JP6491439B2 - 受信装置及びプログラム - Google Patents

受信装置及びプログラム Download PDF

Info

Publication number
JP6491439B2
JP6491439B2 JP2014178414A JP2014178414A JP6491439B2 JP 6491439 B2 JP6491439 B2 JP 6491439B2 JP 2014178414 A JP2014178414 A JP 2014178414A JP 2014178414 A JP2014178414 A JP 2014178414A JP 6491439 B2 JP6491439 B2 JP 6491439B2
Authority
JP
Japan
Prior art keywords
unit
signal
filter
filter coefficient
fft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014178414A
Other languages
English (en)
Other versions
JP2016054340A (ja
Inventor
知明 竹内
知明 竹内
澁谷 一彦
一彦 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
NHK Engineering System Inc
Original Assignee
Japan Broadcasting Corp
NHK Engineering System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp, NHK Engineering System Inc filed Critical Japan Broadcasting Corp
Priority to JP2014178414A priority Critical patent/JP6491439B2/ja
Publication of JP2016054340A publication Critical patent/JP2016054340A/ja
Application granted granted Critical
Publication of JP6491439B2 publication Critical patent/JP6491439B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Noise Elimination (AREA)

Description

本発明は、空間分割多重されたMIMO(Multiple Input Multiple Output)−OFDM(Orthogonal Frequency Division Multiplexing)信号を受信する受信装置、及びそのプログラムに関する。
デジタル放送や無線LANなどに採用されているマルチキャリア変調方式にOFDMがある。OFDMではマルチパスに対する耐性を得るために、ガードインターバル(GI:Guard Interval)あるいはサイクリックプレフィックス(CP:Cyclic Prefix)と呼ばれる区間を設けている。OFDMでは送信元から受信点までの伝送路の遅延広がりがGI長以内である場合には、チャネル等化が可能であることが知られている。
一方、送信及び受信の双方で複数のアンテナを使用するMIMOシステムによる情報伝送に関する検討が行われている。特に、それぞれのアンテナから異なる情報を伝送する空間分割多重MIMOは、送信アンテナの数に比例して伝送容量を大きくすることができるという利点を持つ。空間分割多重MIMO方式の受信方法としては、ゼロフォーシング法やMMSE(Minimum Mean Square Error)法などが知られている。
OFDMを変調方式としたMIMOシステムによる情報伝送はMIMO−OFDM伝送と呼ばれ、両者の利点を矛盾なく組み合わせることができる。しかし、OFDM伝送ではチャネルの遅延広がりがGI長を越える場合、シンボル間干渉及びキャリア間干渉の発生により受信特性が著しく損なわれるという問題がある。この問題はMIMO−OFDM伝送においても同様である。この、OFDM伝送における長遅延マルチパス環境における特性劣化を低減するための方法として、時間領域においてマルチパスをキャンセルする方式や、周波数領域でマルチパスを等化するOFDM信号受信装置が知られている(例えば、特許文献1乃至3参照)。
一方、MIMO−OFDM伝送における長遅延マルチパス耐性を有する受信方式としてターボ等化方式が知られている(例えば、非特許文献1参照)。これはMAP(Maximum a posteriori probability)復号における尤度比を用いてシンボル間干渉及びキャリア間干渉成分のレプリカを生成し、受信信号から差し引くことにより伝送特性を改善するものである。
特許第4177708号公報 特許第5023006号公報 特許第5023007号公報
