。パスIDは、パスID信号として対応する光送信器21−1〜21−nに与えられる。パスID信号は、例えば、所定長のコードである。
この実施例では、パスID信号は、所定長のフレームを利用して伝送される。このフレームは、図3に示すように、プリアンブル、ペイロード、誤り検出符号を含む。プリアンブルは、予め指定されたビットパターンで形成される。なお、プリアンブルのビットパターンは、全てのパスID信号において同じであるものとする。また、プリアンブルは、パスID信号を受信する光受信器において、パスID信号の先頭を検出するための同期情報として使用される。ペイロードには、光パスを識別する情報(すなわち、パスID)が格納される。ただし、ペイロードには、他の情報(例えば、光パスの始点ノードを識別する情報、光パスの経路を表す情報など)が格納されるようにしてもよい。誤り検出符号は、ペイロードのビット誤りを検出するためにペイロードに末尾に付加される。なお、ペイロードに末尾には、誤り検出符号の代わりに誤り訂正符号が付加されるようにしてもよい。そして、パスID信号は、例えば、定期的に繰り返し送信される。
光送信器21−1〜21−nは、周波数変調方式で光信号にパスID信号を重畳する。すなわち、光送信器21−1〜21−nは、周波数変調方式でパスID信号が重畳された光信号を出力する。よって、パスID信号は、周波数変調信号の一例である。そして、マルチプレクサ22は、光送信器21−1〜21−nから出力される光信号を多重化してWDM信号を生成する。このように、WDM送信回路20は、複数の波長チャネルにそれぞれ周波数変調信号(即ち、パスID信号)が重畳されたWDM信号を送信する。
なお、光送信器21−1〜21−nによる主信号データ列の変調方式は、互いに同じでなくてもよい。例えば、光送信器21−1がQPSK変調光信号を送信し、光送信器21−2が16QAM変調光信号を送信してもよい。また、光送信器21−1〜21−nから出力される光信号のシンボルレートまたはビットレートは、互いに同じでなくてもよい。
図4は、パスID信号を重畳する機能を備える光送信器の構成を示す。図4に示す光送信器は、図2に示す光送信器21−1〜21−nの実施例である。ただし、光信号に周波数変調方式でパスID信号を重畳する構成は、図4に示す構成または方法に限定されるものではない。
図4(a)に示す光送信器は、周波数チューナブルレーザ光源31および光変調器32を有する。周波数チューナブルレーザ光源31は、周波数制御信号に応じた発振周波数で連続光を生成する。よって、周波数制御信号としてパスID信号を与えることにより、周波数チューナブルレーザ光源31は、パスID信号に応じた発振周波数で連続光を生成する。光変調器32は、主信号データ列で周波数チューナブルレーザ光源31により生成される連続光を変調する。この結果、周波数変調方式でパスID信号が重畳された光信号が生成される。
図4(b)に示す光送信器は、デジタル信号処理で周波数変調重畳を実現する。すなわち、符号マッピング回路33は、主信号データ列をI成分データ列およびQ成分データ列にマッピングする。積算回路34は、パスID信号を積分する。なお、図4(b)に示す例では、パスID信号f(t)は、パスIDコードの振幅時間波形を表すデジタルデータ列である。そして、積算回路34は、下記の位相情報θ(t)を出力する。
θ(t)=∫2πf(t)dt
mod2π回路35は、積算回路34の出力値を0〜2πの範囲内の値に変換する。ただし、積算回路34の値域が0〜2πとなるように設計されている場合は、mod2π回路35は省略可能である。
回転演算回路36は、下記の演算により、位相情報θ(t)を利用してI成分データ列およびQ成分データ列を回転させる。I、Qは、回転演算回路36の入力データである。また、I_out、Q_outは、回転演算回路36の出力データである。
I_out=Icosθ(t)−Qsinθ(t)
Q_out=Isinθ(t)+Qcosθ(t)
回転演算回路36により得られるデータI_out及びデータQ_outは、それぞれD/A変換器37によりアナログ信号に変換されて光変調器38に与えられる。そして、光変調器38は、レーザ光源39から出力される連続光をデータI_out及びデータQ_outで変調することにより変調光信号を生成する。この結果、周波数変調方式でパスID信号が重畳された光信号が生成される。
図5は、周波数変調重畳について説明する図である。図5は、時刻T0〜T4における光送信器の時間分解出力スペクトルを示している。各時刻における光スペクトルは、主信号データ列による変調に起因して広がる。すなわち、光スペクトルの幅および形状は、光信号の変調方式および変調速度に依存する。
光送信器から出力される光信号には、図2〜図4を参照しながら説明したように、周波数変調方式でパスID信号が重畳されている。図5に示す例では、パスID信号はデジタルコードであり、時刻T1〜T4において光信号に重畳されるパスIDコードは「0110」である。また、光送信器が使用するキャリア光の中心周波数はf1である。
時刻T0においては、光信号にパスIDコードが重畳されていない。この場合、光送信器は、光信号の周波数をシフトさせない。したがって、時刻T0に出力される光信号のスペクトルの中心は、f1である。
時刻T1においては、光信号に「0」が重畳される。この場合、この実施例では、光送信器は、光信号の周波数を−Δfだけシフトさせる。したがって、時刻T1に出力される光信号のスペクトルの中心は、f1−Δfである。
時刻T2においては、光信号に「1」が重畳される。この場合、この実施例では、光送信器は、光信号の周波数を+Δfだけシフトさせる。したがって、時刻T2に出力される光信号のスペクトルの中心は、f1+Δfである。同様に、時刻T3に出力される光信号のスペクトルの中心はf1+Δfであり、時刻T4に出力される光信号のスペクトルの中心はf1−Δfである。
Δfは、キャリア光の周波数と比較して十分に小さい。また、Δfは、WDM伝送システムの隣接チャネルと干渉しないように決定される。たとえば、ITU−Tで規定されている50GHz/100GHz周波数グリッド上に波長チャネルが配置されるWDM伝送システムにおいては、Δfは、特に限定されるものではないが、1MHz〜1GHz程度とする。Δfを小さくすると、キャリア光自体の周波数揺らぎ(光源の線幅)が雑音として無視できなくなり、重畳信号の検出感度が低くなる。よって、Δfは、隣接チャネルとの干渉および検出感度を考慮して決定することが好ましい。
