JP6490750B2 - 観察装置、及び冷却機構 - Google Patents

観察装置、及び冷却機構 Download PDF

Info

Publication number
JP6490750B2
JP6490750B2 JP2017120551A JP2017120551A JP6490750B2 JP 6490750 B2 JP6490750 B2 JP 6490750B2 JP 2017120551 A JP2017120551 A JP 2017120551A JP 2017120551 A JP2017120551 A JP 2017120551A JP 6490750 B2 JP6490750 B2 JP 6490750B2
Authority
JP
Japan
Prior art keywords
cooling
image sensor
unit
camera
photographing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017120551A
Other languages
English (en)
Other versions
JP2019009489A (ja
Inventor
幹男 下川
幹男 下川
Original Assignee
株式会社セキュリティージャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社セキュリティージャパン filed Critical 株式会社セキュリティージャパン
Priority to JP2017120551A priority Critical patent/JP6490750B2/ja
Publication of JP2019009489A publication Critical patent/JP2019009489A/ja
Application granted granted Critical
Publication of JP6490750B2 publication Critical patent/JP6490750B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Studio Devices (AREA)
  • Cameras Adapted For Combination With Other Photographic Or Optical Apparatuses (AREA)

Description

本発明は、電気炉、コークス炉などの高温雰囲気炉内、又は高温の観察対象物の状態を観察するのに適した観察装置に関し、詳細には観察装置に使用するカメラ等の被保護対象物を液体、気体等の冷却媒体を用いて効率的に冷却するための冷却構造の改良に関するものである。
CCDカメラ等の撮影手段を、200℃程度を越える高温雰囲気下にある炉内や容器内に挿入して内部の状態を監視する方法として、従来、CCDカメラ等の周囲に冷却ガス等の気体や冷却水等の液体を導入して循環させてCCDカメラ等を冷却し、CCDカメラ等の故障を防止しつつ長時間の観察を可能とする方法がとられている。
CCDカメラ等に内蔵された電子回路部品は耐熱性に劣るため、カメラの冷却効率を高めるために種々の冷却方法が開発されている。特許文献1には、カメラの冷却効率を高めるため、カメラに近接した位置からカメラに対して直接冷却ガスを吹き付けて局所的に冷却する局所冷却手段を備えた炉内観察装置が記載されている。
特開2011−112306公報
しかし、特許文献1のようにカメラを外部から局所的に冷却する場合、カメラ内の部品に冷却ムラが発生する虞があり、カメラからの安定した映像出力を阻害する要因となりうる。
本発明は上記の事情に鑑みてなされたものであり、カメラ部品を効率良く冷却して、設置方法の如何に関わらずに電気炉、コークス炉などの高温雰囲気炉内の状態、又は高温の観察対象物の状態を、長時間連続して観察することができる観察装置、及びその冷却機構を提供することを目的としている。
上記の課題を解決するために、請求項に記載の発明は、撮影部に収容したカメラにより高温物体を撮影する観察装置であって、前記カメラは、前記撮影部の先端部に形成された監視窓を介して入射した光像を受光して電気信号に変換するイメージセンサを実装したエンジンユニットを備え、前記撮影部は、第一系統の冷却ガスにより前記イメージセンサの受光面を冷却する第一の冷却手段と、第二系統の冷却ガスにより前記エンジンユニットの他部位を冷却する第二の冷却手段と、を備えることを特徴とする。
請求項に記載の発明は、前記撮影部は、前記撮影部の基端側から注入した第三系統の冷却ガスにより、前記カメラを外部から冷却する第三の冷却手段を備えることを特徴とする。
請求項に記載の発明は、前記各冷却ガスは前記監視窓から前記撮影部の外部に放出されることを特徴とする。
請求項に記載の発明は、前記イメージセンサを構成する各受光素子はボロメータであることを特徴とする。
請求項5に記載の発明は、撮影部に収容したカメラにより高温物体を撮影する観察装置であって、前記カメラは、前記撮影部の先端部に形成された監視窓を介して入射した光像を受光して電気信号に変換するイメージセンサを実装したエンジンユニットを備え、前記撮影部は、第二系統の冷却ガスにより前記エンジンユニットのうち前記イメージセンサの受光面以外の部位を冷却する第二の冷却手段を備え、前記イメージセンサを構成する各受光素子はボロメータであることを特徴とする。
請求項6に記載の発明は、前記撮影部は同軸状に配置された複数の筒状部材を備え、前記各筒状部材間に形成された円筒状空間の少なくとも1つに、前記撮影部の基端側から先端側に向けて冷却水を注入して前記撮影部を冷却することを特徴とする。
請求項7に記載の発明は、高温物体を撮影する観察装置における冷却機構であって、第一系統の冷却ガスによりイメージセンサの受光面を冷却する第一の冷却手段と、第二系統の冷却ガスにより、前記イメージセンサを実装したセンサ基板を、前記イメージセンサの受光面とは反対側から冷却する第二の冷却手段と、を備えることを特徴とする
求項に記載の発明は、前記第一の冷却手段は、前記イメージセンサが受光する前記高温物体の光像の経路を回避した位置から前記受光面に向けて冷却ガスを吹き付けることを特徴とする。
本発明によれば、観察装置のカメラ内を冷却するので、高温雰囲気炉内の状態、又は高温の観察対象物の状態を、長時間連続して観察することが可能となる。
本発明の第一の実施形態に係る観察装置を示す概略構成図である。 本発明の第一の実施形態に係る撮影部の構成を一部断面にて示した模式図である。 本発明の第一の実施形態に係る冷却機構を説明する模式図である。 (a)は冷却器の構成例を示す概略斜視図であり、(b)は一部拡大断面図である。 本発明による高温雰囲気炉内観察装置の一形態例を示す概略構成図である。 図5に示す撮影部の詳細な構成例を示す要部断面図である。 図5に示すコントロール装置を構成する操作パネルの構成例を示す正面図である。 図5に示す撮影部に冷却ガスを供給しているときの状態例を示す模式図である。 図5に示す撮影部に供給される第一系統側の冷却ガス量が第二系統側の冷却ガス量より多いときの状態例を示す模式図である。 図5に示す撮影部に供給される第一系統側の冷却ガス量が第二系統側の冷却ガス量より少ないときの状態例を示す模式図である。 図5に示す撮影部に第一、第二系統側の冷却水を供給しているときの状態例を示す模式図である。 図5に示す撮影部に第一〜第四系統側の冷却水を供給しているときの状態例を示す模式図である。 図5に示す撮影部をコークス炉にセットしてこのコークス炉内を撮影しているときの一例を示す模式図である。 本発明による高温雰囲気炉内観察装置の他の形態例で使用される撮影部の要部断面図である。 本発明による高温雰囲気炉内観察装置の他の形態例で使用される撮影部の要部断面図である。 (a)、(b)は、図15に示す撮影部をロータリーキルン炉にセットしてこのロータリーキルン炉内を撮影しているときの一例を示す模式図である。
本発明の各実施形態に係る観察装置は、撮影部内にカメラを配置すると共に、カメラ内に冷却ガスを導入してイメージセンサを均一に、一定温度範囲内となるように冷却することにより、イメージセンサとしてボロメータを採用した場合であっても、撮影部を高温雰囲気内に配置するか高温物体に近接させた状態で、観察対象物を24時間365日、長時間、連続して観察できるようにした点に特徴がある。
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
〔第一の実施形態〕
本発明の第一の実施形態に係る観察装置について説明する。図1は、本発明の第一の実施形態に係る観察装置を示す概略構成図である。
本発明の第一の実施形態に係る観察装置100は、炉内温度が1000℃以上になる炉101の観察窓102に密着するか、観察対象物である高温物体に近接して配置され、観察対象物としての高温物体の状態を撮影する撮影部120と、撮影部120に冷却水及び冷却ガスを供給する給水給気装置103と、撮影部120を制御するコントロール装置106とを備えている。
<給水給気装置>
給水給気装置103は、撮影部120に供給する冷却水、及び冷却ガスの流量を制御する手段であり、本例には給水給気装置103としてバルブスタンドを示している。バルブスタンドには、冷却ガスの圧力源であるコンプレッサ104、104とは別にバルブ、計器その他の付属品が装着され一体に構成されている。ここで、冷却ガスには、空気の他、窒素ガス、アルゴンガスなどの不活性ガス等、冷却用途に利用可能な気体一般を含むものである。また、冷却水には水道水、工業用水等を用いることができるが、他の冷却用の液体を用いてもよい。