Satoshi Suyama, Hiroshi Suzuki, and Kazuhiko Fukawa, "A MIMO-OFDM receiver employing the low-complexity turbo equalization in multipath environments with delay difference greater than the guard interval" IEICE Trans.Commun., E88-B(1):39-46, 2005
しかし、MIMO−OFDM伝送においては、受信した信号は空間分割多重されており、ストリーム間干渉が生じているため、従来のOFDMによる受信方式を用いても十分な効果を得られないという問題があった。
一方、ターボ等化方式では、一般にMAP復号における処理量は変調多値数に対して指数関数的増大するため、変調多値数が大きい場合には実現が困難であった。また、時間−周波数領域変換にFFT(Fast Fourier Transform)処理を用いることができないという問題があった。このため、この手法を適用できるシステムはキャリア数が小さい場合に限られ、例えば非特許文献1における例はキャリア数が52となっている。一方、放送の分野においてはFFTサイズの拡大が検討されている。例えば、DVB−T2(Digital Video Broadcasting - Terrestrial 2)ではFFTサイズを8192(213)から32768(215)へと拡張している。
かかる事情に鑑みてなされた本発明の目的は、ガードインターバル長を越えるマルチパスに対する耐性を有する、空間分割多重されたMIMO−OFDM信号を受信する受信装置及びプログラムを提供することにある。
上記課題を解決するため、本発明に係る受信装置は、受信系列数分のOFDM信号を受信する受信装置であって、受信したOFDM信号と高分解能フィルタ係数の行列乗算を、前記OFDM信号のサブキャリア間隔よりも狭い周波数分解能で行い、高分解能フィルタ信号を生成する高分解能フィルタ部と、前記高分解能フィルタ信号とキャリア間隔フィルタ係数の行列乗算を、前記サブキャリア間隔と同じ周波数分解能で行い、キャリア間隔フィルタ信号を生成するキャリア間隔フィルタ部と、前記高分解能フィルタ係数を算出する高分解能フィルタ係数算出部と、前記キャリア間隔フィルタ係数を算出するキャリア間隔フィルタ係数算出部と、を備え、前記キャリア間隔フィルタ部は、前記高分解能フィルタ信号を、2のべき乗倍、且つ前記OFDM信号のサブキャリア数の2倍未満となる第2のFFTサイズでFFT処理して周波数領域に変換する受信系列数分の第2のFFT部と、前記第2のFFT部の出力信号と前記キャリア間隔フィルタ係数の行列乗算を、前記サブキャリア間隔と同じ周波数間隔で行い、前記キャリア間隔フィルタ信号を生成する第2の空間フィルタ部と、を備え、前記キャリア間隔フィルタ係数算出部は、前記OFDM信号に含まれるパイロット信号を用いて第1のチャネル応答行列を推定する第1のチャネル推定部と、前記第1のチャネル応答行列の逆フィルタとなる行列を前記キャリア間隔フィルタ係数として算出する第1の逆フィルタ算出部と、を備え、前記高分解能フィルタ係数算出部は、前記キャリア間隔フィルタ信号のシンボルを再生する受信系列数分のシンボル再生部と、前記受信系列数分のシンボル再生部の出力する再生シンボルに前記第1のチャネル応答行列を乗算してレプリカ信号を生成するレプリカ生成部と、前記第2のFFT部の出力する受信系列数分の周波数領域信号から、前記レプリカ信号を減算するレプリカ除去部と、前記レプリカ除去部の出力信号を前記レプリカ信号で除算して第2のチャネル応答行列を推定する第2のチャネル推定部と、前記第2のチャネル応答行列の等化誤差である等化誤差信号を算出する等化誤差算出部と、前記等化誤差信号から送受信間の遅延プロファイルを推定するプロファイル推定部と、前記遅延プロファイルを周波数領域に変換する領域変換部と、前記領域変換部の出力信号の逆フィルタとなる行列を前記高分解能フィルタ係数として算出する第2の逆フィルタ算出部と、を備えることを特徴とする。
さらに、本発明に係る受信装置において、前記高分解能フィルタ部は、前記OFDM信号を、2のべき乗倍、且つ前記OFDM信号のサブキャリア数の2倍以上となる第1のFFTサイズでFFT処理して周波数領域に変換する受信系列数分の第1のFFT部と、前記第1のFFT部の出力信号と前記高分解能フィルタ係数の行列乗算を、前記サブキャリア間隔の2のべき乗分の1の周波数間隔で行う第1の空間フィルタ部と、前記第1の空間フィルタの出力信号を前記第1のFFTサイズでIFFT処理して時間領域信号に変換して前記高分解能フィルタ信号を生成する受信系列数分の第1のIFFT部と、を備えることを特徴とする。
さらに、本発明に係る受信装置において、前記第1の逆フィルタ算出部は、ゼロフォーシング規範又はMMSE規範に基づいて前記第1のチャネル応答行列から前記キャリア間隔フィルタ係数を算出することを特徴とする。
さらに、本発明に係る受信装置において、前記第2の逆フィルタ算出部は、ゼロフォーシング規範又はMMSE規範に基づいて前記第2のチャネル応答行列から前記高分解能フィルタ係数を算出することを特徴とする。