図5に示す例では、重畳信号が「0」および「1」であるときの周波数シフトがそれぞれ「−Δf」および「+Δf」であるが、本発明はこの方式に限定されるものではない。例えば、重畳信号が「0」および「1」であるときの周波数シフトがそれぞれ「+Δf」および「−Δf」であってもよい。また、重畳信号が「0(または、1)」であるときに周波数シフトをゼロとし、重畳信号が「1(または、0)」であるときに光周波数をシフトさせてもよい。さらに、4値の周波数シフトキーイングにおいて、2ビットの重畳信号「00」「01」「10」および「11」に対して、それぞれ、たとえば、周波数シフト「−Δf」「−0.5Δf」「+0.5Δf」および「+Δf」が割り当てられるようにしてもよい。さらに、2値または4値以外の多値周波数シフトキーイングを用いて重畳信号を変調してもよい。
なお、図4に示す実施例ではパスID信号はデジタル信号であるが、パスID信号がアナログ信号である場合も、光周波数をシフトさせる方法は実質的に同じである。ただし、パスID信号がアナログ信号である場合には、周波数シフト量は、離散的ではなく、連続的に変化する。
図6は、周波数変調信号を検出する回路の一例を示す。なお、以下の記載では、光信号に重畳されている周波数変調信号を「FSK(Frequency Shift Keying)信号」と呼ぶことがある。なお、上述したパスID信号は、FSK信号の一例である。
光信号からFSK信号を検出するFSK信号検出回路40は、図6に示すように、光フィルタ41、受光器42、検出器43を有する。そして、受信光信号は、光フィルタ41に導かれる。受光器42は、光フィルタ41によりフィルタリングされた受信光信号を電気信号に変換する。そして、検出器43は、受光器42の出力信号に基づいてFSK信号を検出する。なお、DC成分をカットする回路(例えば、コンデンサ)が受光器42と検出器43との間に設けられていてもよい。
FSK信号検出回路40に入力される光信号には、上述したように、FSK信号が重畳されている。したがって、この光信号の中心波長は、図7に示すように、FSK信号に応じて、λc−Δλとλc+Δλとの間で変動する。なお、図7は、WDM信号中のある1つの波長チャネルの光信号のスペクトラムおよび光フィルタ41の透過帯を示している。また、図7に示す波長λcは、図5に示す周波数f1に対応する。
光フィルタ41の透過帯の幅は、光信号のスペクトルの幅よりも狭い。また、光フィルタ41の透過帯は、光信号の中心波長λcに対して長波長側または短波長側に所定のオフセットだけシフトした波長に配置されている。図7に示す例では、光フィルタ41の透過帯は、光信号の中心波長λcに対して長波長側に配置されている。したがって、光フィルタ41は、受信光信号のスペクトルの一部の成分を抽出する。
受光器42は、光フィルタ41の出力光(すなわち、光フィルタ41によりフィルタリングされた光信号)を電気信号に変換する。この電気信号は、光フィルタ41の出力光のパワーを表す。ここで、光フィルタ41の出力光のパワーは、図7に示す斜線領域の面積で表される。すなわち、図7(a)に示すケースでは、光フィルタ41の出力光のパワーは、光信号の中心波長がλc+ΔλであるときはP1で表され、光信号の中心波長がλc−ΔλであるときはP2で表される。このように、光信号に重畳されたFSK信号は、光フィルタ41および受光器42により、光強度の変化を表す強度信号(或いは、強度変調信号)に変換される。この場合、この強度信号の振幅ΔPは、光信号の中心波長がλc+Δλであるときの光フィルタの出力光のパワーP1と光信号の中心波長がλc−Δλであるときの光フィルタ41の出力光のパワーP2との差分に相当する。
図7(b)に示すケースでは、光フィルタ41の出力光のパワーは、光信号の中心波長がλc+ΔλであるときはP3で表され、光信号の中心波長がλc−ΔλであるときはP4で表される。この場合、この強度信号の振幅ΔPは、パワーP3とパワーP4との差分に相当する。
このように、光フィルタ41および受光器42により生成される強度信号の振幅は、光信号のスペクトルに対する光フィルタ41の透過帯が配置される波長に依存する。具体的には、光信号のスペクトルの傾きが急峻な波長領域に光フィルタ41の透過帯が配置されるときは、光フィルタ41および受光器42により生成される強度信号の振幅は大きい。一方、光信号のスペクトルの傾きが緩やかな波長領域に光フィルタ41の透過帯が配置されるときは、その強度信号の振幅は小さい。
なお、受光器42の動作速度は、データ信号のシンボルレートに対して十分に低速である。この場合、データ信号成分は受光器42により平均化され、FSK信号に対応する強度信号が検出器43に導かれる。また、受光器42の入力側または出力側に、データ信号成分を除去する低域通過フィルタが設けられていてもよい。さらに、受光器42と検出器43との間には、DC成分を除去するコンデンサが設けられていてもよい。
検出器43は、光フィルタ41および受光器42により生成される強度信号に基づいてFSK信号を検出する。具体的には、検出器43は、強度信号を所定の閾値と比較することによりFSK信号の各ビットを判定する。例えば、強度信号が閾値よりも高ければFSK信号が「1」であると判定され、強度信号が閾値以下であればFSK信号が「0」であると判定される。
したがって、FSK信号の検出の感度は、強度信号の振幅に依存する。具体的には、強度信号の振幅が大きいときはFSK信号の検出の感度は高く、強度信号の振幅が小さいときはFSK信号の検出の感度は低い。したがって、FSK信号検出回路40は、光フィルタ41および受光器42により生成される強度信号の振幅が大きくなるように、光フィルタ41の透過帯の波長を制御する機能を備えることが好ましい。
このように、FSK信号検出回路40は、光フィルタ41を利用して光信号に重畳されているFSK信号を検出することができる。したがって、送信局において光信号に周波数変調方式でパスID信号が重畳されたときは、FSK信号検出回路40は、そのパスID信号を検出することができる。
図8は、所望の波長チャネルからFSK信号を検出する方法を示す。図8に示す実施例では、WDM信号には波長チャネルCH1〜CH4が多重化されている。また、各波長チャネルの光信号にはFSK信号が重畳されている。
図8に示すFSK信号強度分布は、図6に示す光フィルタ41および受光器42により生成される強度信号の振幅(または、パワー)を表す。ここで、図7を参照しながら説明したように、光信号のスペクトルの傾きが急峻な波長領域に光フィルタ41の透過帯が配置されるときに、上記強度信号の振幅(すなわち、検出されるFSK信号成分の強度)が大きくなる。すなわち、図8に示すように、各波長チャネルの光パワースペクトルの傾きが急峻な波長領域において、検出されるFSK信号成分の強度が高くなっている。