<コントロール装置>
コントロール装置106は、中継電源ボックス107とカメラコントロール用PC(Personal Computer)110を備える。
中継電源ボックス107は、撮影部120に電源を供給すると共に、撮影部120とカメラコントロール用PC110との間で送受信される電気信号を中継する手段である。また、中継電源ボックス107は、撮影部120から出力された映像信号をモニタ装置111に出力して表示させる。
中継電源ボックス107は、筐体108と、筐体108の前面に配置されて操作スイッチや表示手段等を備えた操作パネル109と、筐体108内に配置され、撮影部120から出力される温度信号を処理して警報音などを発生する警報回路と、警報回路の出力内容などを処理して表示信号などを生成する表示回路と、撮影部120から出力される映像信号を取り込んで、所定形式の映像信号に処理してモニタ装置111に出力する画像処理回路等を備えている。
カメラコントロール用PC110は、操作内容に応じた制御命令を、中継電源ボックス107を介して撮影部120に出力して、撮影部120の動作を制御する。
<撮影部>
撮影部120は、電気炉、コークス炉、焼却炉等、炉内温度が1000℃以上になる各種の炉101の内部を外部から観察する観察窓102に近接(又は密着)して配置されて炉内にある観察対象物Xの状態を撮影する。
図2は、本発明の第一の実施形態に係る観察装置の撮影部の構成を一部断面にて示した模式図である。撮影部120は、カメラを収容するカメラ収容部121と、カメラ収容部121よりも先端側(観察対象物側)に配置されたパージフード151とを備える。
<カメラ収容部>
カメラ収容部121は、円筒状の第一外筒123と、第一外筒123の内側に同軸状に配置された第一内筒125とを備える。
カメラ収容部121の基端部側(軸方向一端側)にはリアパネル127が、カメラ収容部121の先端部側(軸方向他端側)にはシャッターフランジ129が配置されている。
リアパネル127は、第一内筒125内に冷却ガスを導入する第一給気口131、第二給気口133、及び、カメラ収容部121内に収容したカメラ170に駆動用の電源電圧を供給したりカメラ170からの映像信号や第一内筒125内に収容した熱電対からの温度信号等を外部に出力する複合ケーブルC1を接続する為のケーブルコネクタ135を備えている。シャッターフランジ129には外部から光像を取り込む第一監視窓137が貫通形成されており、第一監視窓137には第一内筒125の内外空間を連通させる隙間を有した状態にて、耐熱ガラスからなる熱線カットフィルタ139が配置されている。熱線カットフィルタ139は、カメラで受光する光の成分を透過させ、カメラに悪影響を与える熱線成分の透過を禁止する光学素子である。
第一外筒123と第一内筒125との間に形成される円筒状の空間S1の基端はリアパネル127によって、先端はシャッターフランジ129によって閉止されている。第一外筒123の基端部側には第一給水口141が、先端部側には第一排水口143が形成されており、空間S1には第一給水口141から冷却水が導入され、冷却水は空間S1内を移動して第一排水口143から排出される。本観察装置100の使用時において、空間S1は水密的な空間となる。空間S1を単一の空間としてもよいが、空間S1内部を螺旋状に複数の空間に仕切ってスパイラル流路を形成することにより、冷却水による撮影部120の冷却効率を向上させるようにしてもよい。
撮影部120のカメラ収容部121の下部には、撮影部120を台座等に設置する取付治具145が固定されている。
<パージフード>
パージフード151は、カメラ収容部121よりも先端側に位置する撮影部120内を冷却しながら、外部からの塵埃及び高温ガスの流入を防止する。
パージフード151は、円筒状の第二外筒153と、第二外筒153の内側に同軸状に配置された第二内筒155と、第二外筒153及び第二内筒155の先端に配置され第二監視窓157が形成されたフランジ部159を備える。
第二外筒153と第二内筒155との間に形成される円筒状の空間S2の基端はシャッターフランジ129によって、先端はフランジ部159によって閉止されている。第二外筒153の基端部には第二給水口161が、先端部には第二排水口163が形成されており、空間S2には第二給水口161冷却水が導入され、冷却水は空間S2内を移動して第二排水口163から排出される。本観察装置100の使用時において、空間S2は水密的な空間となる。空間S2を単一の空間としてもよいが、空間S2内部を螺旋状に複数の空間に仕切ってスパイラル流路を形成してもよい。
第二外筒153の適所には、第二内筒155に形成された連通口165を通じて第二内筒155の中空空間内に冷却ガスを導入する第三給気口167が形成されている。
<カメラ>
カメラ170は、支持部材によりカメラ収容部121の最も中心の空間である第一内筒125内に固定・収容されている。
カメラ170は、イメージセンサ171(撮像素子)を実装すると共にイメージセンサ171の各画素から出力される電気信号を読み出す読出回路が形成されたセンサ基板173、読出回路により読み出された電気信号を処理する処理回路が実装された処理基板、及び処理回路によって処理された電気信号を出力し又は外部からの制御信号を入力するカメラケーブルC4が接続される入出力基板等を含むエンジンユニット175と、エンジンユニット175を収容するケース177と、イメージセンサと対向して配置されたレンズ群179と、必要に応じてレンズ群の前(レンズ群よりも観察対象物側)に配置される光学フィルタ181と、を備える。なお、イメージセンサ171の図中左側(観察対象物側)の面が、観察対象物の光像を受光する受光面である。
カメラ170の内部には、イメージセンサ171部分の温度を計測し、計測結果を補償導線C5を介して出力する熱電対183が配置されている。エンジンユニット175と接続するカメラケーブルC4、及び熱電対183と接続する補償導線C5は、リアパネル127のケーブルコネクタ135と接続されている。
本例に示すイメージセンサ171には、赤外線イメージセンサとして3〜5μm波長域の赤外線を検出可能なボロメータ式のイメージセンサを採用している。もちろん、イメージセンサ171には他の種類の赤外線イメージセンサ、CCD(Charge Coupled Device)センサ、CMOS(Complementary Metal-Oxide-Semiconductor)センサ等を採用することができるが、観察対象物をとらえるために必要な波長域の光に感度を有するイメージセンサを用いる必要がある。
ここで、ボロメータは、観察対象物から放射される赤外線エネルギーを素子の温度上昇による電気抵抗の変化に基づいて観測する手段である。本態様に係るイメージセンサは微細なボロメータを二次元に配置したマイクロボロメータであり、各画素に対応する各受光素子が夫々ボロメータである。マイクロボロメータは、赤外線エネルギーを温度変化として捉えるため、周囲温度の変化に非常に敏感である。このため、マイクロボロメータを冷却しながら赤外線画像を得る場合、各受光素子間での冷却ムラがあると、各受光素子の電気抵抗が観察対象物の温度分布と異なることとなり、映像が不鮮明となったりカメラ映像が乱れるといった問題を生ずる。従って、精細な映像を得るためには、各受光素子間での冷却ムラが発生しないように、マイクロボロメータの全体を均一に冷却する必要がある。
光学フィルタ181は、特定の性質を持つ光の透過を許容し、それ以外の光の透過を禁止する光学素子である。本例に示す光学フィルタ181は、3.7〜3.9μmの波長域の赤外線(中赤外線)の透過を許容し、火炎の影響を受けやすい波長域(燃焼により生成される炭酸ガスや水蒸気等により吸収される波長域、及び火炎の放射強度が大きな波長域)の赤外線の透過を禁止するバンドパスフィルタである。火炎の影響を受けやすい波長域の赤外線をカットすることにより、図1に示すように、撮影部120と観察対象物Xとの間に火炎Fが存在する場合でも、火炎Fの影響を受けずに観察対象物Xの状態を撮影できる。なお、光学フィルタ181には、上記バンドパスフィルタ以外にも、イメージセンサ171に入射させるべき光を選択的に透過させうる種々の透過特性を有した光学フィルタを用いることができる。
カメラ170のエンジンユニット175とレンズ群179との間には、センサ基板173の前面(観察対象物側の面)を冷却する冷却器201が配置されている。冷却器201の構成については後述する。
<冷却機構>
観察装置100における冷却機構、及びその冷却動作について図1〜図3に基づいて説明する。図3は、本発明の第一の実施形態に係る冷却機構を説明する模式図である。
給水給気装置103(図1)から供給される冷却水(例えば水道水)は、まず、第一給水口141から空間S1内に導入され、空間S1内を流れる過程でカメラ収容部121を冷却した後、第一排水口143から排出される。第一排水口143から排出された冷却水は、第二給水口161から空間S2に導入され、空間S2内を流れる過程でパージフード151を冷却した後、第二排水口163から排出される。
給水給気装置103(図1)から供給される冷却ガスは、第一給気口131及び第二給気口133からカメラ収容部121の第一内筒125の中空部内に導入される。また、給水給気装置103から供給される冷却ガスは、第三給気口167からパージフード151の第二内筒155の中空部内に導入される。各給気口133、131、167には、図1に示すようにエアクーラ105、105、105が取り付けられている。