また、上記課題を解決するため、本発明に係るプログラムは、コンピュータを、上記受信装置として機能させることを特徴とする。
本発明によれば、MIMO−OFDM信号を受信する受信装置において、遅延広がりがガードインターバル長を越えるマルチパスによる受信特性の劣化を低減することができる。
また、本発明によれば、時間−周波数領域変換処理において、高速演算手法であるFFTを利用できるため、キャリア数が多い場合にも適用できるとともに、計算量を変調多値数に依存させないようにすることができる。
本発明の一実施形態に係る受信装置の構成例を示すブロック図である。 本発明の一実施形態に係る受信装置における高分解能フィルタ部の構成例を示すブロック図である。 本発明の一実施形態に係る受信装置におけるキャリア間隔フィルタ部及びキャリア間隔フィルタ係数算出部の構成例を示すブロック図である。 本発明の一実施形態に係る受信装置における高分解能フィルタ係数算出部の構成例を示すブロック図である。 本発明の一実施形態に係る受信装置におけるレプリカ生成部の構成例を示すブロック図である。 本発明の一実施形態に係る受信装置におけるレプリカ除去部の構成例を示すブロック図である。 本発明の一実施形態に係る受信装置におけるチャネル推定部の構成例を示すブロック図である。 本発明の一実施形態に係る受信装置における等化誤差算出部の構成例を示すブロック図である。 本発明の一実施形態に係る受信装置におけるプロファイル推定部の構成例を示すブロック図である。 本発明の一実施形態に係る受信装置における領域変換部の構成例を示すブロック図である。 伝搬路の遅延広がりがGI長を越える場合のビット誤り率特性を示す図である。
以下、本発明の実施形態について、図面を参照して詳細に説明する。本実施形態では、受信系列数(受信アンテナ数)が2の場合について説明する。
図1は本発明の一実施形態に係る受信装置の構成例を示すブロック図である。図1に示す受信装置1は、受信系列数分の周波数変換部10(10−1及び10−2)と、受信系列数分のA/D変換部20(20−1及び20−2)と、受信系列数分の直交復調部30(30−1及び30−2)と、高分解能フィルタ部40と、キャリア間隔フィルタ部50と、キャリア間隔フィルタ係数算出部60と、高分解能フィルタ係数算出部70と、多重部80と、誤り訂正復号部90とを備える。
周波数変換部10は、受信したOFDM信号をIF信号に周波数変換し、それぞれA/D変換部20に出力する。
A/D変換部20は、周波数変換部10から入力されるIF信号をA/D変換してデジタルIF信号に変換し、それぞれ直交復調部30に出力する。
直交復調部30は、A/D変換部20から入力されるデジタルIF信号を直交復調して等価ベースバンド信号を生成し、高分解能フィルタ部40に出力する。
高分解能フィルタ部40は、直交復調部30から入力される等価ベースバンド信号をキャリア間隔よりも狭い周波数分解能を有する周波数領域信号に変換し、高分解能フィルタ係数算出部70から入力される高分解能フィルタ係数を用いて空間フィルタ処理を行う。そして、空間フィルタ処理された周波数領域信号を再び時間領域信号へと変換した受信系列数分の高分解能フィルタ信号をキャリア間隔フィルタ部50に出力する。つまり、高分解能フィルタ部40は、受信したOFDM信号と高分解能フィルタ係数の行列乗算を、OFDM信号のキャリア間隔よりも狭い周波数分解能で行い、高分解能フィルタ信号を生成する。ここで高分解能フィルタ係数は、2×2MIMOシステムにおいては2×2の行列となる。高分解能フィルタ部40の詳細については後述する。
キャリア間隔フィルタ部50は、高分解能フィルタ部40から入力される高分解能フィルタ信号をキャリア間隔と同じ周波数分解能を有する周波数領域信号に変換し、キャリア間隔フィルタ係数算出部60及び高分解能フィルタ係数算出部70に出力する。また、キャリア間隔フィルタ部50は、該周波数領域信号をキャリア間隔フィルタ係数算出部60から入力されるキャリア間隔フィルタ係数を用いて空間フィルタ処理した受信系列数分のキャリア間隔フィルタ信号を多重部80及び高分解能フィルタ係数算出部70に出力する。つまり、キャリア間隔フィルタ部50は、高分解能フィルタ信号とキャリア間隔フィルタ係数の行列乗算を、キャリア間隔と同じ周波数分解能で行い、キャリア間隔フィルタ信号を生成する。ここでキャリア間隔フィルタ係数は、2×2MIMOシステムにおいては2×2の行列となる。キャリア間隔フィルタ部50の詳細については後述する。
キャリア間隔フィルタ係数算出部60は、キャリア間隔フィルタ部50からキャリア間隔と同じ周波数分解能を有する周波数領域信号を入力し、推定したチャネル応答を高分解能フィルタ係数算出部70へ出力する。また、推定したチャネル応答を用いてキャリア間隔フィルタ係数を算出し、キャリア間隔フィルタ部50に出力する。キャリア間隔フィルタ係数算出部60の詳細については後述する。
高分解能フィルタ係数算出部70は、キャリア間隔フィルタ部50からキャリア間隔の周波数領域信号及びキャリア間隔フィルタ信号を入力し、キャリア間隔フィルタ係数算出部60からチャネル応答を入力し、高分解能フィルタ係数を算出して、高分解能フィルタ部40に出力する。高分解能フィルタ係数算出部70の詳細については後述する。