したがって、例えば、FSK信号検出回路40が波長チャネルCH2に重畳されているFSK信号を検出するときは、光フィルタ41の透過帯はλ1またはλ2に配置される。同様に、FSK信号検出回路40が波長チャネルCH3に重畳されているFSK信号を検出するときは、光フィルタ41の透過帯はλ3またはλ4に配置される。なお、FSK信号検出回路40は、光フィルタ41の透過帯の波長を掃引しながら受光器42の出力信号の振幅をモニタすることにより、検出されるFSK信号成分の強度がピークとなる波長を特定する機能を備えているものとする。また、各波長チャネルCH1〜CH4の波長は既知である。したがって、FSK信号検出回路40は、受光器42の出力信号の振幅がピークとなるように光フィルタ41の透過帯の波長を制御することにより、所望の波長チャネルに重畳されているFSK信号を検出できる。
ところで、近年では、波長チャネルが配置される間隔を狭くすることでWDM信号の伝送容量を大きくする技術が研究されている。たとえば、ナイキストフィルタを利用して光信号のスペクトルを急峻にすることにより、WDMの波長間隔を狭くすることが可能である。
ところが、WDMの波長間隔が狭い伝送システムにおいては、ある波長チャネルのFSK信号が検出される波長領域は、隣接チャネルのFSK信号が検出される波長領域と近接している。例えば、図9に示すように、波長チャネルCH2の長波長側でFSK信号が検出される波長領域は、波長チャネルCH3の短波長側でFSK信号が検出される波長領域と重なっている。
ここで、FSK信号検出回路40は、上述したように、受光器42の出力信号の振幅がピークとなるように光フィルタ41の透過帯の波長を制御することにより、所望の波長チャネルに重畳されているFSK信号をサーチする。よって、例えば、図9に示す波長チャネルCH2に重畳されているFSK信号を検出するときは、光フィルタ41の透過帯の波長はλ5に制御される。ところが、λ5において得られるピークは、波長チャネルCH2に重畳されているFSK信号に起因する強度信号成分および波長チャネルCH3に重畳されているFSK信号に起因する強度信号成分の和である。すなわち、λ5においては、波長チャネルCH2に重畳されているFSK信号と波長チャネルCH3に重畳されているFSK信号とを互いに分離することは困難である。したがって、受光器42の出力信号の振幅がピークとなるように光フィルタ41の透過帯の波長を制御しても(すなわ、光フィルタ41の透過帯の波長をλ5に制御しても)、FSK信号検出回路40は、波長チャネルCH2に重畳されているFSK信号を検出できないことがある。
この問題は、光フィルタ41の透過帯の幅を狭くすれば、解決されるかも知れない。しかし、光フィルタ41の透過帯の幅を狭くすると、光フィルタ41から出力される光の強度が弱くなるので、FSK信号の検出感度が低下する。
<第1の実施形態>
図10は、本発明の第1の実施形態の光受信器の一例を示す。第1の実施形態の光受信器50は、WDM信号中の所望の波長チャネルに重畳されているFSK信号を検出する。FSK信号は、この例では、主データを伝送する光信号に周波数変調方式で重畳されたパスID信号である。パスID信号は、図3に示すように、プリアンブル、ペイロード、誤り検出符号を含む。ペイロードには、光パスを識別する情報(すなわち、パスID)が格納される。そして、光受信器50は、図10に示すように、波長可変光フィルタ51、受光器(PD)52、CPU53を備える。
波長可変光フィルタ51には、受信WDM信号が入力される。また、波長可変光フィルタ51の透過帯の波長は、CPU53により生成されるフィルタ制御信号により制御される。このとき、波長可変光フィルタ51の透過帯の波長は、図7〜図9を参照しながら説明したように、所望の波長チャネルの光スペクトルが急峻になっている波長領域に制御される。以下の記載では、FSK信号を検出すべき波長チャネルを「目的チャネル」と呼ぶことがある。目的チャネルは、例えば、ユーザまたはネットワーク管理者によって指定される。なお、波長可変光フィルタ51の透過帯の幅は、各波長チャネルの光信号のスペクトルの幅よりも狭い。
受光器52は、波長可変光フィルタ51によりフィルタリングされた受信光信号を電気信号に変換する。この電気信号は、波長可変光フィルタ51の出力光のパワーを表す。したがって、図7を参照しながら説明したように、光信号に重畳されたFSK信号は、波長可変光フィルタ51および受光器52により、光パワーの変化を表す信号に変換される。すなわち、FSK信号は、強度信号(あるいは、強度変調信号)に変換される。なお、受光器52の動作速度は、主データ信号のシンボルレートに対して十分に低速である。この場合、主データ信号成分は受光器42により平均化されるので、強度信号の変化は、FSK信号を表す。
波長可変光フィルタ51および受光器52により生成される強度信号は、CPU53に与えられる。ここで、受光器52とCPU53との間には、DC成分を除去するコンデンサおよびA/Dコンバータが設けられる。すなわち、強度信号のAC成分を表すデジタル信号がCPU53に与えられる。なお、A/Dコンバータは、CPU53に内蔵されていてもよい。
CPU53は、統制部54、フィルタ制御部55、信号処理部56を備える。そして、CPU53は、波長可変光フィルタ51および受光器52により生成される強度信号に基づいてFSK信号を検出し、そのFSK信号からパスIDを特定する。
統制部54は、目的チャネルのパスIDを検出する処理において、フィルタ制御部55および信号処理部56を制御する。具体的には、ある波長チャネル(すなわち、目的チャネル)のパスIDを検出する指示がCPU53に与えられると、統制部54は、目的チャネルの波長に対応する初期波長を表す波長情報をフィルタ制御部55に与える。また、統制部54は、信号処理部56に対して目的チャネルを識別するチャネルIDを与える。
フィルタ制御部55は、統制部54または信号処理部56から与えられる指示に応じてフィルタ制御信号を生成する。フィルタ制御信号は、波長可変光フィルタ51の透過帯の中心波長を指定する。
信号処理部56は、光パワー検出部57、信号検出部58、パスID/チャネル対応付け部59を有する。そして、信号処理部56は、波長可変光フィルタ51の出力光のパワーの変化に基づいて、フィルタ制御部55に対して指示を与える。また、信号処理部56は、波長可変光フィルタ51の出力光のパワーの変化に基づいて、目的チャネルのパスID信号を検出する。