エアクーラ105は、渦動理論の原理(ボルテックスチューブの原理)を応用したガス冷却装置である。エアクーラ105は、コンプレッサ104、104から供給された圧縮ガスをチューブ内で高速回転させることにより、圧縮ガスを低温ガスと高温ガスとに分離し、低温ガスをチューブの軸方向一端部から各給気口133、131、167に供給し、高温ガスをチューブの軸方向他端部から排気する。
図3に戻り、第一給気口131から導入された冷却ガスはカメラ170を内部から冷却し、第二給気口133から導入された冷却ガスは第一内筒125内においてカメラ170を外部から冷却する。
カメラ170を内部から冷却する冷却機構として撮影部120は、第一給気口131から導入した冷却ガスをカメラ170側に導くガスチューブ191、ガスチューブ191内の冷却ガスを第一系統の冷却ガスと第二系統の冷却ガスに分岐する分岐器192、第一系統の冷却ガスをイメージセンサ171の前方(イメージセンサ171よりも図2中左側)に導く第一ガスチューブ193、第一系統の冷却ガスをイメージセンサ171の受光面(又は、イメージセンサ171を実装したセンサ基板173の前面)に吹き付けてイメージセンサ171を前方より冷却する冷却器201、第二系統の冷却ガスをエンジンユニット175の後方(エンジンユニット175よりも図2中右側)に導く第二ガスチューブ195、ケース177の後端に配置され、第二ガスチューブ195を流れる第二系統の冷却ガスをケース177内に導入する導入口197とを備える。
冷却器201は、イメージセンサ171とレンズ群179との間(センサ基板173よりも観察対象物側)に配置され、イメージセンサ171の受光面に入射する観察対象物Xの光像の経路を回避した位置からイメージセンサ171の受光面に向けて冷却ガスを吹き付けて冷却する手段である。
図4(a)は冷却器の構成例を示す概略斜視図であり、(b)は一部拡大断面図である。
冷却器201は、イメージセンサに入射する観察対象物の光像を通過させる開口部203を有したフランジ状の本体205と、本体205に形成されたガス流路207内に冷却ガスを導入する吸入口209と、ガス流路207内を流れる冷却ガスをイメージセンサに向けて噴射する複数の噴射口211とを備える。
吸入口209には第一ガスチューブ193が接続され、ガス流路207内には吸入口209から第一系統の冷却ガスが導入される。夫々の噴射口211から噴射される冷却ガスはイメージセンサ171の外縁側から中心側に向かうように吹き付けられ、イメージセンサ171の前面の全体を均一に冷却する。
また、イメージセンサ171の前面を冷却した冷却ガスは、カメラ170の側面に設けた開口からカメラ170の外部に排出される。
本例において、第一給気口131、ガスチューブ191、分岐器192、第一ガスチューブ193、及び冷却器201は、イメージセンサ171の受光面(センサ基板173の前面)を冷却する第一の冷却手段として機能する。
図3に戻り、導入口197からケース177内に導入された第二系統の冷却ガスは、ケース177内を後方(基端側)から前方(先端側)に向けて流れ、イメージセンサ171を実装したセンサ基板173の後面を冷却する。イメージセンサ171を後方から冷却した冷却ガスは、イメージセンサ171の前面を冷却した冷却ガスと共にカメラ170の側面に設けた開口からカメラ170の外部に排出される。本例において、第一給気口131、ガスチューブ191、分岐器192、第二ガスチューブ195、導入口197、及びケース177は、センサ基板173の後面を冷却する第二の冷却手段として機能する。本例においては、ケース177を、ケース177内に導入された第二系統の冷却ガスをセンサ基板173の後面に導く手段として機能させている。もちろん、第二系統の冷却ガスを別途設けたガスチューブにより、センサ基板173の後面に導くようにしてもよい。
このように、冷却ガスによりイメージセンサ171を搭載したセンサ基板173を前後両面から冷却することにより、イメージセンサ171の冷却効率を高め、イメージセンサ171の温度を一定の範囲内に維持することができる。また、イメージセンサ171の前面の全体を均一に冷却することができるので、イメージセンサ171を構成する各受光素子としてボロメータを採用した場合であっても、各受光素子の感度を各受光素子間で均一に維持することができ、精細な赤外線画像(映像)を得ることができる。
第二給気口133からカメラ収容部121内に導入された第三系統の冷却ガスは、第一内筒125の中空部内を通過する過程でカメラ170を外部から冷却する。カメラ170を内部から冷却した後の第一・第二系統の冷却ガス、及びカメラ170を外部から冷却した後の第三系統の冷却ガスは、シャッターフランジ129に形成された第一監視窓137を介してカメラ収容部121からパージフード151内に流入する。
パージフード151の第三給気口167からは、第四系統の冷却ガスが第二内筒155内に導入され、第二内筒155の中空部内を冷却する。第四系統の冷却ガスは、第一監視窓137を介してカメラ収容部121から排出された冷却ガスと共に、第二監視窓157から撮影部120の外部に排出される。
<本実施形態の効果>
以上のように本実施形態によれば、撮影部に内蔵したカメラを撮影部内において内外から冷却するので、撮影部を長時間高温の観察対象物に近接配置しても、内蔵したカメラの温度を一定の温度範囲内に維持することができ、長時間連続して観察対象物を監視する場合であっても、熱によるカメラの故障を防止することができる。
また、イメージセンサを前後両面から冷却するので、イメージセンサの温度上昇を防止すると共に、イメージセンサの全体を均一な温度に維持することができるので、長時間連続して観察対象物を監視する場合であっても、精細な赤外線画像(映像)を得ることができる。
本実施形態においては、イメージセンサを実装したセンサ基板を、前面と後面の双方から冷却して冷却効率を向上させているが、カメラの内部で発熱するエンジンユニット全体を前方と後方から冷却することにより、エンジンユニットの動作を保証するようにしてもよい。
本実施形態には、筒状の撮影部の軸方向端面に監視窓を設けているが、筒状の撮影部の外周部の適所に監視窓を設けてもよい。
〔第二の実施形態〕
本発明の第二の実施形態に係る観察装置について説明する。本実施形態に係る観察装置は、炉内温度が1000℃以上になるコークス炉等の内部に撮影部を挿入して、その内部にある観察対象物を観察するものである。
図5は本発明による高温雰囲気炉内観察装置の一形態例を示す概略構成図である。この図に示す高温雰囲気炉内観察装置1は、炉内温度が1000℃以上になるコークス炉2(図13参照)内の状態を撮影する撮影装置3と、この撮影装置3に冷却水と冷却ガスとを供給する給水給気装置4と、これら撮影装置3、給水給気装置4を制御するコントロール装置5とを備えており、コントロール装置5によって給水給気装置4を制御し、撮影装置3に冷却水と、冷却ガスとを供給している状態で撮影装置3を先端側(下端側)からコークス炉2内に挿入して固定した後、撮影開始指示が入力されたとき、撮影装置3の先端側に配置された筒状の撮影部10によってコークス炉2内の状態を撮影し、これによって得られた映像信号を外部のモニタ装置に出力する。従って、撮影部10の長さは、観察対象となる炉の深さ等に適合させた寸法、形状に設定する。
給水給気装置4は、冷却ガス源(図示は省略する)から撮影装置3に供給される2系統の冷却ガス(例えば、空気、或は窒素ガスやアルゴンガスなどの不活性ガスなど)の各流量を計測して、計測結果をコントロール装置5に供給する2つのフロースイッチ6、7と、水槽タンク8から撮影装置3に供給される4系統の冷却水(例えば、工業用水など)の各流量を計測して、計測結果をコントロール装置5に供給する1つのフロースイッチ9とを備えており、冷却ガス源から撮影装置3に供給される2系統の冷却ガスの流量を夫々計測して、計測結果をコントロール装置5に供給するとともに、水槽タンク8から撮影装置3に供給される第一〜第四系統の各冷却水の流量を計測して、計測結果をコントロール装置5に供給する。なお、本明細書中において冷却ガスとは、通常の空気の他に、N 、AXガス等々の冷却用のガス(気体)一般を含むものである。
また、撮影装置3は、コークス炉2内に挿入されて炉内の状態を撮影する円柱状の撮影部10と、この撮影部10の上部側(元端側)に固定され、給水給気装置4から供給される冷却ガス、冷却水を受入れて撮影部10を冷却する円柱状の冷却部11と、この冷却部11の上部側に固定され撮影部10に対して電源電圧を供給する電源回路や撮影部10から出力される映像信号を増幅するアンプ回路などが収納されるアッパー部12とを備えており、給水給気装置4から供給される冷却ガス、冷却水を各逆止弁13〜17で受けて、撮影部10を冷却しながら、コントロール装置5からの指示に基づき、コークス炉2内の状態を撮影し、撮影部10の撮影動作により得られた映像信号をコントロール装置5に供給する。この場合、中空筒状の撮影部10は、図6の要部縦断面図に示す如く閉止板18によって先端側開口が閉止され、且つ先端側側面に矩形状の開口孔20が形成された筒部材によって構成される外筒21と、この外筒21の内側に配置される複数の筒部材等によって構成される。外筒21の内側に位置する他の筒部材群は、第一内筒23、第二内筒26、第三内筒30から成る。
即ち、先端縁が内側に曲げられて開口するとともに開口孔20に対応する部分に開口孔22が形成された第一内筒23と、この第一内筒23の内側に略同軸状に配置された筒部材であって当て板24によってその先端開口部が閉止されるとともに各開口孔20、22に対応する部分に開口孔25が形成された第二内筒26と、この第二内筒26の内側に略同軸状に配置された筒部材であって、芯出し用のボス27により当て板24に対する位置が決められた当て板28によってその先端側が閉止されるとともに、各開口孔20、22、25に対応する部分に開口孔29が形成された第三内筒30と、開口孔22に填込まれて外筒21と第一内筒23とによって形成される空間S1と第一、第二内筒23、26によって形成される空間S2とが外筒21の外側と連通しないようにしながら、監視窓31を形成する四角枠32とを備えている。つまり、監視窓31を挟んで上下位置にある空間S1とS1、空間S2とS2は、夫々監視窓31廻りの空間を介して連通している。撮影部の最も中心の空所は筒部材中心部空間である。