多重部80は、キャリア間隔フィルタ部50から入力される受信系列数分のキャリア間隔フィルタ信号を多重化し、多重化信号を誤り訂正復号部90に出力する。
誤り訂正復号部90は、多重部80から入力される多重化信号に対して誤り訂正復号処理を行って受信ビット列を生成し、外部に出力する。
[高分解能フィルタ部]
次に、高分解能フィルタ部40の詳細について説明する。図2は、高分解能フィルタ部40の構成例を示すブロック図である。図2に示す高分解能フィルタ部40は、受信系列数分のFFT部41(41−1及び41−2)と、空間フィルタ部42と、受信系列数分のIFFT(Inverse Fast Fourier Transform)部43(43−1及び43−2)とを備える。
FFT部41は、式(1)に示すように、直交復調部30から入力される等価ベースバンド信号xi(n)をFFTサイズMでFFT処理する。ここで、iは受信系列を示す。mは0≦m<Mを満たす、キャリア間隔の2のべき乗分の1の分解能を有する離散周波数である。
Figure 0006491439
ここで、FFTサイズMは、2のべき乗倍、且つOFDM信号のサブキャリア数の2倍以上となる値である。例えば、サブキャリア数が5617本の場合、FFTサイズは16384(214)以上の2のべき乗の値(例えば、32768(215)など)とする。サブキャリアCが2n-1<C≦2nである場合に、FFT部41のFFTサイズMを2n+α(αは1以上の正の整数)とすることにより、等価ベースバンド信号xi(n)は、OFDMのキャリア間隔の2α分の1の分解能を有する周波数領域信号が生成される。よって、空間フィルタ部42で周波数特性歪みを補正することでキャリア間の直交性が復元され、遅延広がりがGI長を越えるマルチパスによる歪みを等化することができる。
FFT部41の出力する受信系列数分の高分解能周波数領域信号を式(2)に示すようにベクトル表記する。ここで、上付きのTは転置を示す。
Figure 0006491439
空間フィルタ部42は、式(3)に示すように、FFT部41から入力される高分解能周波数領域信号と高分解能フィルタ係数算出部70から入力される高分解能フィルタ係数Qmの行列乗算を、サブキャリア間隔の2のべき乗分の1の周波数間隔で行って周波数特性歪みを等化した等化信号を生成し、IFFT部43に出力する。本実施形態では、高分解能フィルタ係数Qmは2×2の行列である。この空間フィルタ部42により、遅延広がりがGI長を越えるマルチパスによる受信特性の劣化を低減させることができるとともに、行列乗算を行うのでストリーム間干渉を低減させることができる。
Figure 0006491439
IFFT部43は、式(4)に示すように、空間フィルタ部42から入力される等化信号をFFT部41と同じFFTサイズでIFFT処理して時間領域信号に戻し、受信系列数分の高分解能フィルタ信号をキャリア間隔フィルタ部50に出力する。
Figure 0006491439
[キャリア間隔フィルタ部]
次に、キャリア間隔フィルタ部50の詳細について説明する。図3は、キャリア間隔フィルタ部50及びキャリア間隔フィルタ係数算出部60の構成例を示すブロック図である。図3に示すキャリア間隔フィルタ部50は、受信系列数分のGI除去部51(51−1及び51−2)と、受信系列数分のFFT部52(52−1及び52−2)と、空間フィルタ部53とを備える。
GI除去部51は、高分解能フィルタ部40から入力される高分解能フィルタ信号からガードインターバルを除去して有効シンボル区間に相当する有効信号を抽出し、FFT部52に出力する。
FFT部52は、式(5)に示すように、GI除去部51から入力される有効信号をFFTサイズNでFFT処理して周波数領域信号Yi,kを生成し、空間フィルタ部53、チャネル推定部61、及び高分解能フィルタ係数算出部70に出力する。FFTサイズNは、2のべき乗倍、且つOFDM信号のサブキャリア数の2倍未満とする。例えば、サブキャリア数Kが5617本の場合、FFTサイズは8192(213)とする。kは0≦k<Kを満たす、キャリア間隔の分解能をもつ離散周波数である。Yi,kはi番目の受信系列信号におけるk番目のサブキャリアの受信信号を示す。
Figure 0006491439
FFT部52の出力する受信系列数分の周波数領域信号を式(6)に示すようにベクトル表記する。ここで上付きのTは転置を示す。
Figure 0006491439
空間フィルタ部53は、式(7)に示すように、FFT部52から入力されるキャリア間隔の周波数領域信号Ykとキャリア間隔フィルタ係数算出部60から入力されるキャリア間隔フィルタ係数Gkの行列乗算を、サブキャリア間隔と同じ周波数間隔で行って周波数特性歪みを等化した等化信号を生成し、受信系列数分のキャリア間隔フィルタ信号を高分解能フィルタ係数算出部70及び多重部80に出力する。本実施形態では、キャリア間隔フィルタ係数Gkは2×2の行列である。この空間フィルタ部53により、遅延広がりがGI長以内のマルチパスによる受信特性の劣化を低減させることができる。
Figure 0006491439