光パワー検出部57は、波長可変光フィルタ51および受光器52により生成される強度信号に基づいて、波長可変光フィルタ51の出力光のパワーを検出する。このとき、光パワー検出部57は、強度信号の振幅を検出する。なお、強度信号の振幅は、波長可変光フィルタ51の出力光のパワーの変化の大きさ(すなわち、AC成分の強度)を表わす。そして、光パワー検出部57は、強度信号の振幅を大きくするための指示を生成してフィルタ制御部55に与える。この指示は、波長可変光フィルタ51の透過帯波長の制御に係わる。
信号検出部58は、波長可変光フィルタ51および受光器52により生成される強度信号に基づいて、目的チャネルに重畳されているFSK信号を検出する。例えば、FSK信号が2値データを伝送するときは、信号検出部58は、強度信号を閾値と比較することにより、各ビットの値を判定する。すなわち、強度信号が閾値よりも高いときは「1」が再生され、強度信号が閾値よりも低いときは「0」が再生される。この結果、FSK信号が再生される。
信号検出部58は、エラー検出部58aを含む。或いは、エラー検出部58aは、信号検出部58の外に設けられてもよい。エラー検出部58aは、FSK信号のビット誤りを検出することができる。ここで、この実施例では、FSK信号として図3に示すパスID信号が対応する波長チャネルに重畳される。したがって、エラー検出部58aは、誤り検出符号を利用してパスID信号の誤りを検出する。このとき、エラー検出部58aは、誤り検出符号を利用してパスID信号の誤りの個数をカウントする。或いは、エラー検出部58aは、誤り検出符号を利用してパスID信号の誤り率をモニタしてもよい。そして、信号検出部58は、パスID信号の誤りを少なくするための指示を生成してフィルタ制御部55に与える。この指示は、波長可変光フィルタ51の透過帯波長の制御に係わる。
エラー検出部58aによってパスID信号の誤りが検出されなくなったときに、パスID/チャネル対応付け部59は、信号検出部58により再生されたパスID信号のペイロードに格納されているパスIDを取得する。そして、パスID/チャネル対応付け部59は、取得したパスIDを目的チャネルに対応づける。具体的には、パスID/チャネル対応付け部59は、統制部54から通知された目的チャネルを識別するチャネルIDと受信光信号から検出されたパスIDとを対応づけてメモリに記録する。このメモリは、例えばCPU53に内蔵され、各波長チャネルのパスIDを管理するために使用される。
フィルタ制御部55は、強度信号の振幅を大きくするための指示を光パワー検出部57から受信すると、その指示に応じて波長可変光フィルタ51の透過帯の中心波長を制御する。このフィードバック制御は、強度信号の振幅がピークに達するまで繰り返し実行される。この結果、強度信号の振幅がピークに達するように、波長可変光フィルタ51の透過帯の中心波長が制御される。例えば、図9に示す波長チャネルCH2が目的チャネルであるときは、波長可変光フィルタ51の透過帯の中心波長がλ5に制御される。
また、フィルタ制御部55は、パスID信号の誤りを少なくするための指示を信号検出部58から受信すると、その指示に応じて波長可変光フィルタ51の透過帯の中心波長を制御する。このフィードバック制御は、パスID信号の誤りが検出されなくなるまで繰り返し実行される。この結果、パスID信号の誤りが検出されなくなるように、波長可変光フィルタ51の透過帯の中心波長が制御される。
この後、パスID/チャネル対応付け部59は、再生されたパスID信号のペイロードからパスIDを取得する。このとき、パスID信号は、誤りを含まない。したがって、光受信器50は、目的チャネルに対して割り当てられているパスIDを取得することができる。
図11は、第1の実施形態の光受信方法の一例を示すフローチャートである。このフローチャートの処理は、目的チャネルを指定する情報がCPU53に与えられたときに実行される。
S1において、統制部54は、指定された目的チャネルに対応する初期波長を表す初期波長情報をフィルタ制御部55に与える。「目的チャネルに対応する初期波長」は、この実施例では、目的チャネルの中心波長と目的チャネルの長波長側に隣接する隣接チャネルの中心波長との中間の波長を表す。そして、フィルタ制御部55は、与えられた初期波長情報に従ってフィルタ制御信号を生成する。この結果、波長可変光フィルタ51の透過帯の中心波長は、目的チャネルの中心波長と隣接チャネルの中心波長との中間の波長に設定される。例えば、目的チャネルとして図9に示す波長チャネルCH2が指定されたときには、波長可変光フィルタ51の透過帯の中心波長がλ5の近傍に制御される。なお、統制部54は、目的チャネルを識別するチャネルIDを信号処理部56に与える。
S2において、光パワー検出部57およびフィルタ制御部55は、受光器52の出力信号のAC成分が最大になるように、波長可変光フィルタ51の透過帯の中心波長を制御する。すなわち、波長可変光フィルタ51および受光器52により生成される強度信号の振幅が最大となるように、フィードバック制御が行われる。このフィードバック制御においては、例えば、目的チャネルと隣接チャネルとの間の波長領域において波長可変光フィルタ51の透過帯の波長を掃引しながら、強度信号の振幅がモニタされる。この結果、目的チャネルのFSK信号に起因する強度信号成分および隣接チャネルのFSK信号に起因する強度信号成分の和が最大となるように、波長可変光フィルタ51の透過帯の中心波長が制御される。
S3において、信号検出部58は、上述の強度信号に基づいてFSK信号を検出する。ただし、S2が終了した時点では、目的チャネルのFSK信号が検出される波長領域と隣接チャネルのFSK信号が検出される波長領域との中間に、波長可変光フィルタ51の透過帯の中心波長が配置されている。したがって、信号検出部58およびフィルタ制御部55は、目的チャネルの中心波長に近づく方向に、波長可変光フィルタ51の透過帯をシフトさせる。この実施例では、目的チャネルの波長とその長波長側に隣接する波長チャネルの波長との間に、波長可変光フィルタ51の透過帯が配置されている。よって、信号検出部58およびフィルタ制御部55は、波長可変光フィルタ51の透過帯を短波長側にシフトさせる。
このとき、信号検出部58は、継続的に、FSK信号として伝送される図3に示すパスID信号を検出している。また、エラー検出部58aは、誤り検出符号を利用してパスID信号の誤りをモニタする。そして、信号検出部58およびフィルタ制御部55は、パスID信号の誤りが検出されなくなるまで、波長可変光フィルタ51の透過帯を短波長側にシフトさせる。