さらに、撮影部10は、複数のネジ39により、第三内筒30内において当て板28の上部に固定されるミラー固定部材40と、第三内筒30内の監視窓31に対向するようにミラー固定部材40に固定され、監視窓31を介して外筒21外からの光像を取り込みその熱線成分を透過させながら可視光成分のみを反射するミラー33と、第三内筒30内のミラー33上部に配置されミラー33で反射された光像を電気信号(映像信号)に変換してアッパー部12に供給するCCDカメラ34と、第一内筒23と第二内筒26との間に形成された円筒状の空間S2内部を螺旋状に仕切ってスパイラル流路35を形成するパイプ36と、CCDカメラ34の近傍に配置されこのCCDカメラ34部分の温度を計測し補償導線38を介して計測結果をアッパー部12に供給する熱電対37とを備えている。なお、CCDカメラ34の内部構成は図2に示したカメラ170と同様である。CCDカメラ34は、CCDイメージセンサを実装したセンサ基板を含むエンジンユニットを備えている。
冷却部11から供給される冷却ガスと、冷却水とによって外筒21、第一内筒23、第二内筒26、第三内筒30、CCDカメラ34などを冷却しながら、監視窓31を介してコークス炉2内の光像を取込み、その可視光成分のみを反射して、CCDカメラ34でこれを電気信号に変換するとともに、これによって得られた映像信号と温度計測動作によって得られた温度信号とをアッパー部12に供給し、コントロール装置5に伝送させる。コントロール装置5は、図5に示す様に筐体41と、この筐体41内に配置され、筐体41の前面に形成された操作パネル42の操作内容に応じた制御指令を発生して撮影装置3などを制御する制御回路と、筐体41内に配置され操作パネル42の操作内容、給水給気装置4から供給される各フロースイッチ信号および撮影装置3から出力される温度信号などを処理して警報音などを発生する警報回路と、制御回路の出力内容および警報回路の出力内容などを処理して表示信号などを生成する表示回路と、撮影装置3から出力される映像信号などを取り込んで、指定された信号形式に変換して、これを出力する画像処理回路などとを備えている。
この場合、操作パネル42には、図7に示す如くコントロール装置5全体の電源をオン/オフする際に操作されるメイン電源スイッチ43と、CCDカメラ34の電源をオン/オフする際に操作されるカメラ電源スイッチ44と、熱電対37から出力される温度信号などの処理を開始させる際に操作される温度電源スイッチ45と、CCDカメラ34の露光時間を調整して、電子アイリスを調整するときに操作される光量調整用デジタルスイッチ46と、フロースイッチ6で計測される冷却ガスの流量が規定値に満たないとき、内蔵されているランプを点灯させ、このとき発せられる警報音の鳴動を停止させる際に操作されるセンタ側ガス監視スイッチ47と、フロースイッチ7で計測される冷却ガスの流量が規定値に満たないとき、内蔵されているランプを点灯させ、このとき発せられる警報音の鳴動を停止させる際に操作されるアウタ側ガス監視スイッチ48と、フロースイッチ9で計測される各系統の冷却水の流量が規定値に満たないとき、内蔵されているランプを点灯させ、このとき発せられる警報音の鳴動を停止させる際に操作される冷却水監視スイッチ49と、CCDカメラ34の温度が設定温度を越えているとき点灯駆動される温度警報ランプ50と、CCDカメラ34の許容温度を設定する際に操作される温度警報設定器51と、CCDカメラ34の温度を3桁のLEDで表示する温度表示器57とが設けられている。
操作パネル42のメイン電源スイッチ43が操作されて電源が投入されたとき、給水給気装置4から出力される各フロースイッチ信号を取り込み、これら各フロースイッチ信号で示される冷却ガスの流量、冷却水の流量などが警報条件を満たしているかどうか判定し、冷却ガスの流量、冷却水の流量が警報条件を満たしていれば、センタ側ガス監視スイッチ47、アウタ側ガス監視スイッチ48、冷却水監視スイッチ49のうち、対応するものを点灯させるとともに、警報音を発生してこれをオペレータに知らせる。また、この動作と並行して、カメラ電源スイッチ44が操作されれば、撮影装置3を制御してコークス炉2内の状態を撮影させるとともにこの撮影動作で得られた映像信号を取り込んで、これを指定された形式の映像信号に変換し、外部のモニタ装置などに供給する。また、温度電源スイッチ45が操作されて、電源が投入されていれば、撮影装置3から出力される温度信号を取り込んで、温度表示器57上にCCDカメラ34部分の温度を表示するとともに、これが設定温度を越えているとき、温度警報ランプ50を点灯させて、温度が高過ぎることをオペレータに知らせる。
次に、図5に示す概略構成図、図6に示す要部断面図、図7に示す正面図を参照しながら、この形態例の動作を説明する。まず、図8に示す如くフロースイッチ6を介して冷却部11によって給水給気装置4から供給されている冷却ガスは、第三内筒30内に導入される。この冷却ガスは、冷却部11において、チューブ191によりCCDカメラ34内に導入されてCCDカメラ34を内部から冷却する冷却ガス(第一・第二系統の冷却ガスを含む)と、直接第三内筒30内に導入されてCCDカメラ34を外部から冷却する第三系統の冷却ガスとに分岐される。
CCDカメラ34の内部構成は、図2に示したカメラ170の構成と同様である。チューブ191を流れる冷却ガスは、図2及び図3に示したように、更に分岐器192によって第一ガスチューブ193を流れる第一系統の冷却ガスと、第二ガスチューブ195を流れる第二系統の冷却ガスとに分岐される。第一系統の冷却ガスはイメージセンサ171を前面から冷却し、第二系統の冷却ガスはイメージセンサ171を後面から冷却した後、CCDカメラ34の外部に放出され、第三系統の冷却ガスと合流する。第一、第二系統の冷却ガスは、最終的に第三系統の冷却ガスと共に監視窓31を介して、外筒21の周囲に放出される。
第三系統側の冷却ガスは第三内筒30内に導かれて、第三内筒30内、CCDカメラ34、ミラー33を冷却しながら、監視窓31を介して、外筒21の周囲に放出される。また、フロースイッチ7を介して冷却部11によって給水給気装置4から供給されている第五系統側の冷却ガスは第二内筒26と第三内筒30との間に形成された円筒状の空間S3内に導かれて、これら第二内筒26、第三内筒30を冷却しながら、監視窓31を介して外筒21の周囲に放出される。このことは、炉内からの輻射熱蓄熱による悪影響を防止し、且つ炉内からの温度差による対流熱による悪影響を防止することになる。第一〜第三系統側の冷却ガス量が第五系統側の冷却ガス量より多いときには、図9に示す如く第二内筒26に形成された開口孔25の周囲部分に負圧領域が発生し、また第一〜第三系統側の冷却ガス量が第五系統側の冷却ガス量より少ないときには、図10に示す如く監視窓31の中央部分に負圧領域が発生し、これら負圧領域内にコークス炉2内の高温ガスが引き込まれる不具合があることから、第一〜第三系統側の冷却ガス量と、第五系統側の冷却ガス量とをほぼ同一にすることが肝要である。これにより、監視窓31の周囲や中央部分で冷却ガスの流れが均一にされて、コークス炉2内の高温ガスが第三内筒30内に配置されているミラー33やCCDカメラ34に接触することがなくなり、高熱によるダメージを受けることがなくなる。
また、この動作と並行して図11に示す如く冷却部11によって給水給気装置4から供給されている第一、第二系統側の冷却水が第一内筒23と、第二内筒26との間に形成されたスパイラル流路(スパイラル流路)35内に導かれて、第一内筒23と、第二内筒26を効率よく冷却しながら、これら第一内筒23と、第二内筒26の先端部分から外筒21の先端内側に放出された後、第一内筒23と、外筒21とを冷却しながら、これら第一内筒23と、外筒21との間に形成された円筒状の空間S1を通って冷却部11側に戻され、外部に排水される。なお、符号80は空間S1内にスパイラル状に配置されてスパイラル状の流路を形成するスパイラル誘水板であり、このスパイラル誘水板80を必要に応じて空間S1内に配置することにより、スパイラル状の排水流路を形成して該流路周辺を有効に冷却させることが可能となる。なお、スパイラル誘水板80は、後述する図14のパイプ58を含むものである。
さらに、図12に示す如く冷却部11によって第三、第四系統側の冷却水がパイプ36内に導かれ、このパイプ36の外側に接している第一内筒23と、第二内筒26を冷却しながら、パイプ36の先端部分36aから第一内筒23の先端内側内に放出され、外筒21の先端部分に滞留している冷却水(スパイラル流路35によって導かれた冷却水)を撹拌し、この部分に沈澱物が堆積しないように攪拌しながら、第一内筒23と、外筒21とを冷却しつつ、これら第一内筒23と外筒21との間に形成された円筒状の空間を通って冷却部11側に戻され、外部に排水される。この冷却水は、炉内温度の伝導熱対策として用いられている。これによって、冷却水として、浮遊物量が多い工業用水などを使用した場合にも、外筒21の先端側の内部に沈澱物が沈澱しないようにしながら、外筒21の先端部分の冷却水を効率良く撹拌して冷却部11側に戻すことが可能となり、この結果長年月の連続使用が可能となる。