[キャリア間隔フィルタ係数算出部]
次に、キャリア間隔フィルタ係数算出部60の詳細について説明する。図3に示すキャリア間隔フィルタ係数算出部60は、チャネル推定部61と、逆フィルタ算出部62とを備える。
チャネル推定部61は、FFT部52から入力される受信系列数分の周波数領域信号Ykからチャネル応答行列Hkを推定し、逆フィルタ算出部62及び高分解能フィルタ係数算出部70に出力する。チャネル推定の方法としては、送信するOFDM信号にパイロット信号を挿入し、それぞれの送信系列の信号を時空間符号化する方法が知られている。例えば、式(8)で示されるAlamoutiの符号を用いると、式(9)に示すように、受信信号に対してその逆行列を乗算することにより、チャネル応答行列Hkを推定することができる。なお、全サブキャリアにパイロット信号が多重されていない場合には、サブキャリア方向に内挿補間する。
Figure 0006491439
逆フィルタ算出部62は、チャネル推定部61から入力されるサブキャリアごとのチャネル応答行列Hkについて、その逆フィルタとなるフィルタ行列Gkをキャリア間隔フィルタ係数として算出し、空間フィルタ部53に出力する。例えば、ゼロフォーシング規範に基づくキャリア間隔フィルタ係数Gkは、式(10)で示される。ここで上付きのHは複素共役転置を示す。
Figure 0006491439
また、雑音の影響も考慮するMMSE(Minimum Mean Squared Error)規範に基づくキャリア間隔フィルタ係数Gkは、式(11)で示される。ここで、上付きの*は複素共役を示し、NT,Nrはそれぞれ送信系列数、受信系列数を示し、ρ0は総送信電力を1系列で送信した場合の平均S/Nを示す。また、INrは(Nr×Nr)の単位行列を示す。
Figure 0006491439
[高分解能フィルタ係数算出部]
次に、高分解能フィルタ係数算出部70の詳細について説明する。図4は、高分解能フィルタ係数算出部70の構成例を示すブロック図である。高分解能フィルタ係数算出部70は、受信系列数分のシンボル再生部71(71−1及び71−2)と、レプリカ生成部72と、レプリカ除去部73と、チャネル推定部74と、等化誤差算出部75と、プロファイル推定部76と、領域変換部77と、逆フィルタ算出部78とを備える。
シンボル再生部71は、キャリア間隔フィルタ部50から入力されるキャリア間隔フィルタ信号に対し、QAM復調してパラレル信号を生成し、該パラレル信号を再度QAM変調して再生シンボル行列Rkを生成し、レプリカ生成部72に出力する。
図5は、レプリカ生成部72の構成を示す図である。レプリカ生成部72は、乗算部721−1〜721−4により、チャネル推定部61から入力されるチャネル応答行列Hkと、シンボル再生部71から入力される再生シンボル行列Rkとを乗算してレプリカ行列(レプリカ信号)Sを生成し、レプリカ除去部73に出力する。レプリカ行列Sの要素は式(12)で表される。ここで、jは送信系列を示す。レプリカ行列Sの要素の数は受信系列数のべき乗となり、2×2のMIMOシステムの場合、レプリカ行列Sは2×2の行列となる。
Figure 0006491439
図6は、レプリカ除去部73の構成を示す図である。レプリカ除去部73は、減算部731−1〜731−4により、FFT部52から入力される受信系列数分の周波数領域信号から、レプリカ生成部72から入力されるレプリカ行列Sを減算したレプリカ除去行列(レプリカ除去信号)Tをチャネル推定部74に出力する。レプリカ除去行列Tの要素は式(13)で表される。レプリカ除去行列Tの要素の数は受信系列数のべき乗となり、2×2のMIMOシステムの場合、レプリカ除去行列Tは2×2の行列となる。
Figure 0006491439
図7は、チャネル推定部74の構成を示す図である。チャネル推定部74は、除算部741−1〜741−4により、レプリカ除去部73から入力されるレプリカ除去行列Tを、レプリカ生成部72から入力されるレプリカ行列Sで除算し、遅延広がりがGI長を越えるマルチパスによるチャネル応答行列Fを生成し、等化誤差算出部75に出力する。チャネル応答行列Fの要素は式(14)で表される。
Figure 0006491439
図8は、等化誤差算出部75の構成を示す図である。等化誤差算出部75は、減算部751−1,751−2により、チャネル推定部74から入力されるチャネル応答行列Fの等化誤差である等化誤差行列(等化誤差信号)Eを生成し、プロファイル推定部76に出力する。等化誤差行列Eの要素は式(15)で表される。
Figure 0006491439
図9は、プロファイル推定部76の構成を示す図である。プロファイル推定部76は、IFFT部761と、乗算部762と、加算部763と、遅延部764とを備える。プロファイル推定部76は、等化誤差算出部75から入力される等化誤差行列Eから送受信間の遅延プロファイルを推定する。
IFFT部761は、等化誤差算出部75から入力される等化誤差信号EをIFFT処理して時間領域信号eij(n,t)に変換し、乗算部762に出力する。ここで、nは離散時間、tは更新時間を示す。