S4において、パスID/チャネル対応付け部59は、パスID信号のペイロードに格納されているパスIDを取得する。そして、S5において、パスID/チャネル対応付け部59は、取得したパスIDを目的チャネルに対応づける。このとき、パスID/チャネル対応付け部59は、目的チャネルのチャネルIDに対応づけてパスIDをメモリに記録してもよい。
図12は、第1の実施形態における透過帯波長制御の一例を示す。この例では、初期状態において、目的チャネルとその長波長側の隣接チャネルとの間に波長可変光フィルタ51の透過帯が設定されているものとする。また、目的チャネルは波長チャネルCH2であり、隣接チャネルは波長チャネルCH3である。なお、図12(a)は、主信号の光パワースペクトルの一部を示す。
図11に示すフローチャートのS2の処理が終了すると、波長可変光フィルタ51の透過帯は、図12(b)に示すように、波長チャネルCH2のFSK信号に起因する強度信号成分が検出される波長領域および波長チャネルCH3のFSK信号に起因する強度信号成分が検出される波長領域のほぼ中間に配置される。このため、波長可変光フィルタ51の出力光は、波長チャネルCH2のFSK信号成分および波長チャネルCH3のFSK信号成分を含み、パスID信号を検出することは困難である。
S3においては、図12(c)に示すように、波長チャネルCH2の中心波長に近づく方向に、波長可変光フィルタ51の透過帯はシフトさせられる。この結果、波長可変光フィルタ51の出力光において、波長チャネルCH2のFSK信号成分が支配的となる。この結果、信号処理部56は、波長チャネルCH2のFSK信号成分を精度よく検出することができ、波長チャネルCH2のパスIDを取得できる。
なお、上述の例では、目的チャネルとその長波長側の隣接チャネルとの間に波長可変光フィルタ51の透過帯を設定した後、透過帯を短波長側にシフトさせることにより目的チャネルのパスIDが取得されるが、透過帯を長波長側にシフトさせると、隣接チャネルのパスIDを取得できる。また、目的チャネルとその短波長側の隣接チャネルとの間に波長可変光フィルタ51の透過帯を設定した場合は、透過帯を長波長側にシフトさせることにより目的チャネルのパスIDが取得され、透過帯を短波長側にシフトさせることにより隣接チャネルのパスIDが取得される。
また、図11に示すフローチャートにおいて、S1〜S2を実行しなくても、目的チャネルのパスIDを取得できるかも知れない。例えば、波長可変光フィルタ51の透過帯の波長を掃引しながら、パスID信号の誤りが検出されなくなる波長をサーチすれば、目的チャネルのパスIDを取得できる。しかしながら、この方法では、広い波長範囲に渡って波長可変光フィルタ51の透過帯を掃引させる必要があるので、最適な波長を特定するために要する時間が長くなる。これに対して第1の実施形態の光受信方法によれば、S1〜S2を実行することにより、最適な波長の近傍からS3の処理を開始することができるので、短い時間で目的チャネルのパスIDを特定することができる。
ここで、FSK信号は、主データを伝送する光信号の周波数を変化させるので、主信号の品質を劣化させないためには、FSK信号のビットレートは十分に低速であることが好ましい。例えば、FSK信号のビットレートを512bpsとする。この場合、FSK信号を伝送するFSKフレームの長さを256ビットとすると、光受信器50は、1秒間に2個のFSKフレームを受信する。すなわち、光受信器50は、1秒間に2回しか誤り検出処理を実行できない。このため、広い波長範囲に渡って波長可変光フィルタ51の透過帯を掃引しながら、誤りが検出されない透過帯波長をサーチする方法では、サーチ時間が長くなってしまう。第1の実施形態の構成および方法は、この問題を緩和し、目的チャネルのパスIDを特定するために要する時間を短縮できる。
さらに、上述の例では、信号検出部58は、誤り検出符号を利用してパスID信号の誤りを検出するが、本発明はこの方法に限定されるものではない。たとえば、パスID信号は、誤り検出符号の代わりに誤り訂正符号が付与されていてもよい。この場合、図11のフローチャートのS3において、信号検出部58は、誤り訂正符号を利用してパスID信号の誤りをすべて訂正できるようになるまで波長可変光フィルタ51の透過帯をシフトさせるようにしてもよい。例えば、誤り訂正符号が1ビットの誤りを訂正できる場合は、信号検出部58は、パスID信号の誤りが1ビットになるまで波長可変光フィルタ51の透過帯をシフトさせるようにしてもよい。
<第2の実施形態>
上述したように、光信号に重畳されているFSK信号を検出するためには、光フィルタの透過帯は、光信号のスペクトルの中心波長に対して所定量だけシフトした波長に配置される。ただし、光信号のスペクトルの中心波長に対して短波長側に透過帯を配置したときに検出されるFSK信号の位相は、その長波長側に透過帯を配置したときに検出されるFSK信号の位相と異なっている。第2の実施形態の光受信方法は、この特徴を利用してFSK信号を検出する。
図13は、光フィルタの透過帯の配置と検出されるFSK信号の位相との関係を示す。なお、図13において、光信号には2値のFSK信号が重畳されている。また、上述したように、光信号のスペクトルの傾斜が急峻な波長領域においてFSK信号が検出される。なお、以下の記載においては、送信局から送信されるFSK信号が「1」のときに光信号の波長が長波長側にシフトし、FSK信号が「0」のときに光信号の波長が短波長側にシフトするものとする。
図13(a)に示すケースでは、光信号のスペクトルの中心波長に対して長波長側に光フィルタの透過帯が配置されている。この場合、FSK信号により光信号の波長が長波長側にシフトすると、光フィルタの出力光のパワーは大きくなる。また、FSK信号により光信号の波長が短波長側にシフトすると、光フィルタの出力光のパワーは小さくなる。すなわち、送信FSK信号(送信局において光信号に重畳されるFSK信号)の位相と、受信FSK信号(光受信器において検出されるFSK信号)の位相とは互いに同じである。
図13(b)に示すケースでは、光信号のスペクトルの中心波長に対して短波長側に光フィルタの透過帯が配置されている。この場合、FSK信号により光信号の波長が長波長側にシフトすると、光フィルタの出力光のパワーは小さくなる。また、FSK信号により光信号の波長が短波長側にシフトすると、光フィルタの出力光のパワーは大きくなる。すなわち、受信FSK信号の位相は、送信FSK信号の位相に対して反転している。