そして、給水給気装置4によって撮影装置3に冷却ガス、冷却水が供給されている状態で、図13に示す如く撮影装置3の撮影部10がコークス炉2内に挿入されて、冷却部11に設けられているフランジ52がコークス炉2の上部に固定され、この状態でこのコークス炉2内の状態が撮影され、これによって得られた映像信号がコントロール装置5に伝送されて、外部のモニタ装置に供給される。この画像は、監視窓直近に設置されるビデオカメラによりこれまでのリレーレンズ系や光ファイバー方式と比較して、大幅な高解像、高鮮明な画像データとして供給されるものである。
このように、この形態例では、給水給気装置4から供給される冷却水を第一内筒23と、第二内筒26との間に形成されたスパイラル流路35内に導いてこれを旋回させながら、外筒21の先端内側に放出した後、第一内筒23と、外筒21との間に形成された円筒状の空間を介して冷却部11に戻すとともに、給水給気装置4から供給される冷却ガスを第二内筒26、第三内筒30との間に形成された空間と、第三内筒30内とに各々導いて、監視窓31から外筒21の外に放出するようにしたので、撮影部10、ミラー33およびCCDカメラ34などを効率良く冷却して、電気炉、コークス炉2などの高温雰囲気炉内の状態を24時間稼働中連続して観察することができる。また、この形態例では、給水給気装置4から供給される冷却水をパイプ36内に導いて外筒21の先端内側に放出するようにしているので、外筒21の先端部分に滞留している冷却水(スパイラル流路35によって導かれた冷却水)を撹拌しこの部分を効率良く冷却するとともに、沈澱物が堆積しないようにすることができ、長年月連続使用に耐えることができる。
また、CCD部(カメラのイメージセンサ搭載部分)を監視窓直近に据える方式であるので、これまでの撮像方式(リレーレンズ、ファイバー方式等)に比較して格段の高解像度、高鮮明な画像を得ることが可能となる。また、上述した形態例においては、第一内筒23と、第二内筒26との間に形成された空間内にパイプ36を螺旋状に配置し、このパイプ36によって第一内筒23と、第二内筒26との間に形成された空間を螺旋状に仕切ってスパイラル流路35を形成しているが、図14に示す如く外筒21と、第一内筒23との間に形成された空間にパイプ58をパイプ36の螺旋方向と同じ螺旋方向となるように配置し、このパイプ58によって外筒21と、第一内筒23との間に形成された空間を螺旋状に仕切ってスパイラル流路59を形成し、このスパイラル流路59と、スパイラル流路35とを並行して使用するようにしても良い。
このようにすることにより、この撮影部10aでは、外筒21の先端内側から冷却部11に戻る冷却水の流路を長くして、外筒21や第一内筒23を効率良く、冷却することができる。また、パイプ58内に冷却水を導いて、パイプ58の先端部分から外筒21の先端内側に放出し、外筒21の先端部分に滞留している冷却水(スパイラル流路35によって導かれた冷却水)を撹拌し、この部分に沈澱物が堆積しないようにすることにより、1本のパイプ36で冷却水を供給した場合に比べて、パイプ58を使用した分だけ、外筒21の先端部分に滞留している冷却水(スパイラル流路35によって導かれた冷却水)を撹拌する際の効果を高めて、外筒21の冷却効率を向上させることができる。つまり、スパイラル流路35自体が攪拌効果を有するものである。
また、上述した形態例においては、監視窓31を通して入射されるコークス炉2内の光像をミラー33で反射してCCDカメラ34に導くようにしているが、図15に示す如くミラー33を使用することなく、コークス炉2内の光像を直接、CCDカメラ34に導くようにしても良い。この場合、この撮影部10bは、筒状に形成される外筒60と、この外筒60の内側に配置され、先端部分が外筒60の先端部分より少し上にくる程度の長さに形成される第一内筒61と、この第一内筒61内に配置され先端部分が外筒60の先端部分と同じ位置まで延ばされる第二内筒62と、この第二内筒62および外筒60の先端側を閉止するリング状の閉止板63と、第二内筒62の内側に配置される第三内筒64と、この第三内筒64の先端部分に配置され、閉止板63の中央部分に形成された監視窓65からの光像を取り込んで、その熱線成分をカットしながら、可視光成分のみを透過させる熱線カットフィルタ66と、第三内筒64内の熱線カットフィルタ66の上部側に配置され、熱線カットフィルタ66を透過した光像(可視光像)を電気信号(映像信号)に変換して、アッパー部12に供給するCCDカメラ67と、第一内筒61と第二内筒62との間に形成された円筒状の空間を螺旋状に仕切ってスパイラル流路69を形成するパイプ68と、CCDカメラ67の近傍に配置され、このCCDカメラ67部分の温度を計測し、補償導線71を介して、計測結果をアッパー部12に供給する熱電対70とを備えている。そして、冷却部11から供給される冷却ガスと、冷却水とによって外筒60、第一内筒61、第二内筒62、第三内筒64、CCDカメラ67の内外などを冷却しながら、監視窓65を介してコークス炉2内の光像を取込み、その可視光成分のみを透過させて、CCDカメラ67でこれを電気信号に変換するとともに、この電気信号をアッパー部12に供給し、コントロール装置5に伝送させる。
このように構成することにより、上述した形態例と同様に給水給気装置4から供給される冷却水を第一内筒61と、第二内筒62との間に形成されたスパイラル流路69内に導いてこれを旋回させながら外筒60の先端内側に放出した後、第一内筒61と、外筒60との間に形成された円筒状の空間を介して冷却部11に戻すとともに、給水給気装置4から供給される冷却ガスを第二内筒62、第三内筒64との間に形成された空間と、第三内筒64内と、CCDカメラ34内とに各々、導いて、監視窓65から外筒60の外に放出させることにより、撮影部10b、熱線カットフィルタ66およびCCDカメラ67の内外などを効率良く冷却しながら、撮影部10bの先端に形成された監視窓65を介して、電気炉、コークス炉2などの高温雰囲気炉内の状態を連続して観察することができる。また、上述した各形態例においては、コークス炉2の上部に形成された開口部から撮影部10、10a、10bを挿入するようにしているが、コークス炉2の斜め上方などに形成された開口部から撮影部10、10a、10bを挿入するようにしても良い。このようにしても、撮影部10、10a、10bを効率良く冷却していることから、コークス炉2内の状態を24時間連続して撮影することができる。
以上説明したように本実施形態によれば、CCDカメラの内外を効率良く冷却して、電気炉、コークス炉などの高温雰囲気炉内の状態を長年月にわたり24時間の稼働中、連続して観察することができる。大幅な改造を伴わずに大きな冷却効果を長期的に得ることができるのでコスト的にも有利であり、また解像度が高く、高鮮明となるので、機能的にも優れている。
なお、本実施形態については、CCDイメージセンサを用いたCCDカメラの例により説明したが、カメラに用いるイメージセンサには、可視光像を撮像するCMOSイメージセンサのほか、その他の波長域の光像を撮像するイメージセンサ、例えば赤外線像を撮像するボロメータ等を用いることができる。なお、可視光像以外の光像を撮影する場合、ミラー33と熱線カットフィルタ66には、イメージセンサで受光する光の成分に応じた光学素子を用いる。例えば、イメージセンサとしてボロメータを用いる場合、ミラー33にはボロメータにて受光する光の成分を反射する光学素子を用い、熱線カットフィルタ66には、ボロメータにて受光する光の成分を透過させ、それ以外の熱線成分の透過を禁止する光学素子を用いる。
また、第一の実施形態と第二の実施形態に記載した各構成は、矛盾が生じない限り、夫々他の実施形態に適用して実施することが可能である。
<使用例>
図16(a)、(b)は、図15に示す撮影部をロータリーキルン炉にセットしてこのロータリーキルン炉内を撮影しているときの一例を示す模式図である。図16(a)はロータリーキルン炉を側方から観察した様子を示す透視図であり、(b)は(a)の右方向から観察した様子を示す図である。
ロータリーキルン炉300は回転式の高温焼成装置であり、軸線を中心として円筒状の回転炉301を回転させることにより、回転炉301の内部で原料302を攪拌・移動させながら加熱する装置である。
ロータリーキルン炉300内には、給水給気装置4(図5)によって冷却ガス、冷却水が供給されている状態の撮影装置3の撮影部10bを挿入する。冷却部11に設けられているフランジ52をロータリーキルン炉300の軸方向の一端面304に固定し、この状態でロータリーキルン炉300内の状態を撮影する。撮影により得られた映像信号が、コントロール装置5に伝送されて、外部のモニタ装置に供給される。
ここで、本例に示すロータリーキルン炉300は、軸方向の一端部に、回転炉301内に伸びるバーナー303を備えたいわゆる内熱式のロータリーキルン炉である。そのため、可視光(CCDカメラ)による撮影では、燃料(重油やガス等)を燃焼させたときに発生する火炎Fにより、原料302の状態を観察できない。
そこで、撮影部10bに内蔵するカメラのイメージセンサにはボロメータを用い、火炎Fの影響を受けない3.7〜3.9μmの中赤外線波長域の画像を撮影して、原料302の観察を可能とする。
このように本発明の第二の実施形態に係る観察装置によれば、カメラのイメージセンサにボロメータを用いることにより、撮影装置の撮影部を火炎Fが存在する炉内(ロータリーキルン炉内、火力発電所内のボイラ内、焼却炉内等)に挿入した状態で、火炎Fの影響を受けずに炉内の状態を観察することができる。
〔本発明の実施態様例と作用、効果のまとめ〕
<第一の実施態様>