乗算部762は、IFFT部761から入力される時間領域の等化誤差信号にあらかじめ定められた定数μを乗じて加算部763に出力する。
加算部763は、乗算部762から入力される時間領域の等化誤差信号と、遅延部764から入力される単位更新時間前の遅延プロファイルPij(n,t)を加算して、遅延プロファイルを更新して新たな遅延プロファイルPij(n,t+1)を、遅延部764及び領域変換部77に出力する。
遅延部764は、加算部763から入力される遅延プロファイルを単位更新時間遅延させて、遅延した遅延プロファイルを加算部763に出力する。以上のプロファイル推定部76の処理は、式(16)で表される。
Figure 0006491439
図10は、領域変換部77の構成を示す図である。領域変換部77は、加算部771(771−1及び771−2)と、FFT部772(772−1乃至772−4)とを備える。加算部771は、プロファイル推定部76から入力される遅延プロファイルのうち、i=jを満たす系列について式(17)で示されるデルタ関数を加算し、FFT部772に出力する。加算部771の出力、又はi=jを満たさない系列の遅延プロファイルは、それぞれFFT部772に入力される。
Figure 0006491439
FFT部772は、入力される遅延プロファイルをFFT処理して周波数領域信号であるチャネル応答行列Pmに変換し、逆フィルタ算出部78に出力する。チャネル応答行列Pmの要素は式(18)で表される。ここで、FFTサイズMは、上述したFFT部41におけるサイズと同じであり、2のべき乗倍、且つOFDM信号のサブキャリア数の2倍以上となる値である。
Figure 0006491439
逆フィルタ算出部78は、領域変換部77から入力されるチャネル応答行列Pmの逆フィルタを高分解能フィルタとして算出し、高分解能フィルタ部40に出力する。ゼロフォーシング規範に基づく逆フィルタは式(19)で示され、雑音の影響も考慮するMMSE規範に基づく逆フィルタは式(20)で示される。
Figure 0006491439
このように、受信装置1は、高分解能フィルタ部40の空間フィルタがOFDM信号のサブキャリア間隔よりも狭い周波数分解能を有するため、遅延広がりがGI長を越えるマルチパスによる受信特性の劣化を低減させることができる。また、行列乗算を行うのでストリーム間干渉を低減させることもできる。そして、キャリア間隔フィルタ部50の空間フィルタがOFDM信号のサブキャリア間隔と同じ周波数分解能を有するため、遅延広がりがGI長以内のマルチパスによる受信特性の劣化を低減させることができる。
図11は、伝搬路の遅延広がりがGI長を越える場合のビット誤り率(BER)特性を示す図である。このシミュレーションでは、変調方式はISDB−T(Integrated Services Digital Broadcasting - Terrestrial)に準拠するものとし、モード3、シンボル長1008μs、GI長126μs、GI比1/8とした。キャリア変調はISDB−Tよりも多値数の多い256QAMとし、MIMO構成をとるため、パイロット信号はSPに直交符号化を施した。また、誤り訂正符号はなしであり、MIMO伝搬路行列は式(21)に示すものを用いた。ここで、D1=0.01、D2=0.1、D3=0.1とした。遅延時間は、T1=150μs、T2=155μsとした。図11より、従来技術と比較して、大幅に誤り率特性の改善が得られることが分かる。
Figure 0006491439
なお、上述した受信装置1として機能させるためにコンピュータを用いることができ、そのようなコンピュータは、受信装置1の各機能を実現する処理内容を記述したプログラムを当該コンピュータの記憶部に格納しておき、当該コンピュータのCPUによってこのプログラムを読み出して実行させることで実現することができる。なお、このプログラムは、コンピュータ読取り可能な記録媒体に記録することができる。
上述の実施形態は、代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。例えば、上述の実施形態では、受信系列数が2の場合について説明したが、受信系列数が2以外の場合についても同様に本発明を適用することができる。また、実施形態に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。
1 受信装置
10 周波数変換部
20 A/D変換部
30 直交復調部
40 高分解能フィルタ部
41 FFT部
42 空間フィルタ部
43 IFFT部
50 キャリア間隔フィルタ部
51 GI除去部
52 FFT部
53 空間フィルタ部
60 キャリア間隔フィルタ係数算出部
61 チャネル推定部
62 逆フィルタ算出部
70 高分解能フィルタ係数算出部
71 シンボル再生部
72 レプリカ生成部
73 レプリカ除去部
74 チャネル推定部
75 等化誤差算出部
76 プロファイル推定部
77 領域変換部
78 逆フィルタ算出部
80 多重部
90 誤り訂正復号部
721 乗算部
731 減算部
741 除算部
751 減算部
761 IFFT部
762 乗算部
763 加算部
764 遅延部
771 加算部
772 FFT部