図14は、本発明の第2の実施形態の光受信器の一例を示す。第2の実施形態の光受信器60の構成は、第1の実施形態の光受信器50とほぼ同じである。ただし、第2の実施形態においては、信号処理部56は、光パワー検出部57、信号検出部58、パスID/チャネル対応付け部59に加えて、位相検出部61を備える。
位相検出部61は、信号検出部58により検出されるFSK信号の位相が送信FSK信号に対して同相であるか逆相であるかを判定する。ここで、FSK信号は、図3に示すパスID信号であるものとする。この場合、プリアンブルは既知である。以下の記載では、プリアンブルには固定パターン「100100」が格納されているものとする。
この場合、信号検出部58により検出されるFSK信号が「100100」を含んでいれば、位相検出部61は、受信FSK信号の位相が送信FSK信号と同相であると判定する。一方、信号検出部58により検出されるFSK信号が「011011」を含んでいれば、位相検出部61は、受信FSK信号の位相が送信FSK信号に対して逆相であると判定する。
図15は、第2の実施形態の光受信方法の一例を示すフローチャートである。このフローチャートの処理は、目的チャネルを指定する情報がCPU53に与えられたときに実行される。なお、S1〜S4の処理は、第1および第2の実施形態において実質的に同じである。すなわち、受光器52の出力信号のAC成分が最大になるように波長可変光フィルタ51が制御され、その後、パスID信号の誤りが検出されなくなるまで波長可変光フィルタ51が制御される。そして、波長可変光フィルタ51の透過帯の波長が最適化されたときに、受信信号からパスIDが取得される。
S11〜S12において、位相検出部61は、受信FSK信号の位相が送信FSK信号に対して同相であるか逆相であるかを判定する。そして、受信FSK信号の位相が送信FSK信号と同相であるときは、S13において、パスID/チャネル対応付け部59は、S1〜S3により制御された波長可変光フィルタ51の透過帯の中心波長に対して短波長側に配置されている波長チャネルに取得したパスIDを対応づける。一方、受信FSK信号の位相が送信FSK信号に対して逆相であるときは、S14において、パスID/チャネル対応付け部59は、S1〜S3により制御された波長可変光フィルタ51の透過帯の中心波長に対して長波長側に配置されている波長チャネルに取得したパスIDを対応づける。
例えば、波長チャネルCH2と波長チャネルCH3との中間の波長に波長可変光フィルタ51の透過帯が配置された後、図15に示すフローチャートの処理が実行されるものとする。ここで、波長チャネルCH3は、波長チャネルCH2の長波長側に隣接している。この場合、受信FSK信号の位相が送信FSK信号と同相であると判定されたときは、パスID/チャネル対応付け部59は、受信FSK信号から取得したパスIDを波長チャネルCH2に対応づける。一方、受信FSK信号の位相が送信FSK信号に対して逆相であると判定されたときは、パスID/チャネル対応付け部59は、受信FSK信号から取得したパスIDを波長チャネルCH3に対応づける。
フィルタ制御部55は、初期状態において、目的チャネルとその短波長側に隣接する波長チャネルとの間に波長可変光フィルタ51の透過帯を配置してもよい。この場合、受信FSK信号の位相が送信FSK信号と同相であるときは、パスID/チャネル対応付け部59は、波長可変光フィルタ51の透過帯の中心波長に対して長波長側に配置されている波長チャネルに取得したパスIDを対応づける。一方、受信FSK信号の位相が送信FSK信号に対して逆相であるときは、パスID/チャネル対応付け部59は、波長可変光フィルタ51の透過帯の中心波長に対して短波長側に配置されている波長チャネルに取得したパスIDを対応づける。
なお、受信FSK信号の位相が送信FSK信号に対して同相であるか逆相であるかを判定する方法は、上述の実施例に限定されるものではない。例えば、信号検出部58は、受信FSK信号の位相が送信FSK信号と同相であると仮定してパスID信号に対して誤り検出を実行すると共に、受信FSK信号の位相が送信FSK信号に対して逆相であると仮定してパスID信号に対して誤り検出を実行する。そして、位相検出部61は、誤りが検出されなかった方の仮定が正しいと判定し、その判定結果に応じて波長チャネルとパスIDとの対応付けを行ってもよい。
50、60 光受信器
51 波長可変光フィルタ
52 受光器(PD)
53 CPU
55 フィルタ制御部
56 信号処理部
57 光パワー検出部
58 信号検出部
58a エラー検出部
59 パスID/チャネル対応付け部
61 位相検出部

Claims (5)

  1. 複数の波長チャネルにそれぞれ周波数変調信号が重畳されている波長多重光信号を受信する光受信器であって、
    前記波長多重光信号をフィルタリングする光フィルタと、
    前記光フィルタの透過帯の波長を制御するフィルタ制御部と、
    前記光フィルタの出力光の強度の変化を表す強度信号を生成する受光器と、
    前記受光器から出力される強度信号の振幅を検出する振幅検出部と、
    前記受光器から出力される強度信号に基づいて、指定された波長チャネルに重畳されている周波数変調信号を検出する信号検出部と、
    前記信号検出部により前記強度信号から検出される周波数変調信号の誤りを検出する誤り検出部と、
    対応付け部と、を備え、
    前記フィルタ制御部は、前記強度信号の振幅がピークになるように前記光フィルタの透過帯の中心を第1の波長に制御し、その後、前記信号検出部により検出される周波数変調信号の誤りがゼロになるように前記光フィルタの透過帯の中心を第2の波長に制御し、
    前記対応付け部は、前記第1の波長よりも前記第2の波長の方が短いときは、前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに前記信号検出部により検出される周波数変調信号により表されるデータを前記第2の波長の短波長側に隣接して配置される波長チャネルに対応付け、前記第1の波長よりも前記第2の波長の方が長いときは、前記データを前記第2の波長の長波長側に隣接して配置される波長チャネルに対応付ける
    ことを特徴とする光受信器。
  2. 前記周波数変調信号は誤り検出符号を含み、
    前記誤り検出部は、前記誤り検出符号を利用して、前記信号検出部により検出される周波数変調信号の誤りを検出する
    ことを特徴とする請求項1に記載の光受信器。