本態様は、撮影部10、10a、10b、120に収容したカメラ34、67、170により高温物体(観察対象物X)を撮影する観察装置1、100であって、カメラは、撮影部の先端部に形成された監視窓31、65、137を介して入射した光像を受光して電気信号に変換するイメージセンサ171を実装したエンジンユニット175を備え、撮影部は、第一系統の冷却ガスによりイメージセンサの受光面を冷却する第一の冷却手段(193、201)と、第二系統の冷却ガスによりエンジンユニットの他部位を冷却する第二の冷却手段(195、197)と、を備えることを特徴とする。
ここで、撮影部は、高温雰囲気空間内において高温雰囲気空間内にある観察対象物を撮影する手段でもよいし、高温雰囲気空間外において高温物体に近接した位置から高温の観察対象物を撮影する手段でもよい。高温雰囲気空間内にある観察対象物としてはコークス炉の炉壁を、高温雰囲気空間外にある観察対象物としてはコンロのバーナー等を例示することができる。
カメラには、可視光像を撮像するCCDイメージセンサやCMOSイメージセンサ、赤外線画像を撮像するボロメータ、その他の波長域の光を受光するイメージセンサ等を搭載することができ、本態様に示される冷却機構は何れのカメラにも適用できる。第一の冷却手段と第二の冷却手段は、カメラ内部のエンジンユニットを冷却する手段である。即ち、第一の冷却手段と第二の冷却手段は、撮影部内に配置されたカメラを内部から冷却する手段である。
本態様によれば、カメラを内部から冷却するので、カメラを効率良く、且つ強力に冷却することができる。特に、第一の冷却手段はイメージセンサの受光面を冷却するので、イメージセンサの全体を均一に冷却することが可能となり、各受光素子から出力される電気信号の乱れを抑制することが可能となる。本態様によれば、高温雰囲気炉内の状態、又は高温の観察対象物の状態を、24時間連続して安定的に観察することが可能となる。
<第二の実施態様>
本態様は、撮影部10、10a、10b、120に収容したカメラ34、67、170により高温物体(観察対象物X)の状態を撮影する観察装置1、100であって、カメラは、撮影部の先端部に形成された監視窓31、65、137を介して入射した光像を受光して電気信号に変換するイメージセンサ171を備え、撮影部は、第一系統の冷却ガスによりイメージセンサの受光面を冷却する第一の冷却手段(193、201)と、撮影部の基端側から注入した第三系統の冷却ガスにより、カメラを外部から冷却する第三の冷却手段(133)と、を備えることを特徴とする。
ここで、撮影部は、高温雰囲気空間内において高温雰囲気空間内にある観察対象物を撮影する手段でもよいし、高温雰囲気空間外において高温物体に近接した位置から高温の観察対象物を撮影する手段でもよい。高温雰囲気空間内にある観察対象物としてはコークス炉の炉壁を、高温雰囲気空間外にある観察対象物としてはコンロのバーナー等を例示することができる。
カメラには、可視光像を撮像するCCDイメージセンサやCMOSイメージセンサ、赤外線画像を撮像するボロメータ、その他の波長域の光を受光するイメージセンサ等を搭載することができ、本態様に示される冷却機構は何れのカメラにも適用できる。第一の冷却手段は、カメラ内部のイメージセンサを冷却する手段である。即ち、第一の冷却手段は、撮影部内に配置されたカメラを内部から冷却する手段である。
本態様によれば、カメラを内外から冷却するので、カメラを効率良く、且つ強力に冷却することができる。特に、第一の冷却手段はイメージセンサの受光面を冷却するので、イメージセンサの全体を均一に冷却することが可能となり、各受光素子から出力される電気信号の乱れを抑制することが可能となる。本態様によれば、高温雰囲気炉内の状態、又は高温の観察対象物の状態を、24時間連続して安定的に観察することが可能となる。
<第三の実施態様>
本態様に係る観察装置1、100において、各冷却ガスは監視窓31、65、137から撮影部10、10a、10b、120の外部に放出されることを特徴とする。
本態様によれば、冷却ガスにより撮影部の各部を効率よく冷却しながら、高温雰囲気空間内又は高温の観察対象物からの輻射熱蓄熱や、周囲の温度差による対流熱による悪影響を防止することができる。
<第四の実施態様>
本態様に係る観察装置1、100において、イメージセンサ171を構成する各受光素子はボロメータであることを特徴とする。
マイクロボロメータは、赤外線エネルギーを温度変化として捉えるため、周囲温度の変化に非常に敏感である。このため、マイクロボロメータを冷却しながら赤外線画像を得る場合、各受光素子間での冷却ムラがあると、各受光素子の電気抵抗が観察対象物の温度分布と異なることとなり、映像が不鮮明となったりカメラ映像が乱れるといった問題を生ずる。
観察装置は、第一の実施態様に記載したように、第一系統の冷却ガスを用いてイメージセンサの受光面を冷却する第一の冷却手段(193、201)を備えているので、各受光素子間の冷却ムラが発生しないようにイメージセンサの全体を均一に冷却することができる。従って、イメージセンサとしてボロメータ方式の撮像素子を用いた場合であっても、映像が不鮮明となったりカメラ映像が乱れるといったことなく、観察対象物を長時間連続して観察することができる。
<第五の実施態様>
本態様に係る観察装置1、100において、撮影部10、10a、10b、120は同軸状に配置された複数の筒状部材(外筒、内筒)を備え、各筒状部材間に形成された円筒状空間の少なくとも1つ(空間S1、S2)に、撮影部の基端側から先端側に向けて冷却水を注入して撮影部を冷却することを特徴とする。
本態様によれば、冷却ガスに加えて冷却水を用いて撮影部を冷却するので、高温物体を長時間連続して撮影することができる。
<第六の実施態様>
本態様は、高温物体を撮影する観察装置1、100における冷却機構であって、第一系統の冷却ガスによりイメージセンサ171の受光面を冷却する第一の冷却手段(193、201)を備えることを特徴とする。
本態様によれば、イメージセンサの各受光素子間で冷却ムラが発生しないように、イメージセンサの全体を均一に冷却することができる。従って、イメージセンサからは安定した映像出力を得ることができる。
<第七の実施態様>
本態様に係る冷却機構は、第二系統の冷却ガスによりイメージセンサ171を実装したセンサ基板173を、受光面とは反対側から冷却する第二の冷却手段(195)を備えることを特徴とする。
本態様によれば、イメージセンサを前後両面から冷却するので、イメージセンサの全体を強力且つ均一に冷却することができ、安定した映像出力を得ることができる。
<第八の実施態様>
本態様に係る冷却機構において、第一の冷却手段(冷却器201)は、イメージセンサ171が受光する高温物体の光像の経路を回避した位置から受光面に向けて冷却ガスを吹き付けることを特徴とする。
本態様によれば、イメージセンサが受光する高温物体の光像に影響を与えることなく、イメージセンサの全体を均一に冷却することができる。
S1、S2、S3…空間、C1…複合ケーブル、C2…制御ケーブル、C3…映像ケーブル、C4…カメラケーブル、C5…補償導線、X…観察対象物、F…火炎、1…高温雰囲気炉内観察装置、2…コークス炉、3…撮影装置、4…給水給気装置、5…コントロール装置、6…フロースイッチ、7…フロースイッチ、8…水槽タンク、9…フロースイッチ、10…撮影部、10a…撮影部、10b…撮影部、11…冷却部、12…アッパー部、13…各逆止弁、18…閉止板、20…開口孔、21…外筒、22…開口孔、23…第一内筒、24…当て板、25…開口孔、26…第二内筒、27…ボス、28…当て板、29…開口孔、30…第三内筒、31…監視窓、32…四角枠、33…ミラー、34…CCDカメラ、35…スパイラル流路、36…パイプ、36a…先端部分、37…熱電対、38…補償導線、39…ネジ、40…ミラー固定部材、41…筐体、42…操作パネル、43…メイン電源スイッチ、44…カメラ電源スイッチ、45…温度電源スイッチ、46…光量調整用デジタルスイッチ、47…センタ側エアー監視スイッチ、48…アウタ側エアー監視スイッチ、49…冷却水監視スイッチ、50…温度警報ランプ、51…温度警報設定器、52…フランジ、57…温度表示器、58…パイプ、59…スパイラル流路、60…外筒、61…第一内筒、62…第二内筒、63…閉止板、64…第三内筒、65…監視窓、66…熱線カットフィルタ、67…CCDカメラ、68…パイプ、69…スパイラル流路、70…熱電対、71…補償導線、80…スパイラル誘水板、100…観察装置、101…炉、102…観察窓、103…給水給気装置、104…コンプレッサ、105…エアクーラ、106…コントロール装置、107…中継電源ボックス、108…筐体、109…操作パネル、110…カメラコントロール用PC、111…モニタ装置、120…撮影部、121…カメラ収容部、123…第一外筒、125…第一内筒、127…リアパネル、129…シャッターフランジ、131…第一給気口、133…第二給気口、135…ケーブルコネクタ、137…第一監視窓、139…熱線カットフィルタ、141…第一給水口、143…第一排水口、145…取付治具、151…パージフード、153…第二外筒、155…第二内筒、157…第二監視窓、159…フランジ部、161…第二給水口、163…第二排水口、165…連通口、167…第三給気口、170…カメラ、171…イメージセンサ、173…センサ基板、175…エンジンユニット、177…ケース、179…レンズ群、181…光学フィルタ、183…熱電対、191…ガスチューブ、192…分岐器、193…第一ガスチューブ、195…第二ガスチューブ、197…導入口、201…冷却器、203…開口部、205…本体、207…ガス流路、209…吸入口、211…噴射口、300…ロータリーキルン炉、301…回転炉、302…原料、303…バーナー、304…一端面