Claims (5)

  1. 受信系列数分のOFDM信号を受信する受信装置であって、
    受信したOFDM信号と高分解能フィルタ係数の行列乗算を、前記OFDM信号のサブキャリア間隔よりも狭い周波数分解能で行い、高分解能フィルタ信号を生成する高分解能フィルタ部と、
    前記高分解能フィルタ信号とキャリア間隔フィルタ係数の行列乗算を、前記サブキャリア間隔と同じ周波数分解能で行い、キャリア間隔フィルタ信号を生成するキャリア間隔フィルタ部と、
    前記高分解能フィルタ係数を算出する高分解能フィルタ係数算出部と、
    前記キャリア間隔フィルタ係数を算出するキャリア間隔フィルタ係数算出部と、を備え
    前記キャリア間隔フィルタ部は、
    前記高分解能フィルタ信号を、2のべき乗倍、且つ前記OFDM信号のサブキャリア数の2倍未満となる第2のFFTサイズでFFT処理して周波数領域に変換する受信系列数分の第2のFFT部と、
    前記第2のFFT部の出力信号と前記キャリア間隔フィルタ係数の行列乗算を、前記サブキャリア間隔と同じ周波数間隔で行い、前記キャリア間隔フィルタ信号を生成する第2の空間フィルタ部と、を備え、
    前記キャリア間隔フィルタ係数算出部は、
    前記OFDM信号に含まれるパイロット信号を用いて第1のチャネル応答行列を推定する第1のチャネル推定部と、
    前記第1のチャネル応答行列の逆フィルタとなる行列を前記キャリア間隔フィルタ係数として算出する第1の逆フィルタ算出部と、を備え、
    前記高分解能フィルタ係数算出部は、
    前記キャリア間隔フィルタ信号のシンボルを再生する受信系列数分のシンボル再生部と、
    前記受信系列数分のシンボル再生部の出力する再生シンボルに前記第1のチャネル応答行列を乗算してレプリカ信号を生成するレプリカ生成部と、
    前記第2のFFT部の出力する受信系列数分の周波数領域信号から、前記レプリカ信号を減算するレプリカ除去部と、
    前記レプリカ除去部の出力信号を前記レプリカ信号で除算して第2のチャネル応答行列を推定する第2のチャネル推定部と、
    前記第2のチャネル応答行列の等化誤差である等化誤差信号を算出する等化誤差算出部と、
    前記等化誤差信号から送受信間の遅延プロファイルを推定するプロファイル推定部と、
    前記遅延プロファイルを周波数領域に変換する領域変換部と、
    前記領域変換部の出力信号の逆フィルタとなる行列を前記高分解能フィルタ係数として算出する第2の逆フィルタ算出部と、
    を備えることを特徴とする受信装置。
  2. 前記高分解能フィルタ部は、
    前記OFDM信号を、2のべき乗倍、且つ前記OFDM信号のサブキャリア数の2倍以上となる第1のFFTサイズでFFT処理して周波数領域に変換する受信系列数分の第1のFFT部と、
    前記第1のFFT部の出力信号と前記高分解能フィルタ係数の行列乗算を、前記サブキャリア間隔の2のべき乗分の1の周波数間隔で行う第1の空間フィルタ部と、
    前記第1の空間フィルタの出力信号を前記第1のFFTサイズでIFFT処理して時間領域信号に変換して前記高分解能フィルタ信号を生成する受信系列数分の第1のIFFT部と、
    を備えることを特徴とする、請求項1に記載の受信装置。
  3. 前記第1の逆フィルタ算出部は、ゼロフォーシング規範又はMMSE規範に基づいて前記第1のチャネル応答行列から前記キャリア間隔フィルタ係数を算出することを特徴とする、請求項1又は2に記載の受信装置。
  4. 前記第2の逆フィルタ算出部は、ゼロフォーシング規範又はMMSE規範に基づいて前記第2のチャネル応答行列から前記高分解能フィルタ係数を算出することを特徴とする、請求項1から3のいずれか一項に記載の受信装置。
  5. コンピュータを、請求項1からのいずれか一項に記載の受信装置として機能させるためのプログラム。
JP2014178414A 2014-09-02 2014-09-02 受信装置及びプログラム Active JP6491439B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178414A JP6491439B2 (ja) 2014-09-02 2014-09-02 受信装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178414A JP6491439B2 (ja) 2014-09-02 2014-09-02 受信装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2016054340A JP2016054340A (ja) 2016-04-14
JP6491439B2 true JP6491439B2 (ja) 2019-03-27