  3. 複数の波長チャネルにそれぞれ周波数変調信号が重畳されている波長多重光信号を受信する光受信器であって、
    前記波長多重光信号をフィルタリングする光フィルタと、
    前記光フィルタの透過帯の波長を制御するフィルタ制御部と、
    前記光フィルタの出力光の強度の変化を表す強度信号を生成する受光器と、
    前記受光器から出力される強度信号の振幅を検出する振幅検出部と、
    前記受光器から出力される強度信号に基づいて、指定された波長チャネルに重畳されている周波数変調信号を検出する信号検出部と、
    前記信号検出部により前記強度信号から検出される周波数変調信号の誤りを検出する誤り検出部と、
    前記信号検出部により検出される周波数変調信号が、送信局から送信された周波数変調信号に対して反転しているか否かを判定する位相検出部と、
    対応付け部と、を備え、
    前記フィルタ制御部は、前記強度信号の振幅がピークになるように前記光フィルタの透過帯の中心を第1の波長に制御し、その後、前記信号検出部により検出される周波数変調信号の誤りがゼロになるように前記光フィルタの透過帯の中心を第2の波長に制御し、
    前記対応付け部は、前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに前記信号検出部により検出される周波数変調信号が反転していないときは、前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに前記信号検出部により検出される周波数変調信号により表されるデータを、前記第2の波長の短波長側に隣接して配置される第1の波長チャネルまたは前記第2の波長の長波長側に隣接して配置される第2の波長チャネルの一方に対応付け、前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに前記信号検出部により検出される周波数変調信号が反転しているときは、前記データを、前記第1の波長チャネルまたは前記第2の波長チャネルの他方に対応付ける
    ことを特徴とする光受信器。
  4. 複数の波長チャネルにそれぞれ周波数変調信号が重畳されている波長多重光信号を受信する光受信方法であって、
    光フィルタを用いて前記波長多重光信号をフィルタリングし、
    受光器を用いて前記光フィルタの出力光の強度の変化を表す強度信号を生成し、
    前記強度信号の振幅がピークになるように前記光フィルタの透過帯の中心を第1の波長に制御し、
    前記光フィルタの透過帯の中心が前記第1の波長に制御された後に、前記強度信号から検出される周波数変調信号の誤りがゼロになるように前記光フィルタの透過帯の中心を第2の波長に制御し、
    前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに、前記光フィルタの出力光の強度の変化を表す強度信号に基づいて、指定された波長チャネルに重畳されている周波数変調信号を検出し、
    前記第1の波長よりも前記第2の波長の方が短いときは、前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに検出される周波数変調信号により表されるデータを前記第2の波長の短波長側に隣接して配置される波長チャネルに対応付け、前記第1の波長よりも前記第2の波長の方が長いときは、前記データを前記第2の波長の長波長側に隣接して配置される波長チャネルに対応付ける
    ことを特徴とする光受信方法。
  5. 複数の波長チャネルにそれぞれ周波数変調信号が重畳されている波長多重光信号を受信する光受信方法であって、
    光フィルタを用いて前記波長多重光信号をフィルタリングし、
    受光器を用いて前記光フィルタの出力光の強度の変化を表す強度信号を生成し、
    前記強度信号の振幅がピークになるように前記光フィルタの透過帯の中心を第1の波長に制御し、
    前記光フィルタの透過帯の中心が前記第1の波長に制御された後に、前記強度信号から検出される周波数変調信号の誤りがゼロになるように前記光フィルタの透過帯の中心を第2の波長に制御し、
    前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに、前記光フィルタの出力光の強度の変化を表す強度信号に基づいて、指定された波長チャネルに重畳されている周波数変調信号を検出し、
    前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに検出される周波数変調信号が、送信局から送信された周波数変調信号に対して反転しているか否かを判定し、
    前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに検出される周波数変調信号が反転していないときは、前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに検出される周波数変調信号により表されるデータを、前記第2の波長の短波長側に隣接して配置される第1の波長チャネルまたは前記第2の波長の長波長側に隣接して配置される第2の波長チャネルの一方に対応付け、前記光フィルタの透過帯の中心が前記第2の波長に制御されたときに検出される周波数変調信号が反転しているときは、前記データを、前記第1の波長チャネルまたは前記第2の波長チャネルの他方に対応付ける
    ことを特徴とする光受信方法。
JP2015056231A 2015-03-19 2015-03-19 光受信器および光受信方法 Active JP6492827B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015056231A JP6492827B2 (ja) 2015-03-19 2015-03-19 光受信器および光受信方法
US15/051,745 US9698929B2 (en) 2015-03-19 2016-02-24 Optical receiver that has function to detect signal superimposed on optical signal and method for receiving optical signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056231A JP6492827B2 (ja) 2015-03-19 2015-03-19 光受信器および光受信方法

Publications (2)