Claims (8)

  1. 撮影部に収容したカメラにより高温物体を撮影する観察装置であって、
    前記カメラは、前記撮影部の先端部に形成された監視窓を介して入射した光像を受光して電気信号に変換するイメージセンサを実装したエンジンユニットを備え、
    前記撮影部は、第一系統の冷却ガスにより前記イメージセンサの受光面を冷却する第一の冷却手段と、第二系統の冷却ガスにより前記エンジンユニットの他部位を冷却する第二の冷却手段と、を備えることを特徴とする観察装置。
  2. 前記撮影部は、前記撮影部の基端側から注入した第三系統の冷却ガスにより、前記カメラを外部から冷却する第三の冷却手段を備えることを特徴とする請求項に記載の観察装置。
  3. 前記各冷却ガスは前記監視窓から前記撮影部の外部に放出されることを特徴とする請求項1又は2に記載の観察装置。
  4. 前記イメージセンサを構成する各受光素子はボロメータであることを特徴とする請求項1乃至の何れか一項に記載の観察装置。
  5. 撮影部に収容したカメラにより高温物体を撮影する観察装置であって、
    前記カメラは、前記撮影部の先端部に形成された監視窓を介して入射した光像を受光して電気信号に変換するイメージセンサを実装したエンジンユニットを備え、
    前記撮影部は、第二系統の冷却ガスにより前記エンジンユニットのうち前記イメージセンサの受光面以外の部位を冷却する第二の冷却手段を備え、
    前記イメージセンサを構成する各受光素子はボロメータであることを特徴とする観察装置。
  6. 前記撮影部は同軸状に配置された複数の筒状部材を備え、
    前記各筒状部材間に形成された円筒状空間の少なくとも1つに、前記撮影部の基端側から先端側に向けて冷却水を注入して前記撮影部を冷却することを特徴とする請求項1乃至5の何れか一項に記載の観察装置。
  7. 高温物体を撮影する観察装置における冷却機構であって、
    第一系統の冷却ガスによりイメージセンサの受光面を冷却する第一の冷却手段と、
    第二系統の冷却ガスにより、前記イメージセンサを実装したセンサ基板を、前記イメージセンサの受光面とは反対側から冷却する第二の冷却手段と、を備えることを特徴とする冷却機構。
  8. 前記第一の冷却手段は、前記イメージセンサが受光する前記高温物体の光像の経路を回避した位置から前記受光面に向けて冷却ガスを吹き付けることを特徴とする請求項に記載の冷却機構。
JP2017120551A 2017-06-20 2017-06-20 観察装置、及び冷却機構 Active JP6490750B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017120551A JP6490750B2 (ja) 2017-06-20 2017-06-20 観察装置、及び冷却機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017120551A JP6490750B2 (ja) 2017-06-20 2017-06-20 観察装置、及び冷却機構