Family

ID=55744274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178414A Active JP6491439B2 (ja) 2014-09-02 2014-09-02 受信装置及びプログラム

Country Status (1)

Country Link
JP (1) JP6491439B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077729A1 (ja) * 2005-01-20 2006-07-27 Matsushita Electric Industrial Co., Ltd. 送信装置、受信装置、および無線通信方法
US8761274B2 (en) * 2009-02-04 2014-06-24 Acorn Technologies, Inc. Least squares channel identification for OFDM systems
JP2011135204A (ja) * 2009-12-22 2011-07-07 Toshiba Corp Ofdm受信装置
JP2011188107A (ja) * 2010-03-05 2011-09-22 Mitsubishi Electric Corp Mimo受信装置および受信方法
JP5460487B2 (ja) * 2010-06-25 2014-04-02 日本放送協会 Ofdm信号受信装置および中継装置
JP2012165064A (ja) * 2011-02-03 2012-08-30 Sharp Corp 受信装置、受信方法、受信プログラム及び通信システム
JP5570456B2 (ja) * 2011-02-18 2014-08-13 日本放送協会 Ofdm信号受信装置および中継装置
EP2787666A4 (en) * 2011-11-30 2015-08-05 Nec Corp WIRELESS RECEPTION DEVICE AND WIRELESS RECEPTION METHOD IN WIRELESS COMMUNICATION SYSTEM

Also Published As

Publication number Publication date
JP2016054340A (ja) 2016-04-14

Similar Documents

Publication Publication Date Title
JP4099191B2 (ja) チャネル推定装置およびチャネル推定方法
US8351553B2 (en) MIMO receiving apparatus and receiving method
JP5344121B2 (ja) シングルキャリア伝送方式における無線通信方法および装置
JP5157430B2 (ja) 送信装置、送受信装置、送信方法、送受信方法
JP4271235B2 (ja) シングルキャリア受信機における周波数領域イコライゼーション方法及び装置
JP5320174B2 (ja) 受信装置及び受信方法
WO2007139145A1 (ja) 無線受信機、無線通信システムおよび無線受信方法
WO2015064127A1 (ja) 送信装置、受信装置および通信システム
WO2011111583A1 (ja) 受信装置、受信方法、受信プログラム、及びプロセッサ
JPWO2007020943A1 (ja) Ofdm通信方法
JP5428788B2 (ja) 受信装置、受信方法、及び受信プログラム
JPWO2017183631A1 (ja) Los−mimo復調装置、通信装置、los−mimo伝送システム、los−mimo復調方法及びプログラム
KR100816032B1 (ko) 반복적 다중 사용자 검파를 통한 데이터 송수신 방법 및 그장치
JP4871334B2 (ja) Ofdm信号合成用受信装置
JP5288622B2 (ja) 無線通信装置、無線通信システムおよび通信方法
JP2008258899A (ja) 受信装置および受信方法
JP6491439B2 (ja) 受信装置及びプログラム
WO2013171823A1 (ja) 受信装置および受信方法
JP6306857B2 (ja) 受信装置及びプログラム
JP6209087B2 (ja) 受信装置及びプログラム
JP5371722B2 (ja) 受信装置、受信方法、及び受信プログラム
JP6214822B2 (ja) 送信装置、受信装置および通信システム
Ogundile et al. Improved reliability information for OFDM systems on time-varying frequency-selective fading channels
Chang et al. Cancellation of ICI by Doppler effect in OFDM systems
JP4063030B2 (ja) マルチキャリア復調方法及びマルチキャリア復調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190301

R150 Certificate of patent or registration of utility model

Ref document number: 6491439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250