Publication Number Publication Date
JP2016178426A JP2016178426A (ja) 2016-10-06
JP6492827B2 true JP6492827B2 (ja) 2019-04-03

Family

ID=56925506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056231A Active JP6492827B2 (ja) 2015-03-19 2015-03-19 光受信器および光受信方法

Country Status (2)

Country Link
US (1) US9698929B2 (ja)
JP (1) JP6492827B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492827B2 (ja) * 2015-03-19 2019-04-03 富士通株式会社 光受信器および光受信方法
CN105846905B (zh) * 2016-03-14 2018-06-05 北京邮电大学 一种光信号发送、接收方法及装置
US11802944B2 (en) * 2019-07-26 2023-10-31 Hyundai Mobis Co., Ltd. LiDAR device for vehicle and operating method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260832A (ja) * 1989-03-31 1990-10-23 Nec Corp 光受信回路
JPH10163971A (ja) * 1996-11-25 1998-06-19 Fujitsu Ltd 光信号の波長を制御するための方法、装置及びシステム
JP2003244102A (ja) * 2002-02-20 2003-08-29 Hitachi Ltd 光帯域狭窄化送信装置および光残留サイドバンド送信装置
JP2003258726A (ja) * 2002-03-01 2003-09-12 Nec Corp 分散補償回路及び光受信装置
JP4265918B2 (ja) * 2003-02-27 2009-05-20 富士通株式会社 光伝送装置
US8059971B2 (en) * 2004-12-28 2011-11-15 Mitsubishi Electric Corporation Optical reception device
JP2008010971A (ja) * 2006-06-27 2008-01-17 Fujitsu Ltd 高速分散補償制御装置
JP5181770B2 (ja) * 2008-03-27 2013-04-10 富士通株式会社 光伝送システム
JP5811631B2 (ja) * 2011-06-27 2015-11-11 富士通株式会社 重畳信号検出回路および光ノード装置
JP5906870B2 (ja) * 2012-03-23 2016-04-20 富士通株式会社 光パワーモニタ
JP6107166B2 (ja) * 2013-01-24 2017-04-05 富士通株式会社 波長可変光フィルタのモニタ装置およびモニタ方法
JP6079276B2 (ja) * 2013-02-01 2017-02-15 富士通株式会社 信号検出回路および光伝送装置
JP6064704B2 (ja) * 2013-03-15 2017-01-25 富士通株式会社 光信号復調装置、光信号復調方法、光信号復調プログラム及び光分岐挿入装置
JP6236894B2 (ja) * 2013-06-11 2017-11-29 富士通株式会社 光位相補償装置、光受信器、ネットワークマネジメントシステム、および光位相補償方法
JP2015195490A (ja) * 2014-03-31 2015-11-05 富士通株式会社 伝送装置および光伝送システム
JP6492827B2 (ja) * 2015-03-19 2019-04-03 富士通株式会社 光受信器および光受信方法
JP2016213729A (ja) * 2015-05-12 2016-12-15 富士通株式会社 光送信装置および光受信装置

Also Published As

Publication number Publication date
US20160277139A1 (en) 2016-09-22
US9698929B2 (en) 2017-07-04
JP2016178426A (ja) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6107166B2 (ja) 波長可変光フィルタのモニタ装置およびモニタ方法
US9559771B2 (en) Optical transmission device, node device, optical transmission method, and optical transmission system
US9071378B2 (en) Superimposed signal detection circuit and optical node equipment
US9258215B2 (en) Optical layer protection switching applications
JP6079276B2 (ja) 信号検出回路および光伝送装置
US9444573B2 (en) Transmission device and optical transmission system
JP5940684B2 (ja) 光路のスペクトル位置変更
JP6492827B2 (ja) 光受信器および光受信方法
JP6379455B2 (ja) 周波数変調信号検出器及び光受信装置
JP6064504B2 (ja) 送信装置、受信装置、光周波数分割多重伝送システムおよび光信号通信方法
JP2017011471A (ja) 光分岐挿入装置
JP6631075B2 (ja) 光通信システム、光受信器、及び、光送信器
JPWO2019116776A1 (ja) 海底光伝送装置及び海底光通信システム
US9838148B2 (en) Optical receiver and superimposed signal detecting method
JP7081679B2 (ja) 光送信機及び光受信機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150