Publications (2)

Publication Number Publication Date
JP2019009489A JP2019009489A (ja) 2019-01-17
JP6490750B2 true JP6490750B2 (ja) 2019-03-27

Family

ID=65029722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017120551A Active JP6490750B2 (ja) 2017-06-20 2017-06-20 観察装置、及び冷却機構

Country Status (1)

Country Link
JP (1) JP6490750B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519533A (zh) * 2019-08-29 2019-11-29 国家电投集团江西电力有限公司新昌发电分公司 一种烟道红外监控装置
KR102053982B1 (ko) * 2019-09-04 2020-01-22 신동신 고온의 로 내부 검사 방법 및 상기 방법에 사용되는 영상 촬영 장치
JP7438721B2 (ja) 2019-11-14 2024-02-27 日鉄テックスエンジ株式会社 炉内監視装置
JP2021121776A (ja) * 2020-01-31 2021-08-26 三菱パワー株式会社 炉内監視構造、これを備えたボイラ、監視システム及び点検方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2891672B2 (ja) * 1996-05-17 1999-05-17 ロイヤルコントロールズ株式会社 高温雰囲気炉内観察装置
JPH10285441A (ja) * 1997-04-04 1998-10-23 Sony Corp ビデオカメラの放熱装置
JP2008258707A (ja) * 2007-04-02 2008-10-23 Olympus Imaging Corp カメラ
JP5206437B2 (ja) * 2008-03-04 2013-06-12 新日鐵住金株式会社 放射測温装置及び放射測温方法
JP4840675B2 (ja) * 2009-06-05 2011-12-21 センサーテクノロジー株式会社 冷却機能を付与したビデオカメラ
JP5804255B2 (ja) * 2011-07-13 2015-11-04 東京電力株式会社 透過部材

Also Published As

Publication number Publication date
JP2019009489A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6490750B2 (ja) 観察装置、及び冷却機構
CN101389917B (zh) 炉内观察装置及具有该炉内观察装置的推焦杆
US8274560B2 (en) Flame detector for monitoring a flame during a combustion process
US11435653B2 (en) High temperature camera probe
CN104797918B (zh) 燃气轮机燃烧室段内的在线光学监测系统与方法
US8094301B2 (en) Video and thermal imaging system for monitoring interiors of high temperature reaction vessels
US5162906A (en) Apparatus for observing the interior of a hot furnace
JP5781888B2 (ja) 高温雰囲気炉内観察装置
RU2004139018A (ru) Вставной видеокомплекс для промышленных печей и система обработки изображений
JP2891672B2 (ja) 高温雰囲気炉内観察装置
KR100852945B1 (ko) 원격 구동되는 셔터장치를 구비한 대면적 초고진공용영상감시장치
JP2008249535A (ja) 温度計測装置
EP0364578A1 (en) Inspection apparatus for hot furnace
TWM537201U (zh) 高溫爐爐內攝影系統
JPS60187608A (ja) 高炉羽口前状況監視装置
JPH05141878A (ja) フイルタ付炉内観察装置
JP2001318002A (ja) 高炉羽口レースウエイ温度分布測定装置
JP2007127359A (ja) 燃焼炉における燃焼室内観察装置
CN213072856U (zh) 比色看火电视
CN217643510U (zh) 一种基于偏振原理的红外相机
WO2014067577A1 (en) Endoscope for high-temperature processes and method of monitoring a high-temperature thermal process
Hoffmann et al. High temperature IR-imager with wide dynamic range for industrial process control

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190227

R150 Certificate of patent or registration of utility model

Ref document number: 6490750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250